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Abstract

Conventional learning with expert advice
methods assume a learner is always receiv-
ing the outcome (e.g., class labels) of every
incoming training instance at the end of each
trial. In real applications, acquiring the out-
come from oracle can be costly or time con-
suming. In this paper, we address a new
problem of active learning with expert ad-
vice, where the outcome of an instance is dis-
closed only when it is requested by the on-
line learner. Our goal is to learn an accu-
rate prediction model by asking the oracle
the number of questions as small as possi-
ble. To address this challenge, we propose
a framework of active forecasters for online
active learning with expert advice, which at-
tempts to extend two regular forecasters, i.e.,
Exponentially Weighted Average Forecaster
and Greedy Forecaster, to tackle the task of
active learning with expert advice. We prove
that the proposed algorithms satisfy the Han-
nan consistency under some proper assump-
tions, and validate the efficacy of our tech-
nique by an extensive set of experiments.

1 Introduction

Learning with expert advice has been extensively s-
tudied for years in literature [19, 3, 13, 1]. Typically, a
conventional learning with expert advice task assumes
an online learner acts in an environment with a pool
of experts. At each trial, the learner receives an in-
coming training instance, and must make a prediction
on this instance based on the predictions made by the
pool of experts. The outcome of the incoming instance
will be disclosed by acquiring the feedback from an o-
racle after the learner has made the prediction, which
in turn determines the incurred losses of the learner

and the experts as well. The goal of this problem is
to enable the online learner be able to make a pre-
diction as accurate as possible. This framework was
first introduced by Littlestone and Warmuth [19], who
proposed the well-known weighted majority voting al-
gorithms. Over the past decades, the similar problem
has been extensively explored by other studies in liter-
ature, including Cesa-Bianchi et al. [3, 2], Freund and
Schapire [9], Foster and Vohra [8], Haussler et al. [12],
Vovk [22] etc.

The existing learning with expert advice methods as-
sume the outcome (e.g., the true class label) of ev-
ery incoming training instance will be always disclosed
from an oracle at each trial. However, requesting the
outcome of an instance from the oracle is often expen-
sive or time consuming in many real-world applica-
tions. Unlike the conventional approaches, this paper
investigates a new framework of active learning with
expert advice, in which the outcome of an incoming
instance may or may not be disclosed at each trial,
depending on if the learner decides to make a request
to the oracle. The goal of active learning with expert
advice is to train the online learner to make an accu-
rate prediction by making the number of requests to
the oracle as small as possible, which is potentially ap-
plied for improving online classification with multiple
kernel learning [14]. This problem is very challenging
because on one hand we need to design an effective
strategy to build the online learner for the training in-
stance whenever its outcome is disclosed, and on the
other hand, we must decide when the online learner
should make a request for an incoming instance.

To overcome the challenge of active learning with ex-
pert advice, we present a framework of Active Fore-
caster algorithms and proposed two specific algorithm-
s: (i) active weighted average forecaster and (ii) active
greedy forecaster. We analyze the theoretical regret
bound of the proposed algorithms, and validate their
empirical efficacy via an extensive set of experiments.

The rest of this paper is organized as follows. Section 2



introduces the problem setting of learning with expert
advice and the greedy forecaster algorithm. Section 3
presents the active greedy forecaster algorithm for ac-
tive learning with expert advice and analyzes its theo-
retical performance. Section 4 shows our experimental
results, and Section 5 concludes this work.

2 Problem Setting and Background

Specifically, we considered solving online classification
problem through learning with expert advice. Online
classification has been extensively studied in machine
learning in the past few years [21, 4, 26, 24] for d-
ifferen problems, like sentiment detection [17], cost-
sensitive classification [23], feature selection [25] and
etc. To solve online classification problem, the prob-
lem setting of a typical learning with expert advice
task is as follows. Consider an unknown sequence of
instances x1, . . . ,xT ∈ Rd, a decision maker termed
as “forecaster” aims to predict the outcomes (e.g.,
class labels) of every incoming instance xt. The fore-
caster sequentially computes its predictions based on
the predictions from a set of N reference forecaster-
s called as “experts”. Specifically, at the t-th round,
after receiving an instance xt, the forecaster first ac-
cesses to the predictions made by the set of experts
{fi,t : Rd → [0, 1]|i = 1, . . . , N}, and then computes
its own prediction pt ∈ [0, 1] based on the prediction-
s of the N experts. After pt is computed, the true
outcome yt ∈ {0, 1} is disclosed.

