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ABSTRACT
Traditional batch model-based Collaborative Filtering (CF)
approaches typically assume a collection of users’ rating data
is given a priori for training the model. They suffer from
a common yet critical drawback, i.e., the model has to be
re-trained completely from scratch whenever new training
data arrives, which is clearly non-scalable for large real rec-
ommender systems where users’ rating data often arrives
sequentially and frequently. In this paper, we investigate a
novel efficient and scalable online collaborative filtering tech-
nique for on-the-fly recommender systems, which is able to
effectively online update the recommendation model from a
sequence of rating observations. Specifically, we propose a
family of online multi-task collaborative filtering (OMTCF)
algorithms, which tackle the online collaborative filtering
task by exploiting the similar principle as online multitask
learning. Encouraging empirical results on large-scale datasets
showed that the proposed technique is significantly more ef-
fective than the state-of-the-art algorithms.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Filtering; I.2.6 [Artificial Intelligence]: Learning

Keywords
Recommender systems, Collaborative Filtering, Online learn-
ing, Multi-task Learning

1. INTRODUCTION
Collaborative filtering (CF) aims to make accurate predic-

tions (“filtering”) about the preferences of a user by learn-
ing/leveraging from a collection of preferences from many
other users (“collaborative”). It is a core learning technique
widely used in real-world recommender systems [30]. In
literature, a variety of CF algorithms have been proposed,
which can be generally grouped into two schools: (i) mem-
ory based methods [26, 20, 16, 11, 32, 13], and (ii) model
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based methods [27, 15, 31, 29, 23]. The model-based meth-
ods, typically powered by machine learning techniques, are
more desired than the memory-based methods, especially
when the amount of rating observations is relatively limited
or sparse, which is common for real recommender systems.

Most existing model-based CF approaches assume a col-
lection of users’ rating data is given a priori to train the
model in a batch learning fashion. Typically, the model has
to be re-trained whenever there is new training data. Such
approaches are impractical for real-world recommender sys-
tems where training data often arrive sequentially as new
users are being added daily or even hourly, and new prod-
ucts/items are being offered dynamically. As a result, tradi-
tional batch learning methods are non-scalable due to their
highly expensive re-training cost. This calls for an urgent
need of efficient and scalable CF techniques for learning the
model on-the-fly for real-world recommender systems.

To this end, we investigate Online Collaborative Filter-
ing (OCF) techniques for on-the-fly recommender systems in
this paper. The state-of-the-art OCF approach is based on
the online low-rank matrix approximation algorithm [1, 17]
by applying the simple online gradient descent (OGD) al-
gorithms to solve the matrix factorization task, which thus
avoids the highly expensive re-training cost of traditional
batch matrix factorization algorithms. Despite their merit
of high efficiency, their naive gradient descent approaches
may not be very effective since they completely neglect the
underlying structure of the collaborative filtering task.

To overcome the limitation of the existing OCF approaches,
we propose a novel framework of Online Multi-Task Col-
laborative Filtering (OMTCF) by exploiting the close rela-
tionship between collaborative filtering and multi-task learn-
ing [22]. The key idea of OMTCF is to not only update the
weight vectors of the user (task) related to the current ob-
served data, but also the weight vectors of some other users
(tasks) according to a user interaction matrix. As a result,
OMTCF is able to learn the model more accurately than
the existing OCF algorithms, with the only disadvantage
of being slightly less efficient due to the cost of multi-task
learning. In this paper, we propose a family of OMTCF
algorithms to trade off between efficacy and efficiency, and
extensively examine their performance for on-the-fly recom-
mender systems on various large benchmark data sets.

The rest of the paper is organized as follows. Section 2
introduce the background and related work, Section 3 pro-
poses the framework of Online Multi-Task Collaborative Fil-
tering. Section 4 discusses our experimental results, and
Section 5 sets out the conclusion of our work.



2. BACKGROUND AND RELATED WORK
This section briefly reviews the background of some major

groups of related work, including batch collaborative filter-
ing, online collaborative filtering, and multi-task learning.

One of the state-of-the-art methods for regular CF tasks
is the latent factor or matrix factorization method [31, 23],
which is one of the major techniques used by the Netflix
prize winner’s algorithms [14]. The key idea of latent factor
model assumes that the similarity between users and items
is simultaneously induced by some hidden lower-dimension
structure in the data. For example, the rating that a user
gives to a movie might depend on a few implicit factors such
as the user’s taste across various movie genres. Beyond this
direction, some probabilistic and Bayesian matrix factoriza-
tion for collaborative filtering methods have also been pro-
posed [25, 19]. For a more comprehensive survey on regular
CF techniques, please refer to the survey paper [30]. Al-
though the batch algorithms for matrix factorization have
shown great successes, they generally suffer from high time
complexity and memory cost, which thus are non-scalable
for building on-the-fly recommender systems.

