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Learning a good distance metric plays a vital role in many multimedia retrieval and data mining
tasks. For example, a typical content-based image retrieval (CBIR) system often relies on an
effective distance metric to measure similarity between any two images. Conventional CBIR
systems simply adopting Euclidean distance metric often fail to return satisfactory results mainly
due to the well-known semantic gap challenge. In this paper, we present a novel framework
of Semi-Supervised Distance Metric Learning for learning effective distance metrics by exploring the
historical relevance feedback log data of a CBIR system and utilizing unlabeled data when log data
are limited and noisy. We formally formulate the learning problem into a convex optimization task
and then present a new technique, named as “Laplacian Regularized Metric Learning” (LRML).
Two efficient algorithms are then proposed to solve the LRML task. Further, we apply the
proposed technique to two applications. One direct application is for Collaborative Image Retrieval
(CIR), which aims to explore the CBIR log data for improving the retrieval performance of CBIR
systems. The other application is for Collaborative Image Clustering (CIC), which aims to explore
the CBIR log data for enhancing the clustering performance of image pattern clustering tasks. We
conduct extensive evaluation to compare the proposed LRML method with a number of competing
methods, including 2 standard metrics, 3 unsupervised metrics, and 4 supervised metrics with side
information. Encouraging results validate the effectiveness of the proposed technique.

Categories and Subject Descriptors: H3.8fgrmation Systems]: Information Search and Retrieval; H.2.8
[Database M anagement]: Database ApplicationstData mining

General Terms: Algorithm, Experimentation
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timedia data clustering
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1. INTRODUCTION

Determination of appropriate distance metrics plays a kéyin many multimedia appli-
cations, including multimedia retrieval and multimediaaleining tasks. For example,
choosing a valid distance metric is often critical to builglan effective content-based im-
age retrieval (CBIR) system [Smeulders et al. 2000; Lew.e2@06]. For a regular CBIR
system, in order to measure the visual distance/similaetyveen a query image and an
image in database, the CBIR system has to predefine somaatistaetric for similar-
ity measure, e.g. Euclidean distance is often adopted.dBe<LBIR, for unsupervised
multimedia data mining tasks, Euclidean distance is oft@dun conjunction with clus-
tering algorithms, such as k-means clustering [Jain et989]l Unfortunately, Euclidean
distance is often inadequate for these applications piiynaecause of the well-known
semantic gap between low-level features and high-levehséins [Smeulders et al. 2000].

In response to the semantic gap challenge, relevance feletaa been extensively stud-
ied in CBIR [Rui et al. 1997; Rui et al. 1998; Tong and ChangZ®lng and Zhong 2003;
Hoi and Lyu 2004a; Tao and Tang 2004]. In general, relevaeedldack aims to interac-
tively improve the retrieval performance by learning witets’ judgements on the retrieval
results. More specifically, for a CBIR retrieval task, thelRBystem first returns a short
list of top ranked images with respect to a user’s query bgale retrieval approach based
on Euclidean distance measure, and then requests the umsakérelevance judgement on
the retrieval results. Based on the user’s feedback, th&GBstem is expected to learn an
effective ranking function with the labeled data and retienore relevant images for the
retrieval task. In the past decade, extensive studies Henersthat relevance feedback is
a powerful technique to improve the CBIR performance.

Despite the broad interest, regular relevance feedbabkigaes often suffer from some
drawbacks. The most obvious one is the communication oaérimeposed on the systems
and users. CBIR systems with relevance feedback oftennequion-trivial number of
iterations before improved search results are obtainésinakes the process inefficient
and unattractive for online applications. A useful CBIRteys should minimize the times
that it needs to engage the usenpinrlinefeedback.

