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ABSTRACT
Users frequently rely on online reviews for decision making.
In addition to allowing users to evaluate the quality of indi-
vidual products, reviews also support comparison shopping.
One key user activity is to compare two (or more) products
based on a specific aspect. However, making a comparison
across two different reviews, written by different authors, is
not always equitable due to the different standards and pref-
erences of individual authors. Therefore, we focus instead on
comparative sentences, whereby two products are compared
directly by a review author within a single sentence.

We study the problem of comparative relation mining.
Given a set of comparative sentences, each relating a pair
of entities, our objective is two-fold: to interpret the com-
parative direction in each sentence, and to determine the
relative merits of each entity. This requires mining compar-
ative relations at two levels of resolution: at the sentence
level, as well as at the entity level. Our key observation is
that there is significant synergy between the two levels. We
therefore propose a generative model for comparative text,
which jointly models comparative directions at the sentence
level, and ranking at the entity level. This model is tested
comprehensively on Amazon reviews dataset with good em-
pirical outperformance over the state-of-the-art baselines.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.2.8 [Database Applications]: Data Mining

Keywords
generative model; comparison mining; comparative sentences

1. INTRODUCTION
With the advent of social information processing, we in-

creasingly turn to the wisdom of the crowd in social media
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to aid our decision making. One decision aid is the ability to
easily compare various alternatives. Few existing commer-
cial systems assist users in making a comparison of entities
(products) based on other users’ experiences. Comparison
shopping sites such as Google Shopping or PriceGrabber
compare prices among different sellers for the same prod-
uct. Others, such as DPReview for digital cameras, com-
pare different cameras1 based on structured attributes of
the cameras, instead of users’ perception of various aspects.

Our objective is to mine user-generated content to assist
users in making well-informed comparisons of entities. Es-
sentially, we view it as a crowdsourcing way to determine the
relative quality of entities, from the users’ vantage point. In
the following discussion, we use online reviews as a repre-
sentative example of such a user-generated content. Mining
reviews for opinions on various products is an active area
of research, including the two distinct, yet complementary
areas of opinion mining and comparison mining.

Opinion mining [14] deals with sentences expressing user
sentiments about an entity. The following sentence from an
Amazon review expresses a positive sentiment on the im-
age quality of the camera Canon EOS 50D: “Based on my
initial experience with this Camera, I must say that 50D pro-
duces amazingly sharp pictures in low light conditions, with
kids, and a variety of outdoor scenarios like sports and na-
ture.”. By aggregating sentiments across such sentences, we
can arrive at a sense of the quality of a product. While opin-
ion mining has its use in revealing the strengths and weak-
nesses of an entity, there are inherent disadvantages in bas-
ing a comparison of two entities on opinion sentences about
individual entities. For one, the respective opinions may be
expressed by different users, potentially with different stan-
dards or purposes, rendering the comparison inequitable.

Therefore, we focus on comparison mining, whereby the
bases for comparison are comparative sentences about two
entities. For example, the following sentence expresses a
comparison between Canon EOS 50D vs. Canon EOS
40D in terms of image quality: “The 50D is sharper than
my 40D and the images are not soft.”. In this case, the
same user (providing a common benchmark) compares two
entities within the same context. Table 1 shows several more
examples for three pairs of digital cameras. This focus on
comparative sentences distinguishes our work from opinion
mining, and opens up the potential of other sentences not
currently covered by opinion mining. To maintain focus,
here we deal with sentences involving two entities, and would
explore sentences involving more entities in a future work.

1http://www.dpreview.com/products/compare/cameras

http://www.dpreview.com/products/compare/cameras


Entity Pair Example Comparative Sentences
Canon EOS 50D, s1 : I am surprised to see that the images on the 40D are better than the 50D.
Canon EOS 40D s2 : And from the research I did it appears the 50D’s images can be sharpened and still have more detail than the 40D.

s3 : The 50D is sharper than my 40D and the images are not soft.
s4 : While I’m not prepared to go into a long detailed comparison, I will say that I find the image quality and the
auto-focus accuracy of the 50d to be noticeably better than the 40d.

Canon EOS 40D,
Canon Rebel XTi

s5 : I ’m using the same lenses as I did with the XTi and when I did side by side comparisons with the same settings,
the images taken with the 40D have much better detail and sharper contrast, giving the photos better depth .
s6 : Although the XTi is a great camera , which I used to capture some really terrific shots , the quality of shots taken
with the 40D is vastly superior.

Canon EOS 50D,
Canon Rebel XTi

s7 : I traded up from the XTi to the 50D - better sensor, higher ISO speeds, doubling of burst speed from XTi’s 3 fps
to 6 fps.

Table 1: Example Comparative Sentences about Digital Cameras from Amazon.com

Problem. Given a corpus of comparative sentences, re-
lating pairs of entities in a particular domain (e.g., digital
cameras) on a specific aspect (e.g., image quality), we seek
to derive the comparative relations among the entities, i.e.,
between any two comparable entities, which one is better in
that aspect. The corpus of comparative sentences may be
obtained from user-generated content expressing user pref-
erences in social media, such as reviews (see Section 6.1.1).

Naturally, the comparative relations need to be modeled
at two levels. First, at the level of each comparative sen-
tence. For example, s1 in Table 1 may be analyzed to deter-
mine that it favors Canon EOS 40D. Second, at the level
of entity pairs. The sentence-level relations are aggregated
to form the comparative relation, e.g., whether Canon EOS
50D is better than Canon EOS 40D. Both levels are impor-
tant and useful. The latter provides an aggregate view. The
former provides supporting evidence at the sentence level.

Solving this problem is challenging. For one, decipher-
ing comparative relation from text is difficult, due to com-
plex structures affecting the comparison (e.g., which entity
is mentioned first, negation such as“not soft”), as well as lin-
guistic forms such synonymy (e.g., “better” and “sharper”)
and polysemy (e.g., “doubling” may connote positively for
image quality, but negatively for price). For another, in-
trepreting the relation between two entities is fraught with
uncertainties due to inconsistencies among different writers.

Approach. Traditionally, these challenges are addressed
in a fragmented manner by solving the two levels sepa-
rately as a pipeline, for instance by first determining the
sentence-level comparisons, and then aggregating them into
the entity-level comparisons (see Section 5). This fragmen-
tation is unnecessary, and could even be deterimental, when
errors from one level propagate unmitigated to the other.