Online collaborative filtering has received emerging atten-
tion recently. The work in [10] is perhaps one of early work,
in which OCF is cast as an online ranking problem [8]. This
algorithm is however not very practical because it assumes
all the users’ preferences can be known for each training in-
stance, which is not always true. The related work most
relevant to our study is the online collaborative filtering by
stochastic gradient descent [1, 2] and another improved work
in [17], which attempted to optimize the objective function
of matrix factorization based formulation for collaborative
filtering in online learning fashion. Their naive gradient de-
scent strategy simply neglects the underlying structure of
CF tasks which thus limits their learning efficacy. Our work
is partially motivated to overcome their limitation. Besides,
our work is also somewhat related to the online evolution-
ary collaborative filtering work in [18] which assigns larger
weights to the new rating and incrementally updates the
users’ and items’ similarities, but differs in two major as-
pects: (i) to be more precise from an online learning per-
spective, [18] is essentially a mini-batch or incremental algo-
rithm that does not update the model upon a single obser-
vation; and (ii) [18] generally belongs to a simple memory-
based approach, which is usually less effective as compared
to the state-of-the-art matrix factorization approaches. Fi-
nally, our work is very different from the work [9] which
tried to improve scalability of batch CF methods by explor-
ing practical tricks, such as the MapReduce framework.

Our work is also inspired in part by some related work
in Multi-task learning (MTL) [3], which is a machine learn-
ing method where multiple tasks are jointly learnt such that
each of them benefits from each other. A popular frame-
work for MTL is multi-task feature learning [4], which as-
sumes that all tasks share a common yet latent feature rep-
resentation. Similarly, although MTL has many advantages,
it also suffers some disadvantages, e.g., low efficiency. Re-
cently, online multi-task learning [7, 24] has been proposed
to extend traditional MTL in online learning setting. The
online multi-task learner proceeds in rounds by observing a
sequence of examples, each belonging to some task from a
pre-defined set tasks. The basic idea of the online multi-task
learning in [7] is that instead of only updating the weight
vector of the task related to the current instance, it online

updates weight vectors of multiple tasks based on a task
interaction matrix. Furthermore, instead of using a fixed
task interaction matrix, [24] proposed to update the task
relationship matrix during the online learning process.

Although both online collaborative filtering and online
multi-task learning have been actively studied in different
research communities separately, to the best of our knowl-
edge, no existing work has attempted to tackle online collab-
orative filtering by exploiting the idea of online multi-task
learning for building on-the-fly recommender systems.

3. ONLINE MULTI-TASK COLLABORATIVE
FILTERING

3.1 Problem Setting and Formulation
In this section, we present the proposed framework for On-

line Multi-Task Collaborative Filtering (OMTCF) for build-
ing on-the-fly recommender systems. We emphasize that an
essential difference between online CF and traditional batch
CF tasks is that batch CF assumes the entire collection of
training data is given a prior before the learning task, while
online CF learns the model on-the-fly from a sequence of
training data. In the following, we will firstly introduce the
problem setting and then present a family of OMTCF algo-
rithms for addressing a variety of practical issues.

First of all, we introduce the problem of a regular collab-
orative filtering task. In a collaborative filtering task, some
users from a total of n users rated some products (items)
from a total of m products, and these ratings form an in-
complete matrix R ∈ R

n×m, where rij is the rating on the
j-th item given by the i-th user. The goal of collaborative fil-
tering is to predict the unknown ratings based on the known
ones. For collaborative filtering, one of the well-known ap-
proach is the matrix factorization algorithm, which learns
the latent structure by factorizing the rating matrix to a user
matrix U ∈ R

n×k and an item matrix V ∈ R
m×k through

the following optimization problem:

argmin
U∈Rn×k,V∈Rm×k

‖R−UV⊤‖2F , (1)

where ‖R‖F is the Frobenius norm of the matrix R. If
the rating matrix R is fully observable, then this problem
can be reduced to a Singular Value Decomposition (SVD)
problem. However, the matrix for collaborative filtering is
only partially observed, which results in an ill-posed prob-
lem for the above formulation. To tackle the challenge, we
can apply the low-rank matrix approximation technique to
re-formulate this problem. Specifically, let Ua be the a-th
row of U , and Vb be the b-th row of V , then given a partial
collection of observed pairs C = {(a, b)}, let |C| denote the
number of observed ratings, the collaborative filtering prob-
lem can be re-formulated as the regularized optimization
task for low-rank matrix factorization:

argmin
U∈Rn×k,V∈Rm×k

∑

∀(a,b)∈C

ℓ(Ua, Vb, ra,b) + λ(‖U‖2F + ‖V‖2F ) (2)

where λ > 0 is a regularization parameter, and ℓ(Ua, Vb, ra,b)
is a loss function that defines the loss between the true ra,b
and the prediction UaV

⊤
b .

However, this new problem is a non-convex optimization
which cannot be solved directly using a standard SVD al-
gorithm. Since the optimization problem (2) is non-convex,
[28] proposed to replace the Frobenius norm regularization
by a trace norm regularization in order to relax it to a convex



optimization problem, which can be solved by Semi-definite
Programming (SDP) using the following property of trace
norm regularization:

‖R‖Σ = inf
R=UV⊤

1

2
(‖U‖2F + ‖V‖2F ). (3)

However, the heavy cost of solving a sparse SDP task makes
it infeasible for real datasets with millions of observations.