Recently, an increasing number of studies have attemptatiatok the above challenge
by exploring historical relevance feedback log data [HaleP006; Si et al. 2006]. Such
systems accumulate feedback information collected inipialimage retrieval sessions
possibly conducted by multiple users for different seaschets. We refer to a paradigm of
utilizing CBIR log data in animage retrieval task as “Cothative Image Retrieval” (CIR).
In literature, there are two kinds of CIR approaches for esipy the historical CBIR
log data. One is to reduce the number of relevance feedbaekidns by devising the
log-based relevance feedbaechnique [Hoi et al. 2006] that improves regular relevance
feedback techniques by utilizing the historical log dathe Dther solution is to learn an
effective distance metric for bridging the semantic gap liging the historical feedback
log data [Si et al. 2006; Hoi et al. 2006; Hoi et al. 2008]. listhaper, we focus on
investigating distance metric learning techniques foringrthe historical feedback log
data toward two applications. One direct application is GIRd the other is to enhance
an unsupervised image clustering task by utilizing the latadwhich is referred to as
“Collaborative Image Clustering” (CIC).
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Recently, learning distance metrics from log data or calkde information” [Xing
et al. 2002] has been actively studied in machine learninigattern recognition commu-
nities [Xing et al. 2002; Bar-Hillel et al. 2005; Hoi et al. @8]. Despite active research
efforts in the past few years, existing distance metricrigay techniques are usually sen-
sitive to noise and unable to learn a reliable metric whetimgavith noisy data or only
a small amount of log data, which are two common issues in éhéworld relevance
feedback log data. In this paper, we propose a novel framewfosemi-supervised dis-
tance metric learning, which incorporates unlabeled dathe distance metric learning
task. Specifically, we develop a novel technique of Lapla&lagularized Metric Learning
(LRML) to integrate the unlabeled data information throegtegularized learning frame-
work. We formally formulate the technique into an optimieattask and present two
efficient algorithms to solve the task. One is based a SemitefProgram (SDP) [Hoi
et al. 2008], which can efficiently find global optimum for divecale problems by exist-
ing convex optimization techniques, and the other is baged simple matrix inversion
algorithm, which can solve large-scale problems much mificently.

Here we highlight the major contributions of this paper:g hovel regularization frame-
work for distance metric learning and a new semi-supervinettic learning technique,
i.e., LRML; (2) two efficient algorithms to perform Laplaci&egularized Metric Learning
(LRML); (3) a comprehensive study of applying the LRML teajure to two applications:
collaborative image retrieval and collaborative imagestdting, through the exploration of
real CBIR log data; (4) an extensive experimental evalmatiocomparing our technique
with a number of competing distance metric learning methods

The rest of this paper is organized as follows. Section Zwmesirelated work. Section 3
formally defines the distance metric learning problem amgpses the framework of semi-
supervised distance metric learning. Section 4 preseaththproposed LRML technique
for the CIR application. Section 4 applies the proposedniple to a new application of
collaborative image clustering. Section 6 gives experiaervaluations on some testbeds
of real CBIR log data. Section 7 concludes this paper.

2. RELATED WORK

Our work is mainly related to two groups of research. One ésdtudies of exploring
users’ relevance feedback log data in CBIR. The other isuwtst metric learning research
in machine learning. We briefly review some representatiwekin both sides.

2.1 CBIR Feedback Log Mining

In recent years, there are some emerging research intéoesgploring historical log
data of user relevance feedback in CBIR. Hoi et al. [Hoi and 2004b; Hoi et al. 2006]
proposed a log-based relevance feedback technique wilosiyector machines (SVM)
by engaging user feedback log data in traditional onlinevaice feedback tasks. In the
solution, a small set of relevant and irrelevantimages egqielisged from users by online rel-
evance feedback. Based on the labeled images collecteglialdvance feedback sessions,
the images in the database that are similar to the currealddiexamples are included in
the pool of labeled data for training some retrieval modslgh as SVMs. In addition to
this work, some other solutions, such as the log-basedaet®/feedback with the coupled
SVM method [Hoi et al. 2005], was also proposed, in which pwerage in the database
is represented by two modalities, i.e., visual and log, #mahtan unified SVM model is
learned on the two modalities. Besides SVM based approatthe® were some other
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efforts in exploring log data with other machine learninghteiques, such as manifold
learning [He et al. 2004], which takes into consideratios lilg data when learning an
optimal mapping function via manifold learning. Finallgere are some research work on
studying weighting schemes for low-level visual featurisnaining user log data [Muller
et al. 2004]. In [Muller et al. 2004], similar to the TF-IDEleme in text retrieval [Salton
and Buckley 1988], the authors suggested a weighting sclgmeeploiting the log data
of user’s relevance judgments in CBIR.

Different from the foregoing previous work, some recentlsa have explored log data
for learning distance metrics [Si et al. 2006; Hoi et al. 2086i et al. 2008], which can
be applied to various applications. Following the samedatiia, our work in this paper
mainly investigates a new distance metric learning teamtqwards two real applications
through exploring users’ relevance feedback log data.

2.2 Distance Metric Learning

The other major group of related work is distance metricigay research in machine
learning, which can be further classified into three majeegaries. One category is unsu-
pervised learning techniques, most of which attempt to fimgtdlimensional embeddings
from high-dimensional input data. Some well-known techieijinclude classical Principal
Component Analysis (PCA) [Fukunaga 1990] and Multidimenal Scaling (MDS) [Cox
and Cox 1994]. In addition, some manifold-based approastuely nonlinear techniques,
such as Locally Linear Embedding (LLE) [Roweis and Saul 3@@@ Isomap [Tenenbaum
and de Silva andJohn C. Langford 2000].

