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Abstract

We propose a novel group regularization
which we call exclusive lasso. Unlike the
group lasso regularizer that assumes co-
varying variables in groups, the proposed ex-
clusive lasso regularizer models the scenario
when variables in the same group compete
with each other. Analysis is presented to il-
lustrate the properties of the proposed reg-
ularizer. We present a framework of kernel
based multi-task feature selection algorithm
based on the proposed exclusive lasso regular-
izer. An efficient algorithm is derived to solve
the related optimization problem. Exper-
iments with document categorization show
that our approach outperforms state-of-the-
art algorithms for multi-task feature selec-
tion.

1 INTRODUCTION

Group regularizers like group lasso (Yuan and Lin
2005) have been extensively studied in both the statis-
tics and machine learning fields. The objective of
group lasso is to select a group of features simultane-
ously for a given task(s). The key assumption behind
the group lasso regularizer is that if a few features
in a group are important, then most of the features
in the same group should also be important. How-
ever, in many real-world applications, we may come
to the opposite observation. Consider the problem
of multi-category document classification. The exist-
ing approaches for multi-task feature selection usually
assume a positive correlation among the categories,
namely, when one keyword is important for several

Appearing in Proceedings of the 13th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2010, Chia Laguna Resort, Sardinia, Italy. Volume 9 of
JMLR: W&CP 9. Copyright 2010 by the authors.

categories, it is also expected to be important for the
other categories. This positive correlation is usually
captured by a group lasso regularizer, where a group is
defined for every word w to include the feature weights
of all categories for w. However, when our objective
is to differentiate the related categories, we may ex-
pect a negative correlation among categories, namely,
if word w is deemed to be important for one category,
it becomes less likely for w to be an important word
for the other categories. It is clear that such a nega-
tive correlation violates the assumption made by most
of the existing approaches for multi-task feature selec-
tion. Another example is visual object recognization
where the signature visual patterns of one object class
tend to be less useful for identifying objects of the
other classes.

In order to capture the negative correlation among cat-
egories, we propose the exclusive lasso regularizer. Dif-
ferent from the group lasso regularizer, if one feature
in a group is given a large weight, the exclusive lasso
regularizer tends to assign small or even zero weights
to the other features in the same group. We present
a simple analysis to verify the exclusive nature of the
proposed regularizer. Based on the proposed exclu-
sive lasso regularizer, we present a framework for ker-
nel based multi-task learning. An efficient algorithm
is derived to solve the related optimization problem.
Empirical studies with document categorization verify
that the proposed regularizer is effective for multi-task
feature selection.

2 RELATED WORK

We briefly review the related work in group regular-
ization and multi-task feature selection.

2.1 GROUP REGULARIZATION

Group lasso (Yuan and Lin 2005) has been studied
extensively and applied to a number of machine learn-
ing problems. It uses the ℓ1 norm, which is the-
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oretically proven to generate sparse solutions (Tib-
shirani 1996), to select groups of variables that are
grouped by the ℓ2 norm. In the same vein, new reg-
ularizers have been proposed for grouped and hierar-
chical selection of variables. Zou and Hastie (2005)
and Kim et al. (2006) combined ℓ1 and ℓ2 norm to
form a more structured regularization. In (Kowalski
et al. 2009, Kowalski 2009), the authors generalized the
group lasso by exploring the mixed norm for combin-
ing groups of variables. Zhao et al. (2009) further ex-
tended the idea of group lasso and proposed a general
Composite Absolute Penalties (CAP) family, which al-
lows for (i) different norms for combining variables
within the same groups, and (ii) overlapping in vari-
ables between groups. Let β = (β1, · · · , βp)

⊤ be the p
variables to be regularized. Given the grouping struc-
ture G = {Gk ⊂ {1, . . . , p}, k = 1, · · · ,K}, and a vec-
tor of norm parameters γ = (γ0, γ1, · · · , γK) ∈ R