We postulate that an integrated approach would work bet-
ter because of the synergy between sentence-level and entity-
level comparisons. Intuitively, if one entity is better than
another entity, we would expect that many comparative sen-
tences would compare the former favorably with respect to
the latter. Thus, knowing which entity is better helps to
determine the comparison in a sentence, and vice versa.

We illustrate this intuition with an example in Figure 1
involving 6 sentences (right) on 5 entities {A,B,C,D,E}.
Supposing the meaning of the first four sentences with the
word “better” is known, we can confidently rank some pairs,
by drawing a bold edge from the worse entity to the better
entity, e.g., from B to A, since “A is better than B”.

There are a couple of questions that we seek to answer.
One question is which of D or E is better, since there is
no clue from the bold edges alone. Another question is the

Figure 1: Separate treatment of the tasks does not allow

to recover the correct ranking A← B ← C ← D ← E.

meaning of the last two sentences, since we have not yet un-
derstood “superior”. Considering these two questions sep-
arately does not offer an answer. Considering them jointly
allows us to arrive at an answer to both. Since A← B ← C,
by transitivity, we can infer that A ← C (dotted means in-
ferred). In turn, A← C allows us to interpret the sentence
“A is superior to C”, i.e., that “superior” implies the first-
mentioned entity is better. This then allows us to parse the
last sentence to infer that D ← E (dotted). We thus can
recover the correct rank order A← B ← C ← D ← E.

Contributions. We make the following contributions.
First, we propose an integrated approach for compara-

tive relation mining. This is a departure from previous
pipelined approaches (see Section 5). It is not necessarily
feasible, nor desirable, simply to “stitch up” existing formu-
lations of sentence-level and entity-level comparisons. They
are disparate frameworks that are not easy to bring together
other than as a disjoint pipeline. We therefore build a novel
method from the ground up to solve the problem holistically.
Our integrated formulation is presented in Section 2.

Second, we design a generative model (see Section 3),
called CompareGem, which stands for COMPArative REla-
tion GEnerative Model, and propose an inference algorithm
based on Gibbs sampling (see Section 4). We turn to genera-
tive modeling because it offers several significant advantages.
For one, it would be probabilistic, suitable for modeling the
uncertainties in text. For another, it would be a joint model,
connecting sentence-level and entity-level comparisons seam-
lessly. It would also be generative, with greater flexibility in
accommodating supervised and unsupervised settings.

Third, through experiments on datasets from Amazon re-
views (see Section 6), we validate that CompareGem indeed
outperforms the pipelined baselines in both supervised and
unsupervised configurations, underlining the utility of inte-
grated modeling in comparative relation mining.



2. PROBLEM STATEMENT
As input, we consider a set of entities E (e.g., digital cam-

eras). For each pair of entities ei, ej ∈ E, Sij denotes the set
of comparative sentences involving ei and ej (in any order of
mention) for a specific aspect (e.g., image quality or price).
We can equivalently refer to Sij as Sji. For instance, in
Table 1, the pair of entities Canon EOS 50D and Canon
EOS 40D are associated with a set of four comparative sen-
tences {s1, s2, s3, s4} on image quality. Some pairs may not
have any comparative sentence, if they are never compared
by any user, i.e., Sij = ∅. The union of all comparative sen-
tences is denoted S =

⋃
ei,ej∈E Sij . We will describe how

S can be obtained from a corpus of reviews in Section 6.1.1.
Our objective is to learn the comparative relation between

any two comparable entities ei or ej , in terms of which one
is better for the aspect of interest. Using the example of
Canon EOS 50D and Canon EOS 40D in Table 1, we
see that s1 favors Canon EOS 40D, whereas s2 to s4 favor
Canon EOS 50D. The majority consensus favors the con-
clusion that Canon EOS 50D is better in image quality.

We first discuss the question of when two entities are com-
parable. In layman’s terms, we simply do not wish to com-
pare apples and oranges. We adopt a data-driven approach
as follows. If there is at least one comparative sentence
in S about two entities, then some user has deemed them
comparable. Comparability is also transitive. If ei has been
compared to e′, and e′ has been compared to ej , then we can
compare ei and ej using e′ as a conduit for the comparison.

Definition 1 (Comparability). Two entities ei and
ej are comparable if and only if one of the following condi-
tions holds. First, Sij 6= ∅. Second, Sij = ∅, but there exist
a list of indices i = k1, k2, . . . , kn−1, kn = j such that every
element of the chain (ek1 , ek2), (ek2 , ek3), . . . , (ekn−1 , ekn),
connecting ei and ej, meets the first condition.

For each comparable pair of entities, we want to determine
which one is better. To capture this notion of relative “qual-
ity” among entities, we associate each entity ei with a rank
score ai ∈ R, where ei is “better” than ej if ai > aj . This
rank score is latent, and needs to be learnt from the data.
As seen in Table 1, the sentences are not always unanimous
in terms of which entity is favored. Even when there is a
consensus, there may also be some variance (e.g., dissenting
opinions). It is important not just to capture the relation
at the entity level, but also the comparative direction at the
sentence level to provide a full picture of the comparison.

With the notations in place, we are now ready to state
our problem statement formally, as follows.

Problem 1 (Comparative Relation Mining). Given
a set of entities E and the associated corpus of comparative
sentences S, find:

• for every entity ei ∈ E, its rank score ai,

• for every sentence s ∈ S about a comparable pair of en-
tities ei and ej, the comparative direction (or compar-
ison outcome) in terms of whether ei or ej is favored
by s.

3. MODEL
We first discuss the modeling of comparative sentences,

before describing our generative model CompareGem.

3.1 Bag of Features
The convention in modeling text, either for classification

[26] or topic modeling [1], is to model a document as a bag
of words, due to the assumption of exchangeability of words
within a document. In other words, only the frequencies of
words, and not the sequence in which they occur, matter.

While we also deal with text, the atomic unit of interest
is a sentence. A bag-of-words model is not appropriate for
modeling a comparative sentence. Recognizing the favored
entity in a comparative sentence is a challenging problem
due to the complex sentence structure, whereby word order
now becomes important. Let us consider the following ex-
ample comparative sentence: “The 50D is sharper than my
40D”. In terms of the bag-of-words model, the order between
50D and 40D could be swapped interchangeably. However,
we know that swapping the order of those two words would
change the meaning of the comparison completely.

