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ABSTRACT
With the popularity of smartphones and mobile devices, mo-
bile application (a.k.a. “app”) markets have been growing
exponentially in terms of number of users and download-
s. App developers spend considerable effort on collecting
and exploiting user feedback to improve user satisfaction,
but suffer from the absence of effective user review ana-
lytics tools. To facilitate mobile app developers discover
the most “informative” user reviews from a large and rapid-
ly increasing pool of user reviews, we present “AR-Miner”
— a novel computational framework for App Review Min-
ing, which performs comprehensive analytics from raw user
reviews by (i) first extracting informative user reviews by
filtering noisy and irrelevant ones, (ii) then grouping the in-
formative reviews automatically using topic modeling, (iii)
further prioritizing the informative reviews by an effective
review ranking scheme, (iv) and finally presenting the group-
s of most “informative” reviews via an intuitive visualization
approach. We conduct extensive experiments and case s-
tudies on four popular Android apps to evaluate AR-Miner,
from which the encouraging results indicate that AR-Miner
is effective, efficient and promising for app developers.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; H.4 [Information
Systems Applications]: Miscellaneous

General Terms
Algorithm and Experimentation

Keywords
User feedback, mobile application, user reviews, data mining

1. INTRODUCTION
The proliferation of smartphones attracts more and more

software developers to devote to building mobile applica-
tions (“apps”). As the market competition is becoming more
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intense, in order to seize the initiative, developers tend to
employ an iterative process to develop, test, and improve
apps [23]. Therefore, timely and constructive feedback from
users becomes extremely crucial for developers to fix bugs,
implement new features, and improve user experience ag-
ilely. One key challenge to many app developers is how to
obtain and digest user feedback in an effective and efficient
manner, i.e., the “user feedback extraction” task. One way
to extract user feedback is to adopt typical channels used
in traditional software development, such as (i) bug/change
repositories (e.g., Bugzilla [3]), (ii) crash reporting systems
[19], (iii) online forums (e.g., SwiftKey feedback forum [6]),
and (iv) emails [10].

Unlike the traditional channels, modern app marketplaces,
such as Apple App Store and Google Play, offer a much eas-
ier way (i.e., the web-based market portal and the market
app) for users to rate and post app reviews. These reviews
present user feedback on various aspects of apps (such as
functionality, quality, performance, etc), and provide app
developers a new and critical channel to extract user feed-
back. However, comparing with traditional channels, there
are two outstanding obstacles for app developers to obtain
valuable information from this new channel. First of all, the
proportion of “informative” user reviews is relatively low. In
our study (see Section 5.1), we found that only 35.1% of
app reviews contain information that can directly help de-
velopers improve their apps. Second, for some popular apps,
the volume of user reviews is simply too large to do manu-
al checking on all of them. For example, Facebook app on
Google Play receives more than 2000 user reviews per day,
making it extremely time consuming to do manual checking.

To our best knowledge, very few studies were focused on
extracting valuable information for developers from user re-
views in app marketplace [28, 21, 22]. This paper formal-
ly formulates this as a new research problem. Specifically,
to address this challenging problem and tackle the afore-
mentioned two obstacles, we propose a novel computation-
al framework, named “AR-Miner” (App Review Miner), for
extracting valuable information from raw user review da-
ta with minimal human efforts by exploring effective data
mining and ranking techniques. Generally speaking, giv-
en a bunch of user reviews of an app collected during a
certain time interval, AR-Miner first filters out those “non-
informative” ones by applying a pre-trained classifier. The
remaining “informative” reviews are then put into several
groups, and prioritized by our proposed novel ranking mod-
el. Finally, we visualize the ranking results in a concise and
intuitive way to help app developers spot the key feedback



users have.
We validate the efficacy of AR-Miner by conducting an ex-

tensive set of experiments and case studies on user reviews
of four Android apps released in Google Play. In particular,
we compare the ranking results generated by AR-Miner a-
gainst real app developers’ decisions, and also analyze the
advantages of AR-Miner over manual inspection and facili-
ties used in a traditional channel (i.e., online forum). Our
empirical results have validated the effectiveness and effi-
ciency of AR-Miner in helping apps developers. Supplemen-
tary materials (including datasets, additional results, etc.)
are publicly available at1.

In short, this paper makes the following main contribu-
tions:

• We formulate a new problem that aims to discover the
most “informative” information from raw user reviews
in app markets for developers to improve their apps;

• We present AR-Miner as a novel analytic framework to
tackle this new problem, which includes a new, flexible
and effective ranking scheme to prioritize the“informa-
tive” reviews;

• We evaluate AR-Miner based on user reviews of four
popular Android apps, in which empirical results show
that AR-Miner is effective and promising.

The rest of the paper is organized as follows: Section 2
discusses related work; Section 3 gives the problem state-
ment; Section 4 presents the AR-Miner framework; Section
5 gives empirical results; Section 6 discusses limitations and
threats to validity; finally Section 7 concludes this work.

2. RELATED WORK
We group related work into three major categories, and

survey the literature of each category in detail below.

2.1 App Marketplace Analysis
With the rocketing development of mobile applications,

app marketplace has drawn much more attention among re-
searchers within and outside the software engineering com-
munity. In [24], Harman et al. pointed out that, app mar-
ketplace is a new form of software repository and very differ-
ent from traditional ones. They also analyzed the technical,
customer and business aspects of some apps in BlackBer-
ry World. In [33], Minelli et al. proposed to combine data
extracted from app marketplace with source code to compre-
hend apps in depth. Linares-Vásquez et al. [31] empirically
analyzed how the stability and fault-proneness of APIs used
by some free Android apps relate to apps’ lack of success.
Chia et al. [14] analyzed the relationship between permis-
sions and community ratings of some apps. Our work is dif-
ferent from the aforementioned studies, mainly because we
explore different data in app marketplace, i.e., user reviews,
and formulate a very different problem.

Thus far, there has been little work on mining user reviews
in app marketplace. In [36], Pagano and Maalej conducted
an exploratory study to analyze the user reviews crawled
from Apple App Store. They studied (i) the usage and im-
pact of feedback through statistical analysis, and (ii) the
content of feedback via manual content analysis and fre-
quent itemset mining. Chandy et al. [13] presented a latent

1https://sites.google.com/site/appsuserreviews/

model to detect “bogus” user reviews in Apple App Store.
Iacob et al. [28] developed a prototype named MARA that
uses a list of linguistic rules to automatically retrieve feature
requests from online user reviews. Although the nature of
data studied in the above three works is similar to ours, the
techniques used or research goals are totally different.