K+1
+ ,

the regularizer TG,γ(β) is defined as follows

TG,γ(β) =
∑

k

(

∑

m∈Gk

|βm|
γk

)γ0/γk

Although our work can be viewed as a special case of
mixed norm and the general CAP family, this study
is distinguished from the existing ones in two aspects:
(i) Unlike the previous studies that only emphasize the
sparsity of solutions caused by the regularization, our
in depth analysis also reveals that the exclusive lasso is
able to introduce competitions among variables within
the same group, which is a key property for capturing
the negative correlation among tasks; (ii) We apply the
exclusive lasso regularization method to kernel based
multi-task learning. It results in a mini-max optimiza-
tion problem that is beyond the capability of the exist-
ing algorithms for group regularization. We present an
efficient algorithm for solving the related min-max op-
timization based on the subgradient descent method.

2.2 MULTI-TASK FEATURE SELECTION

Multi-task Learning (MTL) (Caruana 1997) has
proven to be useful both theoretically (Baxter 2000,
Ben-david and Schuller 2003, Ando and Zhang 2005)
and experimentally (Evgeniou et al. 2005, Jebara 2004,
Torralba et al. 2004, Chen et al. 2009). Most MTL al-
gorithms assume a positive correlation among tasks.
For example, Evgeniou et al. (2005), Bakker and Hes-
kes (2003) assume that functions for different tasks are
similar to each other; Baxter (2000), Ben-david and
Schuller (2003) and Caruana (1997) assume a common
representation of data that is shared by all the tasks.

Many algorithms have been proposed for multi-task
feature selection, an important problem in multi-task
learning. Xiong et al. (2007) imposed an automatic rel-

evance determination prior on the hypothesis classes
associated with individual tasks and regularized the
variance of the hypothesis parameters. Argyriou et al.
(2006) and Obozinski et al. (2006) used the ℓ1,2 norm,
similar to group lasso, for regularizing features of dif-
ferent tasks. It encourages multiple predictors to have
similar parameter sparsity patterns. Jebara (2004) in-
troduced a common vector of binary feature selection
switches shared by all the tasks. Lee et al. (2007) in-
troduced meta-features for feature selection in related
tasks. Chen et al. (2009) assumed a shared feature
space in a linear form of low-dimentional feature map
across multiple tasks. All the existing algorithms for
multi-task feature selection assume a positive correla-
tion among tasks, and aim to learn a common subset
of features for all tasks. In contrast, our proposed ex-
clusive lasso regularizer assumes a negative correlation
among tasks, and introduces competition among vari-
ables within the same group.

3 EXCLUSIVE LASSO

In this section, we first present the formulation of
the exclusive lasso regularizer and its basic properties.
Then we apply the exclusive lasso to multi-task learn-
ing in which each task is formulated as a multiple ker-
nel learning problem. We derive an efficient algorithm
to solve the related optimization problem.

Notations: We use index i for instances, j for fea-
tures, and k for tasks. We use n to denote the total
number of instances, d for the number of features, and
m for the number of tasks.

3.1 MULTI-TASK LEARNING WITH

LINEAR CLASSIFIERS

We consider a multi-task classification problem. Let
D = {(xi, yi), i = 1, . . . , n} be the training data, where
xi ∈ R

d is the input pattern and yi = (y1i , . . . , y
m
i ) ∈

{−1,+1}m is the assigned categories with yki = 1
if xi is assigned to category k and yki = −1 oth-
erwise. For simplicity, we assume a linear classifier
fk(x) = β⊤

k x where βk = (β1
k, . . . , β

d
k) ∈ R

d is the
combination weights. We thus have the following op-
timization problem for multi-task learning:

min
β

1

2
V (β) + C

n
∑

i=1

m
∑

k=1

ℓ(yki , fk(xi)) (1)

where ℓ(z) is a loss function that measures the mis-
match between yki and the predicted value fk(xi);
V (β) is a regularizer that controls the complexity of
combination weights β. We assume a competitive na-
ture among the features shared by all the tasks, i.e., if
a very large weight is assigned to the jth feature for
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one task, we expect the weights for the same feature
to be small or even zero for the other tasks. To this
end, we introduce the following regularizer:

V (β) =

d
∑

j=1

(

m
∑

k=1

∣

∣

∣β
j
k

∣

∣

∣

)2

(2)

As indicated in the above expression, we introduce an
ℓ1 norm to combine the weights for the same feature
used by different tasks and an ℓ2 norm to combine the
weights of different features together. Since ℓ1 norm
tends to achieve a sparse solution, the construction in
V (β) essentially introduces a competition among dif-
ferent tasks for the same feature. We refer to the above
regularizer as exclusive lasso. Using the exclusive lasso
as a regularizer, we have the overall optimization prob-
lem written as

min
β

1

2

d
∑

j=1

(

m
∑

k=1

∣

∣

∣β
j
k

∣

∣

∣

)2

+ C
n
∑

i=1

m
∑

k=1

ℓ
(

yki , fk(xi)
)

An alternative approach to the regularizer shown
above is to introduce a constraint for β:

min
β

n
∑

i=1

m
∑

k=1

ℓ
(

yki , fk(xi)
)

s.t.

√

√

√

√

d
∑

j=1

(

m
∑

k=1

∣

∣

∣β
j
k

∣

∣

∣

)2

≤ γ

where γ is a predefined constant.

3.2 UNDERSTANDING THE EXCLUSIVE

LASSO REGULARIZER

One of the fundamental questions is how the exclu-
sive lasso regularizer introduces competitions among
different tasks for the same feature. To illustrate this
point, we consider the following projection problem,

min
β∈G
|β − β̄|22 (3)

where β̄ is an existing solution, domain G is defined as

G =

{

β = (β1, . . . , βm)⊤ ∈ R
m×d :

√

√

√

√

d
∑

j=1

(

m
∑

k=1

|βj
k|
)2

≤ γ

}

The projection problem in (3) directly demonstrates
how the domain G shapes a solution β̄, which essen-
tially illustrates the effect of the exclusive lasso regu-
larizer. Projection is an important operation that is
used by many optimization algorithms (e.g., subgradi-
ent descent). In addition, important problems such as
constrained least square regression can be cast into a
projection problem (Bishop 2006).

We first convert (3) into a convex-concave problem:

min
β

max
λ≥0

|β − β̄|22 + 2λ





√

√

√

√

d
∑

j=1

(

m
∑

k=1

∣

∣

∣β
j
k

∣

∣

∣

)2

− γ



 (4)

The following proposition allows us to simplify the
problem in (4).

Proposition 1. Given a vector β = (β1, . . . , βm)⊤

where βk ∈ R
d, we can rewrite

√

∑d
i=1

(
∑m

k=1

∣

∣βi
k

∣

∣

)2

as
√

√

√

√

d
∑

j=1

(

m
∑

k=1

∣

∣

∣β
j
k

∣

∣

∣

)2

= max
α∈∆

α⊤β

where domain ∆ is defined as

∆ =

{

α = (α1, . . . , αm)⊤ : αk = (α1
k, . . . , α

d
k) ∈ R

d,

k = 1, . . . ,m,

d
∑

j=1

max
1≤k≤m

[αj
k]

2 ≤ 1

}

Using the above proposition, we have the following
lemma that simplifies problem (4).