With the true outcomes revealed from the environmen-
t/oracle, the prediction performance of the forecaster
and experts can be scored by some nonnegative loss
function between pt and yt, e.g., the absolute loss that
is defined as ℓ(pt, yt) = |pt − yt|. We can further cal-
culate the cumulative loss experienced by each expert
and the forecaster respectively as follows:

Li,t =
t∑

j=1

ℓ(fi(xj), yj), Lt =
t∑

j=1

ℓ (pj , yj)

The loss difference between the forecaster and the ex-
pert is known as the “regret”, i.e.,

Ri,t = Lt − Li,t, i = 1, . . . , N (1)

The goal of learning the forecaster is to make the regret
with respect to each expert as small as possible, which
is equivalent to minimizing the overall regret RT , i.e.,

RT = max
1≤i≤N

Ri,T = LT − min
1≤i≤N

Li,T (2)

In general, we wish to design an ideal forecaster that
can achieve a vanishing per-round regret, i.e.,

RT = o(T ) ⇐⇒ lim
T→∞

1

T

(
LT − min

1≤i≤N
Li,T

)
= 0

The above property is known as the Hannan consisten-
cy [11]. A forecaster satisfying this property is called
a Hannan-consistent forecaster [11, 2].

To solve the above task of learning with expert advice,
a natural framework is based on the weighted average
prediction strategy. Specifically, at time t, the fore-
caster makes its own prediction as:

pt =

∑N
i=1 wi,t−1fi(xt)∑N

i=1 wi,t−1

(3)

where wi,t−1 are the combination weights assigned to
the experts at time t-1. The intuitive idea of learning
the combination weights is to assign large weights for
those experts of low regrets/loss and small weights for
those of high regrets/loss.

Next we introduce a special case that leads to the well-
known forecaster, called “Exponentially Weighted Av-
erage Forecaster” (EWAF). In particular, by choosing

wi,t−1 = exp(ηLi,t−1)/
∑N

j=1 exp(ηLj,t−1), where η is
a positive parameter, the EWAF strategy makes the
following prediction:

pt =

∑N
i=1 exp(−ηLi,t−1)fi(xt)∑N

i=1 exp(−ηLi,t−1)
, (4)

In addition to the weighted average forecaster, we al-
so consider another kind of forecaster, known as the
“Greedy Forecaster” (GF), which makes the following
prediction:

pt = π[0,1]

(
1

2
+

1

2η
ln

∑N
i=1 exp(−ηLi,t−1 − ηℓ(fi(xt), 1))∑N
i=1 exp(−ηLi,t−1 − ηℓ(fi(xt), 0))

)
,

where π[0,1](·) = max(0,min(1, ·)). According to the
existing studies [2], we have the following theorem of
regret bounds of the above EWAF and GF algorithms:

Theorem 1. Let the loss function ℓ(p, y) = |p − y|.
Then, for any T and η > 0, and for all y1, . . . , yT ∈
{0, 1}, the regrets of both the EWAF and GF algo-
rithms satisfy

RT = LT − min
1≤i≤N

Li,T ≤ lnN

η
+

ηT

8

In particular, by choosing η =
√
8 lnN/T , the upper

bound of the regret becomes
√
(T/2) lnN .

The above theorem shows both the EWAF and GF
algorithms satisfy the Hannan consistency, i.e., RT ≤
o(T ), which guarantees that the actual per-round re-
gret RT /T becomes negligible as T grows.