We observe that, rather than words alone, the clues to the
comparison come in the form of features, as follows:

• Syntactic features. We distinguish whether a word ap-
pears before the first-mentioned entity, in between the
two entities, or after the second-mentioned entity. For
example, the word“sharper”may translate to a feature
〈#1 sharper #2〉, where #1 and #2 refer to slots for
the first- and second-mentioned entities respectively.

• Negation features. It is also important to pay attention
to negation. We therefore stick the adverb ‘not’ to a
feature if it occurs close to the target word.

Rather than a bag-of-words model, we model each com-
parative sentence s as a bag of features, where each feature
w is drawn from a vocabulary of features W (such as men-
tioned above). The bag representation also maintains the
frequency of each feature within each sentence.

3.2 Generative Model
CompareGem is a generative model for comparative sen-

tences. Its plate notation is shown in Figure 2. First, for
each sentence s ∈ S, we generate the comparison outcome
(which entity is favored in s). Thereafter, based on the com-
parison outcome, we generate each feature w ∈ s.

Generating Comparison Outcome. Each sentence s
in the corpus S expresses a comparison outcome involving
two entities (say ei and ej). We associate each sentence s
with a binary random variable cs. The event cs = 0 is the
outcome when the first-mentioned entity is favored, whereas
cs = 1 is the outcome when the second-mentioned entity is
favored. For simplicity, we do not model a draw, which
would not influence the ranking between the two entities.

Since cs is a random variable, its outcome depends on an
underlying probability distribution. As mentioned in Sec-
tion 2, we associate each entity ei ∈ E with a rank score
ai that reflects the quality of ei. Intuitively, the higher ai
is than aj , the higher is the probability that a comparative
sentence would favor ai. One suitable way to model this
probability for binary outcomes is the sigmoid function, as
shown in Equation 1, supposing the first-mentioned entity
is ei and the second-mentioned entity is ej .

P(cs = 0|ai, aj) = P(ei is better than ej |ai, aj)

= συ(ai − aj) =
1

1 + e−υ(ai−aj)
(1)



If ai is significantly higher than aj , the probability would
tend towards 1, reflecting ei’s much higher quality. If ai = aj ,
the probability is 0.5, reflecting the uncertain outcome be-
tween two evenly matched entities. Conversely, if ai is sig-
nificantly lower than aj , the probability would tend towards
0. The parameter υ models the sensitivity to the difference
between the two rank scores. If υ is large, small differences
in scores would have a high impact on the probabilities.

There is also the question of the appropriate range of ai’s.
One option is to model it along a continuous spectrum, with
a Gaussian prior for the distribution of ai’s, which would
encode the prior that most entities are probably of “average”
rank scores, while some are extremely high or low. However,
in some scenarios, the requirement is simply to place each
entity along a discrete scale, e.g., 0 to 9, for an easy-to-
understand ranking of entities. Another option, which we
adopt in this paper, is to have a discretized model, with N
number of ranking steps in the scale of 0 to N − 1. Instead
of a Gaussian, the prior can thus be simulated by a binomial
distribution Binomial(N − 1, p0), where p0 is probability of
success in a Bernoulli trial (p0 = 0.5 for our model). As
N → ∞, we get ever closer to the continuous version. We
experiment with different settings of N and υ in Section 6.

Generating Features. Once the comparison outcome cs
for a sentence s is generated, we then generate the features
of the sentence. We assume that each outcome c ∈ {0, 1}
is associated with a parameter θc, which is a probability
distribution {P(w|θc)}w∈W over features in the vocabulary
W . For instance, θ0 is a distribution over features for the
case when the first-mentioned entity is favored, in which
case features involving words such as“better”, “sharper”may
have higher probabilities. Meanwhile, θ1 is the same for
when the second-mentioned entity is favored, in which case
those involving words such as “worse” may be more likely.

Generative Process. We now describe the full genera-
tive process of the model.

1. Both θ0 and θ1 are sampled from a Dirichlet distribu-
tion with α parameter:

θ0, θ1 ∼ Dirichlet(α)

2. For each entity ei ∈ E, we sample its rank score ai:

ai ∼ Binomial(N − 1, p0),

3. For every comparative sentence s ∈ S comparing two
entities ei (first-mentioned) and ej (second-mentioned):

(a) Sample the comparison outcome cs:

cs ∼ Bernoulli(συ(ai − aj)),

(b) Sample each feature w in sentence s:

w ∼ Categorical(θcs)

As shown in Figure 2, the only observed (shaded) vari-
ables are the features w’s within each sentence s. All the
other random variables are latent and need to be learnt
from the data. The likelihood function of an assignment
of scores A = {ai}ei∈E , comparison outcomes C = {cs}s∈S
and latent distributions over features θ = {θ0, θ1} is shown
in Equation 2, where the three main terms correspond to
the three main steps in the above generative process.

w |s| cs |S|

θ0 θ1 ai |E|

p0 Nα

Figure 2: CompareGem in Plate Notation.

L(C,A, θ) =
∏

c∈{0,1}

P(θc|α)×
∏
ei∈E

P(ai|N − 1, p0)×

∏
ei,ej∈E

∏
s∈Sij

[
P(cs|ai, aj)

∏
w∈s

P(w|θcs)
]

(2)

Once the model parameters have been learned, we would
obtain the solution to the Problem 1 defined in Section 2.
The rank scores ai’s would provide the ranking among en-
tities. On the other hand, the comparison outcome of a
sentence s can be obtained from the posterior distribution
of cs, taking into account the corresponding entities’ rank
scores ai and aj and the features in s, as in Equation 3.

P(cs|ai, aj , s) =
P(cs|ai, aj)

∏
w∈s P(w|θcs)∑

c′∈{0,1} P(c′|ai, aj)
∏
w∈s P(w|θc′)

(3)

As intuited in Section 1, this joint modeling of entity rank-
ing ({ai}ei∈E) and sentence-level comparison {cs}s∈S is ex-
pected to help both tasks. In particular, the effect may
be especially significant for the sentence-level comparison,
since the ranking may complement the very few features
that a sentence usually has. While ranking may be some-
what more robust to sentence-level errors due to aggregating
multiple sentences, more accurate sentence-level comparison
outcomes are still expected to improve ranking inference.