Lemma 1. Problem (4) is equivalent to the following
optimization problem

min
τ







2γ|τ |2 +

d
∑

j=1

m
∑

k=1

[|β̄j
k| − τj ]

2
+







(5)

where [x]+ = max(x, 0). The optimal solution of β is
computed as

βj
k = [β̄j

k − τj ]+, j = 1, . . . , d, k = 1, . . . ,m

Proof. Using Proposition 1, we rewrite (4) as

max
α,λ

min
β
|β − β̄|22 + 2λ

(

α⊤β − γ
)

Taking the minimization over β, we have

max
α,λ







−2λγ − |β̄ − λα|22 :

d
∑

j=1

max
1≤k≤m

[αj
k]

2 ≤ 1







(6)

with β = β̄ − λα. To simplify our analysis, we define
τj = max

1≤k≤m
λ|αj

k| , and Eqn. (6) can be written as

min
τ,λ







2λγ +
d
∑

j=1

m
∑

k=1

[|β̄j
k| − τj ]

2
+ : |τ |2 ≤ λ







or

min
τ







2γ|τ |2 +

d
∑

j=1

m
∑

k=1

[|β̄j
k| − τj ]

2
+
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As indicated by the above lemma, whenever β̄j
k is

smaller than threshold τj , we have βj
k become zero.

The following proposition shows a sufficient condition
for βj

k = 0.

Proposition 2. For any feature j, we have βj
k = 0 if

|β̄j
k| ≤

(

∑m
k=1 |β̄

j
k| − γ

)

/m.

Proof. We consider the first order optimality condition
for τ , i.e.,

γ
|τj |

|τ |2
+

m
∑

k=1

[|β̄j
k| − τj ]+∂τj [|β̄

j
k| − τj ]+ = 0

where ∂xf(x) is the subgradient of function f(x). No-
tice that ∂τj [|β̄

j
k| − τj ]+ ∈ [−1, 0], and is −1 when

|β̄j
k| < τj . Hence, the above optimality condition im-

plies that

m
∑

k=1

[|β̄j
k| − τj ]+ ≤ γ

|τj |

|τ |2
≤ γ

Since [|β̄j
k| − τj ]+ ≥ |β̄

j
k| − τj , we have

∑m
k=1 |β̄

j
k| −

mτj ≤ γ, which leads to the result in the proposition.

As indicated in the above proposition, when some
tasks take significantly smaller weights for feature j
than the other tasks, the regularizer will enforce the
weights of feature j to be zero for these tasks, leading
to the competition of feature j among tasks. Param-
eter γ is used to control the degree of domination. A
large γ requires a large gap among the weights for the
same feature before the small weights can be reduced
to zero; similarly, a small γ allows us to reduce small
weights to zero even when the gap among the weights
for the same feature is still small.

3.3 MULTI-TASK LEARNING WITH

KERNEL CLASSIFIERS

We extend the exclusive lasso discussed above to the
kernel case. We follow the Multiple Kernel Learn-
ing scheme (Lanckriet et al. 2004, Bach et al. 2004,
Sonnenburg et al. 2006) and use the proposed reg-
ularizer to combine multiple kernels. In particular,
we consider there are d kernels at our disposal, de-
noted by W = {W j ∈ S

n
+, j = 1, . . . , d}. We as-

sume that each kernel matrix in W is appropriately
normalized (e.g., tr(W j) = 1). For each task k, we
assume that its kernel matrix, denoted by Kk, is a
linear combination of the kernel matrices in W , i.e.,
Kk =

∑d
j=1 λ

j
kW

j , where λk = (λ1
k, . . . , λ

d
k) ∈ R

d
+ is

the combination weights. For each individual task, the
learning of combination weights λk, often referred to

as multiple kernel learning, is cast into the following
optimization problem:

min
λk∈R

d
+

max
γk∈[0,C]n

{

γ⊤
k 1−

1

2
(γk ◦ zk)

⊤
(

d
∑

j=1

W jλj
k

)

(γk ◦ zk)

}

where zk = (yk1 , y
k
2 , . . . , y

k
n) and ◦ is the element-wise

dot product. Similar to the linear case, by assum-
ing the exclusive nature among tasks in competing for
kernels in W , we introduce the exclusive lasso for reg-
ularizing the kernel weights λ = (λ1; . . . ;λm) assigned
to different tasks, leading to the following optimization
problem:

min
λk∈R

d
+

max
γk∈[0,C]n

r

2

d
∑

j=1

(

m
∑

k=1

λj
k

)2

(7)

+

m
∑

k=1

(

γ⊤
k 1−

1

2
(γk ◦ zk)

⊤





d
∑

j=1

W jλj
k



 (γk ◦ zk)

)

where r is a predefined parameter that weights the
importance of the regularizer. The following theorem
shows the sparsity in the solution of λ and the compe-
tition among tasks for kernels caused by the exclusive
lasso regularizer.

