
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

11-2014 

Dynamic Clustering of Contextual Multi-Armed Bandits Dynamic Clustering of Contextual Multi-Armed Bandits 

Trong T. NGUYEN 
Singapore Management University 

Hady W. LAUW 
Singapore Management University, hadywlauw@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific 

Computing Commons 

Citation Citation 
NGUYEN, Trong T. and LAUW, Hady W.. Dynamic Clustering of Contextual Multi-Armed Bandits. (2014). 
CIKM'14: Proceedings of the 2014 ACM International Conference on Information and Knowledge 
Management: November 3-7, 2014, Shanghai, China. 1959-1962. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2328 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2328&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Dynamic Clustering of Contextual Multi-Armed Bandits

Trong T. Nguyen
School of Information Systems

Singapore Management University
ttnguyen.2014@smu.edu.sg

Hady W. Lauw
School of Information Systems

Singapore Management University
hadywlauw@smu.edu.sg

ABSTRACT
With the prevalence of the Web and social media, users
increasingly express their preferences online. In learning
these preferences, recommender systems need to balance the
trade-off between exploitation, by providing users with more
of the“same”, and exploration, by providing users with some-
thing “new” so as to expand the systems’ knowledge. Multi-
armed bandit (MAB) is a framework to balance this trade-
off. Most of the previous work in MAB either models a single
bandit for the whole population, or one bandit for each user.
We propose an algorithm to divide the population of users
into multiple clusters, and to customize the bandits to each
cluster. This clustering is dynamic, i.e., users can switch
from one cluster to another, as their preferences change. We
evaluate the proposed algorithm on two real-life datasets.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.2.8 [Database Applications]: Data Mining

Keywords
multi-armed bandit; clustering; exploitation and exploration

1. INTRODUCTION
With the rapid growth of the Web and the social media,

users have to navigate a huge number of options in their
daily lives. To help users in making these choices, content
providers rely on recommender systems [1, 10] that learn
user preferences based on their historical activities. In a
rapidly changing environment [2], where new items appear
all the time, relying on historical data alone (exploitation)
may not work as well. Instead, what is needed is another
paradigm that can continually explore the space of user pref-
erences (exploration) as new items appear, or as users change
their preferences. The exploitation vs. exploration trade-off
refers to balancing the short term interest of making the
next recommendation as accurate as possible, with the long
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term interest in learning about the users as much as possible
(perhaps at the cost of lower accuracy in the short term).

One such paradigm is the multi-armed bandit [14]. A
bandit (a recommender system) has multiple arms (items
to recommend). Pulling an arm (recommending an item)
generates some amount of reward (such as user liking the
recommendation). This reward is not known in advance.
Because the bandit has multiple chances, the main objective
is to maximize the accumulated rewards (or to minimize the
regret of not pulling the best arms) over time. For this,
the bandit should not just pull the arms that produce the
highest rewards in the past, but also explore other arms that
could potentially generate even higher rewards in the future.

Multi-armed bandits have been shown to work well in var-
ious Web recommendation scenarios, such as advertisements
[2], news articles [11], and comments [12]. In many cases, it
is advantageous to contextualize the bandit, such that the
reward of an arm also depends on the “context” of a recom-
mendation, e.g., the content of a Web page (see Section 4).

In this paper, we study the research question of whether
there is an appropriate number of bandits to serve a pop-
ulation of users. Most current approaches fall into two ex-
tremes. One option is to build a single bandit for all users,
which has the advantage of scale, in learning from the ob-
served rewards of many users. However, a global recommen-
dation may not be appropriate for all users. Another option
is to personalize it completely, by building one bandit for ev-
ery user, which is fully customized to every individual, but
may suffer from the sparsity of learning instances.