To overcome this limitation of regular collaborative filter-
ing, [1] proposed the online collaborative filtering based on a
simple gradient descent approach. In particular, given a sin-
gle prediction problem of user a on item b, the algorithm first
makes a prediction of rating r̂a,b = UaV

⊤
b ; after the true rat-

ing ra,b is revealed, the algorithm suffers a loss ℓ(Ua, Vb, ra,b);
finally, the OCF algorithm makes updates on their model U
and V based on the gradient descent approach:

Ua = (1− 2τλ)Ua − τ
∂ℓ(Ua, Vb, ra,b)

∂Ua

, (4)

Vb = (1− 2τλ)Vb − τ
∂ℓ(Ua, Vb, ra,b)

∂Vb

. (5)

where τ is the learning rate parameter. In general, one
can define different type of loss function for different pur-
poses. For example, to optimize the Root Mean Square Er-

ror (RMSE), i.e., RMSE =
√

1
|C|

∑

(a,b)∈C (ra,b − r̂a,b)2, we

can define the loss by the square error function as:

ℓ1(Ua, Vb, ra,b) = (ra,b − UaV
⊤
b )2 (6)

Similarly, if one aims to optimize the Mean Absolute Error
(MAE), i.e., MAE = 1

|C|

∑

(a,b)∈C |ra,b − r̂a,b|, we can define

the absolute loss function as:

ℓ2(Ua, Vb, ra,b) = |ra,b − UaV
⊤
b | (7)

3.2 A Family of OMTCF Algorithms
The proposed OMTCF method is generally inspired by

noticing the equivalence between multi-task learning and
collaborative filtering formulations. To illustrate this clearly,
we rewrite the formulation of the optimization task of col-
laborative filtering as follows:

argmin
U∈Rn×k,V∈Rm×k

n
∑

i=1

∑

∀(i,b)∈C

ℓ(Ui, Vb, ri,b) + λ(‖U‖2F + ‖V‖2F ) (8)

By treating each user i as an individual task, each Ui as
the task model, V as the features of items and ri,b as the
prediction output of model i for item b, it is not difficult to
see that the above formulation is essentially equivalent to
the formulation of a multi-task learning that optimizes the
models of multiple tasks simultaneously. The equivalence
between collaborative filtering and multi-task learning has
also been shown by some previous studies in literature [22,
21], which partially inspire our study in this paper.

Motivated by the above equivalence fact, our approach is
to exploit the idea of online multi-task learning [7] to tackle
the online collaborative filtering task. For online multi-task
learning, one important step is to define a task interaction
matrix A ∈ R

n×n, which essentially indicates the similarity
or interaction degree between tasks. Following the similar
idea, we can define a user interaction matrix A ∈ R

n×n such
as a large value Ai,j indicates a close interaction should be
imposed between user i and user j. In general, matrix A can
be computed if prior knowledge about the users is available.
If however such prior knowledge is not available, one can

define some constant matrix. For example, one simple ap-
proach used by the previous study is to define A as follows:

Afixed =









1 1
2

... 1
2

1
2

1 ... 1
2

... ... ... ...
1
2

1
2

... 1









. (9)

where the above matrix indicates that we should make a
full update (Aii = 1) of the user’s model when the instance
belongs to, and make a half update (Aij = 1

2
∀i 6= j) of other

users’ models otherwise.
Unlike the existing OCF approach where only one user

is updated for every observed rating, the proposed online
multi-task collaborative filtering (OMTCF) approach will
update multiple users for each observed rating. More for-
mally, given an incoming rating ra,b with respect to user a

and item b, the algorithm will update the models of multiple
users (i.e., multiple rows of U) according to the user interac-
tion matrix A. Specifically, we have the following functions
for updating the models of multiple users:

Ui = (1− 2τλ)Ui − τA(a, i)
∂ℓ(Ua, Vb, ra,b)

∂Ua

, (10)

Vb = (1− 2τλ)Vb − τ
∂ℓ(Ua, Vb, ra,b)

∂Vb

, (11)

where i = 1, . . . , n, τ is the learning rate and ℓ(Ua, Vb, ra,b)
is a loss function which is defined based on either Eq. (6)
for RMSE or Eq. (7) for MAE. In the above, a larger value
of A(a, i) will result in a stronger update on Ui eventually.
With respect to the two kinds of loss functions, we derive the
detailed online updating rules by gradient descent associated
with the interaction matrix in the following propositions.

Proposition 1. In an OMTCF task, given an observed
rating pair (a, b), the updating rule with respect to the loss
function ℓ1 defined in Eq. (6) can be expressed as follows:

Ui = (1 − 2τλ)Ui + 2τAt(a, i)(Vb(ra,b − UaV
⊤
b )) (12)

Vb = (1− 2τλ)Vb + 2τUa(ra,b − UaV
⊤
b ) (13)

where i = 1, . . . , n.

