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Cost-Sensitive Double Updating Online Learning

and Its Application to Online Anomaly Detection

Peilin Zhao∗ Steven C.H. Hoi†

Abstract

Although both cost-sensitive classification and online
learning have been well studied separately in data min-
ing and machine learning, there was very few compre-
hensive study of cost-sensitive online classification in
literature. In this paper, we formally investigate this
problem by directly optimizing cost-sensitive measures
for an online classification task. As the first comprehen-
sive study, we propose the Cost-Sensitive Double Up-
dating Online Learning (CSDUOL) algorithms, which
explores a recent double updating technique to tackle
the online optimization task of cost-sensitive classifica-
tion by maximizing the weighted sum or minimizing the
weighted misclassification cost. We theoretically ana-
lyze the cost-sensitive measure bounds of the proposed
algorithms, extensively examine their empirical perfor-
mance for cost-sensitive online classification tasks, and
finally demonstrate the application of our technique to
solve online anomaly detection tasks.

1 Introduction

Online learning has been studied extensively in ma-
chine learning. Most existing online learning techniques
are however not suitable to solve a cost-sensitive clas-
sification task, an important problem for data mining
which takes the misclassification costs into considera-
tion [8, 5]. This is because most existing online learning
studies [14] often concern the performance of an online
classification algorithm in terms of prediction mistake
rate or accuracy, which is obviously cost-insensitive and
thus inappropriate for many real applications in data
mining, especially for cost-sensitive classification tasks
where datasets are often class-imbalanced and the mis-
classification costs of instances from different classes can
be very different [24, 3, 7].

To address the above challenge of cost-sensitive clas-
sification, researchers especially in data mining litera-
ture have proposed more meaningful metrics, such as
the weighted sum of sensitivity and specificity [11, 2] and
the weighted misclassification cost [8, 1]. Over the past
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decades, substantial research efforts have been devoted
to developing batch classification algorithms to improve
the cost-sensitive measures, including the weighted sum
of sensitivity and specificity and the weighted misclassi-
fication cost metrics [8, 1]. However, these batch classi-
fication algorithms often suffer poor efficiency and scal-
ability when solving large-scale problems, which thus
are unsuitable for online classification applications.

Although both cost-sensitive classification and on-
line learning have been studied extensively in data min-
ing and machine learning communities, respectively,
there was very few comprehensive study of cost-sensitive
online classification in both data mining and machine
learning literature. In this paper, we formally investi-
gate this problem by directly optimizing cost-sensitive
measures for an online classification task. As the first
comprehensive study, we propose the “Cost-Sensitive
Double Updating Online Learning” (CSDUOL) algo-
rithms based on the Double Updating Online Learning
(DUOL) technique [28] to tackle the online optimization
task of maximizing the weighted sum or minimizing the
weighted misclassification cost. We theoretically ana-
lyze the cost-sensitive measure bounds of the proposed
algorithms, extensively examine their empirical perfor-
mance of cost-sensitive online classification tasks, and
finally demonstrate the application of our technique for
solving online anomaly detection tasks.

The rest of this paper is organized as follows. Sec-
tion 2 briefly reviews related work. Section 3 formu-
lates the problem, presents our algorithms, and theoret-
ically analyzes the bounds of the proposed algorithms.
Section 4 discusses our experimental results. Section 5
shows an application to online anomaly detection tasks,
and finally Section 6 concludes this paper.

2 Related Work

Our work is mainly related to two groups of research
in data mining and machine learning communities, that
is, cost-sensitive classification in data mining literature,
and online learning in machine learning literature.

Cost-sensitive classification has been extensively
studied in data mining and machine learning. To ad-
dress this problem, researchers have proposed a vari-
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ety of cost-sensitive metrics. The well-known exam-
ples include the weighted sum of sensitivity and speci-
ficity [11, 2], and the weighted misclassification cost
that takes cost into consideration when measuring clas-
sification performance [8, 1]. As a special case, when
the weights are both equal to 0.5, the weighted sum of
sensitivity and specificity is reduced to the well-known
balanced accuracy [2]. Over the past decades, various
batch learning algorithms have been proposed for cost-
sensitive classification in literature [21, 22, 5, 8, 19, 18].

Online learning has been extensively studied in
machine learning community. Various online learn-
ing methods have been actively proposed in litera-
ture [20, 17, 4, 13, 27, 30, 12, 14]. Examples include
the well-known Perceptron algorithm [20, 9], the recent
Passive-aggressive (PA) learning [4], and many other
recently proposed algorithms, many of which usually
follow the principle of large margin learning [10, 15, 6].
Most online learning algorithms are cost-insensitive, ex-
cept the prediction-based PA algorithm (’CPAML’) [4]
and the perceptron algorithm with uneven margin
(’PAUM’) [16]. However, very few existing work had
attempted to directly optimize the two cost-sensitive
metrics in an online learning setting, except some very
recent work [25] which adopts a linear model and thus
differs considerably from the DUOL algorithm used in
this work. Finally, we note that our work is very dif-
ferent from another recent online learning study [29],
which aims to optimize AUC, but cannot be guaranteed
to optimize the cost-sensitive measures in our study.