Theorem 1. Provided the solution γ, for each kernel
W j, we have λj

k > 0 only if

k = argmax
1≤k′≤m

(γk′ ◦ zk′)⊤W j(γk′ ◦ zk′)

This theorem follows directly from the result in Propo-
sition 4, which will be stated later.

3.4 ALGORITHM

We focus on solving the problem in (7). A straightfor-
ward approach is the subgradient method. Define

g(γ, λ) =
r

2

d
∑

j=1

(

m
∑

k=1

λj
k

)2

+
m
∑

k=1



γ⊤
k 1−

1

2
(γk ◦ zk)

⊤
[

d
∑

j=1

W jλj
k

]

(γk ◦ zk)





We also define f(γ) = min
λk∈R

d
+

g(γ, λ). Hence, the prob-

lem in (7) can be viewed as a maximization problem:

γ = argmax
γk∈[0,C]n

f(γ).

We thus can apply the subgradient ascent approach
to directly maximizing f(γ). In each iteration of the
subgradient ascent method, we compute the gradient
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of f(γ), denoted by ∇f(γ), and the new solution is
obtained by moving the existing solution γ along the
direction of ∇f(γ), i.e., γ ← πG (γ + s∇f(γ)), where
G = {γ = (γ1, . . . , γm)⊤ ∈ R

m×n : γk ∈ [0, C]n, k =
1, . . . ,m} and πG(x) projects solution x onto the do-
main G. Evidently, there are two key parameters that
need to be computed efficiently, i.e., step size s and
∇f(γ). The following proposition allows us to com-
pute ∇f(γ), similar to (Xu et al. 2008).

Proposition 3. We have the gradient of f(γ) com-
puted as

∇γk
f(γ) = 1−





d
∑

j=1

λj
k

(

W j ◦ zkz
⊤
k

)



 γk (8)

where λj
k is the minimizer of g(γ, λ), i.e.,

λ = argmin
λk∈R

d
+

g(γ, λ).

As indicated in the above proposition, to compute the
gradient of f(γ), it is important to efficiently com-
pute λ that minimizes g(γ, λ). To this end, we rewrite
g(γ, λ) to highlight its dependency on λ:

g(γ, λ) = a−
m
∑

k=1

d
∑

j=1

bjkλ
j
k +

r

2

d
∑

j=1

(

m
∑

k=1

λj
k

)2

(9)

where

a =

m
∑

k=1

γ⊤
k 1, bjk =

1

2
(γk ◦ zk)

⊤W j(γk ◦ zk) (10)

In order to minimize g(γ, λ) with respect to λ, we de-
fine hj as

hj = −
m
∑

k=1

bjkλ
j
k +

r

2

(

m
∑

k=1

λj
k

)2

(11)

Since g(γ, λ) = a+
∑d

j=1 hj and each hj only involves

variables λj
k, k = 1, . . . ,m, we could optimize hj sep-

arately. The following proposition gives the optimal
solution that minimizes hj .

Proposition 4. Assume bjk 6= bjk′ for any k 6= k′ and

any j. The optimal λj
k, k = 1, . . . ,m that minimizes

hj is

λj
k =

{

λ̄j k = argmax
1≤k′≤m

bjk′

0 otherwise

where λ̄j is computed as λ̄j = 1
r max
1≤k≤m

bjk.