To our best knowledge, there are only two previous stud-
ies that are closely related to our work. Galvis Carreño et
al. [22] adapted the Aspect and Sentiment Unification Mod-
el (ASUM) proposed in [30] to automatically extract topics
for requirements changes. General speaking, our work dif-
fers from their work in three major aspects. First, our work
aims to discover not only requirement changes, but also oth-
er kinds of valuable information for developers (see Figure
1 in Section 3). Second, we focus on the ranking scheme of
“informative” user reviews, which is not addressed in their
work. Finally, our scheme consisting of an effective filtering
step considerably outperforms the direct application of topic
models in solving our problem (see more details in Section
5.3.1). Fu et al. [21] presented a system named Wiscom to
analyze user reviews in app marketplace at three different
levels. The so-called “Meso Level” of Wiscom is to uncover
the reasons of user dissatisfaction and their evolution over
time for an individual app, which is more related to AR-
Miner; however, it suffers from two major limitations. First,
it cannot discover app-specific topics by using Latent Dirich-
let Allocation (LDA) [11], since it links all the user reviews
from the same app together as a document. Second, it only
considers negative reviews, thus missing topics with positive
ratings. Unlike Wiscom, AR-Miner can address both limi-
tations. Moreover, we propose a new ranking model to help
app developers prioritize the “informative” user reviews.

2.2 Mining User Reviews on the Web
Our work is related to studies that focus on mining and

analyzing user reviews in other kinds of marketplaces (e.g.,
movies, commodity goods, etc.) and social webs (e.g., news
sites). However, their techniques cannot be directly applied
to our problem in that (1) the objective of our problem is
different, i.e., solving a software engineering problem in re-
quirement/bug management; and (2) the characteristics of
user reviews in apps stores are quite different, e.g., review
styles [21], volumes, etc. Next, we discuss three most related
classes of work and explain specific differences.

In the literature, there is a great deal of work that applies
sentiment analysis to user reviews in different marketplaces
[37]. In general, these studies aim to determine the semantic
orientation of a given user review at the document [40], sen-
tence [27] or feature level [20], whether the opinion expressed
is positive or negative. There are several studies focusing on
summarizing/visualizing user reviews via identifying prod-
uct features and opinions [42, 7]. Compared with the afore-
mentioned work, our work differs in that (i) we classify each
user review into either “informative” or “non-informative”
from the software engineering perspective, instead of “posi-
tive” or “negative” from the emotional perspective; (ii) the
ultimate goal of our work is different, that is visualizing the
ranking results of “informative” information.

Much work has focused on spam review filtering [41, 34,
29]. They aim to protect users and honest vendors via de-
tecting and removing bogus user reviews. Our work differs
from them mainly in two points. First, in our work, the
definition of “non-informative” 6= “spam” (see Section 3).



 

Class Type (Rule) Real Example 

Informative 

Functional flaw that produces incorrect or unexpected result None of the pictures will load in my news feed. 

Performance flaw that degrades the performance of Apps 
It lags and doesn't respond to my touch which almost always causes me 

to run into stuff. 

Requests to add/modify features 

Amazing app, although I wish there were more themes to choose from. 

Please make it a little easy to get bananas please and make more 

power ups that would be awesome. 

Requests to remove advertisements/notifications So many ads its unplayable! 

Requests to remove permissions This game is adding for too much unexplained permissions. 

Non-

informative 

Pure user emotional expression 
Great fun can't put it down! 

This is a crap app. 

Descriptions of (apps, features, actions, etc.) I have changed my review from 2 star to 1 star. 

Too general/unclear expression of failures and requests Bad game this is not working on my phone. 

Questions and inquiries How can I get more points? 

Figure 1: Different Types of Informative and Non-informative Information for App Developers

Second, although the filtering step in AR-Miner can help
remove some types of spam reviews, our major objective is
to rank the “informative” user reviews for app developers.

There also exist several pieces of work on ranking reviews
on the social web. For example, Hsu et al. [26] applied Sup-
port Vector Regression to rank the reviews of a popular news
aggregator Digg. Dalal et al. [18] explored multi-aspects
ranking of reviews of news articles using Hodge decomposi-
tion. Different from both works, our work aims to rank the
reviews according to their importance (not quality) to ap-
p developers (not users) from the software engineering per-
spective. Besides, we propose a completely different ranking
model in solving our problem.

2.3 Mining Data in Traditional Channels
Our work is also related to studies that apply data mining

(machine learning) techniques on data stored in traditional
channels to support developers with the “user feedback ex-
traction” task. Specifically, the first category of related work
in this field is to address problems in bug repositories [38,
9, 8, 25]. For example, Sun et al. [38] proposed a discrim-
inative approach to detect duplicate bug reports. Anvik et
al. [9] compared several classification algorithms for solving
the bug assignment problem. Antoniol et al. [8] developed
a machine learning approach to distinguish bugs from non-
bugs. In addition, another category of related work is to
solve problems in other traditional channels (e.g., request
repositories [16, 15], emails [10], crash reporting systems
[19]). For example, Cleland-Huang et al. [15] proposed a
machine learning approach to categorize product-level re-
quirements into pre-defined regulatory codes. Dang et al.
[19] developed an approach based on similarity measures to
cluster crash reports. Bacchelli et al. [10] applied a Naive
Bayes classifier to classify email contents at the line-level.

Compared with the previous studies in this area, our work
differs in that we formulate and solve a brand new problem
in a new channel with its distinct features.

3. THE PROBLEM STATEMENT
The “user feedback extraction” task is extremely impor-

tant in bug/requirement engineering. In this paper, we for-
mally formulate it as a new research problem, which aims
to facilitate app developers to find the most “informative”
information from large and rapidly increasing pool of raw
user reviews in app marketplace.

Consider an individual app, in a time interval T , it re-
ceives a list of user reviews R∗ with an attribute set A =

{A1, A2, . . . , Ak}, and ri = {ri.A1, ri.A2, . . . , ri.Ak} is the
i-th review instance in R∗. Without loss of generality, in
this work, we choose A = {Text,Rating, T imestamp}, s-
ince these are the common attributes supported in all main-
stream app marketplaces. Table 1 shows an example of R∗
with t review instances. In particular, we set the Text at-
tribute of ri at the sentence level. We will explain how to
achieve and why we use this finer granularity in Section 4.2.