To address the above disadvantages of the two extremes,
we advocate a dynamic clustering approach. In this ap-
proach, the population of users are partitioned into K clus-
ters. The bandits of individual users in the same cluster can
“collaborate” in estimating the expected reward of an arm
for any one user in the same cluster. That way, we can keep
a bandit customized to an individual user, and yet allow
users to benefit from the collective set of learning instances
in their cluster. Moreover, as a user changes preferences, or
as we learn the user’s preference better, the user may switch
from one cluster to another more “suitable” cluster.

Contributions. First, we propose a clustering-based
contextual bandit algorithm called DynUCB in Section 2,
building on the contextual bandit LinUCB [11]. Its novelty
arises from dynamic clustering, which we relate to existing
work in Section 4. Second, in Section 3, we verify the effi-
cacy of this approach through experiments on two real-life
datasets, studying the appropriate number of clusters for
each dataset, and comparing against the baselines.



2. DYNAMIC CLUSTERING OF BANDITS
We first review the framework of contextual bandit, before

introducing our proposed algorithm, which we call DynUCB.
Contextual Bandit. A contextual bandit algorithm

proceeds in discrete iterations. At any iteration t, the ban-
dit observes a particular user ut. There are also a set of
available arms At that the bandit may choose to pull for
this user. For each arm a ∈ At, the bandit observes its con-
text, in the form of a d-dimensional feature vector xt,a ∈ Rd.
Based on the reward experience in previous iterations, the
bandit may choose to pull an arm at. Upon pulling at, the
bandit observes a reward rt,at . There is no reward observa-
tion for a 6= at. The bandit therefore needs to learn from the
observations of 〈xt,at , at, rt,at〉 for ongoing iterations t’s to
improve its strategy for choosing arms in future iterations.

After T iterations, the bandit would observe a cumulative
reward of

∑T
t=1 rt,at . The objective is to design an intelli-

gent way to choose arms so as to maximize this cumulative
reward over time. Equivalently, we can express the objective
in terms of minimizing total regret, where regret is defined
as the difference between the observed reward rt,at and the
reward of the “optimal” arm in each iteration.

A popular framework for contextual bandit is LinUCB
[11], which estimates the expected reward of each arm a
as a linear regression on the context vector wTxt,a, where
w ∈ Rd is the regression coefficient to be learned. However,
maximizing the expected reward alone may result in a long
term regret from not discovering a better arm through ex-
ploration. Therefore, it also considers the confidence bound

α
√

xT
t,aM

−1xt,a. Here, α is a parameter for the importance

of exploration. It is expressed as α = 1+
√

ln(2/δ)/2, where
1−δ is the confidence interval. We set δ = 0.05 for 0.95 con-
fidence interval. M−1 ∈ Rd×d is the update weights, which
can be interpreted as the covariance of the coefficient w. The
arm at selected is the one maximizing the upper confidence

bound: at = arg maxa∈At

(
wTxt,a + α

√
xT
t,aM

−1xt,a

)
.

Clustering of Contextual Bandits. To build a recom-
mender system that serves N users, one option is to build
a SINgle instance of LinUCB for all users, which we call
LinUCB-SIN. Another option is to train a bandit for every
INDividual user, which we call LinUCB-IND. The former
benefits more from the wealth of training instances, while
the latter benefits from a more customized bandit. However,
we hypothesize that a large population of users are neither
as monolithic as in LinUCB-SIN, nor as heavily splintered as
in LinUCB-IND. Rather, there may be several communities
or clusters in the population, where users within the same
cluster may share preferences. By grouping together like-
minded users, we can benefit from having a larger number
of training instances, while still customizing the bandits.

We therefore propose an algorithm, called DynUCB, as
described in Algorithm 1. Since the appropriate number of
clusters may vary in different domains and populations, the
algorithm takes as its input the desired number of clusters
K. Initially, we start out with K random clusters, denoted
Ck for k = 1, . . . ,K, and refine the clustering over iterations.