Proposition 2. In an OMTCF task, given an observed
rating pair (a, b), the updating rule with respect to the loss
function ℓ2 defined in Eq. (7) can be expressed as follows:

Ui = (1− 2τλ)Ui + 2τAt(a, i)(Vb · sign(ra,b − UaV
⊤
b )) (14)

Vb = (1− 2τλ)Vb + 2τUa · sign(ra,b − UaV
⊤
b ) (15)

where i = 1, . . . , n.

In the proposed OMTCF algorithms, one key issue is how
to determine an appropriate user interaction matrix A. The
following will discuss this issue in detail.

3.3 Online Updating User Interaction Matrix
Instead of choosing a constant user interaction matrix A as

shown in Eqn (9), another possible approach is to calculate a
(sparse) matrix A from prior knowledge of user information
when available:

A(i, j) = similarity(i, j) (16)

where similarity(i, j) is a function of defining the similarity
between two users according to the prior knowledge. For
example, if we only have the age information about users,
we can probably set the similarity value for the users who
belongs to the same age group as 1, and 0 otherwise.



The above approaches are generally limited in that they
either require the prior knowledge which is not always avail-
able or often fix the user interaction matrix as a constant
matrix, which may somewhat restrict the power of the pro-
posed algorithm for achieving faster convergence. To over-
come these limitations, we also propose to learn the user
interaction matrix A automatically during the online learn-
ing process. In particular, we can choose the user interaction
matrix by using the covariance matrix of user matrix U that
is updated sequentially as follows:

A = cov(U), (17)

which is somewhat inspired by the Gaussian Process based
multi-task learning [5], where the task relatedness is mea-
sured by the Gaussian Process covariance function.

Although the above suggested matrices are fairly reason-
able, in a real-world scenario, they are only an approxima-
tion of the user similarity, which may not exactly reflect the
true user interaction. In addition, online multi-task learning
often converges much faster than online single task learning
at the beginning of the online learning process, but the ad-
vantage of performing multi-task updates will become less
significant as time goes by as the models become more and
more accurate. To address these issues, we propose to define
the following attenuation coefficient function over the user
relationship matrix:

θt(i, j) = (
1

t
)
1

3 Ii6=j + Ii=j (18)

where Ix is an indicator function that outputs 1 when x is
true and 0 otherwise. This attenuation function weakens
the effect of updating the multiple users as time goes. Thus,
the final true user interaction matrix used in OMTCF will
be the user interaction matrix multiplied by the attenuation
coefficient as:

At = θt ⊙ A, (19)

where ⊙ is the element-wise produce, i.e., At(i, j) = θt(i, j)∗
A(i, j). Finally, Algorithm 1 summarizes the framework of
the proposed OMTCF algorithms. It is not difficult to see
that the proposed algorithms are efficient and scalable with
linear time and space complexity.

Algorithm 1 OMTCF — Framework of Online Multi-
Task Collaborative Filtering algorithms

Input: a sequence of rating pairs {(at, bt), t = 1, . . . ,M}
Initialization: Initialize a random matrix for user matrix U
and item matrix V, and initialize user relationship matrix A0

as an identity matrix I
for t = 1, 2, . . . ,M do

receive rating prediction request of user at on item bt
make prediction r̂at,bt = Uat

V ⊤
bt

the true rating rat,bt is revealed
the algorithm suffers a loss ℓ(Ua, Vb, ra,b)
update U and Vbt by Proposition 1(RMSE) or 2(MAE)
update the user interaction matrix At as follows:

At = θt ⊙







Afixed (OMTCF-I)
Asimilarity (OMTCF-II)
cov(U) (OMTCF-III)

end for

3.4 Efficient Hybrid Algorithm for OMTCF
Although the proposed OMTCF algorithms achieve sig-

nificantly faster convergence rate than the traditional OCF
approach, this advantage is paid by higher computation cost
of performing the multi-task updates. Specifically, because
OMTCF needs to update the models of multiple users dur-
ing the online learning step, the running time cost would
be much higher than OCF. In this part, we would propose a
hybrid algorithm to trade off between efficiency and efficacy.

The proposed algorithm follows the similar framework as
the OMTCF-I algorithm. In the online learning process, we
monitor the amount of prediction change (in either RMSE
or MAE) over a past certain period (defined by a window
size T ) ∆(t, T ) defined as follows:

∆(t, T ) =

{

RMSE(t− T )− RMSE(t) (RMSE)
MAE(t− T )−MAE(t) (MAE)

We then introduce a threshold ζ to indicate whether the
learning process has converged sufficiently. If the change
∆(t, T ) is smaller than ζ, the algorithm will then switch to
a single-task update, i.e.,

At =

{

θt ⊙ Afixed ∆(t, T ) ≥ ζ
I otherwise

We denote this hybrid algorithm as “OMTCF-IV” for short.