Table 1: Example of A List of User ReviewsR∗, R =Rating,
TS = T imestamp

ID Text R TS

r1
Nice application, but lacks some important

4 Dec 09
features like support to move on SD card.

r2 So, I am not giving five star rating. 4 Dec 09

r3 Can’t change cover picture. 3 Jan 18

r4 I can’t view some cover pictures even mine. 2 Jan 10

r5 Wish it’d go on my SD card. 5 Dec 15

. . . . . . . . . . . .

rt . . . . . . . . .

In our problem, each ri in R∗ is either “informative”
or “non-informative”. Generally, “informative” implies ri
contains information that app developers are looking to i-
dentify and is potentially useful for improving the quality
or user experience of apps. We summarize different types
of “informative” as well as “non-informative” information in
Figure 1 (one or two examples for each type). For example,
r1, r3, r4 and r5 shown in Table 1 are “informative”, since
they report either bugs or feature requests, while r2 is “non-
informative”, as it is a description of some user action, and
developers cannot get constructive information from it.

Remark. The summarization shown in Figure 1 is not ab-
solutely correct, since the authors are not app developers.
In fact, even for real app developers, no two people would
have the exact same understanding of “informative”. This
is an internal threat of validity in our work. To alleviate
this threat, we first studied some online forums (e.g., [6]) to
identify what kinds of information do real app developers
consider as constructive, and then derived the summariza-
tion shown in Figure 1 based on the findings.

Generally, given a list of user reviews R∗ of an app (e.g.,
the one shown in Table 1), the goal of our problem is to
filter out those “non-informative” reviews (e.g., r2), then (i)



group the remaining reviews based on the topics they are
talking about, e.g., {r1, r5} are grouped because they both
talk about feature request related to“SD card”; and (ii) iden-
tify the relative importance of different groups and reviews
in the same group (e.g., the relative importance of r1 and
r5), and finally present an intuitive visualized summariza-
tion to app developers.

4. OUR FRAMEWORK
In this section, we first give an overview of our proposed

AR-Miner framework to address the problem stated in Sec-
tion 3, and then present each step of our framework in detail.

4.1 Overview
Figure 2 presents an overview of AR-Miner, which con-

sists of five major steps. The first step preprocesses the
raw user review data into well-structured format to facili-
tate subsequent tasks (Section 4.2). The second step ap-
plies a pre-trained classifier to filter out “non-informative”
reviews in R∗ (Section 4.3). The third step groups the re-
maining “informative” reviews in such a way that reviews in
the same group are more semantically similar (Section 4.4).
The fourth step (the focus of this paper) sorts (i) groups,
and (ii) reviews in each group according to their level of im-
portance by using our novel ranking model (Section 4.5). In
the last step, we visualize the ranking results and present an
intuitive summary to app developers (Section 4.6).

Preprocess

-ing
Filtering

Visualization

Grouping

Ranking

User Reviews

Report

1 2

45

3

Figure 2: Overview of the proposed AR-Miner framework.
We focus on tackling the challenging “Ranking” Step.

4.2 Preprocessing
The first step of AR-Miner preprocesses the collected raw

data by (i) converting the raw user reviews into sentence-
level review instances, and then (ii) preprocessing the Text
attribute of the review instances.

The format of raw user reviews varies with different app
marketplaces. As mentioned in Section 3, in this work, we
choose A = {Text,Rating, T imestamp}. Figure 3 shows a
real example of a raw user review that contains these three
attributes. The Text attribute of a raw user review often
consists of more than one sentence. In this work, we split
Text into several sentences via a standard sentence splitter
provided by LingPipe [4]. For each sentence, we generate
a review instance ri with Rating and T imestamp equal to
the values of the corresponding raw user review. For ex-
ample, the raw user review shown in Figure 3 is converted
into two sentence-level review instances shown in Table 1 (r1
and r2). We choose the sentence-level granularity because
within a raw user review some sentences can be ”informa-
tive” (e.g., sentence 1 shown in Figure 3) and some sentences
are not (e.g., sentence 2). Thus, this finer granularity can
help distinguish “informative” with “non-informative” infor-
mation more accurately.

Dec 09, 2012

Nice application, but lacks some important features like

support to move on SD card
1
. So, I am not giving five

star rating
2
.

 

Figure 3: An Example Raw User Review of Facebook App

Further, we preprocess the Text attribute of review in-
stances. We first tokenize the text, and then remove all
non-alpha-numeric symbols, convert words to lowercase and
eliminate extra whitespace along with stop words/rare word-
s. Next, the remaining words are stemmed to their root for-
m. Finally, we remove review instances that become empty
as a result of the above processing.

4.3 Filtering
The preprocessing step generates a review database R∗

(e.g., as shown in Table 1). In this step, our goal is to
train some classifier that can automatically filter out “non-
informative” reviews from R∗.

First, we introduce the class label set used in our problem.
As described in Section 3, we have two unique class labels
{informative, non-informative}, where “informative” implies
that the review is constructive/helpful to app developers,
and “non-informative” means that the review contains no
information that is useful for improving apps. We use the
rules (types) summarized in Figure 1 to assign class labels
to review instances. In particular, we solve some ambiguous
cases. For example, we classify “too general/unclear expres-
sion of failures and requests” as “non-informative” (e.g., “It
doesn’t work”, “It needs more update”, and etc.).

To eliminate “non-informative” review instances, we need
to apply a machine learning algorithm to build some classi-
fier on the historical training data. In this work, we simply
adopt a well-known and representative semi-supervised al-
gorithm in machine learning, i.e., Expectation Maximization
for Naive Bayes (EMNB) [35]. The most important reason
we choose EMNB is that it suits our problem well. In our
problem, we can get a mass of unlabeled data almost freely,
but labeling training data is time consuming and labor in-
tensive. Compared with supervised algorithms, EMNB can
use a small amount of labeled data (thus less human effort)
along with plenty of unlabeled data to train a fairly good
classifier (see our comparisons in Section 5.5.1). Besides,
NB often outperforms other machine learning algorithms in
text classification [12] and has been widely used in other soft-
ware engineering problems [10, 39]. Finally, NB provides a
nice posterior probability for the predicated class, which is
useful in the ranking step (See Section 4.5.3).