3.3 Discussions
Unsupervised vs. Supervised. In the above genera-

tive process, we have assumed a fully unsupervised setting.
We would learn the ranking of entities, and the direction
of ranking is interpreted by inspecting the feature distribu-
tions. This is because, in theory, the direction of larger score
indicating“better”could be swapped (i.e., smaller score cod-
ing for “better”) while still having the same likelihood.

Our model also accommodates a “supervised” setting. To
introduce “light” supervision, we label a subset of sentences
in terms of their comparison outcomes. Where in the unsu-
pervised setting, only the w’s are observed, in the supervised
setting, we would consider some cs variables (corresponding
to a subset of labeled sentences) to also be observed (having
known outcomes). This would have the effect of grouping
together sentences of the same label, which would then in-
fluence the respective feature distributions θ0 and θ1. We



will explore both unsupervised and supervised settings in
Section 6.

Another possible direction for supervision, which we do
not explore in this paper, is to consider the rank score ai of
some entities to be observed. Imposing some ranking order
is probably too heavy-handed, because it imposes some form
of “opinion” (as opposed to labeling each sentence’s compar-
ison outcome, which is more objective). Imposing ranking
runs counter to our objective of learning the crowdsourced
ranking based on user-generated content.

Relation to Other Learning Models. The modeling of
comparison outcomes in Equation 1 has some relation to the
family of latent ability models (see Section 5) used to model
competitions with known outcomes. In a way, a compara-
tive sentence can be interpreted as a “competition” between
two entities, where the outcome is one entity becomes the
“winner”. The key difference is that in our case the outcomes
are latent and unknown, and need to be learned from text.
This synergy between competition modeling and generative
modeling of text is novel, and we will include a comparison
to a baseline of pure competition model in Section 6.

If we were to remove the ranking component altogether,
for instance by setting N = 1 so that every entity has exactly
the same rank score, the model degenerates into a simpli-
fied generative model for text clustering or classification, in
a way similar to multinomial Naive Bayes model with un-
biased probability over favored entities cs, and with α prior
of the words parameters. We therefore include Naive Bayes
classification as a baseline for comparison in Section 6.

Our feature distributions are also somewhat related to the
notion of “topics” in topic modeling [1], where each topic
codes for some concept based on word co-occurences. Sev-
eral crucial differences set us apart from topic modeling.
In our case, there are always two “topics” corresponding to
the two comparison outcomes (and not an arbitrary num-
ber of topics), the distribution is over features (and not over
words), and the primary mechanism for learning is the com-
parison model in addition to feature co-occurrences (and not
word co-occurrences alone as in topic modeling).

4. INFERENCE BY GIBBS SAMPLING
Gibbs sampling [11] provides a mechanism to infer hidden

variables of a graphical model. It allows drawing samples
from a joint probability distribution of two or more random
variables, when direct sampling is intractable. It is a special
case of Monte Carlo algorithm that defines a Markov chain
in the space of possible variable assignments. We sample
one variable at a time from the conditional distribution of
that variable, conditioned on all the others. The stationary
distribution of the Markov chain is the joint distribution
over the variables and samples drawn in a such way are
guaranteed from the joint distribution.

For CompareGem, we use the collapsed version of Gibbs
sampling, by integrating out θ0, θ1. The derivation is pro-
vided below.

L(C,A) =

∫
θ

L(C,A, θ)dθ

=
∏
ei∈E

P(ai|N − 1, p0)
∏

ei,ej∈E

∏
s∈Sij

P(cs|ai, aj)×

∫
θ

∏
c∈{0,1}

P(θc|α)
∏

ei,ej∈E

∏
s∈Sij

∏
w∈s

P(w|θcs)dθ. (4)

We separately integrate the expression for θ0 and θ1. For
θc, we have:

P(S|α; c) =

∫
θc

P(θc|α)
∏

ei,ej∈E

∏
s∈Sij |cs=c

∏
w∈s

P(w|θcs)dθc

=
Γ(αK)

ΓK(α)

∫
θc

K∏
k=1

θα−1
c

∏
s∈S|cs=c

∏
w∈s

K∏
k=1

θwk
c dθc

=
Γ(αK)

ΓK(α)

∫
θc

K∏
k=1

θn(k,c)+α−1
c dθc

=
Γ(αK)

ΓK(α)

∏K
k=1 Γ(n(k, c) + α)

Γ(αK +
∑K
k=1 n(k, c))

, (5)

where n(k, c) denotes the frequency of the feature wk within
the sentences with comparison outcome cs = c, and K is the
size of the feature vocabulary (K = |W |).

The other components of the likelihood are shown below.

P(cs|ai, aj) = (1− συ(ai − aj))cs × σ1−cs
υ (ai − aj)

=
(

1− (1 + e−υ(ai−aj))−1
)cs (

1 + e−υ(ai−aj)
)−(1−cs)

=
e−csυ(ai−aj)

(1 + e−υ(ai−aj))cs
× 1

(1 + e−υ(ai−aj))1−cs

=
e−csυ(ai−aj)

1 + e−υ(ai−aj)
, (6)

P(ai|N − 1, p0) =
(N − 1)!

ai!(N − ai − 1)!
pai0 (1− p0)N−ai . (7)

The algorithm samples the comparison outcome cs for each
sentence s ∈ S, and the latent scores ai for each entity
ei ∈ E.

Sampling rank scores A. Fixing the preference assign-
ments for sentences C and assuming p0 = 0.5, we sample
latent score ai for every entity ei:

P(ai = a|A−i, ...) ∝ P(a|N − 1, p0 = 0.5)
∏
ej∈E

∏
s∈Sij

P(cs|ai, aj)

∝
1

a!(N − a− 1)!

∏
ej∈E

∏
s∈Sij

e−csυ(a−aj)

1 + e−υ(a−aj)
, (8)

where A−i denotes the set of latent scores for each entity
except ei’s.