3 Active Learning with Expert Advice

In this section, we address a new problem of active
learning with expert advice. Unlike the above regular



learning with expert advice task where the outcome
of every incoming instance is always revealed to the
online learner, in an active learning with expert ad-
vice task, the outcome of an incoming instance is only
revealed whenever the learner has made a request for
acquiring the label from the environment/oracle. In
this section, we aim to develop a framework of ac-
tive forecasters to tackle the challenging task of active
learning with expert advice.

We first introduce binary variables zs ∈ {0, 1}, s =
1, . . . , t to indicate if an active forecaster has decided to
request the class label of an incoming instance received
at s-th trial. We denoted by L̂i,t the loss function
experienced by the active learner w.r.t. the ith expert,
i.e., L̂i,t =

∑t
s=1 ℓ(fi(xs), ys)zs.

Hence, the class label for the t-th example predicted
by the active forecaster, denoted by p̂t, is computed
as p̂t = π[0,1](p̄t), where p̄t is computed by different
approaches for different forecasters:

p̄t =

∑N
i=1 exp(−ηL̂i,t−1)fi(xt))∑N

i=1 exp(−ηL̂i,t−1)
(EWAF);

p̄t =
1

2
+

1

2η
ln

∑N
i=1 exp[η(−L̂i,t−1 − ℓ(fi(xt), 1))]∑N
i=1 exp[η(−L̂i,t−1 − ℓ(fi(xt), 0))]

(GF).

In the above formula of EWAF, since p̄t ∈ [0, 1], we
always have p̂t = π[0,1](p̄t) = p̄t.

The key challenge for active learning with expert ad-
vice is to decide when the active forecaster should or
should not make a request to acquire the class label
w.r.t. an incoming instance from the environmen-
t/oracle. A naive solution is to consider a random
sampling approach, which however may not be effec-
tive enough (this will be considered as a baseline for
comparison in our empirical study). To tackle this
challenge, our key motivation is to find some appropri-
ate confidence condition such that it helps the online
learner decide when we could skip the request of a label
whenever the confidence condition is satisfied. To this
end, we propose an idea to seek the confidence con-
dition by estimating the difference between pt and p̂t.
Intuitively, the smaller the difference, the more confi-
dent we have for the prediction made by the forecaster.
Before introducing our proposed confidence condition-
s, for convenience of presentation, we introduce a no-
tation: Ĥi,t =

∑t
s=1(1 − zs)ℓ(fi(xs), ys). It is easy to

see Li,t = L̂i,t + Ĥi,t.

Active Exponentially Weighted Average Forecaster
(AEWAF). We present a confidence condition for AE-
WAF in the following theorem, which guarantees a s-
mall difference between pt and p̂t.

Theorem 2. For a small constant δ > 0,
max1≤i,j≤N |fi(xt)− fj(xt)| ≤ δ implies |pt − p̂t| ≤ δ.

Proof. For the AEWAF strategy, the distance between
pt and p̂t is computed as follows:

|pt − p̂t|

=

∣∣∣∣∣
∑N

i=1 exp(−ηLi,t−1)fi(xt)∑N
i=1 exp(−ηLi,t−1)

−
∑N

i=1 exp(−ηL̂i,t−1)fi(xt)∑N
i=1 exp(−ηL̂i,t−1)

∣∣∣∣∣
=

∣∣∣∣∣
∑N

i=1 exp(−ηL̂i,t−1) exp(−ηĤi,t−1)fi(xt)∑N
i=1 exp(−ηL̂i,t−1) exp(−ηĤi,t−1)

−
∑N

i=1 exp(−ηL̂i,t−1)fi(xt)∑N
i=1 exp(−ηL̂i,t−1)

∣∣∣∣∣
=

∣∣∣∣∣
∑N

i=1

∑N
j=1 γi,j,t−1(fi(xt)− fj(xt))∑N

i=1

∑N
j=1 γi,j,t−1

∣∣∣∣∣
where

γi,j,t−1 = exp(−ηL̂i,t−1) exp(−ηĤi,t−1) exp(−ηL̂j,t−1).