Once the classifier is built, it can be applied to filter future
unlabeled user reviews. Table 2 shows a possible good result
(denoted as R, n ≤ t) after filtering R∗ shown in Table
1, where “non-informative” review instances are eliminated
(r2), and“informative”ones are preserved (r1, r3, r4 and r5).
The last column “P” of Table 2 indicates the probability of
the review instance belongs to the “informative” class.

4.4 Grouping
This step is to partition the remaining review instances

(R) into several groups such that the Text of review in-
stances in a group is more semantically similar to each other



Table 2: R, A Possible Good Result after Filtering, R =
Rating, TS = T imestamp, P = Probability

ID Text R TS P

r1

Nice application, but lacks

4 Dec 09 0.8some important features like

support to move on SD card.

r3 Can’t change cover picture. 3 Jan 18 0.9

r4
I can’t view some cover

2 Jan 10 0.9
pictures even mine.

r5 Wish it’d go on my SD card. 5 Dec 15 0.9

. . . . . . . . . . . .

rn . . . . . . . . .

than the Text of review instances in other groups.
In general, there are two categories of unsupervised tech-

niques that can be applied to the grouping task. The first
category is clustering (e.g., K-means [32]), which assumes
that each review instance belongs to exactly one single
cluster (group). However, this assumption may become prob-
lematic for review instances (even at the sentence level) that
exhibit multiple topics (groups) to different degrees. As a
result, we adopt another category of techniques: topic mod-
eling which assigns multiple topics to each review instance.
For example, the review “Just add emojis and more themes.”
is modeled as a distribution over two topics (50% “emoji”,
50% “theme”). We will discuss the comparison of two al-
gorithms in topic modeling, i.e., Latent Dirichlet Allocation
(LDA) [11] and Aspect and Sentiment Unification Model
(ASUM) [30] (adopted in [22]) in our experiments. In the
future, we will explore and compare more topic models.

4.5 Ranking
Given the grouping results, we aim to determine the rel-

ative importance of (i) groups; and (ii) review instances in
each group. To fulfill this purpose, we propose a novel rank-
ing model presented as follows.

4.5.1 The Overview of Our Ranking Model
The general form of our ranking model is shown in Algo-

rithm 1. The inputs include (i) a set of groups (topics) G
generated by the grouping step; (ii) two sets of functions fG

(see Section 4.5.2) and fI (see Section 4.5.3) that measure
the importance of various features of groups (e.g., volume)
and review instances (e.g., rating), respectively; and (iii) two
weight vectors wG (wG

i ∈ [0, 1],
∑m

i=1 w
G
i = 1) and wI (wI

i ∈
[0, 1],

∑n
i=1 w

I
i = 1) correspond to fG and fI , respective-

ly. Algorithm 1 computes (i) the GroupScore(g) ∈ [0, 1] for
each group g ∈ G (Line 1-3), and (ii) the InstanceScore(r) ∈
[0, 1] for each review instance r ∈ g (Line 4-6). Larger
GroupScore(g) and InstanceScore(r) indicate higher im-
portance. Finally, Algorithm 1 outputs the ranking results.

Our ranking model is flexible, since we can obtain ranking
results from different angles by adjusting the weight vectors
of wG and wI (See Section 5.5.2). We also claim that our
ranking model is extensible, because it can easily incorporate
more features (See Section 6 for discussion).

4.5.2 Group Ranking
To measure the importance of different groups, we use

fG = {fG
V olume, f

G
TimeSeries, f

G
AvgRating} in this work. Next,

Algorithm 1: The Ranking Model

Input: A set of groups G, feature function sets
fG = {fG

1 , . . . , f
G
m} and fI = {fI

1 , . . . , f
I
n},

weight vectors wG = (wG
1 , . . . , w

G
m) and

wI = (wI
1 , . . . , w

I
n)

1 for each group g ∈ G do
2 Compute fG

1 (g), . . . , fG
m(g)

3 Set GroupScore(g) =
∑m

i=1(wG
i × fG

i (g))
4 for each review instance r ∈ g do
5 Compute fI

1 (r), . . . , fI
n(r)

6 Set InstanceScore(r) =
∑n

j=1(wI
j × fI

j (r))

7 end

8 end
Output: Groups in decreasing order of GroupScore;

review instances in each group in decreasing
order of InstanceScore

Table 3: Per-review Distribution over Groups

(a) Review-Group Matrix

g1 · · · gm
r1 pr1g1 · · · pr1gm
...

...
. . .

...
rn prng1 · · · prngm

(b) An Example

g1 g2 g3
r1 1.0 0.0 0.0
r2 1.0 0.0 0.0
r3 0.5 0.5 0.0
r4 0.0 0.5 0.5

we describe each feature function in detail.

Volume: Given the remaining n review instances (after
filtering) R = {r1, . . . , rn}, in the grouping phase, we au-
tomatically discover m groups (topics), denoted as G =
{g1, . . . , gm}. As described in Section 4.4, each review in-
stance ri (1 ≤ i ≤ n) is modeled as a distribution over G.
The matrix shown in Table 3(a) presents such distributions,
where each entry prigj (1 ≤ i ≤ n,1 ≤ j ≤ m) represents the
proportion that review instance ri exhibits group gj , and
for each ri,

∑m
j=1 prigj = 1. For example, in Table 3(b), r4

exhibits g2 with 50% and g3 with 50%. The volume of a
group g is defined as follows,

fG
V olume(g) =

n∑
i=1

prig (1)

For example, in Table 3(b), fG
V olume(g1) = 1+1+0.5+0 =

2.5. One group with larger volume indicates it is more im-
portant. The reason is that a larger group is more likely
to be a class of common bugs/requests reflected by many
users, while a smaller group is more likely to be (i) a kind of
particular bug/request reported by only a few users or (ii)
a few users’ wrong/careless operations.