3.5 OMTCF for Novel User/Item Extension
The above OMTCF algorithms follow a formal online learn-

ing setting, but they make an implicit assumption, i.e., both
the number of users and the number of items are fixed and
they are both known beforehand. In a real-world online ap-
plication, this is not realistic. In this part, we aim to extend
OMTCF algorithms to handle the situation where an incom-
ing rating observation is related to a novel user or a novel
item. The key idea of the proposed algorithm here is that
we will try to expand the user/item matrix by adding one
user/item vector whenever a new user/item appears. We
assume the user interaction matrix is fixed as Eq.(9), which
is the same as “OMTCF-I” (we could also consider other
type of interaction matrix). We keep a multi-task cumu-
lative updated user vector and update it at each iteration.
This multi-task cumulative updated user vector will be ap-
plied to initialize the new user vector whenever a new user
is added. This strategy is able to guarantee the algorithm
achieves the same performance as the “OMTCF-I” without
considering the difference caused by different random ini-
tializations. We denote this algorithm for handling novel
sample extension as “OMTCF-V” for short. The details are
summarized in Algorithm 2.

3.6 Practical Online Multi-task Collaborative
Filtering for Large-Scale Datasets

As we can see, algorithm ”OMTCF-V” can build the user
and item matrix from scratch and online extended the user
and item matrix based on the data observed, which could
save the memory and make the algorithm more efficient. The
algorithm ”OMTCF-IV” can avoid unnecessary multiple up-
dates when the online learning process has converged well.
In fact, we can adopt the two improvements over original
online multi-task collaborative filtering algorithm simulta-
neously into a single new algorithm, which is able to make
online multi-task learning strategy for collaborative filter-
ing more practical and efficient for large-scale datasets. We



Algorithm 2 OMTCF-V: The proposed OMTCF algo-
rithm for handling novel sample extension

Input: a sequence of rating pairs {(at, bt), t = 1, . . . ,M}, win-
dow size T (e.g. T=1000), convergence threshold ζ
Initialization: U = V = A = [] and randomize Uini.
for t = 1, 2, . . . ,M do

receive rating prediction request of user at on item bt
if user at is new then

initialize Uat
= Uini

expand the user matrix U as U = [U;Uat
]

expand the user interaction matrix as:

At−1 ← [At−1,
1
2
( 1
t
)
1

3 1; 1
2
( 1
t
)
1

3 1, 1], where 1 is a vector
of all elements equal to 1

end if
if item bt is new then

initialize Vbt as a random vector.
expand the item matrix V as V = [V;Vbt ]

end if
make prediction r̂at,bt = Uat

V ⊤
bt

the true rating rat,bt is revealed
the algorithm suffers a loss ℓ(Ua, Vb, ra,b)
update U and Vbt by Proposition 1(RMSE) or 2(MAE)
calculate Uini as

{

(1− 2τλ)Uini + τ( 1
t
)
1

3 (Vb(ra,b − UaV
⊤
b

)) (RMSE)

(1− 2τλ)Uini + τ( 1
t
)
1

3 (Vbsign(ra,b − UaV
⊤
b

)) (MAE)

update At by At = θt ⊙ Afixed

end for

name the new algorithm as “OMTCF-VI”, which is a combi-
nation of OMTCF-IV and OMTCF-V. We omit the detailed
algorithm due to space limitation.

Remarks on Parallelization. One important advan-
tage of online CF over batch CF is that online algorithms
only need to process one rating at a time, making the up-
dating efficient and scalable. Although our OMTCF algo-
rithms are generally more computationally expensive than
the simple OCF algorithm in [1], this disadvantage can be
somewhat compensated by exploring the advantages of par-
allel computing techniques, which can be easily deployed by
the proposed OMTCF algorithms. In particular, in contrast
to the OCF algorithm, our OMTCF algorithms update mul-
tiple users simultaneously and the updates of these users do
not affect each other at each learning round, making them
to be easily parallelized by a trivial implementation.

4. EXPERIMENTAL RESULTS
In this section, we evaluate the empirical performance of

the proposed OMTCF algorithms for online collaborative fil-
tering tasks. It is important to note that we do not compare
the proposed algorithms with other existing batch collabo-
rative filtering algorithms since the performance evaluation
protocol and settings between online and batch learning al-
gorithms are very different, making them unfair and mean-
ingless to be compared directly.

4.1 Compared Algorithms
We compare the proposed OMTCF algorithms with the

emerging online collaborative filtering algorithm. Specifi-
cally, the compared algorithms in our experiments include:

• “OCF”: the Online Collaborative Filtering algorithm
by online gradient descent method described in [1];

• “DA-OCF” the Dual-Averaging method for online col-
laborative filtering proposed in [17];

• “OMTCF-I”: the proposed OMTCF in Algorithm 1
where the user-interaction matrix is set as Eq.(9) as
suggested in [7];

• “OMTCF-II”: the proposed OMTCF algorithm with
one sparse user interaction matrix is computed using
prior user information in Eq.(16);

• “OMTCF-III”: the proposed OMTCF algorithm with
the task covariance matrix in Eq.(17);

• “OMTCF-IV”: the proposed Hybrid OMTCF algorithm;

• “OMTCF-V”: the proposed OMTCF for new sample
extension algorithm, as shown in Algorithm 2.

• “OMTCF-VI”: our practical OMTCF algorithm.