3 Cost-Sensitive Online Classification

3.1 Problem Formulation Without loss of general-
ity, let us consider an online binary classification prob-
lem. Formally, let us denote by xt ∈ Rd the instance
received at the t-th learning step, and ft−1 ∈ Hκ a lin-
ear prediction model learned from the previous t − 1
training examples. We also denote the prediction for
the t-th instance as ŷt = sign(ft−1(xt)), while the value
|ft−1(xt)|, known as the “margin”, is used as the con-
fidence of the learner on the prediction. The true label
for instance xt is denoted as yt ∈ {−1,+1}. The learner
made a mistake if and only if ŷt 6= yt.

We now consider a sequence of training examples
(x1, y1), . . . , (xT , yT ) for online learning. Then, for
convenience, we denote by M the set of indexes that
correspond to the trials of misclassification:

M = {t |yt 6= sign(ft(xt)), ∀t ∈ [T ]},

where [T ] = {1, . . . , T }. Similarly, we denote by Mp =
{t |t ∈ M and yt = +1} the set of indexes for false
negatives, and Mn = {t |t ∈ M and yt = −1} the set
of indexes for false positives.

Further, we introduce notation M = |M| to denote
the number of mistakes, Mp = |Mp| to denote the
number of false negatives, and Mn = |Mn| to denote
the number of false positives. Also we use notation
Ip
T = {i ∈ [T ]|yi = +1} to denote the set of indexes of

the positive examples, In
T = {i ∈ [T ]|yi = −1} to denote

the set of indexes of negative examples, Tp = |Ip
T | to

denote the number of positive examples, and Tn = |In
T |

to denote the number of negative examples. We adopt
the following performance metrics:

sensitivity =
Tp −Mp

Tp

, specificity =
Tn −Mn

Tn

,

accuracy =
T −M

T
.

where sensitivity is defined as the ratio between the
number of true positives Tp −Mp and the total number
of positives; specificity is defined as the ratio between
Tn−Mn and the total number of negatives; and accuracy
is defined as the ratio between the number of correctly
classified examples and the total number of examples.

Consider an online binary classification task, with-
out loss of generality, we assume positive class is the rare
class, i.e., Tp ≤ Tn, the number of positive examples
is smaller than the number of negative examples. For
simplicity, we also assume that κ(xt,xt) ≤ 1. For tradi-
tional online learning, the performance is measured by
the prediction accuracy (or mistake rate equivalently)
over the sequence of examples. This is inappropriate
for imbalanced data because a trivial learner that sim-
ply classifies any example as negative could achieve a
quite high accuracy for a highly imbalanced dataset.
Thus, a more appropriate metric is to measure the sum
of weighted sensitivity and specificity, i.e.,

sum = ηp × sensitivity+ ηn × specificity(3.1)

where ηp+ηn = 1 and 0 ≤ ηp, ηn ≤ 1 are two parameters
to trade off between sensitivity and specificity. Notably,
when ηp = ηn = 0.5, the corresponding sum is the well
known balanced accuracy. In general, the higher the
sum value, the better the classification performance.
Besides, another approach is to measure the total
misclassification cost suffered by the algorithm, which
is defined as:

cost = cp ×Mp + cn ×Mn(3.2)

where cp+ cn = 1 and 0 ≤ cp, cn ≤ 1 are the misclassifi-
cation cost parameters for positive and negative classes,
respectively. The lower the cost value, the better the
classification performance.

3.2 Algorithms In this section, we propose the
Cost-Sensitive Double Updating Online Learning algo-
rithms for cost-sensitive classification by optimizing two
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cost-sensitive measures. Before presenting our algo-
rithms, we first prove the following important propo-
sition that motivates our solution.

Proposition 1. Consider a cost-sensitive classifica-
tion problem, the goal of maximizing the weighted sum in
(3.1) or minimizing the weighted cost in (3.2) is equiv-
alent to minimizing the following objective:

∑

yt=+1

θI(ytf(xt)<0) +
∑

yt=−1

I(ytf(xt)<0)

where θ =
ηpTn

ηnTp
for the maximization of the weighted

sum, and θ =
cp
cn

for the minimization of the weighted
misclassification cost.

Proof. Firstly, by analyzing the function of the weighted
sum in (3.1), we can derive the following:

sum = ηp
Tp −Mp

Tp

+ ηn
Tn −Mn

Tn

= 1−
ηn
Tn

[ηpTn

ηnTp

∑

yt=+1

I(ytf(xt)<0) +
∑

yt=−1

I(ytf(xt)<0)

]
,

where Iπ is the indicator function that outputs 1 if the
statement π holds and 0 otherwise. Thus, maximizing
sum is equivalent to minimizing

ηpTn

ηnTp

∑

yt=+1

I(ytf(xt)<0) +
∑

yt=−1

I(ytf(xt)<0).

Secondly, by analyzing the function of the weighted
cost in (3.2), we can also derive the following:

cost = cpMp + cnMn

= cn

[ cp
cn

∑

yt=+1

I(ytf(xt)<0) +
∑

yt=−1

I(ytf(xt)<0)

]

Thus, minimizing cost is equivalent to minimizing

cp
cn

∑

yt=+1

I(ytf(xt)<0) +
∑

yt=−1

I(ytf(xt)<0).

Thus, the proposition holds by setting θ =
ηpTn

ηnTp
for sum,

and θ =
cp
cn

for cost.