In a way, DynUCB still maintains N bandits for N users.
For each user u, its coefficient wu is learned from its own
bandit parameters bu and Mu (initialized to 0 and identity
matrix I respectively). However, unlike LinUCB-IND’s N
independent bandits, in DynUCB the bandits in the same

Algorithm 1: DynUCB

Input: The number of clusters K.
Output: At iteration t, recommended arm at for ut.

Set bu = 0 ∈ Rd, Mu = I ∈ Rd×d for all users u = 1, . . . , N .
Randomly assign users to K clusters {Ck}Kk=1.
Compute the coefficient w̄k for each cluster Ck:

M̄k = I +
∑

u′∈Ck
(Mu′ − I)

b̄k =
∑

u′∈Ck
bu′

w̄k = M̄−1
k b̄k

for iteration t = 1, . . . , T do
Select a user ut, and its current cluster Ck 3 ut.
Observe the contexts of arms {xt,a},∀a ∈ At.
Find the arm at with the highest UCB, i.e.,
at =

arg maxa∈At

(
w̄T

k xt,a + α
√

xt,a
TM̄−1

k xt,a log(t+ 1)

)
Observe the reward rt,at from recommending at.
Let x̃t = xt,at .
Update the user ut’s parameters:

Mut = Mut + x̃tx̃T
t

but = but + rt,at x̃t

wut = M−1
ut but

Re-assign the user ut to the closest cluster Ck′ :
k′ = arg mink′=1,...,K ||wut − w̄k′ ||
If k′ 6= k, move ut from Ck to C′k.
Re-compute coefficients w̄k and w̄k′ as above.

cluster Ck “collaborate” with one another. For instance, at
iteration t, when generating a recommendation for ut ∈ Ck,
the estimation of expected reward for each arm a ∈ At, i.e.,(
w̄T

k xt,a+α
√

xt,a
TM̄−1

k xt,a log(t+ 1)
)

, is based on cluster-

level coefficient w̄k, learned from cluster-level parameters b̄k

and M̄k derived from the bandit parameters bu and Mu of
each user u ∈ Ck. The confidence bound is a simplified
version of the theoretical confidence bound shown in [8].

Consequently, each user benefits from the reward experi-
ences of other users in the same cluster. The observed re-
ward rt,at from recommending the arm at to ut is then used
to update ut’s own coefficient wut , which reflects ut’s reward
experience over iterations. Due to the clustering hypothe-
sis, ut benefits more from belonging to the “right” cluster of
like-minded users that complement one another. Therefore,
at each iteration, we re-assign ut to the cluster Ck′ whose
coefficient w̄k′ is closest to wut , a practice reminiscent of the
K-means clustering algorithm but conducted within the con-
textual bandit framework. This dynamic re-assignment of
clusters is a key feature of DynUCB, allowing it to be adap-
tive to changing contexts and user preferences over time.

3. EXPERIMENTS
The objective of experiments is to investigate the effec-

tiveness of our proposed method DynUCB. First, we de-
scribe the two real-life datasets for experiments. Then, we
investigate the effects of different number of clusters, before
presenting a comparison against state-of-the-art baselines.

3.1 Experimental Setup
Datasets. We use two publicly-available1 datasets that

have previously been used for contextual bandits evaluation
[6]. The first dataset is on the social bookmarking site Deli-

1http://grouplens.org/datasets/hetrec-2011

http://grouplens.org/datasets/hetrec-2011


Delicious LastFM
No. of unique users 1867 1892
No. of unique tags 11619 9643
No. of unique items 69226 17632
No. of unique <user, item> pairs 104220 71064

Table 1: Dataset Sizes

cious, where a set of users assign tags to a set of bookmarked
URLs. The second dataset is on the online radio LastFM,
where a set of users assign tags to a set of music artists. We
follow similar processing steps as in [6]. The statistics for
these datasets after processing are shown in Table 1.