4.2 Experimental Testbed and Setup
To extensively examine the empirical performance, we

conduct the experiments on a variety of publicly available
datasets widely used for benchmark evaluation of CF in lit-
erature. The first two relatively smaller datasets include:
(i) the “MovieLens 100k” dataset collected by the Grouplens
Research Project from the MovieLens web site 1, where users
can freely give their ratings on various movies and receive
movie recommendations; it consists of 100,000 ratings from
943 users on 1682 movies, and also provides additional user
info, such as their genders, and ages, etc; (ii) the “HetRec
2011 MovieLens” dataset, which links the movies of Movie-
Lens with their corresponding web pages at IMDb and Rot-
ten Tomatoes movie review systems; this dataset consists of
855,598 ratings from 2113 users on 10197 movies; it however
does not contain any user info. We also test on other four
large-scale data sets which will be introduced later.

To make fair comparisons, all the algorithms adopt the
same experimental setup. Firstly, for the proposed“OMTCF-
II” algorithm, we set the similarity between a pair of users
as 1 when they are from the same gender and in the same
age period, while the similarities of others pairs as 0. Note
that two users are considered as in the same age period if the
difference of their ages is less than 5 years. Considering the
fact that only the “MovieLens 100k” dataset consists of the
user information, the algorithm “OMTCF-II” is only tested
on this dataset. Secondly, for the proposed “OMTCF-III”
algorithm, we use the gaussian kernel for the users vectors
to compute the user similarity, where the kernel width σ
is set as 1. To make a fair comparison, the learning rate
γ of all algorithms is set to 0.005, and the regularization
parameter is set to 3−6, the λ parameter in DA-OCF algo-
rithm was set to 0.006, which was suggested to achieve the
best performance according to [17]. The rank parameter k
of matrix U and V is set to two cases: 5 and 10, respec-
tively. After the parameters are chosen, all the experiments
were conducted over 20 runs of different random permuta-
tions for each dataset. All the experimental results were
reported by averaging over these 20 runs. For performance
metric, we evaluate the performance of online collaborative
filtering algorithms by measuring their scores of online Root
Mean Square Error (RMSE) and online Mean Absolute Er-
ror (MAE) on the test set.

4.3 Evaluation on Two Smaller Datasets
Table 1 summarizes the average performance of the com-

pared algorithms over the two datasets. From the experi-
mental results, several observations can be drawn as follows.

1http://movielens.umn.edu

http://movielens.umn.edu
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Figure 1: Online cumulative predictive performance of different online collaborative filtering algorithms for
on-the-fly recommendation (best viewed in color).

Table 1: Evaluation of online CF algorithms, where
k is the rank parameter for matrix U and V . The
bold element indicates the best performance for each
setting. Note that OMTCF-II is not applicable to
the second dataset as user info is unavailable.

MovieLens k=5 k=10
100k RMSE MAE RMSE MAE

OCF 1.2808 1.1685 1.0781 0.8970
DA-OCF 1.2722 1.1438 1.2898 0.9369
OMTCF-I 1.0509 0.8665 1.0506 0.8434
OMTCF-II 1.1057 0.9527 1.0543 0.8614
OMTCF-III 1.0429 0.8564 1.0359 0.8393

HetRec 2011 k=5 k=10
MovieLens RMSE MAE RMSE MAE

OCF 0.9386 0.7540 0.8859 0.6887
DA-OCF 0.9114 0.7273 0.9098 0.7018
OMTCF-I 0.8750 0.6777 0.8784 0.6786
OMTCF-III 0.8734 0.6777 0.8715 0.6716

First, compared with the previous OCF and DA-OCF
approach, we observe that all the proposed OMTCF algo-
rithms achieve significantly better performance of smaller
RMSE/MSE values for all the cases. This shows that the
proposed learning strategy is more effective than the exist-
ing naive gradient descent approach in improving the online
prediction performance of collaborative filtering tasks.

Second, we found that, when the dimensionality is rela-
tively lower (i.e., k=5), the gap between the OMTCF and
OCF tends to be more significant. This shows that OMTCF
is more suitable to learn an effective low-rank matrix factor-
ization for collaborative filtering tasks. DA-OCF seems dose
not benefit much as the dimensionality increases.

Third, by comparing the performance between several vari-
ants of OMTCF algorithms using different user interaction
matrices, we found that OMTCF-III performs the best among
all the proposed algorithms. This validates the efficacy of
learning the user interaction matrix in online collaborative
filtering learning tasks. Further, OMTCF-II tends to per-
form worse than the other OMTCF algorithms, which indi-
cates that it should be careful to exploit the user information

for user interaction matrix, especially when such user infor-
mation is noisy or incomplete in real applications. For such
situations, a simple user interaction matrix, e.g., defined in
Eq.(9), might be even better than some complicated user
interaction matrix which may be corrupted with noise.