Thus, if max1≤i,j≤N |fi(xt)− fj(xt)| ≤ δ, it is easy to
prove that |pt − p̂t| ≤ δ.

Active Greedy Forecaster (AGF). We now propose a
confidence condition for AGF in the theorem below,
which guarantees a small difference between p̂t and pt.

Theorem 3. For a small constant δ > 0,
max1≤i≤N |fi(xt)− p̄t| ≤ δ implies |pt − p̂t| ≤ δ.

Proof. We can bound pt from the above as follows

pt

= π[0,1]

(
1

2
+

1

2η
ln

∑N
i=1 exp(−ηLi,t−1 − ηℓ(fi(xt), 1))∑N
i=1 exp(−ηLi,t−1 − ηℓ(fi(xt), 0))

)

= π[0,1]

(
1

2
+

1

2η
ln

∑N
i=1 exp(−η(L̂i,t−1 + Ĥi,t−1)− ηℓ(fi(xt), 1))∑N
i=1 exp(−η(L̂i,t−1 + Ĥi,t−1)− ηℓ(fi(xt), 0))

)

≤ π[0,1]

(
1

2
+

1

2η
ln

∑N
i=1 exp(−ηL̂i,t−1 − ηℓ(fi(xt), 1))∑N
i=1 exp(−ηL̂i,t−1 − ηℓ(fi(xt), 0))

)

+π[0,1]

(
1

2η
ln

[
∑N

i=1 αi,t exp(−ηĤi,t−1)]

[
∑N

i=1 βi,t exp(−ηĤi,t−1)]

)

= p̂t + π[0,1]

(
1

2η
ln

[
∑N

i=1 αi,t exp(−ηĤi,t−1)]

[
∑N

i=1 βi,t exp(−ηĤi,t−1)]

)
where

αi,t =
exp

(
−η
[
L̂i,t−1 + ℓ(fi(xt), 1)

])
∑N

j=1 exp
(
−η
[
L̂j,n−1 + ℓ(fj(xt), 1)

]) ,
βi,t =

exp
(
−η
[
L̂i,t−1 + ℓ(fi(xt), 0)

])
∑N

j=1 exp
(
−η
[
L̂j,n−1 + ℓ(fj(xt), 0)

]) , i ∈ [N ].



Since ∀i ∈ [N ]

αi,t

βi,t
=

∑N
j=1 exp

(
−η
[
L̂j,t−1 + ℓ(fj(xt), 0)

])
∑N

j=1 exp
(
−η
[
L̂j,t−1 + ℓ(fj(xt), 1)

]) ×

exp
(
−η
[
L̂i,t−1 + ℓ(fi(xt), 1)

])
exp

(
−η
[
L̂i,t−1 + ℓ(fi(xt), 0)

])
=

exp (−η [ℓ(fi(xt), 1)− ℓ(fi(xt), 0)])

exp (η (2p̄t − 1))

=
exp (η (2fi(xt)− 1))

exp (η (2p̄t − 1))

= exp (2η (fi(xt)− p̄t)) ≤ exp(2ηδ),

and lnx is an increasing function, we have

ln

∑N
i=1 αi,t exp(−ηĤi,t−1)∑N

j=1 βj,t−1 exp(−ηĤj,t−1)
≤ 2ηδ

and pt ≤ p̂t+δ. Similar to the above analysis, we have
pt lower bounded as pt ≥ p̂t − δ.

Based on the above analysis of the confidence condi-
tions, we can now present the general framework of
active forecasters for online active learning with ex-
pert advice, which is summarized in Algorithm 1.