Proposition 1 gives the explicit objective function
for optimization, but the indicator function is not
convex. To facilitate the online optimization task, we
replace the indicator function by its convex surrogate,
i.e., the following modified hinge loss function:

ℓ(f ; (x, y)) = max(0, (θ ∗ I(y=1) + I(y=−1))− yf(x))

As a result, we can formulate the optimization problem
for cost-sensitive classification as follows:

FT (f) =
1

2
‖f‖2Hκ

+ C

T∑

t=1

ℓ(f ; (xt, yt)),(3.3)

where ‖f‖2
Hκ

is introduced to regularize the complexity
of the linear classifier and C is a positive penalty
parameter of the cumulative loss. The idea of the
above formulation is somewhat similar to the biased
formulation of batch SVM for learning with imbalanced
datasets [1].

Now our goal is to find an online learning solution to
tackle the above convex optimization (3.3). To this end,
we propose to explore double updating online learning
to tackle this problem. Specifically, we consider trial t
in an online learning task where the training example
(xa, ya) is misclassified (i.e., yaf(xa) ≤ 0). Similar to
DUOL for regular binary classification, we introduce
an auxiliary example (xb, yb) from the existing support
vectors that obey the following conditions:

• ybf(xb) ≤ 0, that is, support vector (xb, yb) is
misclassified by the current classifier f(x),

• k(xb,xa)yayb ≤ −ρ where ρ ∈ (0, 1) is a prede-
termined threshold, that is, support vector (xb, yb)
“conflicts” with the new misclassified example
(xa, ya).

To facilitate the analysis, we also denote

ka = κ(xa,xa), kb = κ(xb,xb),

kab = κ(xa,xb), wab = yaybkab.

According to the assumption of auxiliary example, we
have wab = kabyayb ≤ −ρ. Finally, we denote by γ̂b the
weight for the auxiliary example (xb, yb) that is used
in the current classifier f(x), by γa and γb the updated
weights for (xa, ya) and (xb, yb), respectively, and by dγb

the difference γb − γ̂b.
Following the framework of dual formulation for

online learning, the following lemma shows how to
compute ∆t, that is, the improvement in the objective
function of dual biased SVM by adjusting weights for
(xa, ya) and (xb, yb).

Lemma 3.1. The maximal improvement in the objec-
tive function of dual biased SVM by adjusting weights
for (xa, ya) and (xb, yb), denoted by ∆t, is computed by
solving the following optimization problem:

∆t =(3.4)

max
γa,dγb

{h(γa, dγb ) : 0 ≤ γa ≤ C, −γ̂b ≤ dγb ≤ C − γ̂b} ,

where
h(γa, dγb ) = γa(θa − yaf(xa)) + dγb (θb − ybf(xb))(3.5)

−
ka

2
γ2
a −

kb

2
d2γb −wabγadγb .
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Proof. It is straightforward to verify that the dual func-
tion of minf∈Hκ

1
2‖f‖

2
Hκ

+C
∑t

i=1 max(0, θi− yif(xi)),
where θi = θ∗I(yi=1)+I(yi=−1), denoted byDt(γ1, ..., γt),
is computed as follows,

Dt(γ1, . . . , γt) =

t∑

i=1

γiθi −
1

2
‖

t∑

i=1

γiyiκ(xi, ·)‖
2
Hκ

,

where γi ∈ [0, C], i = 1, . . . , t and ft−1 =∑t−1
i=1 γiyiκ(xi, ·) is the current classifier. Thus

h(γa, dγb )

= D(γ1, . . . , γ̂b + dγb , . . . , γt−1, γa) −D(γ1, . . . , γ̂b, . . . , γt−1)

= γa(θa − yaft−1(xa)) + dγb (θb − ybft−1(xb))−
1

2
γ2
aκ(xa,xa)

−
1

2
d2γbκ(xb,xb)− γadγbyaybκ(xa,xb).

The theorem below bounds the bounding constant ∆
when C is sufficiently large.

Theorem 1. Assume C ≥ max(γ̂b + θb+ρθa
1−ρ2 , θa+ρθb

1−ρ2 )

with ρ ∈ [0, 1) for the selected auxiliary example (xb, yb),
we have the following bound for the bounding constant:

∆ ≥
θ2a + 2ρθaθb + θ2b

2(1− ρ2)
.

Proof. First, we show dγb
≥ 0. This is because for given

γa ≥ 0, the optimal solution for dγb
, given by

dγb
=

θb − ybf(xb)− wabγa
kb

,

is positive because ybf(xb) ≤ 0 and wab ≤ −ρ. Using
the fact ka, kb ≤ 1, γa, dγb

≥ 0, yaf(xa) ≤ 0, ybf(xb) ≤
0, and wa,b ≤ −ρ, we have

h(γa, dγb
) ≥ γaθa + dγb

θb −
1

2
γ2
a −

1

2
d2γb

+ ργadγb
.

Thus, ∆ is bounded as

∆ ≥ max
γa∈[0,C],dγb

∈[0,C−γ̂b]
γaθa + dγb

θb −
1

2
(γ2

a + d2γb
) + ργadγb

.

Under the condition that C ≥ max(γ̂b+
θb+ρθa
1−ρ2 , θa+ρθb

1−ρ2 ),
it is easy to verify that the optimal solution for the above
problem is γa = θa+ρθb

1−ρ2 and dγb
= θb+ρθa

1−ρ2 .

We refer to the case as a strong double update

when the condition of Theorem 1 is satisfied. We have
the following theorem for the general case when we only
have C ≥ max(θ, 1).