The task of interest is to recommend a new item to a user,
where an item refers to a bookmark URL for Delicious, and
a music artist for LastFM. Importantly, for both datasets,
the tags are used to generate the contexts for items, as fol-
lows. First, we treat each item as a “document” consisting
of tags (and their frequencies) assigned by all users. Then,
we compute a TFIDF vector for each item from the “docu-
ment” representations. We further reduce this vector into a
25-dimensional context vector using PCA [9].

Metric. The prediction task is as follows. For every
round t of the bandit algorithm, for the user ut, we pick
one of her items i randomly. We then present the context
vector of the item i, together with 24 other randomly gener-
ated context vectors, to a bandit algorithm. If it makes the
correct recommendation, i.e., it picks the item i out of the
25 options, the reward is 1. Otherwise, the reward is − 1

24
.

Random guesses are expected to have a cumulative reward
of 0. A better algorithm is expected to have a higher positive
cumulative reward over iterations. We consider T = 50000
iterations, which is considered large. For all algorithms, we
average the cumulative rewards across ten different runs.

3.2 Number of Clusters
Here, we study the relationship between the number of

clusters in DynUCB with the cumulative rewards.
Delicious. First, we consider the case of Delicious. Fig-

ure 1(a) shows the cumulative rewards of DynUCB after
50000 iterations, for different number of clusters K’s. As we
increase K from 1 to 256, there is a trend whereby the re-
wards at first increase, reaching the peak at around K = 16,
and then eventually begin to decrease. This trend helps to
validate that the clustering hypothesis indeed applies to the
Delicious dataset. We hypothesize that being a social book-
marking website, Delicious may support a number of user
communities, e.g., technology, music, sports. By clustering
the bandits, we can customize the bandits to cater to dif-
ferent communities, while still benefiting from the collection
of training instances from users of that community. Having
too few or too many clusters may be counter-productive, as
we begin to clump unrelated users, or to split related users.

It is also interesting to look into the distribution of clus-
ter sizes. For K = 16, we get one large cluster containing
58% of the users, and the other 15 small clusters are roughly
even-sized, containing between 2% to 5% of the users. These
numbers are based on one specific run, but we observe virtu-
ally similar distributions across all the runs. This suggests
the presence of one main group, and several smaller commu-
nities that benefit from having more customized bandits.

LastFM. Figure 1(b) shows a very different picture for
the LastFM dataset. It shows that cumulative reward of
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Figure 1: Vary Number of Clusters K

DynUCB after 50000 iterations is highest for K = 1, and
goes downhill for larger K’s. This result is very revelatory,
suggesting that there are populations, such as in LastFM,
where most of the general users pretty much agree in their
preferences. This potentially arises from the phenomenon
where there are a few artists that practically everyone lis-
tens to, unlike social bookmarking (Delicious) where differ-
ent users may have different bookmark preferences.

3.3 Comparison against Baselines
We now compare DynUCB (with the optimal number of

clusters found in the previous section, i.e., K = 16 for Deli-
cious, and K = 1 for LastFM) against baselines.

Baselines. Since we propose a dynamic clustering ap-
proach, we compare to two types of baselines. The first are
the non-clustering baselines LinUCB-IND and LinUCB-SIN.
The second is a clustering baseline CLUB [8], which is hi-
erarchical and does not model dynamic movements between
clusters (see Section 4). Because CLUB2 assumes an input
graph, we use a complete graph of users so as not to restrict
the clustering that it could discover. We have also tried
randomly-generated input graphs as described in [8], but
find the results to be worse than a complete graph. We tune
its parameter α2 in the range 0 to 1, and use the best pa-
rameter at 5000 iterations (α2 = 0.55 for Delicious, α2 = 0.9
for LastFM) to obtain the rewards for 50000 iterations.