Another category is supervised metric learning technifuedassification tasks. These
methods usually learn metrics from training data assotiatih explicit class labels.
The representative techniques include Fisher Linear Discant Analysis (LDA) [Fuku-
naga 1990] and some recently proposed methods, such ashdaifivod Components
Analysis (NCA) [J. Goldberger and Salakhutdinov 2005], Maally Collapsing Metric
Learning [Globerson and Roweis 2005], metric learning farde Margin Nearest Neigh-
bor classification (LMNN) [Weinberger et al. 2006], and LbBastance Metric Learn-
ing [Yang et al. 2006], etc.

Our work is closer to the third category, which learns metfiom log data of pair-
wise constraints, or called “side information” [Xing et @D02], in which each pairwise
constraint indicates if two examples are relevant (simitarirrelevant (dissimilar) in a
particular learning task. A popular DML approach was pregolisy Xing et al. [Xing et al.
2002], which formulated the task as a convex optimizatiabfam, and applied the tech-
nigue to clustering. Following their work, there are a grofipmerging DML studies. For
example, Relevant Component Analysis (RCA) learns a glbbehr transformation by
exploiting only equivalent constraints [Bar-Hillel et &005]. Discriminant Component
Analysis (DCA) improves RCA by incorporating negative coamts [Hoi et al. 2006].
Si et al. [Si et al. 2006] proposed a regularized metric legrmethod for CIR. Recently,
Lee et al. [Lee et al. 2008] studied a rank-based distanceaherrning method for CBIR.
Most existing work often learn only with side informationthdut exploring unlabeled
data. To overcome the limitations, this paper proposes alrsmmi-supervised distance
metric learning framework for learning effective and rblemetrics by incorporating un-
labeled data in the DML tasks [Hoi et al. 2008]. To the best wf knowledge, this is
the first work to explore unlabeled data explicitly for the DNasks in this category of
research.
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3. SEMI-SUPERVISED DISTANCE METRIC LEARNING
3.1 Problem Definition

Suppose we are given a set ofdata points in ann-dimensional vector spacé =
{x;}", CR™, and two sets of pairwise constraints among the data points:

S = {(xi, %) | x; andx; are judged to be relevant
D = {(x;,%;) | x; andx; are judged to be irrelevant

wheresS is the set ofsimilar pairwise constraints anB is the set ofdissimilar pairwise
constraints. Each pairwise constrairf,(x;) indicates if the two data points; andx; are
relevant or irrelevant judged by users in some applicatanext.

For any two given data poinss andx;, letd(x;, x;) denote the distance between them.
To compute the distance, |& € R™*™ be the distance metric, we can then express the
formula of distance measure as follows:

da(xi.%7) = [xi = x1lla = /(6 — ) TAGx: —x7) = /tr(Alxi — x;)(xi — x;)TX1)

where A is a symmetric matrix of sizex x m, andtr stands for thd@race operator. In
general,A is a valid metric if and only if it satisfies the non-negaftjitnd the triangle
inequality properties. In other words, the matAxmust be positive semi-definite (PSD),
i.,e., A = 0. Generally, the matriA parameterizes a family of Mahalanobis distances
on the vector spacR™. Specifically, when settind to be an identity matrid,,, x ..., the
distance in Eqn. (1) reduces to the regular Euclidean distaxote that Euclidean distance
metric assumes all variables are independent, the varamoss all dimensions is one and
that covariances among all variables are zero, a scenaiastthardly achieved in real
world. In practice, instead of adopting the regular Eudenetric, it is important and
more desirable to learn an optimal metric from the real deaahis end, we give a formal
definition of distance metric learning below.

DEFINITION 1. The distance metric learning (DML) problem is to learn anioyal
distance metric, i.e. a matriA € R™*™, from a collection of data pointS in a vector
spaceR™ together with a set of similar pairwise constraiitsind a set of dissimilar pair-
wise constraint$, which can be in general formulated into an optimizatiorktbslow:

glé%f(A,S,D,C) (2)

whereA is a positive semidefinite matrix arfds some objective function defined over the
given data.

Given the above definition, the crux of solving the DML prohlées in how to for-
mulate a proper objective functiohand then find an efficient algorithm to solve the op-
timization. In the following subsections, we will discussrge principles for formulating
appropriate optimization towards DML. We will then emplasthat it is important to
avoid overfitting when solving a real DML problem.