Proof. For the sake of simplicity, we drop index j and
consider a general problem as follows

min
λ∈Rm

+

−

m
∑

k=1

bkλk +
r

2

(

m
∑

k=1

λk

)2

We define λk = ηk + λ̄ and λ̄ =
∑m

k=1 λk/m. We
therefore have ηk ≥ −λ̄ and

∑m
k=1 ηk = 0. Thus the

original problem can be transformed into a problem of
λ̄ and η, i.e.,

min
λ̄,η

rm2

2
λ̄2 −

m
∑

k=1

bkηk − λ̄

m
∑

k=1

bk

s. t. λ̄ ≥ 0,

m
∑

k=1

ηk = 0

ηk ≥ −λ̄, k = 1, . . . ,m

We consider the solution for η when λ̄ is fixed, which
leads to the following linear programming problem:

min
η

−

m
∑

k=1

bkηk

s. t.

m
∑

k=1

ηk = 0, ηk ≥ −λ̄, k = 1, . . . ,m

Since bk ≥ 0, it is clear that the optimal solution for
the above linear programming problem is

ηk =

{

(m− 1)λ̄ k = argmax
1≤k′≤m

bk′

−λ̄ otherwise

Using the solution for η, we have the following problem
for λ̄

min
λ̄≥0

rm2

2
λ̄2 −mλ̄ max

1≤k≤m
bk

It is obvious that λ̄ = max
1≤k≤m

bk/(rm).

Note that Proposition 4 only addresses the situ-
ation when there is a unique element for k =
argmax1≤k′≤m bjk′ . Similar results can be easily de-
rived when multiple elements tie for the maximum
value of bjk. This proposition clearly demonstrates
the competition of kernels among tasks resulting from
the exclusive lasso regularizer. Using the result from
Proposition 4, we can efficiently compute the optimal
λ for a given γ, which allows us to efficiently compute
the gradient of f(γ) in Eqn. (8).

We determine the step size s by the backtracking line
search (Boyd and Vandenberghe 2004). Finally, the
duality gap is used to check the convergence. Given
the solution λ∗ and γ∗, the duality gap is defined as

δ = min
λk∈R

d
+

g(γ∗, λ)− max
γk∈[0,C]n

g(γ, λ∗), (12)
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Table 1: Metadata of the Yahoo datasets. m, N ,
“MaxNPI” and “MinNPI” denote the number of sub-
categories, the total number of instances, the maxi-
mum and minimum number of positive instances for
each subcategory respectively.

Dataset m N MaxNPI MinNPI

Arts 19 7441 1838 104
Business 17 11182 9723 110
Computers 23 12371 6559 108
Education 14 11817 3738 127
Entertainment 14 12691 3687 221
Health 14 9109 4703 114
Recreation 18 12797 2534 169
Reference 15 7929 3782 156
Science 22 6345 1548 102
Social 21 11914 5148 104
Society 21 14507 7193 113

where minλ∈R
d
+
g(γ∗, λ) can be computed efficiently us-

ing Proposition 4, and maxγk∈[0,C]n g(γ, λ∗) is solved
by a kernel SVM.

4 EXPERIMENTS

We evaluate the efficacy of the proposed exclusive
lasso regularizer by multi-task feature selection. We
use the Yahoo dataset (Ueda and Saito 2003) in our
experiments. This multi-topic web page categoriza-
tion dataset was collected from 11 top-level categories
(“Arts”, “Business”, “Computers”, etc.) in the “ya-
hoo.com” domain. Each top-level category is fur-
ther divided into a number of second-level subcate-
gories. Each subcategory is an individual task in our
multi-task classification algorithm. We preprocessed
the datasets by removing topics with less than 100
documents and documents with no topics. 300 key-
words are randomly sampled for each dataset after the
high-frequency and low-frequency terms are removed.
Metadata of the datasets can be found in Table 1. By
constructing a kernel for each individual keyword, we
apply the proposed method for kernel based multi-task
learning to document categorization. Throughout this
study, a linear kernel is used by all the methods and for
all the experiments because it is proven to be effective
for document categorization.

