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A Behavioral Rendition
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Abstract

Behavioral finance and classical finance based on utility maximization appear to be mutually

exclusive schools of thought. Despite the fundamental difference, we show that behavioral fi-

nance also has a linear relation between risk and return. This relation is obtained without

the assumptions of market equilibrium, rational expectations, a specific utility function and the

market portfolio. In the behavioral approach, the “pricing error” of CAPM is not an error. It is

attributable to the higher-order moments of return. Empirical tests suggest that the relative

risk aversion coefficient is positive and time-varying. Moreover, it correlates negatively with

both volatility and return.
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I. Introduction

One of the central tenets of finance is that investors expect higher return for taking risk. They

exchange some of their riskless securities for risky assets because they expect the total payoff in

the long run to be optimal in terms of the risk-return trade-off. Since the publication of CAPM

by Sharpe (1964), Lintner (1965) and Mossin (1966), the notions of mean-variance efficiency and

systematic risk have become the basis for analyzing the trade-off. In the same vein, generalized

versions of CAPM such as Merton (1973)’s ICAPM and Ross (1976)’s APT all predict a positive

relation between risk and return.

Beyond the realm of rational expectations, Lakonishok, Shleifer, and Vishny (1994) argue

that investors overreact to past earnings growth and overestimate future growth rates. The spec-

ulative bubble in the later half of 1990s is an example of mispricing. This example demonstrates

that stock prices can markedly deviate from their fundamental values for several years. After

all, economic agents are humans who err naturally. Odean (1998) reports that retail investors all

too often sell away their star performers prematurely but hold on to under-performing stocks to

avoid realizing capital losses, a phenomenon described by Tversky and Kahneman (1991) as loss

aversion. Professional traders are also not immune from making mistakes. Indeed, the financial

industry is rife with anecdotes of mistakes2, some of which are as dramatic and catastrophic

as the downfalls of the LTCM and the Barings Bank. These market behaviors incomprehensi-

ble within the classical framework of equilibrium and utility optimization suggest that a new

approach is needed to examine the relation between risk and return.

In this paper, we present a model based on market belief to describe the behavior of stock

returns. The market belief represents a summary of all market participants’ opinions. We do not

take side on whether their views are rational or irrational. Our starting point is to acknowledge

that various dynamics affecting price moves are too complex to be decomposed entirely within

the philosophical framework of reductionism. The coupling among the state variables makes

it intractable to isolate one factor totally from the influence of the others. We adopt an agnos-

tic stand concerning investors’ consumption-investment tradeoff and introduce market belief to

2Ritter (1996) gives an educational account of his rise and fall in futures trading.
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capture the aggregate behavior of market participants, who have the freedom to trade or abstain

from trading.

The conclusion of our paper is this: Expected return is linearly related to risk. If we further

assume investors are risk averse, then the alluded relation will have to be positive. This is an old

result, but a key feature of how this result is derived lies in our model’s required assumptions,

which are parsimonious compared to extant asset pricing models. It is intriguing that the same

linear relation between risk and return emerges from a model that relaxes the assumptions

concerning market equilibrium, rational expectations, a specific utility function as well as the

elusive market portfolio. On the other hand, neither do we need to assert that investors are over-

confident and their trading decisions are psychologically biased3. But, to the extent that market

belief is subjective and not based on maximization of some objective function, our approach may

be labelled as behaviorist.

Although the parsimonious stance of our approach also has its drawback in being silent about

the microeconomic dynamics governing the state variables, it enables empirical tests to be con-

ducted and interpreted in a straightforward manner. Regardless of whether the portfolio is

mean-variance efficient or whether market equilibrium holds, our tests provide overwhelming

evidence of a positive relation between risk and return4. The tests are independent of the mod-

els for conditional variance, as this paper’s approach does not require a GARCH-type treatment

of risk. In addition, we uncover a negative relation between risk aversion and volatility, and

suggest the combined effect of higher-order moments of return as a plausible cause of “pricing

error.”

The rest of the paper is as follows. Section II introduces our basic model based on the concept

of market belief. Section III connects the parameter of the basic model with relative risk aver-

sion. The proxy we use for market belief, as well as the related econometric specifications are

discussed in Section IV. Section V documents our empirical analysis and results. Concluding

3Daniela, Hirshleifer, and Teoh (2002) provide a comprehensive review of behaviorist-oriented literature. Campbell
(2000)’s review and Cochrane (2001)’s exposition cover both standard and anomalous findings.

4The coefficient of this relation has been a subject of controversy due to conflicting findings in the empirical liter-
ature. For example, French, Schwert, and Stambaugh (1987) find a positive relation between risk and return while
Campbell (1987) and Glosten, Jagannathan, and Runkle (1993) find the relation to be negative. Many other papers
have also looked into this issue but the conclusions are divided.
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remarks are made in Section VI.

II. Basic Model

A. Assumptions

Instead of pursuing the classic stochastic optimization approach, we consider a probabilistic

framework with the following assumptions.

A1 : Market participants’ beliefs and trading strategies are heterogeneous.

A2 : Market participants’ beliefs and trading strategies are largely unpredictable.

A3 : The probability density function of return exists and is differentiable.

Be it active or side-lined, we define market participants as people who have an interest in the

capital assets being traded in the markets. They include retail investors, fund managers, in-

stitutional trading desks, market makers, as well as company insiders, financial analysts and

reporters. More often than not, the amount, quality and timeliness of information, as well as the

capacity to process and to act upon the information vary significantly among various categories

of market participants. Even for the same information, different analysts will have dissimilar

beliefs regarding the fair value of an asset. Besides the heterogeneous composition, trading moti-

vation, strategies and styles are also different. Some trades are driven by the needs for hedging,

portfolio re-balancing and risk reduction. Others are purely speculative and in some instances,

motivated by private information. Some investors prefer growth potential as opposed to value;

some trade by momentum while others contrarian. In addition to various classes of trading

strategies, investment horizons, holding power, portfolio management and cash flow constraints

vary. Therefore, the first assumption is reasonably satisfied in the real world.