3.2 A Regularization Learning Framework

One common principle for metric learning is minimizethe distances between the data
points with similar constraints and meanwhilem@aximizethe distances between the data
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points with dissimilar constraints. We refer it taran-max learning principle. Some ex-
isting DML work can be interpreted within the min-max leargframework. For example,
[Xing et al. 2002] formulated the DML problem as a convex pptiation problem:

min > lxi—xjl[a subjectto Y [xi—x,lla >1 3)
(xi,x;)€ES (xi,%x;)€ED

This formulation attempts to find the metdcby minimizing the sum of squared distances
between the similar data points and meanwhile enforcingtineof distances between the
dissimilar data points larger than Although the above method has been shown effective
for some experimental tasks of artificial side informatibmight not be suitable to solve
real-world applications, such as CIR, where the log datddcbe rather noisy and quite
limited at the beginning stage of system development. |ote, the above DML method
is likely to overfit the log data in real-world applications.

To develop DML techniques for practical applications, teeand principle we would
like to highlight is theregularization principle, which is the key to enhancing the gen-
eralization and robustness performance of the distanceaametpractical applications.
Regularization has played an important role in many madeiaing methods in order to
prevent the overfitting issue [Girosi et al. 1995]. For exanm SVMs, regularization is
critical to ensuring the excellent generalization perfante [Vapnik 1998].

Similar to the idea of regularization used in kernel machéaening [Vapnik 1998], we
formulate a general regularization framework for distamedric learning as follows:

min 9(A) +75Vs(S) +7aVa(D) (4)

whereg(A) is a regularizer defined on the target methicandV,(-) andV,(-) are some
loss functions defined on the sets of similar and dissimitarstraints, respectivelyy;
and~, are two regularization parameters for balancing the triidetween similar and
dissimilar constraints as well as the first regularizatiemt. By following the min-max
learning principle, the similar loss functioi(-) (V4(+)) should be defined in the way
such that the minimization of the loss function will resualthinimizing (maximizing) the
distances between the data points with the similar (dissiingéonstraints. We adopt the
sum of squared distances for defining the two loss functiorierims of its effectiveness
and efficiency:

V)= > Ixi—xila Ve =— DY lxi—xla (5)
(xi,xj)GS (xi,x]')ED
Next, we will discuss how to select an appropriate regudgirand how to incorporate the
unlabeled data information within the above regularizatearning framework.
3.3 Laplacian Regularized Metric Learning

There are a lot of possible ways to choose a regularizer ialtoge regularization frame-
work. One simple approach used in [Si et al. 2006] is based®#tobenius norm defined
as follows:

(6)
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This regularizer simply prevents any elements within thérixa\ from being overlarge.
However, the regularizer does not take advantage of anyaldd data information. In
practice, the unlabeled data is beneficial to the DML taskthsy consideration, we will
show how to formulate a regularizer for exploiting the umlgl data information in the
regularization framework.

Consider the collection of data point€, we can compute a weight mati¥ € R™*"
whose elemenitV;; is calculated as follows:

W — 1 x; € N(x;) or x; € N(x;)
70 otherwise.

where\/ (x,) denotes the nearest neighbor list of the data pojtihat is found by adopting

regular Euclidean distance. To learn a metric, one can asthene is some corresponding

linear mappindd " : R™ — R", whereU = [uy,...,u,] € R™*", for a possible metric

A. As aresult, the distance between two input examples canreuted as:

d(xi,x5) = U (3 —x5)[I” = (xi = %) TUU T (x; = x;) = (xi —%;) T A(x; — %, 7)

whereA = UU ' is the desirable metric to be learned. By taking unlabelé¢d idorma-
tion with the weight matriXW, we can formulate the Laplacian regularizer as follows:

g(A)

L U s U 7 = S u X (D - W)X T, .
ij=1 k=1

Z u XLX "y, = tr(U'XLX'U) = tr(XLX'UU ") = tr(XLX " A)(9)
k=1

whereD is a diagonal matrix whose diagonal elements are calculatdd;; = Zj Wi,
L = D — W is known as the Laplacian matrix, atidstands for thérace operator.
Remark. Regarding the graph Laplacian matrix, in practice, we oftgéopt the normal-
ized laplacian matrix, which is computed ds= D~'/2(D — W)D~1/2,
By adopting the above Laplacian regularizer, we formulatew distance metric learn-
ing technique called “Laplacian Regularized Metric Leagii(LRML) as follows:

min r(XLXTA)+9 > Ixi—xla-va > Ixi-xla  (0)
(xi,x5)€S (xi,x;)€ED

The above formulation can be further improved. In the ex&rease, when the dissimilar
factor~vy; — 0, the above optimization will result in the trivial solutidoy shrinking the
entire space, i.e. obtaining the solution&df= 0. To prevent obtaining such undesirable
results, we can modify the above formulation as follows:

min UXLXTA) 9 >0 Ixi-xila-va > Ix-xla @D
(xi,x;)€ES (xi,x;)€D
s.t. logdet(A) >0 (12)
where the constraidbg det(A) > 0 is introduced to prevent trivial solutions. Note that

choosing functioriog det(A) is not unique; other types of regularizers may also be con-
sidered.
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4. LRML FOR COLLABORATIVE IMAGE RETRIEVAL
4.1 Problem Formulation