Sampling comparison outcomes C. Fixing the rank-
ing scores A, we sample the comparison outcome cs for each
sentence s:

P(cs = c|C−s, ...) ∝ P(cs|ai, aj)×
∏
c∈0,1

P(S|α; c)

∝ e−csυ(ai−aj)
∏
c∈0,1

∏K
k=1 Γ(n(k, c) + α)

Γ(αK +
∑K
k=1 n(k, c))

∝ e−csυ(ai−aj)
∏
c∈0,1

[ ∏K
k=1 Γ(n̄(k, c) + α)

Γ(αK +
∑K
k=1 n̄(k, c))

×

∏K
k=1

∏fs(c,k)
l=1 (n̄(c, k) + α+ l − 1)∏fs(c)

l=1 (αK +
∑K
k=1 n̄(c, k) + l − 1)

]

∝ e−csυ(ai−aj)
∏
c∈0,1

∏K
k=1

∏fs(c,k)
l=1 (n̄(c, k) + α+ l − 1)∏fs(c,·)

l=1 (αK +
∑K
k=1 n̄(c, k) + l − 1)

,

(9)



where n̄(k, c) returns the count of the feature k within all
the sentences labeled with c excluding the sampled sentence
s; fs(c, k) denotes the frequency of feature k in the sentence

s for the assignment c; fs(c, ·) =
∑K
k=1 fs(c, k).

Although Gibbs sampling allows estimating the shape of
a probability distribution, one can modify this process to
maximize the model likelihood. We used simulated anneal-
ing, the technique used in optimization to find global op-
timum of a given (non-convex) function. We sample each
variable from the modified distribution:

P(vj = v|...)→ P(vj = v|...)1/tj∑
v P(vj = v|...)1/tj

, (10)

where the sequence T = (tj)
n
j=1 defines the cooling sched-

ule and a particular value tj is called the temperature. As
tj → 0 the distribution becomes sharper (setting tj = 1 for
every j recovers standard Gibbs sampling procedure) and
the modified distribution concentrates all the mass on the
maximal outcome.

Each iteration of the Gibbs sampler takes O(|E||S|) time.
It is easy to see that at each iteration the algorithm samples
comparison outcomes C for the sentence set S, which re-
quires O(|S|) operations. The rank score sampling involves
O(|Sij |) time for each entity ei, which can be bounded by
O(|S|). Indeed, if the number of sentences for every entity
is evenly distributed, the term |E| can be dropped, then the
iteration time is linear in the number of sentences O(|S|).

5. RELATED WORK
We first review the related work in comparison mining to

define our baselines, then compare to other related problems.
Among the earliest task being considered in comparison

mining is the identification of comparative sentences from
a corpus containing both comparative and non-comparative
sentences [17, 9]. Once the comparative sentences have been
identified, the next task is to extract the entities being com-
pared within each sentence [18, 19], and to resolve mentions
of the same entity across sentences [6]. These tasks are or-
thogonal, and yet complementary to our problem, and we
discuss how we deal with these issues in Section 6.1.1.

Our focus in this work is on mining comparative relations.
Given a pair of entities, and their relevant comparative sen-
tences, which entity is better? This requires an examination
of comparative relation at two levels: sentences and entity
pairs. As mentioned in Section 1, these two levels have tra-
ditionally been studied separately, as follows.

At the sentence level, the objective is to determine which
of the two entities being mentioned is considered better. Pre-
vious work either uses training labels in supervised classifi-
cation [33], or known indicators such as “pros” and “cons”
within reviews [10]. Since supervised classification is the
more recent and more general approach, here we consider
two classifiers as baselines: Support Vector Machine (SVM )
[5] and Naive Bayes (NB) [26], as implemented in Weka [12],
using the same features as described in Section 3.

At the entity pair level, the objective is to determine which
of the two entities is better overall [21, 36, 23]. This is
done by aggregating the sentence-level comparisons into an
overall ranking of entities. The main approach in previous
work is to build a graph of entities, with a directed edge
from one entity to another entity, weighted by the number
of sentences that claims the latter is better than the former

[21]. The ranking is then derived using a network centrality
measure such as PageRank (PR) [27]. We use this as the
first ranking baseline, implemented according to [21].

For the second ranking baseline, we consider latent ability
models, used to aggregate pairwise comparisons in education
[30], sports [7], and gaming [13]. The input is a set of pair-
wise comparisons or matches with known binary outcomes
(which entity wins), and the output is the rank score for
each entity. As baseline, we will use the Bradley-Terry-Luce
model (BTL) [3, 25], which shares a similar sigmoid-based
probability of winning as our model. This method has not
been employed for the task of mining comparisons from text,
but we include it as a pseudo-baseline for completeness.

Different from comparison mining, opinion mining focuses
on opinions or sentiments on individual products [14]. It is
frequently decomposed into two sub-tasks, namely: identi-
fying the aspect or feature being described [15], as well as
determining the sentiment expressed [24]. These are gen-
erally modeled as classification problems, but there are also
unsupervised variants based on topic modeling [28, 4]. Other
than sentiments, there are also works focusing on modeling
the correlation betweeen topics and user ratings [32].

Comparative summarization addresses the problem of sum-
marizing two (or more) separate corpora in terms of a com-
parison. This is a different setting from ours, where each
pair of entities are compared within a sentence. One formu-
lation of comparative summarization is sentence alignment,
which selects pairs of sentences (one from each corpus), so
that each pair of sentences describes the same “aspect” [31].
In some cases, it is desired that sentences within a pair are
contrastive [20, 29]. Another formulation of comparative
summarization is comparative topic modeling, where the ob-
jective is to identify different “viewpoints” of a topic [35].

Competitor mining deals with identifying the set of com-
petitors of a given entity, commonly formulated as finding
relationships [16] or similarities among entities [34, 22].

6. EXPERIMENTS
Our objective is to study the effectiveness of CompareGem

on two tasks: comparative direction classification, and en-
tity ranking. Our focus here is on effectiveness, rather than
efficiency. All experiments complete within three minutes
on a PC with Intel Core i5 CPU 3.2 GHz and 4GB RAM.

6.1 Experimental Setup

6.1.1 Dataset
The corpus of comparative sentences S can be obtained

from text corpora that contain user evaluation of pairs of
products, such as online reviews. We crawled reviews from
the Digital Cameras category of Amazon. Not all sentences
within the reviews are comparative. It is not our objec-
tive to develop a new method to process reviews into com-
parative sentences. Below, we describe a methodology that
we have used for extracting comparative sentences from re-
views, which is followed by manual inspection to ensure a
high quality of the dataset. There are three key information
that we need to determine: whether a sentence is compara-
tive, the entities being compared, and the aspect of interest.