Although seldom explicitly stated, the second assumption underlies most if not all theories

of finance. The second assumption is valid for heavily traded stocks such as those listed on the

NYSE. These stocks are highly liquid and the breadth of ownership is wide. Even for illiquid

stocks, the lack of liquidity depth makes even informed traders incapable of profiting from their
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information optimally. In conjunction with the first assumption, the implication is that any

single group of market participants has limited ability to manipulate the market and control the

price. As a result, price levels and order flows are non-deterministic from the perspective of any

single group of investors because the trading decisions of other market participants are largely

unpredictable. Although the second assumption has the flavor of Efficient Market Hypothesis,

we do not insist that security prices fully reflect all available information all the time.

Almost surely, all financial and econometric theories assume the probability density function

of return exists. Our model is no exception. However, in contrast to most capital asset pricing

theories that typically require the probability density function to be Gaussian, our model has no

further assumption concerning its parametric form. Nonetheless, for technical reason, we need

to assume that the probability density function is differentiable with respect to time and return.

In summary, the three assumptions underlying the basic model are reasonably fulfilled in

the financial markets. Traditional notions such as market equilibrium, information efficiency, as

well as optimal portfolio and consumption choice are not invoked. Furthermore, our framework

does not require the assumption of a particular utility function to describe the preferences of

representative investors.

B. Dynamics

Market participants and the dynamics of stock price exhibit far complex behaviors to be caged

submissively within the paradigms of mean-variance efficiency and expected utility maximiza-

tion. To come to grips with the complexity and heterogeneity in the market, we take the phe-

nomenological approach of not a priori impose any scheme that postulates how market partici-

pants are behaving. Nebulous as the notion may be, it is convenient to use “market belief” to

describe what market participants think the market or a particular stock is heading. Based on

their respective opinions, some of the market participants may trade, while some may just think

but do no act.

More concretely, suppose the prevailing outlook at time t is such that the probability of up-

ward price move over a horizon h is p+(t; h). This probability is not directly observable. It
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represents an aggregate and presumably subjective view of market participants who process the

information available at time t and second-guess what others are thinking and going to act. As

befitting the notion of probability, we write p−(t; h) = 1−p+(t; h) as the probability of downward

price move. The difference, p+(t; h)− p−(t; h), is called the market belief, which is an unobserv-

able summary statistic of the economy.

As a remark, the binomial option pricing model also has a similar probabilistic structure for

the upward and downward moves in the underlying assets. Thus, it is not entirely obnoxious

to consider the difference of these two probabilities as market belief, though in a different con-

text with dissimilar motivation. Now, let ` ≥ 0 be the ensemble average excess return when a

particular stock or portfolio is deemed to move up in the future. For simplicity, we let −` be the

average excess return when it is perceived that asset prices will move downwards.

We denote the excess return of a portfolio over a horizon h as rh. It is a random variable. Tak-

ing all market participants’ opinions into consideration, the conditional expected excess return

Et

[
rh

]
is expressed as, after suppressing the arguments in p+(·) and p−(·),

Et

[
rh

]
= p+ ` + p− (−`) = (p+ − p−) ` . (1)

We use the subscript t to indicate the expectation is conditional on the information set at time

t. As anticipated, the conditional expected excess return is dependent on the market belief,

p+ − p−. The conditional variance is Vt

[
rh

]
≡ Et

[(
rh − Et

[
rh

])2
]

= Et

[
r2
h

]
− Et

[
rh

]2. Since

Et

[
r2
h

]
= p+ `2 + p− (−`)2 = `2 and substituting in equation (1), we get

Vt

[
rh

]
=

(
1− (p+ − p−)2

)
`2 .

With these quantities, the rates of conditional expected excess return and variance are defined

accordingly as

µ̃ ≡ 1
h

Et[rh] =
(p+ − p−) `

h
, (2)

ν̃ ≡ 1
h

Vt[rh] =
1− (p+ − p−)2

h
`2 . (3)
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The probability density function of rh is denoted as f(rh, t). If one were to consider a time

scale h that is small compared to, say, several decades, and wonder what would happen to the

probability density function at the next time step t + h, the following equation ensues (see, for

example, Kwok (1999)).

f(rh, t + h) = p+ f(rh − `, t) + p− f(rh + `, t) .

This equation expresses the forward evolution of the probability density function as being de-

pendent on the current time and the state of excess return, which can only be rh − ` or rh + `

with probability density f(rh − `, t) and f(rh + `, t) respectively. If the excess return were rh − `,

it would become rh with probability density p+ f(rh − `, t) in the next time step t + h. If it were

rh + `, it would become rh in the next time step with probability density p− f(rh + `, t).

Performing Taylor’s expansion up to the first order in h and second order in `, we obtain

f(rh, t) +
∂f

∂t
h + O(h2) = p+

(
f(rh, t)− ∂f

∂rh
` +

1
2

∂2f

∂r2
h

`2

)
+ p−

(
f(rh, t) +

∂f

∂rh
` +

1
2

∂2f

∂r2
h

`2

)
+O(`3) .

After a re-arrangement of terms and using the identity p+ + p− = 1, it becomes

∂f

∂t
= − `

h
(p+ − p−)

∂f

∂rh
+

`2

2h

∂2f

∂r2
h

+ O(h) + O

(
`3

h

)
. (4)

To gain some insight from equation (4), we consider the hypothetical limits h → 0 and ` → 0.