Algorithm 1 A Framework of Active Forecaster

Input: a pool of experts fi, i = 1, . . . , N .
Initialize tolerance threshold δ and L̂i,t = 0, i ∈
[N ].
for t = 1, . . . , T do

receive xt and compute fi(xt), i ∈ [N ];
compute p̄t according to equation (5) and set p̂t =
π[0,1](p̄t);
if the confidence condition is satisfied then
skip the label request for instance xt

else
request label yt and update L̂i,t = L̂i,t−1 +
ℓ(fi(xt), yt), i ∈ [N ];

end if
end for

As shown in Algorithm 1, at each round, after receiv-
ing an input instance xt, we compute the prediction
by each expert in the pool, i.e., fi(xt). Then, we ex-
amine if the confidence condition is satisfied. If so, we
will skip the label request for this instance; otherwise,
the learner will request the class label for this instance
from the environment.

We now present a theorem about the upper bound of
the regret of the two active forecasters, i.e.,

R̂T = L̂T − min
i∈[N ]

Li,T

where L̂T =
∑T

t=1 ℓ(p̂t, yt), which is the overall loss
experienced by the active forecaster.

Theorem 4. Let the loss function ℓ(p, y) = |p − y|,
and denote by Q the total number of requested labels,
i.e., Q =

∑T
t=1 zt, then, for any T , η > 0 and for

all y1, . . . , yT ∈ {0, 1}, the regret R̂T of the two Active
Forecasters (AEWAF and AGF) can be bounded as:

R̂T = L̂T − min
i∈[N ]

Li,T ≤ lnN

η
+

ηT

8
+ δ(T −Q).

Proof. Firstly according to Theorem 2 and 3, we have
the following bound for L̂T − LT :

L̂T − LT =
T∑

t=1

(ℓ(p̂t, yt)− ℓ(pt, yt))

≤ (T −Q) ∗ |p̂t − pt| ≤ δ(T −Q).

Combining the above result with Theorem 1, we have
the regret of the Active Forecasters bounded:

R̂T = L̂T − min
1≤i≤N

Li,T = (L̂T − LT ) + (LT − min
1≤i≤N

Li,T )

≤ δ(T −Q) +
lnN

η
+

ηT

8
.

Remark. For the above theorem, if a learner requests
the labels for every instance, i.e., Q=T, the bound
reduces the bound of the regular forecasters. Based
on the above theorem, we have the following corollary
that shows the proposed Active Forecasters satisfy the
Hannan consistency.

Corollary 5. Consider 0 < a << T , if we set η =√
8 lnN

T (1+8a)−8aQ and δ = aη, then we have the regret

achieved by the proposed algorithms bounded as o(T ).

Proof. Following the result of Theorem 4, we have

R̂T ≤ lnN

η
+

ηT

8
+ δ(T −Q)

=
lnN

η
+ η

(
(a+

1

8
)T −Qa

)
= 2

√
lnN

√
T

(
a+

1

8

)
−Qa

where the last equation holds under the condition
lnN
η = η

(
(a+ 1

8 )T −Qa
)
, i.e., η =

√
8 lnN

T (1+8a)−8aQ ,

and as a result δ = a
√

8 lnN
T (1+8a)−8aQ . Therefore, we

have R̂T = o(T ).



4 Experimental Results

In this section, we evaluate the empirical performance
of the proposed Active Forecasters for online active
learning with expert advice tasks.

4.1 Experts and Compared Algorithms

To construct experts for an online sequential predic-
tion task, we choose to build the pool of experts by
adopting five well-known online learning algorithm-
s [7, 5, 20], which include: (implemented as in [16])

• PERCEPTRON: the classical Perceptron algo-
rithm [21];

• ROMMA: the Relaxed Online Maximum Margin
Algorithm [18];

• ALMAp(α): the Approximate Maximal Margin
Algorithm [10];

• PA: the Passive-Aggressive online learning algo-
rithm [4];

• AROW: the Adaptive Regularization Of Weights
algorithm [6].