Entity Recognition. Finding the mentions of objects of
a particular type (e.g. cameras, laptops) in text is called
named entity recognition (NER). There is no ready-made
NER system for the domain we are considering (digital cam-



Aspect # sentences #1 is #2 is
favored (%) favored (%)

Functionality 457 38.5 61.5
Form Factor 78 61.3 38.7
Image Quality 129 58.1 41.9
Price 165 52.1 47.9

Table 2: Dataset Size involving 180 Digital Cameras

eras). Therefore, we employ a dictionary matching approach
for entity recognition that we find works well in tying the
mentions of an object together. We construct the dictionary
of entities from product titles, which we employ to perform
token-based partial matching search. We then train a deci-
sion tree classifier to filter out false positives.

Comparative Sentence & Aspect Identification. Our scope
covers sentences that contain two product mentions. We are
only concerned with sentences that express a preference for
the first mentioned product or for the second one. In addi-
tion, we pick the four most frequent aspects mentioned in the
reviews, namely: functionality, form factor, image quality,
and price. To identify whether a sentence is a comparative,
and the aspect of interest, we employ a supervised classi-
fication approach. To train the respective SVM classifiers
for comparative sentence identification and aspect identifi-
cation, we take 1000 randomly selected sentences, and man-
ually annotate them. We apply this classifier to the rest of
sentences with two product mentions. To reduce false posi-
tives, the classifier labels are followed by manual inspection.

Aspect identification could be done as preprocessing step
with the use of LDA [1] or any other suitable methods. In-
stead, we manually annotated the sentences to guarantee a
high quality of annotations and coherence with the specifi-
cation benchmark (to be introduced later).

Table 2 shows the dataset sizes. In total, the number of
products being compared within extracted sentences is 180.
The four aspects respectively have 457, 78, 129, and 165
comparative sentences. Each aspect is a distinct instance
of the problem. The distributions between the two classes
(whether the first-mentioned (#1) or second-mentioned (#2)
entity is favored) are relatively well-balanced. These data
sizes are significant, in light of the need to carefully anno-
tate the data, not just with labels, but also with ranking
benchmarks (see Section 6.1.3). This is much larger than
that used in the previous work on entity ranking [21].

6.1.2 Evaluation Tasks and Metrics
We evaluate the performance of CompareGem on two tasks.

Every evaluation is conducted in both supervised and unsu-
pervised configurations. We begin with the supervised one.

Comparative Direction Classification. In the first
task, all the competing algorithms are given a set of labeled
(training) and a set of unlabeled (test) data. Each algorithm
is required to identify the favored entity for each compara-
tive sentence in the test data. One can look at this essen-
tially as a binary classification problem. To measure the
performance of an algorithm, we calculate its classification
accuracy, i.e., the fraction of correctly classified sentences
(over the total number of sentences in the test set).

Entity Ranking. In the second task, we want to assess
the quality of ranking scores produced by the competing
algorithms. It is not always feasible to have a ground truth
in the form of a ranking list, because some pairs may not

be comparable, or there may not be sufficient evidence for
some pairs. Therefore, we assume that the ground truth
(see Section 6.1.3) has the form of a set of entity pairs X,
where the favored (higher-ranked) entity for each pair in X
is known. We thus transform the ranking scores output by
each algorithm into a set of ordered pairs Y , which we then
compare in terms of its agreement with the ground truth X.

As evaluation metric, we express the ranking accuracy as
the agreement between the ground truth X and the output
Y in terms of the fraction of concordant pairs over all pairs in
the intersection, expressed as a percentage. Given two sets
of ordered entity pairs X and Y , where the first element in
a pair is favored over the second, two pairs (a, b) ∈ X and
(a′, b′) ∈ Y are concordant if a = a′ and b = b′.

Ranking accuracy is related to Kendall’s tau [8], which
can be defined as the number of exchanges needed in a bub-
ble sort to convert one rank to the other. Kendall’s tau is
defined for the totally ordered sets, and, in this case, its
normalized value equals the inverse (1−) ranking accuracy.
Unlike Kendall’s tau, the proposed metric accepts partially
ordered sets, and, thus more suitable here, as comparison
makes sense only for comparable entities (see Definition 1).

Unsupervised Configuration. In the unsupervised con-
figuration, no labeled data is used as input for the model.
Therefore, the first task resembles clustering into two clus-
ters, rather than classification. We can still use the labels to
evaluate this clustering, by computing purity instead. Each
cluster is “classified” to the majority comparison direction
label among sentences in that cluster. We then determine
the “classification accuracy” as before. Since our model also
outputs the ranking scores, we simply determine the ranking
accuracy with respect to benchmarks as before. For unsu-
pervised, whether higher or lower ranking score represents
“better” is not known in advance. We check the ranking
accuracy in both directions, and take the maximum value.

6.1.3 Entity Ranking Benchmarks
Because there is no single definitive ranking ground truth,

we introduce two ranking benchmarks that together pro-
vide a more complete picture of our performance in ranking.
The first is specification benchmark, which is based on very
objective hard numerical attributes. The second is crowd-
sourced benchmark, which is based on the subjective opinions
of many users (expressed in the comparative sentences).

Specification Benchmark. The intuition is that users’
preferences can be traced to some specific attribute of the
entities. We collect product specification information from
dpreview.com2 and wikipedia.com. For form factor, we say
that entity ei is better than ej if both the volume and weight
of ei are smaller than the volume and weight of ej . For func-
tionality, we consider the entity with the later release date
to be better, assuming that the newer model is more func-
tional than the older one (comparison is done only within
product lines, e.g., EOS 50D and EOS 60D). To ensure
that the functionality of products has indeed changed, we
only consider differences of more than one year. For price,
we consider the entity with the lower price to be better. To
be conservative against price fluctuations, we only consider
differences of more than 1000USD. The specification bench-
marks contain 291 entity pairs for functionality, 5836 pairs
for form factor, and 1479 pairs for price.