Equation (4) then reduces to a special form of the Fokker-Planck equation that describes the

forward diffusion,
∂f

∂t
= −µ

∂f

∂rh
+

ν

2
∂2f

∂r2
h

.

In this equation, µ is the drift rate and ν the coefficient of diffusion:

µ = lim
h, `→0

(p+ − p−) `

h
; (5)

ν = lim
h, `→0

`2

h
. (6)
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It is interesting to note that while µ is identical to µ̃ in equation (2), ν is not quite the same as ν̃.

More alarming is the fact that µ and ν are not of the same order of magnitude. The drift rate µ

is linear in ` whereas the diffusion coefficient ν is quadratic. To yield finite values for both µ and

ν when h, ` → 0, a consistency relation has to be introduced. Namely, the market belief p+ − p−

has to satisfy

p+ − p− = γ̂0 + γ̃1 ` , (7)

where γ̂0 and coefficient γ̃1 are the parameters. In other words, up to a coefficient γ̃1, p+ − p−

must be of the same order of magnitude as `, so that µ is comparable with ν in having the same

leading order of `2. Otherwise, the variance would be too small relative to the expected excess

return, which is contrary to the reality of uncertainty. It also implies that γ̂0 represents the sum

of all the terms of order higher than one:

γ̂0 ≡
∞∑

j=2

cj `j ,

where cj ’s are the corresponding coefficients. In a way, our preferential treatment of mean and

variance at the expense of higher-order moments restricts the probability density function to a

class of compact distributions elaborated in Chapter 12 of Ingersoll (1987).

By imposing equation (7), the diffusion coefficient ν becomes approximately the rate of con-

ditional variance ν̃ expressed in equation (3), reinforcing the sensibility of our economic inter-

pretation. Equation (7) is based upon the first two assumptions of heterogeneity and limited

predictability of market belief. With market participants having diverse views and trading

strategies, one could surmise that the market belief is seldom overwhelmingly one-sided or ho-

mogeneous. Moreover, by definition, |p+−p−| ≤ 1. This is in line with the fact that under normal

circumstances, the average excess return is typically well within ±100% over a short horizon.

Large jumps associated with distressful events are rare and do not occur at the daily or monthly

frequency. Accordingly, up to a coefficient γ̃1, the market belief p+ − p− is of the same order as `

most of the time.

Although the Fokker-Planck equation is known to be solvable, we use it only to illustrate the

limiting case of equation (4) for interpreting the drift rate and the coefficient of diffusion. Its
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Gaussian diffusion solution is not used in our model. In fact, we do not need to know the explicit

functional form of f(rh, t) that solves equation (4). More importantly, the holding period h and

the average excess return ` of market participants need not be infinitesimally small. So long as

the first two terms on the right side of equation (4) are large relative to the higher-order terms,

and in light of equations (2) and (3), we obtain the following:

µ̃ =
p+ − p−

h
` ; (8)

ν̃ =
`2

h
+ O

(
`3

)
. (9)

Equation (8) relates the rate of conditional expected excess return µ̃ with the market belief. Up

to the higher order of `3, we interpret ν̃ in equation (9) as the rate of conditional variance. A

characteristic worth highlighting is that the rate of conditional expected excess return µ̃ is not

constrained to be positive. It depends on the sign of p+ − p−.

Applying equation (7), we obtain from equations (8) and (9) a linear relation between the

rates of conditional mean µ̃ and variance ν̃ as follows:

µ̃ = γ̃0 + γ̃1 ν̃ , (10)

where

γ̃0 ≡ γ̂0 `/h =
∑
j=3

cj`
j/h .

What equation (10) suggests is that the rate of conditional expected excess return is a linear

function of the rate of conditional variance. We have thus transformed the belief of market

participants into an empirical asset pricing model in which γ̃0 and γ̃1 are two parameters to be

estimated from the data. While γ̃0 accounts for the higher-order contributions, the coefficient γ̃1

measures the increment of risk premium per unit of conditional variance. Therefore, we have

demonstrated that the conditional expected excess return is linearly related to risk as measured

by the conditional variance.

From the CAPM’s point of view, γ̃0 represents the “pricing error.” In equilibrium, this pricing

error should be zero. However, this sum of higher-order moments of return in the framework of
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this paper is not required to vanish. It is the residual, not a pricing error. Its existence does not

threaten the dominance of the conditional variance in equation (10).

III. Model of Risk Aversion

In this section, we introduce additional assumptions to explore the possibility of interpreting

γ̃1 as the relative risk aversion. We use the utility function u(S) to express market’s overall

view and preference of the price or index level S. The asset could be an individual stock, or an

index portfolio. This aspect differs fundamentally from extant asset pricing models for which the

utility is usually a specific function of wealth consisting of all assets including human capital.

To begin with, we assume that

A4 : The utility function u(S) exists and is differentiable.

A5 : The utility function is strictly concave and for every integer k ≥ 3 and for all S,

Sk−1

∣∣∣∣∣∣∣
dku(S)

dSk

du(S)
dS

∣∣∣∣∣∣∣ ≤ 1 (11)

Utility function is fundamental in economics and finance. Justification for its postulated exis-

tence is hardly needed. Beyond its existence and differentiability, we do not need the assumption

regarding the functional form of u(S), although its differentials have to satisfy a technical con-

dition expressed in equation (11). For reasons that will become evident later, this technical

condition is to align our model of risk aversion with the probability density function of return

being in the class of compact distributions discussed previously.