Time Series Pattern: Given the time interval T = [t0, t0+
T ] under investigation, we divide T into K = T/∆t consecu-
tive time windows, with each has length of ∆t. Let Tk denote
the k-th time window, thus Tk = [t0 + (k − 1)∆t, t0 + k∆t],
where 1 ≤ k ≤ K. For each ri ∈ R, we denote ri.TS as the
timestamp when ri is posted, t0 ≤ ri.TS ≤ t0 + T for all
1 ≤ i ≤ n. Given a time window Tk, we denote the total



number of review instances posted during it as follows,

v(Tk) = |RTk | = |{ri : ri.TS ∈ Tk}|, n =

K∑
k=1

v(Tk)

where |M | denotes the cardinality of the set M . For a group
g, we count the volume of review instances posted during
the time window Tk, formally,

v(g, Tk) =
∑

rj∈RTk

prjg

Then, we can construct a time series for the group g, repre-
sented by,

Pg(T ,∆t) = [p(g, 1), . . . . . . , p(g,K)]g

where p(g, k) is short for p(g, Tk), and p(g, k) = v(g, Tk)/v(Tk).
Figure 4 shows four typical time series patterns. The pat-

tern P1 shown in Figure 4(a) has a rapid rise at a certain
time window (Tk) followed by a small decline then towards
plateau. One group that has this kind of pattern is likely to
be a class of newly introduced bug/request due to some event
happened at Tk (e.g., version update, network/server error,
and etc.). In addition, this problem is not solved at the end
of T . P2 shown in Figure 4(b) presents a quick decay at a
certain time window (Tk). This demonstrates the scenario
where an old bug/request is fixed/satisfied at Tk. P3 shown
in Figure 4(c) fluctuates slightly within a range over the en-
tire T . This indicates the scenario of an existing bug/request
introduced earlier than t0 that is not fixed/satisfied during
T . P4 shown in Figure 4(d) implies that the problem is in-
troduced earlier than t0 that is relieved (but not addressed)
during T . Obviously, groups with pattern P1 are the most
important (fresher), while groups of pattern P2 are the least
important (older). To model the importance of time series
pattern for a group g, we compute fG

TimeSeries(g) by,

fG
TimeSeries(g) =

K∑
k=1

p(g, k)

p(g)
× l(k) (2)

where p(g) =
∑K

k=1 p(g, k), and l(k) is a monotonically in-
creasing function of k (the index of Tk), since we aim to set
a higher weight to later Tk. The choice of l(k) depends on
the importance of the freshness, in this work, we simply set
l(k) = k.

Average Rating: We denote ri.R as the user rating of
ri, in this work, ri.R ∈ {1, 2, 3, 4, 5} for all 1 ≤ i ≤ n.
“Informative” reviews with lower ratings (e.g., 1, 2) tend
to express users’ strong dissatisfaction with certain aspects
of apps that need to be addressed immediately (e.g., crit-
ical bugs), thus are more important. On the other hand,
“informative” reviews with higher ratings (e.g., 4, 5) often
describe some kind of users’ non-urgent requirements (e.g.,
feature improvement), thus are less important. Therefore,
we measure the rating aspect of a group g by

fG
AvgRating(g) =

fG
V olume(g)∑n

i=1 prig × ri.R
(3)

which is the inverted average rating of a group g. Larger
fG
AvgRating(g) indicates more importance.

4.5.3 Instance Ranking

(a) Pattern P1 (b) Pattern P2

(c) Pattern P3 (d) Pattern P4

Figure 4: Representative Time Series Patterns for Groups

Regarding the importance of review instances in a particu-
lar group g, in this work, we use fI = {fI

Proportion, f
I
Duplicates,

fI
Probability, f

I
Rating, f

I
Timestamp}. Next, we describe each fea-

ture function in detail.

Proportion: For a group g, each ri ∈ R (1 ≤ i ≤ n)
exhibit g with a certain proportion prig. prig equals to 1
means ri only exhibits g, while prig equals to 0 indicates ri
does not exhibit g at all. ri with larger prig value is more
important in g, since it contains more core content of this
group. Formally,

fI
Proportion(r, g) = prg (4)

In this work, we denote Rg as the reviews instances belong
to a group g. Rg is constructed by eliminating those ri with
prig < α in R (we set α = 0.01), thus Rg = {ri : prig ≥ α}.
For example, in Table 3(b), Rg1 = {r1, r2, r3}, r4 is ignored
since pr4g1 = 0.0 < 0.01.

Duplicates: For a group g of Rg = {r1, . . . , rng}, we de-
note r.Text as the text of r (represented in the vector s-
pace). It is common that different texts of review instances
refer to the same “informative” information. We intend to
remove those duplicates fromRg and form a set of unique re-
view instances Ru

g = {ru1 , . . . , run′
g
}, where n′g ≤ ng. Specif-

ically, for each unique review instance rui ∈ Ru
g , rj ∈ Rg

is considered as a duplicate of rui if and only if satisfying
β ≤ sim(rj .T ext, r

u
i .T ext), where sim is a certain similari-

ty metric (e.g., Jaccard similarity used in our work), and β is
a predefined threshold. We count the number of duplicates
for each rui ∈ Ru

g , denoted as duplicates(rui , g). The more
duplicates rui has, the more important it is in g. Formally,

fI
Duplicates(r, g) = duplicates(r, g) (5)

where r is a shorthand for rui .
Note that, for a group g, we quantify the importance of

every unique review instance r ∈ Ru
g . For r that has more

than one duplicate, the rating of r is set as the minimum rat-
ing value of duplicates, and the proportion, probability and
timestamp of r are set as the maximum values of duplicates.
The features in italics will be introduced below shortly.



Probability: As mentioned in Section 4.3, one of the rea-
sons we choose EMNB as our classifier is that it can provide
a posterior probability for each predicated review instance
(denoted as r.P ). Intuitively, the larger probability of r
demonstrates that it is more likely to be an “informative”
review, thus more important. Formally,

fI
Probability(r) = r.P (6)

Rating: Similar to the average rating of a group, lower
rating of r indicates it is more important, thus,

fI
Rating(r) =

1

r.R
(7)

Timestamp: Similar to the time series pattern of a group,
more fresher of r indicates it is more important, thus,

fI
Timestamp(r) = k (8)

where k is the index of Tk that satisfies r.TS ∈ Tk.