Theorem 2. Assume C ≥ max(θ, 1). We have the
following bound for ∆ when updating the weight for the
misclassified example (xa, ya) and the auxiliary example
(xb, yb):

∆ ≥
θ2a
2

+
1

2
min((θb + ρθa)

2, (C − γ̂)2).

Proof. By setting γa = θa, we have h(γa, dγb
) computed

as

h(γa = 1, dγb
) ≥

θ2a
2

+ (θb + ρθa)dγb
−

1

2
d2γb

.

Hence, ∆ is lower bounded by

∆ ≥
θ2a
2

+ max
dγb

∈[0,C−γ̂]

(
(θb + ρθa)dγb

−
1

2
d2γb

)

≥
θ2a
2

+
1

2
min((θb + ρθa)

2, (C − γ̂)2).

Although Theorem 1 and Theorem 2 show that the
double update strategy could significantly improve the
bounding constant ∆, it is applicable only when there
exists an auxiliary example. Below, we extend the
double update strategy to the cases when there is no
auxiliary example. Specifically, we relax the condition
for performing double update as follows: there exists
(xb, yb) ∈ D that (i) wab ≤ −ρ, (ii) ybft−1(xb) ≤ θb,
and (iii) C ≥ max(γ̂b +

ρθa
1−ρ2 ,

θa
1−ρ2 ). We refer to these

cases as weak double update.

Theorem 3. Assume wab ≤ −ρ, ybft−1(xb) ≤ θb and
C ≥ max(γ̂b +

ρθa
1−ρ2 ,

θa
1−ρ2 ), we have the following bound

for the bounding constant

∆ ≥
θa

2(1− ρ2)
.

Proof. Following the definitions and assumptions, we
have

∆ = max
γa,dγb

h(γa, dγb
) ≥ h(

θa
1− ρ2

,
ρθa

1− ρ2
)

≥
θa

1− ρ2
θa + 0−

1

2
(

θa
1− ρ2

)2 −
1

2
(

ρθa
1− ρ2

)2 + ρ
θ2a

1− ρ2
ρθa

1− ρ2

=
θa

2(1− ρ2)
.

Now solving the optimization problem 3.4 is the
key to the double update. The following proposition
provides the optimal solution to the problem 3.4.

Proposition 2. Denote ℓa := θa − yaf(xa) and ℓb :=
θb−ybf(xb). Assume ℓa, ℓb ≥ 0, ka, kb > 0 and wab ≤ 0,
then the solution (γa, dγb

) of optimization problem (3.4)
is as follows:




(C,C − γ̂b) if (kaC + wab(C − γ̂b)− ℓa) < 0 and

(kb(C − γ̂b) +wabC − ℓb) < 0

(C, ℓb−wabC

kb
) if

w2
abC−wabℓb−kakbC+kbℓa

kb
> 0 and

ℓb−wabC

kb
∈ [−γ̂b, C − γ̂b]

(
ℓa−wab(C−γ̂b)

ka
, C − γ̂b) if

ℓa−wab(C−γ̂b)
ka

∈ [0, C] and

ℓb − kb(C − γ̂b)− wab
ℓa−wab(C−γ̂b)

ka
> 0

(kbℓa−wabℓb
kakb−w2

ab

, kaℓb−wabℓa
kakb−w2

ab

) if (kbℓa−wabℓb
kakb−w2

ab

, kaℓb−wabℓa
kakb−w2

ab

) ∈

[0, C]× [−γ̂b, C − γ̂b]

.
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We skip the proof for Proposition 2 as it is is sim-
ilar to regular binary DUOL [28]. Algorithm 1 sum-
marizes the proposed Cost-Sensitive Double Updating
Online Learning (DUOL) algorithm. In this algorithm,
to efficiently find the auxiliary example (xb, yb), we in-
troduce a variable f i

t for each support vector to keep
track of its classification score. Parameter ρ is used to
trade off between efficiency and efficacy for DUOL: the
smaller ρ the more double updates will be performed.

Algorithm 1 The proposed Cost-Sensitive Double
Updating Online Learning (CSDUOL) algorithms.

Initialize S0 = ∅, f0 = 0 bias parameter θ =
ηpTn

ηnTp
for “sum”

and θ =
cp
cn

for “cost”;
for t = 1, 2, . . . , T do

Receive a new instance xt;
Predict ŷt = sign(ft−1(xt));
Receive its label yt and compute θt = θ ∗ I(yt=1) + I(yt=−1);

ℓt = max{0, θt − ytft−1(xt)};
if ℓt > 0 then

wmin =∞;
for ∀i ∈ St−1 do

if (f i
t−1 ≤ θi) then

if (yiytκ(xi,xt) ≤ wmin) then

wmin = yiytκ(xi,xt);
(xb, yb) = (xi, yi);

end if

end if

end for

f t
t−1 = ytft−1(xt);