Besides, in order to inspect the details of online collab-
orative filtering performance, we also show the online per-
formance convergence of all the compared algorithms in the
entire online learning process in Figure 1. Similar to the
above observations, the experimental results in the figure
again verify the efficacy of the proposed OMTCF algorithms,
which consistently outperform the previous OCF algorithm.
Specifically, we observe that the OMTCF algorithms in gen-
eral converge much faster than OCF in the beginning of
the learning process, which is very important and beneficial
to many recommender systems as a fast convergence per-
formance makes the online recommendation solution being
able to effectively adapt the fast changes in a real online
recommendation environment.

4.4 Efficiency and New Sample Extension
Although the OMTCF algorithms are able to significantly

improve the online RMSE/MAE performance, they gener-
ally suffer high time complexity. The time efficiency of an
online collaborative filtering algorithm is also very important
for large-scale applications. To overcome this limitation of
the previous OMTCF algorithms, we also evaluate the ef-
ficient hybrid algorithm, which aims to achieve a trade off
between efficacy and efficiency. In particular, it will reduce
to a single-task updating algorithm when the online RMSE
or MAE performance is no longer improved significantly. In
addition to improving the efficiency issue of OMTCF, we
also propose OMTCF-V to tackle the new sample extension
issue, which is also evaluated in the following.

Specifically, we compare all the OMTCF algorithms with
OCF in terms of both predictive performance (RMSE/MAE)
and time efficiency. For OMTCF-I,II,III algorithms, the pa-
rameters are set as the same as the previous experiment. For
OMTCF-IV, the parameters are set the same as OMTCF-I,
except that ζ is set to 5×10−2 for RMSE and set to 3×10−2

for MAE, the rank parameter k is set to 5 for all algorithms.
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Figure 2: Online cumulative predictive performance of three online algorithms for on-the-fly recommendation
on large-scale datasets (best viewed in color). We can only show two largest datasets due to space limitation.

Table 2: Evaluation of Efficacy and Time Cost
MovieLens RMSE MAE
100k RMSE TIME(s) MAE TIME(s)

OCF 1.2779 0.76 1.1890 0.68
DA-OCF 1.2722 2.01 1.1438 2.06
OMTCF-I 1.0534 102.41 0.8644 104.08
OMTCF-II 1.1103 23.81 0.9514 24.03
OMTCF-III 1.0443 5883.83 0.8514 5732.84
OMTCF-IV 1.0607 2.19 0.8967 2.99
OMTCF-V 1.0532 88.61 0.8648 91.66
OMTCF-VI 1.0521 1.34 0.8625 1.96
HetRec 2011 RMSE MAE
MovieLens RMSE TIME(s) MAE TIME(s)

OCF 0.9408 7.79 0.7560 5.99
DA-OCF 0.9114 17.08 0.7273 16.93
OMTCF-I 0.8757 1964.89 0.6786 1992.89
OMTCF-III 0.8719 2.3× 106 0.6785 2.3× 106

OMTCF-IV 0.8794 22.27 0.6818 33.85
OMTCF-V 0.8767 1126.62 0.6779 1159.84
OMTCF-VI 0.8757 12.78 0.6713 16.57

The parameters for OMTCF-V is the same as OMTCF-IV.
After choosing the parameters, all the experiments were con-
ducted over 20 runs of different random permutations for
each dataset. All the experimental results were reported by
averaging over these 20 runs. The performance evaluations
are summarized in Table 2.

Several observations can be drawn from the results. First,
we found that OMTCF-III, though achieving the best RMSE
and MAE performance, runs significantly slower than the
other algorithms, indicating the importance of improving ef-
ficiency of the proposed algorithms. Further, we can see that
OMTCF-IV achieves significantly smaller values of both RMSE
and MAE than OCF, which demonstrates the strategy of
the proposed OMTCF-IV algorithm is significantly more ef-
fective than the state-of-the-art OCF algorithm. In addi-
tion, the OMTCF-IV algorithm is slightly worse than the
OMTCF-I algorithm in terms of RMSE and MAE values,
but the difference is very small. In addition, according
to the time evaluation results, OMTCF-IV runs slightly
slower than the OCF algorithm, but significantly faster than
OMTCF-I. From these promising results, we can conclude
that the proposed OMTCF-IV algorithm empirically achieves

fairly comparable RMSE/MAE performance as OMTCF-
I, and shares quite similar empirical time complexity as
OCF, which indicates the OMTCF-IV algorithm in general
achieves a good trade-off between efficacy and efficiency.

Finally, we examine the efficacy of the proposed OMTCF-
V algorithm for handling new sample extension issue. In
particular, by inspecting the performance of the OMTCF-
V algorithm, we observe that OMTCF-V achieves almost
identical values of RMSE and MAE as compared with the
OMTCF-I algorithm (the marginal differences should be
caused by different randomization for the user and item
vectors), but save much time cost than the OMTCF-I al-
gorithm, which demonstrates that the proposed OMTCF-V
algorithm is not only capable of handling the new sample
extension issue perfectly, but also runs more efficiently than
the previous OMTCF algorithms. Among all the OMTCF
algorithms, OMTCF-VI is the most efficient one and has
comparable RMSE/MAE performance with other algorithms,
making it more applicable for large-scale applications.