We compare the two proposed active learning algo-
rithms (AEWAF and AGF) with the two regular fore-
casters (EWAF and GF) algorithm and their random
variants as well, which are listed below:

• EWAF: the Exponentially Weighted Forecast-
er [2];

• GF: the Greedy Forecaster algorithm [2];

• REWAF: the Random Exponentially Weighted
Forecaster, a variant of EWAF, which will ran-
domly select the indices according to uniform dis-
tribution;

• RGF: the Random Greedy Forecaster algorithm,
a variant of GF, which will randomly select the
indices according to uniform distribution;

• AEWAF: the proposed Active Exponentially
Weighted Forecaster algorithm;

• AGF: the proposed Active Greedy Forecaster al-
gorithm.

4.2 Experimental Testbed and Setup

To evaluate the performance, we conduct experiments
on a variety of benchmark datasets from web machine
learning repositories. Table 1 shows the details of 9

datasets used in our experiments. All of them can be
downloaded from LIBSVM website 1 and UCI machine
learning repository 2. These datasets are chosen fairly
randomly in order to cover various aspects of datasets.

Table 1: Datasets used in the experiments.

Dataset Name # instances # features

D1 a8a 32561 123
D2 codrna 271617 8
D3 covtype 581012 54
D4 gisette 7000 5000
D5 magic04 19020 10
D6 mushrooms 8124 112
D7 spambase 4601 57
D8 svmguide1 7089 4
D9 w8a 64700 300

All the expert algorithms learn a linear classifier for a
binary classification task. The parameter p and α in
ALMAp(α) are set to be 2 and 0.9 respectively. The
parameter C in PA is set to 5, and the parameter γ
is set to 1 for AROW. To make fair comparisons, all
the compared forecasters adopt the same setup. The
learning rate η is set to

√
8 lnN/T , for all the dataset-

s and forecasters. The sampling ratio for requesting
labeled data by the two random algorithms (REWAF
and RGF) are set according to the ratio of labeled da-
ta requested by AEWAF and AGF using different δ
values, respectively.

Each dataset is randomly divided into two subsets: a
training set consisting of 20% of the entire data for
training the experts; and a test set consisting of the
remaining data for learning the forecasters. The five
experts algorithms are applied on the training set to
learn the five expert functions ui ∈ Rd, i ∈ [5], where
d is the dimension of the instance. To satisfy the as-
sumptions, we adopt fi(x) = π[0,1](u

⊤
i x + 0.5) as the

expert functions. Then we test the forecasters on the
test set. All the test experiments were conducted over
20 runs of different random permutations for each test
set. All the results were reported by averaging over
these 20 runs. For performance metric, we evaluate
the forecasters by measuring the regret rate, ratio of
requested labeled data, and the running time cost.

4.3 Evaluation of Regular Forecasters

Table 2 summarizes the average performance of the E-
WAF and GF algorithms for conventional online learn-
ing with expert advice on the benchmark datasets.

1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
2http://www.ics.uci.edu/~mlearn/MLRepository.html



Table 2: Evaluation of two regular forecasters (EWAF
and GF) on all the datasets.

Dataset Alg. Measures

Regret (%) Time (s)

D1 EWAF 0.286 ± 0.001 0.694
GF 0.286 ± 0.001 0.841

D2 EWAF 0.207 ± 0.001 1.019
GF 0.207 ± 0.001 1.282

D3 EWAF 0.066 ± 0.001 10.942
GF 0.066 ± 0.001 13.428

D4 EWAF 0.609 ± 0.001 0.574
GF 0.609 ± 0.001 0.593

D5 EWAF 0.373 ± 0.001 0.332
GF 0.373 ± 0.001 0.414

D6 EWAF 0.483 ± 0.001 0.157
GF 0.483 ± 0.001 0.194

D7 EWAF 0.758 ± 0.001 0.084
GF 0.758 ± 0.001 0.103

D8 EWAF 0.506 ± 0.001 0.123
GF 0.506 ± 0.001 0.154

D9 EWAF 0.164 ± 0.001 1.760
GF 0.164 ± 0.001 2.031

From the experimental results in Table 2, we can draw
several observations. First, the regret rates of EWAF
and GF on every dataset are almost the same, which
is consistent to the theoretical result that shows that
they share the same regret bound. Second, EWAF
consumes slightly less time cost than GF for all the
cases due to the difference of their solutions. Finally,
we found that the larger the dataset size, the small-
er the average regret value achieved by the two algo-
rithms. This is consistent with the Hannan property
satisfied by the two algorithms, i.e., the average regret
is negligible when T is very large.