St = St−1 ∪ {t};
if (wmin ≤ −ρ) then

Compute γt and dγb by solving the optimization (3.4);

for ∀i ∈ St do

f i
t ← f i

t−1 + yiγtytκ(xi,xt) + yidγbybκ(xi,xb);
end for

ft = ft−1 + γtytκ(xt, ·) + dγbybκ(xb, ·);
else

γt = min(C, ℓt/κ(xt,xt));
for ∀i ∈ St do

f i
t ← f i

t−1 + yiγtytκ(xi,xt);
end for

ft = ft−1 + γtytκ(xt, ·);
end if

else

ft = ft−1; St = St−1;
for ∀i ∈ St do

f i
t ← f i

t−1;
end for

end if

end for

Return fT , ST

Finally, we give the bound analysis for the CS-
DUOL algorithm. We denote by Ms

d(ρ), M
w
d (ρ) and

Ms the sets of indexes for the cases of strong, weak and
single double updating, respectively, that is, Ms

d(ρ) =
{t|∃ auxiliary example (xb, yb) s.t. C ≥ max(γ̂b +

θb+ρθt
1−ρ2 , θt+ρθb

1−ρ2 ) for (xt, yt), t ∈ M}, Mw
d (ρ) ={t ∈

M/Ms
d(ρ)|∃ (xb, yb) s.t. wab ≤ −ρ, ybft−1(xb) ≤

θb and C ≥ max(γ̂b + ρθt
1−ρ2 ,

θt
1−ρ2 )}, Ms =

M/ [Ms
d(ρ)

⋃
Mw

d (ρ)] . Note that in set Ms
d(ρ),

for the convenience of analysis, we only consider
the subset of strong updates when the condition
C ≥ max(γ̂b +

θb+ρθt
1−ρ2 , θt+ρθb

1−ρ2 ) is satisfied.

Theorem 4. Let (x1, y1), . . . , (xT , yT ) be a sequence
of examples, where xt ∈ R

d, yt ∈ {−1,+1} and
κ(xt,xt) ≤ 1 for all t, and assume C ≥ max(θ, 1). Then
the proposed CSDUOL algorithm satisfies the following
inequality, for ρ ∈ [0, 1)

θ2Mp +Mn ≤ min
f∈Hκ

2FT (f) −
∑

t∈Ms
d
(ρ)

2ρθtθb + θ2
b
+ θ2t ρ

2

1− ρ2
−

∑

t∈Mw
d
(ρ)

θ2t ρ
2

1− ρ2
.

Proof. According to Theorem 1 and 3, we have

min
t∈Ms

d
(ρ)

∆t ≥
θ2t + 2ρθtθb + θ2b

2(1− ρ2)
, min

t∈Mw
d
(ρ)

∆t ≥
θ2t

2(1− ρ2)
.

Moreover, according to Theorem 2, we have ∆t ≥
θ2t /2, ∀t ∈ M. Putting them together, we have
∑

t∈Ms

θ2t
2

+
∑

t∈Ms
d
(ρ)

θ2t + 2ρθtθb + θ2
b

2(1 − ρ2)
+

∑

t∈Mw
d
(ρ)

θ2t
2(1 − ρ2)

≤ min
f∈Hκ

FT (f).

Using the fact M = Ms

⋃
Mw

d (ρ)
⋃

Ms
d(ρ),

∑

t∈M

θ2t
2
≤ min

f∈Hκ

FT (f) −
∑

t∈Ms
d
(ρ)

2ρθtθb + θ2
b
+ θ2t ρ

2

2(1− ρ2)
−

∑

t∈Mw
d
(ρ)

θ2t ρ
2

2(1− ρ2)
.

We complete the proof using θt = θ, if yt = +1,
otherwise θt = 1.

Now our goal is to analyze the performance of the
proposed algorithm in terms of the imbalance metrics.
We first consider the weighted sum of sensitivity and
specificity, i.e., sum = ηp×sensitivity+ηn×specificity,
where ηp + ηn = 1 and ηp ≥ ηn > 0. The following
theorem gives the bound of “sum” by CSDUOL.

Theorem 5. Let (x1, y1), . . . , (xT , yT ) be a sequence of
examples, where xt ∈ R

d, yt ∈ {−1,+1} and κ(xt,xt) ≤

1 for all t. By setting θ =
ηpTn

ηnTp
≥ 1, and assuming

C ≥ max(θ, 1), for any f ∈ Hκ, we have the following
bound for the proposed CSDUOL algorithm:

sum ≥ 1−
ηn
Tn

{
min
f∈Hκ

2FT (f)−
∑

t∈Ms
d
(ρ)

2ρθtθb + θ2b + θ2t ρ
2

1− ρ2

−
∑

t∈Mw
d
(ρ)

θ2t ρ
2

1− ρ2

}
.

The proof can be found in the supplemental
file http://csduol.stevenhoi.org/CSDUOL_sup.pdf.

In the above approach, the parameter θ is set to
ηpTn

ηnTp
, in which the ratio Tn

Tp
may be unavailable in
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advance. To alleviate this issue, we consider another
approach using the cost based performance metric.
Specifically, we propose to set θ =

cp
cn
, where cp and

cn are the predefined cost parameters of false negative
and false positive, respectively. We assume cp + cn = 1
and 0 ≤ cn < cp since we would prefer to improve
the accuracy of predicting the rare positive examples.
By this setting, the following theorem gives us the cost
bound of the proposed CSDUOL algorithm.

Theorem 6. Let (x1, y1), . . . , (xT , yT ) be a sequence of
examples, where xt ∈ R

d, yt ∈ {−1,+1} and κ(xt,xt) ≤
1 for all t. By setting θ =

cp
cn

≥ 1, and assuming
C ≥ max(θ, 1), for any f ∈ Hκ, the overall cost made
by the proposed CSDUOL algorithm over this sequence
of examples is bounded as follows:

cost ≤ cn

{
min
f∈Hκ

2FT (f)−
∑

t∈Ms
d
(ρ)

2ρθtθb + θ2b + θ2t ρ
2

1− ρ2

−
∑

t∈Mw
d
(ρ)

θ2t ρ
2

1− ρ2

}
.