4.5 Evaluation on Large-Scale Datasets
We now evaluate the practical OMTCF-VI algorithm on

four large-scale datasets: (i) Dating Agency [6]: The Dat-
ing Agency dataset2, which contains 17,359,346 anonymous
ratings of 168,791 profiles made by 135,359 LibimSeTi users;
(ii) Jester Joke: this dataset from online Joke recom-
mendation system3 contains 1,761,439 ratings of 150 jokes
from 63,974 users; (iii)Movielens 1M: this Movie rating
dataset4 contains 1,000,209 ratings of 3,900 movies by 6,040
users; and (iv) Movielens 10M: this Movie rating dataset5

contains 10,000,054 ratings of 10,681 movies by 71,567 users.
Table 3 and Figure 2 summarize the empirical results of

our evaluation. We can observe that OMTCF-VI performs
significantly better than the OCF algorithm in terms of both
RMSE and MAE metrics. In terms of the time efficiency,
the online algorithms (OCF and OMTCF-VI) are generally
fairly efficient, which typically took several hundreds sec-

2http://www.occamslab.com/petricek/data/
3http://goldberg.berkeley.edu/jester-data/
4http://movielens.umn.edu
5http://movielens.umn.edu

http://www.occamslab.com/petricek/data/
http://goldberg.berkeley.edu/jester-data/
http://movielens.umn.edu
http://movielens.umn.edu


onds to run on a dataset with 10,000,000 ratings. Finally,
among all the online algorithms, the proposed OMTCF-VI
algorithm is on average just 2-3 times slower than the OCF
algorithm, and slightly slower than or sometimes compara-
ble to the DA-OCF algorithm.

Table 3: Evaluation on Large-scale datasets.
Dating Agency RMSE, k = 3 RMSE, k = 5

RMSE TIME(s) RMSE TIME(s)

OCF 1.2684 183.85 1.1700 189.86
DA-OCF 1.2269 342.15 1.2324 340.18
OMTCF-VI 1.0823 583.21 1.1094 563.54

Dating Agency MAE, k = 3 MAE, k = 5
MAE TIME(s) MAE TIME(s)

OCF 1.0494 189.69 0.9265 192.68
DA-OCF 0.9757 393.43 0.9767 405.70
OMTCF-VI 0.7986 520.34 0.8263 626.79

Jester Joke RMSE, k = 3 RMSE, k = 5
RMSE TIME(s) RMSE TIME(s)

OCF 1.1243 18.56 1.1287 18.50
DA-OCF 1.1305 34.77 1.1279 34.82
OMTCF-VI 1.1195 30.10 1.1261 29.33

Jester Joke MAE, k = 3 MAE, k = 5
MAE TIME(s) MAE TIME(s)

OCF 0.8866 18.64 0.8896 18.81
DA-OCF 0.8977 34.54 0.8962 35.16
OMTCF-VI 0.8530 30.68 0.8708 30.88

MovieLens 1M RMSE, k = 3 RMSE, k = 5
RMSE TIME(s) RMSE TIME(s)

OCF 1.1070 10.29 1.0441 10.57
DA-OCF 1.0636 19.76 1.0644 19.98
OMTCF-VI 0.9766 19.90 0.9738 18.07

MovieLens 1M MAE, k = 3 MAE, k = 5
MAE TIME(s) MAE TIME(s)

OCF 0.9773 10.70 0.8770 10.53
DA-OCF 0.8800 19.50 0.8833 19.54
OMTCF-VI 0.7737 22.19 0.7719 22.12

MovieLens 10M RMSE, k = 3 RMSE, k = 5
RMSE TIME(s) RMSE TIME(s)

OCF 1.0226 104.17 0.9700 105.35
DA-OCF 1.0262 194.67 1.0285 196.29
OMTCF-VI 0.9515 331.39 0.9565 333.38

MovieLens 10M MAE, k = 3 MAE, k = 5
MAE TIME(s) MAE TIME(s)

OCF 0.8494 107.24 0.7822 109.09
DA-OCF 0.8284 192.78 0.8328 195.55
OMTCF-VI 0.7370 380.13 0.7425 347.20

5. CONCLUSIONS
This paper proposed a novel framework of Online Multi-

Task Collaborative Filtering (OMTCF) for on-the-fly rec-
ommender systems, in which a family of novel OMTCF al-
gorithms were proposed. We conducted an extensive set of
experiments by comparing several variants of the proposed
algorithms with the existing online algorithms. Our promis-
ing empirical results showed that (i) online algorithms are
very efficient and highly scalable which can run on large
datasets with 10-million ratings in several minutes using a
regular machine; and (ii) the proposed online technique is
considerably more effective than the existing online algo-
rithms. Future work will address the theoretical analysis
of the proposed algorithms and explore new algorithms. For
example, our current algorithms treat users as tasks and up-
date the models of multiple users simultaneously. One can
also treat items as tasks and update the models of multiple
items simultaneously. Our technique may also be extended
to tackle some open challenges in CF, e.g., tracking tem-
poral dynamics [12], for which online algorithms potentially
could be a natural and perhaps better solution.
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