2Digital Photography Review has a large database with de-
tailed information about individual digital cameras.
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Figure 3: Parameter analysis for CompareGem. Horizontal axes represent N . Every plot represents a υ.

It is not our intention to claim that specification bench-
mark alone is sufficient validation, which is why we consider
a second unrelated benchmark below. Rather, we use spec-
ification benchmark to show that CompareGem is able to
recall objective information from texts written by users. In
addition, this specification benchmark is independent of the
data. Doing well on this benchmark provides some confi-
dence that the method may do well for other aspects without
suitable specification benchmark, e.g., image quality.

Crowdsourced Benchmark. This benchmark is cre-
ated from the complete set of labels used for comparative
direction classification (the first task). For each pair of enti-
ties, we consider each comparative sentence to vote based on
its label. The entity with the majority votes is considered
better. Therefore, this benchmark reflects how users in gen-
eral rank these entities, which may not necessarily always be
consistent with the specifications. The crowdsourced bench-
marks contain 175 entity pairs for functionality, 53 pairs for
form factor, 102 pairs for price, and 90 pairs for image qual-
ity. It is smaller than specification benchmark since it is
defined only for pairs that have been compared in the data.

6.2 Parameter Analysis
CompareGem has two parameters: 1) the number of rank-

ing scores N and 2) the ranking scale υ (see Section 3).
To select the appropriate parameter settings, we conduct a
grid search across various settings of N ∈ {10, 100, 1000}
and υ ∈ {0.03, 0.1, 0.3, 1.0, 3.0}. We run parameter selection
with 50:50 random split into training and test data. We ob-
serve similar results for various aspects, and will show the
results for functionality as a representative.

Figure 3(a) shows classification accuracies. As we increase
N , the general trend is that of increasing classification accu-
racy. With more ranking scores, the ranking is more refined,
which may help the accuracy of classification. The excep-
tion is only when υ is too high, e.g., υ = 3, as the sigmoid
function approaches 1 or 0 very rapidly even with small dif-
ferences between rank scores. This washes out the effects of
latent rank scores, because the prior binomial distribution
starts to play a big role and tends to concentrate ranking
scores close to its mode. Meanwhile, if υ is too low, the
performance is also worse, because the model becomes in-
sensitive to small changes in rank scores.

Similar trends, with similar observations, also apply to the
ranking accuracies with respect to the specification bench-
mark shown in Figure 3(b). To get parameter settings that
balance out both classification accuracy and ranking accu-
racy, we combine the two measures with harmonic mean

formula (H(x, y) = 2xy
x+y

), shown in Figure 3(c). Evidently,
we get the best performance for the setting of N = 1000 and
υ = 1.0, which we will use in the following experiments.

6.3 Comparison to Baselines

6.3.1 Supervised Configuration
The aim is to understand how well CompareGem tackles

the classification and ranking tasks in the presence of train-
ing data. We repeat every experiment 10 times on different
data shuffles (cross-validation), and average all the accuracy
values. The training and test data split is 50:50.

Baselines. As discussed in Section 5, for the classification
task, we compare to two popular classification models: Naive
Bayes (NB) and Support Vector Machine (SVM ). For the
ranking task, our baselines are PageRank (PR) and BTL.
Because PR and BTL assume the comparison outcomes of
sentences are known, we use the classification output from
the first task, together with the training sentences as in-
puts to PR and BTL respectively. For this reason, neither
PageRank and BTL is a complete baseline, because they
cannot operate independently from a source of comparative
directions. Therefore, for ranking, we create four composite
baselines from pipelining the two separate steps discussed in
this section, namely: SVM+PR, NB+PR, SVM+BTL, and
NB+BTL. In contrast, since CompareGem is a generative
model, we simply learn the two tasks simultaneously.

For all experiments, we conduct randomization test [2] at
5% statistical significance level for the differences between
methods. The best result among methods is in bold. Lower
results with statistically insignificant differences are shown
in italics. Regular font indicates significantly worse results.

Aspect CompareGem SVM NB
Functionality 89.0 76.6 74.4
Form Factor 71.5 57.8 62.8
Image Quality 73.8 65.4 64.5
Price 68.7 52.8 55.2

Table 3: Supervised: Classification Accuracy

Classification Accuracy. For the classification task,
we report the accuracies of all three methods in Table 3.
The clear observation is that CompareGem performs signif-
icantly better than both SVM and NB for all aspects. This
validates our hypothesis that jointly modeling ranking and
classification helps the model do better at classifying sen-
tences. While NB and SVM classify only one test example



Aspect Compare SVM+BTL NB+BTL SVM+PR NB+PR
Gem

Functionality 89.7 88.6 88.8 84.1 84.1
Form Factor 82.7 79.8 82.7 78.2 80.2
Image Quality 80.7 78.7 80.6 75.9 76.9
Price 79.0 75.8 76.7 70.6 72.3

Table 4: Supervised: Ranking (Crowdsourced)

Aspect Compare SVM+BTL NB+BTL SVM+PR NB+PR
Gem

Functionality 84.0 87.0 86.0 75.3 76.0
Form Factor 68.3 68.1 67.8 66.1 65.7
Price 82.7 77.8 77.1 70.6 70.8

Table 5: Supervised: Ranking (Specification)

at a time, CompareGem takes advantage of jointly modeling
test examples, and finds label assignments maximizing the
a posteriori probability of the entire test collection.

Ranking Accuracy. Table 4 shows the ranking accu-
racies for the crowdsourced benchmark. CompareGem has
the highest ranking accuracies overall. It is better than the
+PR models, which have appeared in previous literature,
and the difference is statistically significant. We have also
introduced +BTL models as pseudo-baselines, though they
have not appeared in previous literature. CompareGem still
outperforms SVM+BTL significantly in most aspects. With
respect to NB+BTL, CompareGem is a shade better, but
not significantly so. We hypothesize that ranking is an “eas-
ier” task than classification. Though SVM and NB perform
significantly worse in classification at the sentence level (Ta-
ble 3), at the level of entity pairs, there could be sufficient
number of correctly classified sentences to get the ranking.