In general, higher S makes asset owners happy. But for many others, especially those who

intend to acquire the asset, they are unhappy that the price has become too high. Conversely,

asset owners will be unhappy when S is low while others who intend to buy, they prefer a lower

S at the time of purchase. In any case, for a given S, u(S) reflects the aggregate preference of

market participants.
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We define the relative risk function ω(S) as

ω(S) ≡ −S

2
u′′(S)
u′(S)

. (12)

Up to a factor of two, ω(S) is no difference from the standard definition, although as remarked

earlier, market participants’ utility is a function of S instead of total wealth. If u(S) is strictly

concave, then u′(S) ≡ du/dS > 0 and u′′(S) < 0, implying that ω(S) > 0. It is tantamount to

saying that market participants are risk averse. When facing choices with compatible returns,

market participants tend to choose the more certain alternatives. If two portfolios have the

same perceived risk, their expected returns should be comparable. On the other hand, ω(S) ≤ 0

corresponds to market participants being indifferent to risk or having an affinity for risk taking.

Through empirical analysis, we will be able to ascertain investors’ attitude towards risk taking

by the sign of ω(S) and its statistical significance.

On the basis of their belief concerning the future price level relative to the current level S,

and depending on their respective financial circumstances and degree of risk aversion, market

participants can choose to trade or to abstain. Suppose market participants decide to trade in

the market. Then they stand a chance p+ of gaining an amount equal to `S per unit of asset, and

a probability of p− losing by as much. Their expected utility of trading is

Et

[
Trading

]
= p+u

(
(1 + `)S

)
+ p−u

(
(1− `)S

)
. (13)

It represents the conditional expected utility of traders when the price moves up, or moves down

with respect to the current price S by an amount `S in the future. Applying Taylor’s theorem

and in view of Assumption A5, the terms on the right side of equation (13) are

u(S) + `Su′(S)
((

p+ − p−
)

+
1
2
`S

u′′(S)
u′(S)

+ O
(
`2

))
. (14)

Since there is no gain or loss for market participants who abstain from trading, p+u(S) +

p−u(S) = u(S). Hence, the expected utility of market participants who do not trade is u(S). The

expected utility of trading Et

[
Trading

]
and the expected utility of not trading, u(S), are related
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as follows:

Et

[
Trading

]
= u(S) + C∆u . (15)

In this equation, C ≡ C(S, `) is a function of the payoff `S and ∆u is the change in utility.

Borrowing Pratt (1964)’s concept of “risk premium,” the adjustment term C∆u reconciles the

difference5 between the expected utility of trading and that of not trading. As an emphasis,

there is no need to impose that market participants maximize their expected utility. Neither

do we require the price S to be efficient. It may simply be an indicative price of a range of

prices. In this sense, our model is independent of whether the market is in equilibrium. Worded

differently, the supply and demand of asset in the market is such that S may or may not be

the market clearing price at time t. As in the discussion of Assumption A2, trading friction

in the market can impede informed traders to benefit from their privileged information. More

specifically, if almost all market participants decide to abstain from trading6, it is not certain

whether S represents the equilibrium price. It may be, or maybe not. In any case, the validity of

our model of risk aversion does not depend on the equilibrium and efficiency properties of S.

After re-arranging and suppressing the argument of the utility function in equation (14), we

obtain from equation (15) an expression for the market belief,

p+ − p− =
C∆u

`Su′
+ `

(
−S

2
u′′

u′

)
+ O

(
`2

)
. (16)

Given that ` is the ensemble average excess return, and typically less than one over a short

horizon, we can express it as ∆S/S. Therefore, the first term in equation (16) yields

C
∆u

∆S

1
u′

,

which is approximately C, as u′ ≈ ∆u/∆S. Hence, equation (16) becomes

p+ − p− = C + O
(
`2

)
+ ω(S) ` . (17)

5In our context, this “risk premium” is not to be confused with the risk premium of capital asset pricing.
6A survey of the Trades and Quotes (TAQ) database suggests quite a number of securities do not have transactions

every trading day even though market makers post quotes and stand ready to trade.
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At this juncture, we need to make an assumption about C.

A6 : The disparity between the expected utility of trading and that of not trading is small.

Specifically, under Assumption A6, C is of the order `2 or higher. We can then identify equa-

tion (17) with equation (7), which results in γ̃0 = C + O(`2) and

γ̃1 = ω(S) . (18)

In view of this result, equation (10) with γ̃1 being the relative risk aversion function is es-

sentially the same as ICAPM under certain conditions enunciated by Merton (1980) and Camp-

bell (1987). However, the context in which the relation arises is fundamentally different. The

econometrics for CAPM, ICAPM and other asset pricing models necessitate a joint test of their

resulting specifications and market equilibrium. As discussed in the literature, there are several

major difficulties associated with the joint test, including the selection of a proxy for the market

portfolio. In contrast, since our model requires neither the assumption of market equilibrium

nor the existence of the market portfolio, empirical tests based on equation (10) are conceptually

simpler and straightforward.

From a different angle, our model offers a fresh perspective on the myriad empirical tests of

CAPM and its variants. Although market indexes are commonly used as proxies for the market

portfolio, our model suggests that Roll (1977)’s critique for not using the true market portfolio

can be circumvented because the assumptions concerning the portfolio of all assets and market

equilibrium are not needed in our approach.

Another major difference from the CAPM and ICAPM is that γ̃0 need not vanish. Collectively,

γ̃0 corresponds to other risk elements not captured by the conditional variance. In our model, the

combined higher-order effect γ̃0 may become significant. It corresponds to the “pricing error” or

anomalous return of extant asset pricing models. However, in our framework, there is nothing

anomalous about γ̃0. It arises whenever the higher-order contributions are not as negligible.