Delicious. For Delicious, Figure 2 shows the cumula-
tive rewards over iterations up to T = 50000. Evidently,
DynUCB at K = 16 has higher cumulative rewards than the
baselines over the long run. In the short run (for t < 20000),
LinUCB-SIN tends to have a higher cumulative reward, be-
cause it benefits from“faster”learning from the large number
of training instances of all users. Since DynUCB partitions
the users into different clusters, and begins with random
clusters, it learns more slowly in the early stages as it fig-
ures out the clustering. In the long run, DynUCB more
than catches up, benefiting from more customized bandits
in each cluster. LinUCB-IND performs at a similar level,
if slightly lower than LinUCB-SIN. Unexpectedly, the clus-
tering baseline CLUB does not perform well. Upon further
investigation, we observe that 90% of users belong to one
cluster, while the other users are splintered into 6 clusters of
2 users each, and 175 independent users. It is unclear if this
is an artefact of parameter tuning or the algorithm itself.

LastFM. Figure 3 shows the comparison for LastFM. As
previously mentioned, LastFM is not conducive for cluster-

2We implement CLUB as there is no publicly available im-
plementation at the point of writing.
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Figure 2: Delicious: Rewards over Iterations

ing, because of the bias for the most popular items. As
expected, LinUCB-SIN has the highest reward, for the same
reason why DynUCB is optimal for K = 1. DynUCB is
second, followed by CLUB with a very similar performance.
CLUB keeps virtually all the users (∼96%) within a sin-
gle cluster. LinUCB-IND is the worst, because of the lack
of training instances for the independent bandits. Notably,
even for a non-conducive dataset, DynUCB does not degen-
erate completely (unlike LinUCB-IND), and still manages to
get a reasonable performance. We interpret this as the need
to fit the right algorithm for the right dataset, based on how
well the underlying hypothesis holds for the dataset.

4. RELATED WORK
The principle behind bandits is to balance the trade-off be-

tween exploration and exploitation. For instance, ε-greedy
[14] picks a random arm (exploration) with probability ε,
and picks the arm with the highest expected reward (ex-
ploitation) with probability (1 − ε). Instead of a “random”
exploration, the Upper Confidence Bound or UCB approach
[3, 4] estimates not just the expected reward, but also the
confidence interval, of every arm. It then picks the arm with
the highest sum of reward and confidence interval, which is
the upper confidence bound. Thompson Sampling [7] picks
an arm that has the largest success probability.

Contextual bandits make bandit algorithms more adap-
tive to the changing “contexts”. This context is usually ex-
pressed as a feature vector. Similar contexts would have cor-
related rewards. For instance, LinUCB [11], used as a foun-
dation for our method, models the expected reward through
a linear regression on context vectors. LogUCB [12] models
it through logistic regression.

One related bandit clustering work is CLUB [8]. It mod-
els a cluster as a connected component in a graph of users.
From the input graph, it slowly removes edges over itera-
tions, splintering the graph into multiple clusters. CLUB
and our method seek a partitioning of the user population.
There are a couple of crucial differences between the two.
Firstly, CLUB does hierarchical clustering, whereas we pur-
sue a flat clustering. Secondly, and more importantly, our
clustering is dynamic, allowing users to move between clus-
ters, whereas CLUB only models the splintering of clusters,
but not the movement of users across clusters. Other cluster-
ing works are based on standard bandits [13, 5]. Previously
[11], contextual bandit (i.e., LinUCB) has been shown to
outperform standard bandit (i.e., UCB). Social bandits [6]
correlate bandits of different users based on a social network
graph (which we do not consider).
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Figure 3: LastFM: Rewards over Iterations

5. CONCLUSION
We investigate the problem of dynamic clustering of con-

textual bandits, and propose an algorithm DynUCB. In
the case where the clustering hypothesis applies (Delicious),
DynUCB achieves a significant gain in rewards when com-
pared to non-clustering bandit baselines. This result points
to a promising direction of customizing bandits to specific
segments of users who may have distinct preferences. As
future work, we plan to investigate the clustering hypothe-
sis further, to analysize the confidence bound the algorithm,
and to consider extensions such as overlapping clusters.
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