The proof can be found in the supplemental
file http://csduol.stevenhoi.org/CSDUOL_sup.pdf.

4 Experiments of Cost-Sensitive Online

Classification

This section is to evaluate the empirical performance
of the two proposed algorithms. To facilitate our dis-
cussions, we denote by CSDUOLsum the proposed CS-
DUOL algorithm that aims to maximize the weighted
sum of sensitivity and specificity, and CSDUOLcost

the proposed CSDUOL algorithm that aims to min-
imize the overall misclassification cost. More de-
tails about our experiments can be found in our web-
site http://csduol.stevenhoi.org/.

4.1 Experimental Testbed and Setup We com-
pare two CSDUOL algorithms with the regular DUOL
and a number of state-of-the-art online learning algo-
rithms, including:

• “Perceptron”: the kernel Perceptron algorithm [20],

• “ALMAp(α)”: Approximate Large Margin Algorithm
[10],

• “ROMMA”: the Relaxed Online Maximum Margin
Algorithm [17],

• “PA-I”: the PA-I version of Passive-Aggressive algo-
rithm [4],

• “PAUM”: the Perceptron Algorithm with Uneven
Margin [16], and

• “CPAML”: the Cost-sensitive Passive-Aggressive algo-
rithm based on Max-Loss update method [4].

Table 1: List of binary datasets in our experiments.
dataset #Examples #Features #Pos:#Neg

a7a 16100 123 1:3.1
german 1000 24 1:2.3
spambase 4601 57 1:1.5
w7a 24692 300 1:32.4

To examine the performance, we test all the algo-
rithms on a number of benchmark datasets from web
machine learning repositories 1. For space limitation,
we randomly choose some of them for our following dis-
cussions, which are listed in Table 1.

To enable fair comparisons, all algorithms follow
the same experimental settings. Specifically, for all the
algorithms, we set the penalty parameter C as 10 and
adopt the same Gaussian kernel with σ = 8. For the
ALMAp(α) algorithm, p = 2 and α = 0.9. For the
proposed CSDUOLsum algorithm, we set ηp = ηn = 1/2

and θ =
ηpTn

ηnTp
for all cases, while for CSDUOLcost, we

set cp = 0.95 and cn = 0.05 and θ =
cp
cn
. For PAUM,

the parameters are set as τ+ = θ, τ− = 1 and η = 1;
for CPAML, ρ(−1, 1) is set to 1 and ρ(1,−1) is set to θ.
The threshold ρ of DUOL and CSDUOL is set to 0.

All the experiments were run over 20 random per-
mutations on each dataset. The results are reported
by averaging over these 20 runs. We evaluate the on-
line classification performance by the weighted sum of
sensitivity and specificity, and the weighted cost.

4.2 Evaluation of Weighted Sum Performance

We first evaluate the weighted sum performance. The
left part of Table 2 summarizes the results. We can
draw the following observations.

Firstly, by examining the sum results, we found
that CSDUOLsum always achieves the best for all
the datasets, which significantly outperforms all the
online algorithms, including two cost-sensitive online
algorithms (PAUM and CPA) and the regular DUOL.
This shows the proposed CSDUOLsum algorithm is
effective in optimization of weighted sum.

Secondly, the number of support vectors of
CSDUOLsum is comparable with the regular DOUL al-
gorithm, less than the PA and CPAML algorithms, while
more than the other algorithms. This shows that the
proposed technique does not suffer storing more sup-
port vectors as a cost for improving the performance.

Thirdly, according to the running time results, we
observe that CSDUOLsum is overall as efficient as the
state-of-the-art online learning algorithms.

Finally, Figure 1 shows the changes of online aver-
age sum performance, from which we observe that the
CSDUOLsum algorithms consistently outperform the
other algorithms in the entire online learning process.

1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 2: Evaluation of the performance of CSDUOL and other existing algorithms.

Algorithm
sum on ’a7a’ cost on ’a7a’

Sum(%) Support Vectors (#) Time (s) Cost Support Vectors (#) Time (s)

Perceptron 70.125 ± 0.337 3542.95 ± 39.866 2.132 1771.255 ±20.021 3542.950 ±39.866 2.157

ALMA2(0.9) 72.256 ± 0.213 3586.15 ± 23.002 2.227 1654.950 ±12.299 3586.150 ±23.002 2.276

ROMMA 72.129 ± 0.44 3417.4 ± 51.542 2.175 1621.060 ±26.830 3417.400 ±51.542 2.211

PA-I 70.017 ± 0.436 6768.95 ± 57.628 4.444 1783.005 ±26.927 6768.950 ±57.628 4.400

DUOL 70.746 ± 0.355 6299.85 ± 49.036 9.122 1749.400 ±25.573 6299.850 ±49.036 8.948

PAUM 73.832 ± 0.33 5659.75 ± 22.627 3.717 1218.215 ±15.904 6527.700 ±21.796 4.417

CPAML 71.759 ± 0.35 6769.75 ± 57.819 4.691 1405.200 ±20.894 6769.500 ±56.947 4.666

CSDUOL 74.115 ± 0.337 6425.1 ± 50.054 9.494 1108.005 ±17.175 6442.150 ±42.521 9.528

Algorithm
sum on ’german’ cost on ’german’