Table 5 shows the ranking accuracies for the specification
benchmark. Against this benchmark, CompareGem still per-
forms well for form factor and price. For functionality, it is
slightly worse than SVM+BTL, but not statistically signif-
icantly so. Between SVM+BTL and NB+BTL, we now see
that the former performs slightly better, which is an oppo-
site trend to the crowdsourced benchmark. This is because
the two benchmarks are made from two independent sources
of information. There are cases when they disagree. For
example, based on the specification benchmark, the newer
model of Canon Powershot G10 is better than the older
model Canon Powershot G2. However, based on the
crowdsourced benchmark, customers actually favor the older
model Canon Powershot G2. Overall, the two bench-
marks are quite consistent, as shown by CompareGem’s high
ranking accuracies for both benchmarks.

6.3.2 Unsupervised Configuration
Baselines. In the unsupervised configuration, we do not

use any labeled data to classify sentences and induce prod-
uct ranking. As baseline, we will use K-means clustering
(K = 2) to perform the first task. For ranking, we deter-
mine the comparative direction of each cluster based on the
majority label, which we put into PR and BTL, creating two
composite baselines: K-means+BTL and K-means+PR.

Purity. Table 6 shows purity or “classification accuracy”.
Again, it shows that CompareGem is significantly better
than the baseline K-means. To give further insight, we also
report results for majority baseline (Majority) whereby all
test examples go into the most frequent class. Interestingly,
K-means does not always outperform Majority.

Aspect CompareGem K-means Majority
Functionality 70.1 58.9 61.5
Form Factor 64.9 59.1 61.3
Image Quality 64.3 57.8 58.1
Price 55.9 52.1 52.1

Table 6: Unsupervised: Purity

Aspect CompareGem K-means+BTL K-means+PR
Functionality 65.6 64.0 57.0
Form Factor 62.9 59.8 59.4
Image Quality 59.4 53.3 54.0
Price 55.0 54.6 56.2

Table 7: Unsupervised: Ranking (Crowdsourced)

Ranking Accuracy. Table 7 and Table 8 show the rank-
ing accuracies for the crowdsourced and specification bench-
marks respectively. In both tables, CompareGem tends to
have the highest accuracies, except for price in Table 7
(where CompareGem is the second, but not significantly
worse). CompareGem’s outperformance is statistically sig-
nificant in the specification benchmark for all aspects, and
in the crowdsourced benchmark for image quality aspect.

Comparing the results of supervised vs. unsupervised con-
figurations, we see that the unsupervised results are indeed
lower, as expected. Interestingly, the absolute classification
and ranking accuracy values are still relatively good (∼60%),
which is still a reasonable performance in the case where
training labels are unavailable or very difficult to obtain.

6.4 Feature Analysis
To gain further insight into the workings of CompareGem,

here we investigate the features that play an important role
in the supervised model. Since there are two binary classes
(c = 0 indicating the first-mentioned entity #1 in a sentence
is favored, as well as c = 1 indicating the second-mentioned
entity #2 is favored), we focus on features that are most
discriminative between the two classes. A discriminative
feature w is one whose conditional probability P(c|w) ≥ 0.8.

In Table 9, we show the top five features most frequent
among sentences assigned to each class, for various aspects.
For each feature, #1 and #2 refer to the relative positions
of the first- and second-mentioned entities, with respect to
a word. For functionality, the top feature for c = 0, is “#1
from #2”, while that for c = 1 is “from #1 #2”. These in-
volve the same word “from”, with different relative positions
with respect to the entities. This underlines the importance
of the bag-of-features model (see Section 3), as words alone
are probably uninformative as features (“from” appears in
both classes). A similar case exists for image quality, with
“#1 better #2” (for c = 0) vs. “#1 #2 better” (for c = 1).

Other than their relative positions, the actual words that
help make up a feature also matter. Interestingly, for form
factor, we see contrasting features such as “#1 lighter #2”
(for c = 0) vs. “#1 heavier #2” (for c = 1). For price, we
see “#1 less #2” (for c = 0) vs. “#1 more #2” (for c = 1).

Aspect CompareGem K-means+BTL K-means+PR
Functionality 76.7 67.8 58.4
Form Factor 62.4 57.3 51.9
Price 64.3 57.3 54.4

Table 8: Unsupervised: Ranking (Specification)



Functionality Form Factor Image Quality Price
#1 is favored #2 is favored #1 is favored #2 is favored #1 is favored #2 is favored #1 is favored #2 is favored
(c = 0) (c = 1) (c = 0) (c = 1) (c = 0) (c = 1) (c = 0) (c = 1)

#1 from #2 from #1 #2 #1 lighter #2 #1 heavier #2 #1 than #2 #1 #2 better #1 less #2 #1 more #2
#1 than #2 #1 #2 upgrad #1 smaller #2 #1 #2 hand #1 better #2 #1 us #2 purchas #1 #2 #1 cost #2
#1 over #2 had #1 #2 size #1 #2 #1 larger #2 qualiti #1 #2 #1 #2 detail #1 better #2 about #1 #2
#1 better #2 #1 decid #2 #1 had #2 #1 #2 feel pictur #1 #2 #1 #2 which #1 instead #2 would #1 #2
#1 ha #2 #1 year #2 #1 over #2 #1 #2 lighter imag #1 #2 #1 out #2 x #1 #2 camera #1 #2

Table 9: Top 5 Most Frequent Discriminative Features

7. CONCLUSION
We study the problem of comparative relation mining, and

propose CompareGem as a generative model for comparative
sentences. The key insight is jointly modeling two levels of
comparative relations: at the level of individual sentences as
well as at the level of entity pairs. This holistic treatment
of comparative relation mining is novel, and is shown to
empirically outperform the previous pipelined approaches.

CompareGem is validated comprehensively on Amazon re-
views dataset. Comparison to baselines in both supervised
and unsupervised configurations show that CompareGem is
especially effective for the comparative direction task at the
sentence level, outperforming all the baselines significantly
and decisively. For the entity ranking task, CompareGem
still produces the highest ranking accuracies, but in some
cases the differences to the baselines are relatively close.

This result is revelatory, suggesting that while joint mod-
eling of entity ranking and sentence classification is useful
for both tasks, the extents of the benefits are asymmetric.
Entity ranking helps sentence classification more than the
reverse. Nevertheless, these experiments still convincingly
show the utility of CompareGem in terms of the two tasks,
as well as the flexibility of CompareGem in dealing with both
supervised and unsupervised configurations.
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