4.1 EVALUATION

We use the following two algorithms as baselines in our
experiments to compare with the proposed exclusive
lasso algorithm:

• SVM feature selection (Bradley and Mangasar-
ian 1998). We train a linear SVM classifier for
each category and select the features that have
the largest absolute values in their coefficients.
Note that the SVM classifiers are trained inde-
pendently in this case, and therefore features are
selected independently for each task. We used two
kinds of SVMs: the L2-regularized SVM which
is most commonly used, and the L1-regularized
SVM (Zhu et al. 2004) which enforces sparsity of
the classifiers.

• Multi-task Feature Learning (MTFL) (Argyriou
et al. 2006). MTFL used the group lasso to jointly
penalize the features used by different tasks. It
encourages multiple predictors to have similar pa-
rameter sparsity patterns, and aims to learn a
subset of features common to all the tasks. We
use the hinge loss function in the MTFL algo-
rithm because our work follows directly the SVM
framework.

To evaluate the efficacy of feature selection, we ran-
domly sample 10 examples from each subcategory for
training and use the remaining documents for testing.
We use a small number of training examples because
it is well known that in document categorization, with
sufficient numbers of training documents, any feature
selection method works well. After training the clas-
sification models, we choose the top features for each
subcategory that have the largest weights. An SVM
classifier is constructed for each subcategory by using
the selected features, and its classification accuracy
computed over the test documents is used to evaluate
the efficacy of feature selection algorithms. The hy-
pothesis is that the more effective the feature selection
algorithm is, the more accurate the SVM classifier will
be. The area under the receiver operating character-
istic curve (AUC) (Egan 1975) is used in our study as
performance metric. We vary the number of selected
features from one to twenty, and repeat each experi-
ment ten times. The reported AUC for each dataset
is averaged over ten random trials.

The regularization constant C of SVM is set to be 10
for all the SVM classifiers in the experiments accord-
ing to our experience. The regularizer parameter r in
Eqn. (7) is set to be 1 in all the experiments. Note
that we did not employ cross validation to determine
the parameters because of the small number of train-
ing samples.

4.2 RESULTS

Figure 1 shows the average AUC of the 11 datasets of
the Yahoo data collection for the three feature selec-
tion methods in comparison. We observe that the pro-
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Figure 1: AUC of exclusive lasso (eLASSO), feature selection with SVM and L1-regularized SVM (L1SVM), and
MTFL on the 11 datasets of Yahoo data collection. The x axis is the number of selected features from each
category used in the testing phase, and the y axis is the corresponding AUC measure. All performances are
averaged for 10 runs each with a random sampling of training instances. When there are not expected number
of features due to sparsity, some features with 0 weight are randomly sampled.

posed algorithm for multi-task feature selection out-
performs the other three baseline algorithms. This
is not surprising given the topic structure in the Ya-
hoo data collection. Although documents within each
dataset belong to a common topic and therefore are
expected to share many common terms, our goal is to
classify documents in each dataset further into sub-
categories. As a result, we need to select discrimina-

tive terms that are sufficient to differentiate the sub-
categories, not the terms that are commonly shared
among subcategories. These discriminative terms are
more likely to be discovered by the proposed exclu-
sive lasso algorithm since a discriminative term for a
given subcategory is unlikely to be also discriminative
for another subcategory. Finally, we observe that the
advantage of the proposed algorithm over the other
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comparative methods tends to diminish as the selected
number of features is increased. This is within our ex-
pectation, as any feature selection method will work
well if we aim to select most of the features.

5 CONCLUSIONS

We introduce a new regularization which we call exclu-
sive lasso in this paper. We give detailed theoretical
analysis to illustrate that the proposed exclusive lasso
regularizer is able to introduce competitions among
variables and thus generate sparse solutions. This reg-
ularizer is applied to a multi-task feature selection set-
ting and an efficient algorithm is given to solve the
related optimization problem. Empirical study shows
that our proposed algorithm outperforms the baseline
algorithms on benchmark datasets.
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