4.6 Visualization
The last step of AR-Miner is to visualize the results gener-

ated by our ranking model. Figure 5 shows a possible visu-
alization of top-10 ranked results (see details in Section 5.4).
The bottom half of Figure 5 is a radar chart which depicts
the GroupScore value of each group (topic) along a separate
axis which starts in the center of the chart and ends on the
outer ring. Each group is labeled by two (or three) top prob-
ability (also descriptive) words within the group, and a data
point near the outer ring indicates a higher GroupScore val-
ue. Intuitively, the group “more theme”, which is requesting
for more themes into the app, has the highest GroupScore,
and the GroupScores of the remaining groups decrease in
the clockwise direction. To get insight into a group, we
can click its label to view the reviews instances (the de-
tailed information) within the group in decreasing order of
InstanceScore. For example, the top half of Figure 5 shows
the top 2 review instances in the “more theme” group. Due
to space limitation, we present the complete version of Fig-
ure 5 on our website.

5. EMPIRICAL EVALUATION
To evaluate if AR-Miner can really help app developers,

we conduct several experiments and case studies. Specifi-
cally, we aim to answer the following questions: (1) What
is the topic discovering performance of our scheme? (2) If
the top-ranked topics generated by AR-Miner represent the
most “informative” user feedback for real app developer-
s? (3) What are the advantages of AR-Miner over purely
manual inspection and facilities used in traditional channels
(e.g., online forum)?

5.1 Dataset
We select 4 Android apps from Google Play, i.e., SwiftKey

Keyboard (smart touchscreen keyboard), Facebook (social
app), Temple Run 2 (parkour game), and Tap Fish (casual
game), as subject apps in our experiments and case studies.
These apps are selected because (i) they cover different app
domains; and (ii) they range from large datasets (Facebook
and Temple Run 2) to relatively small datasets (SwiftKey
Keyboard and Tap Fish). We collected the raw user re-
views of these apps from Google Play roughly in the period
from Oct, 2012 to Feb, 2013. Table 4 lists some key fea-
tures of these datasets (after converting to sentence level).
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Figure 5: Visualization of Top-10 ranked results achieved
by AR-Miner (SwiftKey). The number in the square bracket
denotes the corresponding rank in Figure 6. K = 22, β = 0.6,
wG = (0.85, 0, 0.15), wI = (0.2, 0.2, 0.2, 0.2, 0.2)

For each dataset, we divide it into two partitions, where re-
views in partition (i) appear before those of partition (ii)
in terms of their posting time. We adopt some data from
partition (i) for training, and some data from partition (ii)
for test. Specifically, for partition (i), we randomly sample
1000 reviews as labeled training pool, and treat the rest as
unlabeled data. For partition (ii), we randomly sample 2000
reviews for labeling and use as test set for evaluation.

Table 4: Statistics of Our Datasets (Train = Training Pool,
Unlab. = Unlabeled Set).

Dataset SwiftKey Facebook TempleRun2 TapFish

Train 1000 1000 1000 1000

Unlab. 3282 104709 57559 3547

Test 2000 2000 2000 2000

% Info. 29.3% 55.4% 31.1% 24.6%

We collected the ground truth labels of the training pool
and test set according to the rules summarized in Figure 1.
Each review is labeled by three different evaluators (some
are workers in Amazon Mechanical Turk [1]), and the final
label is determined by the “majority voting”. The row “%
Info.” in Table 4 shows the proportion of “informative” re-
views (among data with ground truth). On average, 35.1%
reviews are “informative”. Without loss of generality, we
take “informative” as positive class and “non-informative” as
negative class.

5.2 Performance Metrics
In this section, we introduce the performance metrics used

in our evaluation. The first set of metrics include Precision,
Recall (Hit-rate) and F-measure, which are defined below:

Precision =
TP

TP + FP
, Recall(Hit− rate) =

TP

TP + FN



F−measure =
2 ∗ Precision ∗ Recall

Precision + Recall

where TP, FP, FN represent the numbers of true positives
(hits), false positives, and false negatives (misses), respec-
tively. In addition, we also adopt the well-known Normalized
Discounted Cumulative Gain (NDCG) [17] as a measure for
evaluating the quality of top-k ranking results:

NDCG@k =
DCG@k

IDCG@k

where NDCG@k ∈ [0, 1], and the higher value implies greater
agreement between the predicted rank order and the ideal
rank order.

5.3 Evaluation of Grouping Performance
We conduct two experiments to evaluate the performance

of our scheme (the first 3 steps shown in Figure 2) for auto-
matically discovering groups (topics). First, we qualitatively
compare our scheme (which contains a filtering step before
grouping) with the baseline scheme used in [22] (which di-
rectly applies topic models). Second, we explore and com-
pare two different settings of our scheme, i.e., (i) EMNB-
LDA (Stanford Topic Modeling Toolbox [5] implementation
for LDA); and (ii) EMNB-ASUM (the original implementa-
tion [2] with default parameters for ASUM), where ASUM
is proposed in [30] and adopted in [22].

We select the EMNB filter for each dataset shown in Ta-
ble 4 as follows. For each experimental trial, we randomly
choose a subset of training pool (128 examples per class) as
training data, and then apply the EMNB algorithm (the
LingPipe implementation [4]) to build a classifier on the
combination of training data and unlabeled set, finally mea-
sure the performance on the test set. We repeat the above
experimental trial 50 times and choose the classifier with the
best F-measure as the filter. Table 5 shows the F-measure
attained by the four selected filters used in our experiments.
We can see that, their performance is fairly good, especially
the Facebook filter (0.877).

Table 5: The Performance of Selected Filters

Filter SwiftKey Facebook TempleRun2 TapFish

F-measure 0.764 0.877 0.797 0.761

5.3.1 Qualitative Comparison of Both Schemes
The first experiment qualitatively compares our scheme

(EMNB-LDA) with the baseline scheme (LDA). We apply
both schemes to the test set of each dataset shown in Table
4 after preprocessing. We vary the number of topics (denot-
ed as K) and choose the appropriate K values according to
(i) the perplexity scores [11] on 20% held-out data (should
be small); and (ii) the results themselves (should be reason-
able). Table 6 shows some representative topics found by
EMNB-LDA and LDA from the test set of SwiftKey. For
each topic, we list the top-10 weighted words in the vocab-
ulary distribution. For space reasons, we do not present the
results for other datasets (which are similar).