4.4 Evaluation of Active Forecasters on
Fixed Ratio of Queries

In this subsection, the tolerance threshold δ for AE-
WAF and AGF is set as 0.2. Table 3 summarizes the
average performance of the REWAF and AEWAF al-
gorithms over the experimental datasets. From the
experimental results, we can draw several observations
as follows.

First of all, since we choose the sampling threshold ρ
according to the ratios of required labels by AEWAF
using a fixed tolerances δ, the differences between the
ratios of requested labeled data for AEWAF and RE-
WAF are not statistically significant, which has been
verified by statistical t-tests. This implies that the s-
tatistical differences between the regret rates achieved
by AEWAF and REWAF, if any, are not caused by

Table 3: Evaluation of REWAF and AEWAF on all the
dataset. R. denotes REWAF and A. denotes AEWAF.
δ is set as 0.2.

Data Alg. Measures
Regret (%) Query (%) Time (s)

D1 R. 0.364 ± 0.017 77.35 ± 0.23 0.685
A. 0.292 ± 0.001 77.44 ± 0.01 0.762

D2 R. 0.491 ± 0.025 42.48 ± 0.16 0.796
A. 0.202 ± 0.001 42.46 ± 0.01 0.941

D3 R. 0.088 ± 0.002 74.26 ± 0.05 10.465
A. 0.064 ± 0.000 74.25 ± 0.01 11.958

D4 R. 1.342 ± 0.102 45.40 ± 0.59 0.566
A. 0.598 ± 0.003 45.40 ± 0.01 0.568

D5 R. 0.907 ± 0.076 40.94 ± 0.33 0.256
A. 0.344 ± 0.004 41.00 ± 0.01 0.300

D6 R. 1.575 ± 0.067 10.80 ± 0.38 0.104
A. 0.530 ± 0.004 10.63 ± 0.01 0.119

D7 R. 1.062 ± 0.066 71.64 ± 0.73 0.080
A. 0.756 ± 0.004 71.67 ± 0.01 0.091

D8 R. 0.718 ± 0.047 49.36 ± 0.50 0.100
A. 0.535 ± 0.006 49.41 ± 0.01 0.117

D9 R. 0.248 ± 0.006 40.79 ± 0.17 1.489
A. 0.169 ± 0.000 40.82 ± 0.01 1.636

the differences between their ratios of the requested
labeled data.

Second, compared with REWAF, AEWAF achieves s-
tatistically lower regret rates on all the datasets, which
validates the effectiveness of the proposed active learn-
ing strategy and also indicates the importance of ex-
ploiting the degree of agreements between different ex-
perts. In addition, AEWAF can achieve comparable
regret rates with EWAF by requesting a significant-
ly less amount of labels; while REWAF suffers sig-
nificantly more regret rates by requesting the same
amount of labels. This shows that AEWAF could be
an attractive alternative to the EWAF in order to save
the expensive labeling efforts in a real application.

Third, the time cost of the AEWAF algorithm is in
general comparable to or slightly higher than that of
the REWAF algorithm because the proposed confi-
dence conditions can be evaluated rather efficiently.

Finally, we would also like to examine if the proposed
active learning strategy can be generalized to different
types of forecasting algorithms. To this purpose, we al-
so evaluate the performance of the RGF and AGF algo-
rithms. Table 4 summarizes the experimental results
on all the datasets. As compared to the last experi-
ment, similar observations can be drawn from the ex-
perimental results. We found that AEWAF and AGF
request almost the same ratios of labels and achieve
comparable regret rates on all the datasets; while RE-
WAF and RGF achieve comparable regret rates, which
are significantly higher than those of the two proposed



active algorithms. These results indicate that the pro-
posed active learning strategy can be generalized to
different types of forecasting algorithms, and again
validate the efficacy of the proposed active learning
algorithms.