Sum(%) Support Vectors (#) Time (s) Cost Support Vectors (#) Time (s)

Perceptron 58.867 ± 1.116 347.6 ± 9.467 0.017 171.720 ±4.719 347.600 ±9.467 0.017

ALMA2(0.9) 59.786 ± 0.994 394.75 ± 9.244 0.03 170.400 ±5.626 394.750 ±9.244 0.030

ROMMA 59.739 ± 1.178 347.25 ± 10.088 0.031 164.565 ±5.367 347.250 ±10.088 0.031

PA-I 59.750 ± 1.258 721.1 ± 12.994 0.027 173.050 ±5.977 721.100 ±12.994 0.027

DUOL 61.339 ± 1.12 656.9 ± 10.208 0.085 161.825 ±6.148 656.900 ±10.208 0.086

PAUM 56.621 ± 1.27 566.4 ± 9.185 0.023 183.715 ±8.171 599.300 ±1.559 0.024

CPAML 60.658 ± 1.276 721.75 ± 12.674 0.045 132.580 ±4.509 719.750 ±13.408 0.045

CSDUOL 62.213 ± 1.392 657.9 ± 9.846 0.087 116.025 ±5.627 668.450 ±13.032 0.090

Algorithm
sum on ’spambase’ cost on ’spambase’

Sum(%) Support Vectors (#) Time (s) Cost Support Vectors (#) Time (s)

Perceptron 74.061 ± 0.515 1137.5 ± 22.596 0.207 573.190 ±11.575 1137.500 ±22.596 0.207

ALMA2(0.9) 75.464 ± 0.602 1544.1 ± 19.62 0.329 537.460 ±15.673 1544.100 ±19.620 0.328

ROMMA 75.102 ± 0.566 1096.1 ± 24.809 0.262 544.330 ±13.056 1096.100 ±24.809 0.261

PA-I 76.789 ± 0.474 2854 ± 29.088 0.486 513.580 ±12.683 2854.000 ±29.088 0.491

DUOL 79.571 ± 0.382 2432.3 ± 27.058 0.974 447.400 ±12.762 2432.300 ±27.058 0.985

PAUM 72.591 ± 0.464 2275.5 ± 18.724 0.382 339.665 ±14.697 2943.350 ±13.112 0.508

CPAML 77.015 ± 0.466 2851.45 ± 28.956 0.559 362.100 ±13.095 2839.800 ±29.433 0.565

CSDUOL 79.913 ± 0.354 2443.85 ± 24.314 0.991 293.560 ±12.845 2636.000 ±24.917 1.127

Algorithm
sum on ’w7a’ cost on ’w7a’

Sum(%) Support Vectors (#) Time (s) Cost Support Vectors (#) Time (s)

Perceptron 65.305 ± 0.831 994.4 ± 23.569 1.134 497.960 ±11.905 994.400 ±23.569 1.191

ALMA2(0.9) 66.062 ± 0.685 1031.05 ± 15.33 1.305 479.345 ±9.348 1031.050 ±15.330 1.295

ROMMA 68.888 ± 0.6 1026.75 ± 21.511 1.337 456.595 ±8.542 1026.750 ±21.511 1.325

PA-I 63.155 ± 0.405 2842.6 ± 39.4 2.708 518.230 ±5.825 2842.600 ±39.400 2.688

DUOL 68.617 ± 0.626 2228.4 ± 41.031 2.732 434.400 ±8.467 2228.400 ±41.031 2.720

PAUM 57.285 ± 0.481 1477.95 ± 0.605 1.52 585.855 ±6.526 1477.950 ±0.605 1.576

CPAML 73.241 ± 0.699 2841.5 ± 39.91 2.955 458.700 ±8.042 2843.100 ±41.551 2.920

CSDUOL 74.609 ± 0.616 2675.95 ± 41.082 3.448 405.640 ±9.594 2547.750 ±32.301 3.227
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Figure 1: Evaluation of online “sum” performance of the CSDUOLsum algorithm.
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Figure 2: Evaluation of online “cost” performance of the CSDUOLcost algorithm.
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4.3 Evaluation of Weighted Cost Perfor-

mance We further evaluate the performance of the
CSDUOLcost algorithm. The right part of Table 2 sum-
marizes the results of total cost evaluation. From the
results, we can also draw several observations.

First of all, among all the algorithms, we found that
the proposed CSDUOLcost algorithm achieves signifi-
cantly less total misclassification cost than the other al-
gorithms for all the cases. For example, on the dataset
“spambase”, the total misclassification cost made by
CSDUOLcost is about a half of those made by Percep-
tron algorithm. This demonstrates the proposed tech-
nique can effectively minimize the cost measure.

Further, the number of support vectors of
CSDUOLcost is comparable with that of regular DOUL,
less than those of PA and CPAML, while more than
those of the other algorithms. For running time, we ob-
serve that CSDUOLcost is generally as efficient as the
state-of-the-art online learning algorithms.

Finally, Figure 2 shows the changes of online aver-
age cost performance, from which we observe that the
CSDUOLcost algorithms consistently outperform the
other algorithms in the entire online learning process.