From the results shown in Table 6, we can draw two obser-
vations. First, most topics found by EMNB-LDA are “infor-
mative”, e.g., “theme”, “Chinese”, “jelly bean”, “predict” and
“space”shown in Table 6(a), while LDA presents many“non-
informative” (or redundant) topics, such as “type”(purely

Table 6: Some topics found by EMNB-LDA (K=20) and
LDA (K=36) on “SwiftKey” dataset. The colored words are
topic labels.

(a) EMNB-LDA

theme Chinese jelly bean predict space
more languag bean word space
theme chines jelli predict period
wish need galaxi text email
love wait note complet enter

custom user keyboard auto insert
like download samsung like automat

color support screen pen input
star input updat won mark

option except android basic address
keyboard thai swiftkei automat dont

(b) LDA

theme Chinese jelly bean type worth
theme chines predict type worth
more languag text make monei
like faster bean easi definit

color input jelli learn paid
love more time predict penni
wish need issu easier price

custom switch accur speed download
option annoi start accur total
pick time browser perfectli cent
red write samsung time amaz

praise without any advice) and “worth” (emotional expres-
sion) shown in Table 6(b) in red color. The reason is s-
traightforward: LDA does not have a filtering phase. Sec-
ond, although with well-tuned K value, LDA could also
find “informative” topics discovered by EMNB-LDA, some
of them have lower quality. For example, the topic “jelly
bean” shown in Table 6(b) has (i) lower-ranked key words;
and (ii) lower purity (the word “predict” ranked high).

In sum, we can conclude that our scheme (with filtering)
performs better than the baseline scheme (without filtering)
in solving our problem.

5.3.2 Comparison of Two Topic Models
The second experiment is to compare the performance of

two topic models (LDA and ASUM) in our scheme. For
each dataset shown in Table 4, we manually identify one
appropriate and representative group from “informative” re-
views in the test set as ground truth (prior to running our
scheme), where each review in the group is assigned a pro-
portion score. The “Topic” column of Table 7 shows the
labels of the groups. Following the same setup as the first
experiment (K=20), we evaluate the performance of EMNB-
LDA and EMNB-ASUM by measuring if they can discover
the pre-identified groups accurately. Table 7 presents the
experimental results in terms of F-measure (averaged over
50 iterations).

Some observations can be drawn from the results shown
in Table 7. First, for all topics, EMNB-LDA performs bet-
ter than EMNB-ASUM in terms of F-measure. One pos-
sible reason is ASUM imposes a constraint that all word-
s in a sentence be generated from one topic [30, page 2].
Thus, sentence-level reviews exhibit several topics are only
assigned to one topic, which results in information lost. Sec-
ond, by looking into the results, the F-measure achieved by



Table 7: Evaluation Results, K = 20

Dataset Topic EMNB- EMNB-
ASUM LDA

SwiftKey “theme” 0.437 0.657

Facebook “status” 0.388 0.583

TempleRun2 “lag” 0.210 0.418

TapFish “easier buck” 0.386 0.477

EMNB-LDA is reasonable but not promising, e.g., 0.657 for
the “theme” topic of SwiftKey. The main reason is the un-
supervised topic modeling is a hard task. Besides, some “in-
formative” reviews are removed wrongly by the filter, while
some “non-informative” ones are not filtered out.

5.4 Evaluation of Ranking Performance
In this section, we report a comprehensive case study to

evaluate the ranking performance of AR-Miner. We aim to
examine whether the top-ranked topics generated by AR-
Miner represent the most “informative” user feedback for
real app developers.

We use SwiftKey Keyboard shown in Table 4 as our sub-
ject app. The developers of this app created a nice SwiftKey
feedback forum to collect user feedback [6]. It provides users
a voting mechanism for every feedback, and feedback with
high-voting is ranked top. Feedback considered to be “infor-
mative” to developers is assigned a Status, which shows the
current progress of this feedback. Therefore, we can obtain a
comparable ranking list of“informative”information for real
developers of SwiftKey Keyboard. Specifically, we first se-
lected all the user feedback in the forums, and then removed
those feedback without Status (indicates “non-informative”
to developers) or assigned Status of “Complete” (indicates
closed) before the time interval T (from Oct 12th, 2012 to
Dec 19th, 2012) we investigated, finally we ranked the re-
maining feedback in the decreasing order of number of votes.
The top-10 ranked results (ground truth) are shown in Fig-
ure 6 (verified around Feb 17th, 2013).

The user reviews of SwiftKey Keyboard collected in T
contains 6463 instances. We use the filter shown in Table
5, and apply both LDA and ASUM algorithms. Finally, the
top-10 ranked results generated by our ranking model are vi-
sualized in Figure 5 (LDA setting). We compare the ranking
results attained by AR-Miner with the ground truth rank-
ing results (Figure 6), and measure the comparison in terms
of Hit-rate and NDCG@10 scores introduced in Section 5.2.
Note that, each feedback shown in Figure 6 is considered to
be corresponding to a topic shown in Figure 5 if and only
if (i) the feedback is closely related to the topic, and (ii)
the (semantically similar) feedback can be found in the top
review instances of the topic. Table 8 presents the results.

Remark. We use the ranking list shown in Figure 6 as the
ground truth mainly because it is the choice of real app
developers in real scenarios. We believe it is much more
convincing than a ranking list identified by others (e.g., the
authors). Besides, we assume that the greater agreement
between the ranking results achieved by AR-Miner and the
ground truth, the better performance of AR-Miner. Specif-
ically, if both Hit-rate and NDCG@10 equal to 1, we think
that AR-Miner is as effective as SwiftKey feedback forum.

 

Rank Votes User Feedback Status 

1 5711 More themes. More themes. More themes. STARTED 

2 4033 
Continuous input - glide your fingers across the 

screen / Flow 
STARTED 
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Figure 6: Top-10 Ranked Results Attained from SwiftKey
Feedback Forum (Ground Truth), Highlighted Feedback Has
Corresponding Topic Shown in Figure 5

Table 8: Ranking Results, K = 22, β = 0.6, wG =
(0.85, 0, 0.15), wI = (0.2, 0.2, 0.2, 0.2, 0.2)

AR-Miner (LDA) AR-Miner (ASUM)

Hit-rate 0.70 0.50

NDCG@10 0.552 0.437

Some observations can be found from Table 8. First,
for both metrics, LDA performs better than ASUM in our
framework. Second, by looking into the results, AR-Miner
(LDA) achieves 0.70 in terms of Hit-rate, which indicates
that AR-Miner is able to automatically discover the most
“informative” information effectively, and thus can be bene-
ficial for app developers, especially those who have not es-
tablished valid channels. Feedback highlighted in Figure 6
has corresponding topic in the radar chart shown in Figure 5.
For example, the ranked 1st topic discovered by AR-Miner
shown in Figure 5 (“more theme [1]”, where the number in
square bracket represents the rank in Figure 6) correspond-
s to the ranked 1st user feedback (“More themes. More
themes. More themes.”) shown in Figure 6.