Table 4: Evaluation of RGF and AGF on all the
dataset. R. denotes RGF and A. denotes AGF. δ is
set as 0.2.

Data Alg. Measures
Regret (%) Query (%) Time (s)

D1 R. 0.362 ± 0.022 76.61 ± 0.26 0.905
A. 0.288 ± 0.003 76.56 ± 0.04 0.974

D2 R. 0.474 ± 0.028 42.38 ± 0.21 1.363
A. 0.199 ± 0.002 42.40 ± 0.01 1.542

D3 R. 0.089 ± 0.002 74.21 ± 0.06 14.416
A. 0.063 ± 0.001 74.21 ± 0.01 15.959

D4 R. 1.344 ± 0.088 45.53 ± 0.71 0.610
A. 0.592 ± 0.005 45.27 ± 0.04 0.611

D5 R. 0.923 ± 0.096 40.13 ± 0.39 0.442
A. 0.335 ± 0.009 40.32 ± 0.07 0.498

D6 R. 1.633 ± 0.053 10.21 ± 0.41 0.206
A. 0.543 ± 0.005 10.22 ± 0.07 0.231

D7 R. 1.088 ± 0.080 71.18 ± 0.82 0.113
A. 0.752 ± 0.007 71.27 ± 0.06 0.126

D8 R. 0.726 ± 0.043 46.97 ± 0.48 0.164
A. 0.559 ± 0.015 47.01 ± 0.40 0.185

D9 R. 0.247 ± 0.005 40.55 ± 0.21 2.110
A. 0.171 ± 0.001 40.59 ± 0.01 2.303

4.5 Evaluation of Active Forecasters on
Varied Ratios of Queries

Firstly, Figure (1) shows the performance of the RE-
WAF and AEWAF algorithms on mushrooms with
varied ratios of queries. AEWAF outperforms RE-
WAF with all the ratios of queries, which verifies the
proposed active strategies are effective and promising.
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Figure 1: Comparison of REWAF and AEWAF on
mushrooms.

Secondly, Figure (2) shows the performance of the

RGF and AGF algorithms on mushrooms with var-
ied ratios of queries. AEWAF outperforms REWAF
with all the ratios of queries, which again verifies the
proposed active strategies are effective and promising.
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Figure 2: Comparison of RGF and AGF on mushroom-
s.

Finally, Figure (3) and (4) shows the comparisons of
REWAF and AEWAF, RGF and AGF on all the re-
maining datasets, respectively, where similar observa-
tions can be found from the results.

5 Conclusion

This paper addressed a new problem of active learn-
ing with expert advice for online sequential prediction
tasks. We proposed two novel strategies for active
learning with expert advice by extending two exist-
ing forecasting algorithms in an online active learn-
ing setting. We analyze the theoretical regret bounds
for the proposed algorithms, which guarantee the pro-
posed algorithms satisfy the important Hannan con-
sistency. We have conducted an extensive set of ex-
periments to evaluate the efficacy of the algorithms.
Promising empirical results validate the effectiveness
of our technique.

Despite the encouraging results, some limitations and
open challenges of the current work remain. One is-
sue is about the settings of the learning rate η and
tolerance parameter δ, which were fixed manually in
our experiments. It would be more attractive if one is
able to design a self-tuned strategy for the active learn-
ing task. Further, the current regret bounds may be
further improved, e.g., by adopting different loss func-
tions or other strategies. Another future work may
be exploring the principles of semi-supervised learning
for improving active learning with expert advice [15].
These issues can be further explored in the future
work.
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Figure 3: Comparison of regret rates with respect to varied ratios of queries.
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Figure 4: Comparison of regret rates with respect to varied ratios of queries.
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