In view of equation (18), it is evident that the relative risk aversion γ̃1 is necessarily stochas-

tic. Being a function of the price level S, the γ̃1 estimate based on historical data will likely be
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different from the ex ante γ̃1. On the other hand, if the unknown functional form of the utility

function remains unchanged and if the price level is relatively stable, our model suggests that

the relative risk aversion will not change much. The opposite case of changing price level and

utility function, which is more likely in reality, will result in time-varying risk aversion.

In sum, we gain an economic insight that the aggregate belief of market participants plays a

crucial role in determining the relation between risk and return. Although it turns out to have

the same linear form as the ICAPM, our probability-based approach is parsimonious and real-

istic in the assumptions. There is no need to assume a particular utility function, whether the

equilibrium is attained and whether rational expectations are at work. Moreover, the relation

is applicable to both individual stocks as well as index portfolios. The “pricing error” of classical

models is allowed in our model.

IV. A Proxy for Market Belief

This paper is essential theoretical. However, to add an empirical flavor to the theory, this sec-

tion discusses some tests of asset pricing models to motivate our simpler econometric approach

that is independent of how the time-series dynamics of conditional variance is modelled. Since

the concept of market belief as discussed in this paper is relatively new, the main intent is to

demonstrate that there is a proxy for market belief that yields economically reasonable results.

To begin with, we note that in most tests of existing capital asset pricing models, the behav-

ior of unobservable risk represented by ν̃ is dependent on the econometric model used. Since the

seminal papers of Engle (1982) and Bollerslev (1986), GARCH models are found to be particu-

larly appropriate for capturing the persistent behavior of conditional variance7. But when used

in the tests of asset pricing models, Baillie and DeGennaro (1990), Nelson (1991) and Glosten,

Jagannathan, and Runkle (1993) document that the coefficient of the linear relation between

7The GARCH literature has grown dramatically, as can be seen from the reviews by Bollerlsev, Chou, and Kroner
(1992) as well as Bera and Higgins (1993). Though it is also beyond the scope of this paper to provide a thorough
survey of the research involving GARCH or its variants for modelling conditional heteroskedasticity in the context
of testing CAPM or ICAPM, related papers include Engle, Lilien, and Robbins (1987), Chou (1988), Campbell and
Hentschel (1992), Whitelaw (1994), Theodossiou and Lee (1995), Braun, Nelson, and Sunier (1995), Chiang and
Doong (2001), in addition to Chou, Engle, and Kane (1992).
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conditional return and variance is null and even negative, contradicting its interpretation as

the measure for relative risk aversion in ICAPM. Brandt and Kang (2002) model the conditional

mean and volatility as a latent vector autoregressive process and find the relation to be negative

as well.

One of the plausible explanations for these conflicting conclusions could well be that the true

dynamics of the second-order conditional moment is subtle and difficult to model. In addition

to volatility clustering, another regular feature of conditional variance is the asymmetry in the

positive and negative price moves. The contemporaneous return and conditional volatility is

negatively correlated. This asymmetric effect may dilute and even overwhelm the positivity of

the risk aversion estimate.

Another plausible cause is that the relative risk aversion may be stochastic. To examine the

stochastic nature of risk aversion, Chou, Engle, and Kane (1992) generalize the ARCH-in-mean

model of Engle, Lilien, and Robbins (1987) by postulating the following system:

µ̃t = at + bt ν̃t + et , (19)

bt = bt−1 + εt , (20)

ν̃t = c0 + c1η
2
t−1 + c2 ν̃t−1 , (21)

where the GARCH surprise variable is defined as ηt = µ̃t − Et−1

[
µ̃t

]
. Equation (19) is an econo-

metric specification for the linear relation between the conditional excess return and conditional

variance derived in Section II. The errors et and εt are assumed to be uncorrelated Gaussians

with zero means. Their variances are ν̃t and σ2
b respectively. The variance σ2

b accounts for the

stochastic nature of bt, which is a state variable of the economy. If σ2
b were small, the system

would reduce to the ARCH-in-mean specification with fixed bt. Chou, Engle, and Kane (1992)

find that their bt estimates vary significantly over the sample period from 1926 through 1987.

Although at the 5% level, the point estimates for bt range from significantly negative, weakly

negative, null, weakly positive to positive over their sample period as seen from their Figure 3,

they conclude that bt is positive.

Essentially, our probability-based model provides an alternative raison d’etre for the time-
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varying GARCH-in-mean model with equation (19) being the main object of investigation. As

discussed in Section III, bt for the theoretical γ̃1 is free to be time-varying. However, it should

be positive, as equations (17) and (18) endow an economic meaning to γ̃1 as the relative risk

aversion coefficient.

Since we have highlighted the importance of market belief and how it enters into asset pric-

ing, we shall focus on finding a proxy for it. Suppose on a particular stock market and in a

particular month, there are N securities listed on the exchange. In the unlikely event that all

the N securities have positive excess returns, the belief of market participants must have been

very positive. Conversely, if the prices of these N securities all decline, the market belief must

have been very negative.

In general, it is more likely that some securities will advance, some decline, and the rest

remain unchanged. If more (less) securities have advanced than declined, Bt ≡ p+ − p− will

be positive (negative). Since Bt is bounded, −1 ≤ Bt ≤ 1, we consider the difference between

the numbers of advances and declines divided by N as an indicator of market belief at time t.

Denoting the i.i.d. disturbance as εt and the monthly excess return of the security market as Rt,

we specify

Bt = γ0 + γ1Rt + εt (22)

for equation (7), or equation (17). In our empirical tests documented in the next section, t is

measured in the unit of a month.