5 Application to Online Anomaly Detection

The proposed cost-sensitive online classification tech-
nique can be potentially applied to a wide range of ap-
plications. In this section, we show an application of
the proposed algorithms to tackle online anomaly de-
tection tasks. Below we first introduce the applications
followed by presenting our empirical results.

5.1 Application Domains and Testbeds. We ap-
ply our technique to the following domains:

• Bioinformatics: We apply our algorithm to solve
a bioinformatics problem using the “Code-RNA”
dataset [23]. The objective of this task is to develop
a computational method to detect novel non-coding
RNAs from some large sequenced genomes. Non-coding
RNAs are defined as anomalies and others are consid-
ered as normal instances.

• Finance: We apply our algorithm to a credit card
approval problem in finance domain. In particular, we
consider the well-known Australia credit card data set
with 690 instances from an Australian credit company,
in which the task is to distinguish credit-worthy from
non credit-worthy customers.

• Medical Imaging: We apply our algorithm to solve
medical image anomaly detection tasks. We consider
the “Wisconsin Breast Cancer” dataset [26], for which
the goal is to detect breast cancer from medical images
of a fine needle aspirate (FNA) of a breast mass. For
this task, the class “benign” is assigned as the normal
class, and the class “malignant” is the anomaly class.

Table 3 summarizes the details of these data sets.
Table 3: Data Sets for Online Anomaly Detection.
Dataset Name #Examples #Features #Outlier:#Normal

Cod-RNA 271617 8 1:2.00

Australian 690 14 1:1.25

Breast Cancer 683 10 1:1.86

Table 4: Evaluation of balanced accuracy performance for
online anomaly detection.

Algorithm
Cod-RNA

Balanced Accuracy(%) Support Vectors (#) Time (s)

Perceptron 85.137 ± 0.260 1318.700 ± 23.052 0.567

ALMA2(0.9) 87.087 ± 0.241 1330.100 ± 20.870 0.614

ROMMA 87.923 ± 0.227 1060.650 ± 20.717 0.546

PA-I 86.940 ± 0.293 3347.250 ± 34.860 1.226

DUOL 89.371 ± 0.209 2134.250 ± 31.217 1.251

PAUM 86.547 ± 0.294 2830.050 ± 27.594 1.143

CPAML 87.670 ± 0.254 3347.350 ± 35.006 1.360

CSDUOLsum 90.248 ± 0.273 2262.900 ± 31.792 1.367

Algorithm
Australian

Balanced Accuracy(%) Support Vectors (#) Time (s)

Perceptron 76.623 ± 1.294 159.350 ± 8.821 0.009

ALMA2(0.9) 79.486 ± 1.098 160.800 ± 7.223 0.017

ROMMA 78.245 ± 0.908 148.400 ± 6.278 0.019

PA-I 77.707 ± 1.251 351.350 ± 8.536 0.013

DUOL 79.524 ± 1.218 283.250 ± 11.350 0.033

PAUM 77.343 ± 1.043 281.450 ± 6.669 0.012

CPAML 77.800 ± 1.340 351.500 ± 8.757 0.024

CSDUOLsum 80.214 ± 0.950 285.700 ± 10.352 0.034

Algorithm
Wisconsin Breast Cancer

Balanced Accuracy(%) Support Vectors (#) Time (s)

Perceptron 91.876 ± 0.685 50.400 ± 4.248 0.007

ALMA2(0.9) 93.150 ± 0.465 53.250 ± 3.007 0.015

ROMMA 93.389 ± 0.701 40.650 ± 4.043 0.016

PA-I 93.923 ± 0.493 152.250 ± 8.819 0.010

DUOL 94.859 ± 0.578 89.000 ± 10.618 0.016

PAUM 93.541 ± 0.652 112.950 ± 3.993 0.010

CPAML 94.368 ± 0.589 152.050 ± 8.407 0.018

CSDUOLsum 95.529 ± 0.431 92.250 ± 10.852 0.017

5.2 Empirical Evaluation Results. We apply our
algorithm to solve anomaly detection tasks on the real-
world datasets as shown in Table 3. For performance
metric, we evaluate the anomaly detection performance
using the balanced accuracy, which is able to avoid
inflated performance estimates on imbalanced datasets
which are very common in anomaly detection tasks.
Table 4 summarizes the experimental results. From the
results, we can draw the following two observations.

Firstly, among all the existing algorithms, the two
cost-sensitive algorithms (PAUM and CPAML) gener-
ally perform better than their regular versions. How-
ever, the improvements are not always consistent and
significant across different datasets. Such observations
validate the importance of investigating more effective
cost-sensitive online learning algorithms.

Secondly, among all the compared algorithms, it is
obvious that CSDUOLsum significantly outperforms the
other algorithms on all the datasets. The promising
result shows the advantage of the proposed algorithm
for real-world online anomaly detection tasks.
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6 Conclusion

This paper investigated a new framework of Cost-
Sensitive Online Classification that directly optimizes
some cost-sensitive metrics. Specifically, we proposed
two effective cost-sensitive DUOL algorithms based on
the recent Double Updating Online Learning (DUOL)
techniques, theoretically analyzed their cost-sensitive
bounds, and finally examined their empirical perfor-
mance extensively, including their applications to online
anomaly detection tasks. Our encouraging results show
that our algorithms outperform the existing algorithms
for cost-sensitive online classification tasks.
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