5.5 Comparison with Manual Inspection and
Traditional Channels

We conduct two case studies to (i) compare AR-Miner
with manual inspection in terms of manpower input; and
(ii) analyze the advantages of AR-Miner over facilities used
in a traditional channel (i.e., online forum).

5.5.1 Manpower Input Analysis
In the first case study, we apply three schemes: (i) AR-

Miner with EMNB filter (256 training examples); (ii) AR-
Miner with NB filter (500 training examples); and (iii) pure-
ly manual inspection, respectively, to the test set of the Face-
book dataset shown in Table 4 (2000 examples). We record-
ed the approximate manpower input (of the first author) for
finding the most “informative” information by these three
schemes2. For simplicity, we ignore the performance differ-
ence between AR-Miner and manual inspection. Figure 7(a)
presents the comparison results.

2For purely manual inspection, we recorded the efforts spent
on sampled data, and then estimated the total man-hours.
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Figure 7: Evaluation Results on “Facebook”. (a) manpower
comparison with manual inspection, (b) comparison between
EMNB and NB with varied training data.

Some observations can be found from the results shown
in Figure 7(a). First, we find that AR-Miner (EMNB filter,
0.5 man-hours) is much more efficient than purely manual
inspection (7.4 man-hours). The reason is AR-Miner only re-
quires humans to label some training data, and can work au-
tomatically after the filter has been built. Second, AR-Miner
(NB) needs more human efforts than AR-Miner (EMNB), s-
ince building a NB filter whose performance is comparable to
a EMNB filter requires manually labeling more training data
(500 and 256 examples for NB and EMNB, respectively, in
this case study). We explain it with the results shown in Fig-
ure 7(b). Following the same setup described in paragraph
2 of Section 5.3, Figure 7(b) shows the average F-measure
of NB and EMNB under varying amounts of training data
(Facebook). It is obvious that, when the F-measure score is
fixed, NB always requires more training data (human effort-
s) than EMNB (the results are similar for other datasets,
check details on our website). Therefore, we choose EMNB
in AR-Miner to reduce human efforts as much as possible.

5.5.2 Comparison with an Online Forum
Following the same setup of SwiftKey Keyboard described

in paragraph 3 of Section 5.4, we conduct a case study to
analyze the advantages of AR-Miner over a traditional chan-
nel, i.e., online forum (SwiftKey feedback forum).

First of all, from user reviews, AR-Miner has the abili-
ty to discover fresh “informative” information that does not
exist in the SwiftKey feedback forum. Take the ranked 1st
topic “more theme” shown in Figure 5 as an example. Fig-
ure 8(a) shows more review instances in the top-10 list of
“more theme”. The top 1 ranked review shown in Figure
8(a) and the ranked 1st user feedback shown in Figure 6
are semantically the same. Moreover, we observe that the
ranked 10th review (“...., or support for third party themes”)
is only discovered by AR-Miner, which offers app developers
new suggestions concerning the topic “more theme”. This
kind of new information is beneficial to developers, since it
may inspire them to further improve their apps.

Second, AR-Miner can provide app developers deep and
more insights than SwiftKey feedback forum by flexibly ad-
justing the weight vectors of wG and wI . For example, as
described in Section 5.4, SwiftKey feedback forum only sup-
port a user voting mechanism (like Volume in wG) to rank
the user feedback, while AR-Miner can achieve it from differ-
ent angles. If setting wG = (0.0, 0.0, 1.0) (indicates groups
are ranked only according to AvgRating), the ranking of
“more theme” shown in Figure 5 drops from 1 to 22, which
implies that it’s not a kind of critical and urgent problem
to users. If setting wG = (0.0, 1.0, 0.0) (indicates groups

Topic: “more theme” Score 
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Just wish you had more themes or ability 
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Figure 8: Unique Information Offered by AR-Miner

are ranked only according to T imeSeries), the ranking of
“more theme” drops from 1 to 18. The time series pattern
of “more theme” in this case can be automatically visualized
as shown in Figure 8(b), which helps app developers easily
understand that it’s a kind of existing problem.

In sum, this case study implies that even for those app
developers who have already established some traditional
channels, AR-Miner can be a beneficial compliment.

6. LIMITATIONS AND THREATS TO VA-
LIDITY

Despite the encouraging results, this work has two poten-
tial threats to validity. First, the authors are not profes-
sional app developers, and thus the defined category rules
of informativeness as summarized in Figure 1 might not be
always true for real app developers. In this paper, we have
attempted to alleviate this threat by (i) studying what kinds
of user feedback are real app developers concerned with; and
(ii) exploiting real app developers’ decisions as the ground
truth for evaluation. The second threat relates to the gener-
ality of our framework. We validate our framework on user
reviews of four Android apps from Google Play. It is unclear
that if our framework can attain similar good results when
being applied to other kinds of Android apps (e.g., apps in
Amazon Appstore) and apps on other platforms (e.g., iOS).
Future work will conduct a large-scale empirical study to
address the threat. Besides, another limitation of our work
is that we only choose A = {Text,Rating, T imestamp} as
mentioned in Section 3, but a real app marketplace may have
more features of user reviews (e.g., Device Name in Google
Play, Amazon Verified Purchase in Amazon Appstore). The
impact of these specific features is unknown, but our frame-
work is rather generic and extensible to incorporating more
features in future work.

7. CONCLUSION
This paper presented AR-Miner, a novel framework for

mobile app review mining to facilitate app developers ex-
tract the most “informative” information from raw user re-
views in app marketplace with minimal manual effort. We
found encouraging results from our extensive experiments
and case studies, which not only validates the efficacy but
also shows the potential application prospect of AR-Miner.
We also discuss some limitations along with threats to va-
lidity in this work, and plan to address them in the future.
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