Unlike the GARCH-in-mean specification, equation (22) is a linear regression. The problem of

finding a correct econometric model for the conditional variance is circumvented. Though it is not

a direct test of equation (10), it provides a necessary validation examination for the probability-

based approach to asset pricing. Furthermore, from the viewpoint of estimation, equation (22) is

much simpler compared to the GARCH-in-mean specification.
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V. Data and Estimation

This section documents a set of tests motivated by the model. First and foremost, we test whether

γ1 is positive and significant. We are also interested in ascertaining the extent of higher-order

effects encapsulated in γ0. In addition, we look into the relation between relative risk aversion

γ1 and return volatility, as intuitively one would expect risk aversion to be negatively correlated

with volatility.

We obtain from the CRSP database monthly returns for each security issue traded on the

NYSE. To be included in the sample, the security issue must have positive number of shares out-

standing and the market capitalization must be positive. The sample has 4,449 NYSE securities

in the period from January 1926 through December 2002. The total number of securities in the

CRSP database increases from only 268 in January 1926 to 2,875 in October 1998. Since then,

the total number declines to 2,541 securities in December 2002. Over the entire sample period,

the average monthly total number is 1,240. For each month, we count the numbers of NYSE

securities that register positive, zero and negative returns. These numbers are then employed to

compute Bt to yield a time series of 924 observations. The distribution of these 924 observations

are shown in Figure 1. As evident from the histogram, the mass of the distribution is centered

around zero with a slight skew, implying that the market belief is rarely one-sided.

We conduct augmented Dickey-Fuller tests to ascertain whether the time series of monthly

market belief has unit root from 1 to 50 lags. Since the absolute values of the t-statistics are

at least four times larger than the 1% critical value, the test results do not support the null

hypothesis of a unit root in all of the specifications with no deterministic term, a constant term,

as well as a constant and a trend. Based on these results, there is reason to believe that monthly

market belief is stationary over the sample period.

The monthly returns of price-weighted DJIA are collected from Reuters. For the value-

weighted S&P 500, the monthly returns are extracted from the CRSP database. We use the

one-month T-bill rates as the riskless returns. Figure 2 plots the time series of monthly DJIA

excess returns and market belief. Visually, the two time series do not appear to have much

resemblance. For instance, during the Great Depression in the 1930s, monthly excess return ex-
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hibits rather high volatility whereas the corresponding period in the time series of market belief

does not differ much from the other sample period. Nonetheless, market crashes and sharp rises

appear to have coinciding spikes. In Table I, we provide the descriptive statistics for the excess

returns of DJIA and S&P 500, along with the market belief. These three monthly time series

have mild autocorrelation but strong positive cross-correlation. The autocorrelation of 0.0825 in

the first lag of market belief is not inconsistent with Assumption A2, as this assumption does not

insist that market belief is totally random. We also record the fact that the non-contemporaneous

correlations between the excess returns of these two indexes with the market belief are insignif-

icant.

For these two indexes, linear regression analysis based on equation (22) over the entire sam-

ple period suggests that their γ1 estimates are statistically significant while γ0 estimates are

not. We have employed Newey-West’s correction for serial correlation and heteroskedasticity

with sufficient number of lags to compute the standard errors. The relative risk aversion co-

efficient denoted by γ1 is estimated to be 6.73 with a t-statistic of 7.56 for the DJIA, and 6.67

with a t-statistic of 6.79 using the S&P 500. The γ0 estimates are 0.0098 and -0.0028 respec-

tively. Both γ0 estimates are, however, not statistically significant. Durbin-Watson tests do not

reject the hypothesis that the residuals are uncorrelated. From the value of the adjusted R2, we

infer that 66.4% of the variation in the market belief is explained by the DJIA excess return8.

The goodness-of-fit improves slightly to 68.3% when the excess return of S&P 500 is used as the

regressor. In light of these results, we conclude that market participants are indeed risk averse.

Turning to the investigation of the time-varying nature of risk aversion9, we perform the

same regression but using subsamples comprising of 120 monthly observations each. The sub-

sample is rolled over by a year, yielding 68 rolling estimates for the relative risk aversion coeffi-

cient. We find that all the γ1 estimates are statistically significant. Figure 3 plots the DJIA’s γ1

estimate for each subsample along with the standard deviation σ of subsample’s monthly excess

8Despite having only 30 stocks as components, it is intriguing that the DJIA Index and the price moves of all
securities traded on the NYSE have a large commonality. When the prices of most DJIA’s component firms rise
(fall), many other securities’ price levels tend to advance (decline) as well. The intra-day casualty between individual
security price moves and changes in the DJIA’s index level may be a subject of interest for further research.

9More recently, Rosenberg and Engle (2002) find that their empirical risk aversion moves in the opposite direction
of business cycle. Brandt and Wang (2003) show that aggregate risk aversion varies in response to news about
inflation and relates to business conditions.
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return for gauging the level of return volatility. The starting year of the subsample is indicated

on the horizontal axis. It appears that during the second World War and the few years following

the end of the war, investors were much more risk averse. The peak occurs in the subsample

spanning the period from January 1943 to December 1952. Since then, it seems that the risk

aversion coefficient is on the downward trend. Interestingly, as evident in Figure 3, the relation

between γ1 and the standard deviation σ of monthly excess return is negative. When the risk

aversion rises, the standard deviation falls, and vice versa. The same pattern (not plotted) is

also observed when the monthly excess return of S&P 500 is used instead. To quantify the ex-

tent of correlation, we consider the change in γ1 estimates and the change in σ values because

by construction these time series of rolling estimates are unit-root non-stationary. Respectively,

the correlation coefficients are found to be -0.73 and -0.77, which are statistically significant.

On the other hand, the non-contemporaneous correlations between these first-order differenced

time series are not significant.

The contemporaneous negative relation may be understood qualitatively as follows. When

market participants are less risk averse, their trading tends to be speculative in nature. More

speculative trades have a tendency to generate larger fluctuation. On the other hand, when in-

vestors are more risk averse, they tend to be more conservative and do not engage as much in

speculative transactions. As a result, prices do not fluctuate as much. Hence, when investors

are less (more) risk averse, the market will likely to be more (less) volatile. As a further remark,

there was a stock market bubble from the mid-1920s till 1929 when the market crashed. Volatil-

ity was unusually high in this period. Furthermore, the large increments in γ1 from 1932 to

1933 and 1933 to 1934 coincide with the Great Depression and the looming second War World.

The large jump in the risk aversion from 1938 to 1939 and 1940 to 1941 may also be attributed

to the start of War World II and the cold war that followed. During these periods of economic

uncertainty, investors might have become more risk averse and conservative in their trading

strategies. Correspondingly, market volatility declined. Another observation concerns the recent

decline in the risk aversion coefficient since 1990, which coincides with the beginning of the stock

market bubble associated with the dotcom fever.

Table II provides further evidence of positive risk aversion coefficients. Each subsample now
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spans two decades and the sample period is rolled over by two years. In line with our model’s pre-

diction, γ1 estimates are positive and statistically significant while most γ0 estimates are usually

not. Out of the 29 subsample periods, seven in the case of DJIA and eight in the case of S&P 500

have statistically significant γ0 estimates. They are also economically significant. In contrast to

CAPM, our model does not preclude the possibility of a “pricing error” manifested by the statis-

tically significant γ0 estimate. With γ0 being a collection of higher order terms, it is tempting

to speculate that the combined effect of third-order skewness and fourth-order kurtosis might

be one of the culprits behind these non-vanishing γ0 estimates, which could further be traced to

the disparity between the expected utility of trading and that of abstaining. Nonetheless, over

longer sample period as reported earlier, these pricing errors disappear.

In contrast to most existing tests, our results documented in TableII have higher statistical

power. All the adjusted R2 values are larger than 64%. More importantly, the t-statistics for

the γ1 estimates are all larger than 6 even after using Newey-West’s procedure to correct for any

potential serial correlation and heteroskedasticity in the residual. Our risk aversion coefficients

are in the range of 5 to 13 during our sample period. Taking into account the factor of two in

equation (12), the range that corresponds to the standard definition of relative risk aversion

is 10 to 26. In magnitude, this range is fairly compatible with the estimates by, for example,

Aı̈t-Sahalia and Lo (2000), Jackwerth (2000), Guo and Whitelaw (2003), as well as Bliss and

Panigirtzoglou (2004), though it is larger than the estimates by Brandt and Wang (2003).

VI. Conclusion

We show that a simple model of market belief based upon parsimonious but realistic assumptions

gives rise to a linear relation between risk and return. Despite the fundamental difference in the

approach, this relation is essentially the same as that of the ICAPM. Thus, it appears that the

relation between risk and return is universal, being independent of the approach taken to derive

it. In other words, if we consider the space of all possible relations between risk and return,

the linear relation is the fixed point in this space where at least our behaviorist approach and

classical finance based on utility maximization converge.
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But, in contrast to extant capital asset pricing models, which apply strictly to the elusive

market portfolio and under the condition of market equilibrium, our model is applicable to a

wider variety of portfolios including individual stocks, regardless of whether the equilibrium is

attained. Rescinding the theoretical market portfolio of classical finance provides a basis for

using any widely adopted index such as the S&P 500 or the DJIA as a market benchmark. In

addition, there is no need to assume a particular utility function. More importantly, our model

can accommodate the “pricing error,” which is attributable to the higher-order moments of return

in light of this paper’s approach.

For empirical analysis, we use the monthly returns of all securities traded on the NYSE. The

sample period is from January 1926 through December 2002 and the sample size is 4,449. As a

proxy for market belief, the difference between the numbers of advancing and declining securi-

ties divided by the total number of securities traded on the NYSE is used. Our empirical study

provides overwhelming evidence that the risk aversion coefficient is statistically significant and

positive. We also find that market participants’ risk aversion is time-varying and negatively

correlated with volatility. This negative relation appears to coincide with major historical events

in the 20th century. In magnitude, the estimated relative risk aversion coefficients are compat-

ible with the estimates in the literature. All these economically reasonable results support the

theory and the proxy used in this paper.
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Table I
Descriptive Statistics

This table lists the descriptive statistics for the time series of monthly DJIA excess returns,
S&P 500 excess returns and the proxy for market belief. The sample period is January 1926
through December 2002. Monthly return series of 4,449 NYSE securities are obtained from
the CRSP database. These series are used to compute the monthly market belief as the ratio
of the difference between the monthly numbers of advancing and declining NYSE securities
over the total number of securities traded on the NYSE in that month. To compute the excess
returns of the two indexes, one-month T-bill rates from the CRSP database are used. For the
autocorrelation coefficients of lags 1 to 4, we indicate those estimates that are significant at the
5% level in bold.

DJIA S & P 500 Market
Excess Return Excess Return Belief

Mean 0.0012 0.0031 0.0179
Standard Deviation 0.0553 0.0566 0.4567

Mininum -0.3672 -0.2998 -0.9964
Maximum 0.3054 0.4212 0.9805
Skewness -0.7418 0.3987 -0.2117

Kurtosis 9.668 12.280 2.265

Lag 1 0.0689 0.0800 0.0825
Lag 2 -0.0067 -0.0241 0.0217
Lag 3 -0.0852 -0.1071 -0.0344
Lag 4 0.0338 0.0165 0.0087

DJIA 1 0.9584 0.8152
S&P 500 1 0.8265

Market Belief 1
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Table II
Time-Series Regression Results

This table presents the results of regressing the monthly market belief, denoted as Bt, on the
monthly excess return Rt. The one-month T-bill rate is used as the riskless rate. The ordinary
least squares specification is

Bt = γ0 + γ1 Rt + εt .

Each rolling subsample period spans 20 years. The first column states the starting years in
January to the ending years in December of the subsample periods. Designated by γ0 and γ1, the
two columns contain the parameter estimates with their t statistics in the following two columns
designated by t(γ0) and t(γ1), respectively. The column designated by R2 tabulates the adjusted
R2 in percent. Not all the γ0 estimates are statistically significant at the 5% level. Those that are
significant are indicated in bold. In contrast, all the γ1 estimates are statistically significant. We
have employed Newey-West’s formula to correct the standard errors for serial correlation and
heteroskedasticity.
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Subsample DJIA S&P

Period γ0 γ1 t(γ0) t(γ1) R2 γ0 γ1 t(γ0) t(γ1) R2

1926–1945 0.007 5.61 0.3 11.2 68.5 -0.015 5.43 -0.7 8.2 69.5

1928–1947 -0.007 5.68 -0.3 10.7 67.2 -0.026 5.50 -1.2 8.1 69.4

1930–1949 0.000 5.97 0.0 9.3 66.1 -0.019 5.66 -0.9 7.5 68.2

1932–1951 -0.005 6.60 -0.2 7.5 64.7 -0.014 5.80 -0.7 6.3 65.0

1934–1953 -0.012 9.04 -0.6 8.2 71.7 -0.017 8.51 -1.0 10.2 77.0

1936–1955 -0.006 9.04 -0.3 7.9 70.9 -0.017 8.51 -0.9 9.6 75.0

1938–1957 -0.009 9.10 -0.4 7.5 70.5 -0.020 8.60 -1.0 8.7 74.1

1940–1959 -0.008 10.82 -0.4 8.6 74.5 -0.017 10.31 -0.9 10.1 78.3

1942–1961 -0.024 12.15 -1.8 22.8 79.3 -0.039 11.52 -3.2 27.0 82.9

1944–1963 -0.033 11.85 -2.4 24.5 80.4 -0.045 11.40 -3.6 27.5 83.2

1946–1965 -0.035 11.59 -2.7 25.0 80.5 -0.044 11.20 -3.5 27.4 82.6

1948–1967 -0.015 11.20 -1.1 26.0 80.0 -0.032 11.02 -2.5 27.5 82.2

1950–1969 -0.006 10.78 -0.4 27.4 78.6 -0.028 10.99 -2.2 26.7 81.6

1952–1971 -0.002 10.64 -0.2 30.4 78.5 -0.022 10.74 -1.7 28.4 82.6

1954–1973 -0.004 10.24 -0.3 22.1 77.8 -0.024 10.66 -1.7 27.1 82.1

1956–1975 -0.007 9.58 -0.4 16.3 75.6 -0.020 9.79 -1.3 12.3 78.9

1958–1977 0.010 9.40 0.6 16.5 73.6 -0.006 9.72 -0.4 12.1 77.4

1960–1979 0.022 9.36 1.3 17.4 73.7 0.000 9.75 0.0 12.8 78.2

1962–1981 0.033 9.27 1.8 18.1 73.6 0.011 9.43 0.7 13.3 76.8

1964–1983 0.042 9.04 2.5 18.2 72.6 0.024 9.13 1.5 13.5 75.6

1966–1985 0.041 9.00 2.4 19.2 73.8 0.019 9.06 1.3 14.4 77.3

1968–1987 0.032 7.92 1.8 11.5 70.7 0.018 8.26 1.1 13.2 75.9

1970–1989 0.031 7.72 1.8 11.7 70.9 0.019 8.05 1.3 13.7 76.1

1972–1991 0.031 7.48 1.8 12.4 71.9 0.018 7.78 1.2 14.4 75.8

1974–1993 0.045 7.37 3.0 12.1 71.7 0.034 7.60 2.8 14.6 76.6

1976–1995 0.047 7.44 3.1 10.8 71.9 0.035 7.96 2.9 13.8 78.3

1978–1997 0.042 7.27 2.8 11.0 72.2 0.031 7.79 2.6 14.2 78.7

1980–1999 0.016 6.67 1.0 11.6 69.2 0.007 7.07 0.5 14.7 74.4

1982–2001 0.019 6.20 1.2 12.5 68.6 0.016 6.53 1.0 14.2 71.8
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Figure 1. Histogram of Market Belief. Market belief is defined as the aggregate view of
market participants. The ratio of the difference between the monthly numbers of advancing and
declining NYSE securities over the total number of securities traded on the NYSE is used as a
cross-sectional proxy for the monthly market belief.
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Figure 2. Monthly Excess Return of DJIA Index and Monthly Market Belief. The sam-
ple period is from January 1926 to December 2002, a total of 924 observations over 77 years.
Monthly DJIA Index returns are gathered from Reuters and the one-month T-bill rates are ob-
tained from the CRSP database to compute the monthly excess returns. Market belief is defined
as the aggregate view of market participants. The ratio of the difference between the monthly
numbers of advancing and declining NYSE securities over the total number of securities traded
on the NYSE is used as a cross-sectional proxy for the monthly market belief. The horizontal
axis marks the calendar year in two-digit format.
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Figure 3. Historical Risk Aversion Estimates for DJIA Index and Standard Deviations
of Monthly Excess Return. For each ten-year subsample, a risk aversion estimate is obtained
from time-series regression. Rolling over the subsample period by 12 months, we obtain a total
of 68 relative risk aversion estimates, which are plotted with ‘◦.’ The horizontal axis marks the
January of each subsample’s starting year. We also compute the annualized standard devia-
tion of monthly excess return for each subsample. The computed series is plotted with ‘×’ and
expressed in percent. These two time series appear to move in the opposite direction.
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