We now show how to apply the proposed LRML technique to coltabive image retrieval
and investigate its related optimization. Following theypous work in [Hoi et al. 2006; Si
et al. 2006], we assume the log data were collected in thefofiiog sessionsin which
every log session corresponds to some particular user .quresach log session, a user
first submits an image example to the CBIR system and therepidglevance on the top
ranked images. The user relevance judgements will thenveel se the log data.

To apply the DML techniques for CIR, for each log session @iruslevance feedback,
we can convert it into similar and dissimilar pairwise coastts. Specifically, given a
specific queryy, for any two imagest; andx;, if they are marked as relevant in the log
session, we will put them into the set of similar pairwise stoaintsS,; if one of them
is marked as relevant, and the other is marked as irrelewantyill put them into the set
of dissimilar pairwise constraints. As a result, we denh&dollection of user relevance
feedbacklog data & = {(S;, D), ¢ =1,...,Q}, whereQ is the number of log sessions
in the log dataset. In the CIR context, we can modify the tves kainctions and reformulate
the LRML formulation as:

Q Q
min tr(XLXTA) +7. Y > Ik-xlA-wY. > Ix-xli (13)

A>X0
q=1 (x;,x;)ES, q=1 (x;,%x;)EDy
s.t. logdet(A) >0

To solve the above optimization problem, we rewrite the tosslfunctions as follows:

Q Q
SO mexla =Y Y w(Axi-x)xi-x)")

q=1 (x;,x;)€S, q=1 (x;,x;)€S,

Q

= tr A-Z Z (x; —x;)(xi —%;) " (14)

q=1 (x;,x;)€S,
Q Q
> Ixi-xila =D, tf(A' (xi — %) (x; —Xj)T)
9=1 (xi,x;)€Dq q=1 (xi,x;)€Dq

Q

=tr | A- Z Z (Xi — Xj)(Xi — Xj)T (15)

q=1 (x;,x;)EDy

To simplify the above expressions, we introduce two masrgandD:

Q Q
S=Y > (xi-x)x-x), D= > (xi—x;)(x—x;)" (16)

9=1 (xi,x;)€S, 9=1 (xi,x;)€D,
Further, by introducing a slack variablewe can rewrite the formulation as:
min t+ ystr(A - S) — y4tr (A - D) a7)
st. tr(XLXTA)<t, logdet(A)>0 (18)
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The above optimization belongs to standard Semidefinitgri@ms (SDP) [Boyd and Van-
denberghe 2003], which can be solved with global optimumxistieg convex optimiza-
tion packages, such as SeDuMi [Sturm 1999].

4.2 Fast LRML Algorithm

Solving the LRML problem by an SDP solver is feasible for a brseale problem, but
often becomes impractical when handing real applicatieves, for moderate-size datasets.
This is because the time complexity of a general SDP solvebeaas high af(n’-?),
which is clearly inefficient and not scalable for real apgiions. In this section, we present
a simple and significantly more efficient algorithm, whici@void engaging a general
SDP solver in solving the LRML problem.

First of all, instead of enforcing the constraiot;det(A) > 0, we can consider an
alternative formulation as follows:

min tr(XLX " A) + v,tr(A - S) — v4tr (A - D) — elog det(A) (19)
st. A>0
wheree > 0 is a small constant, and a regularization terlvg det(A) is added into the
objective function. It is easy to show that wher- 0, the above optimization reduces to

the equivalent optimization problem. Next we present ariefit technique to solve this
optimization. In particular, we first introduce an importanoposition as follows.

PROPOSITION 4.1. Given a symmetric and positive-definite malBix- 0, the solution
A* to the following optimization:

min tr(AB) — elogdet(A) (20)

can be expressed as follows:
A" =eB! (21)
PrROOF. First of all, by introducing dual variablgs € S* for the constraintd > 0, we
have the Lagrangian as follows:
L(A;Z) =tr(AB) — elogdet(A) + tr(AZ) (22)

According to the Karush-Kuhn-Tucker (KKT) conditions [Kut982], we can derive the
following equations:

8—£:B—6A*1+Z:0:>Z:6A*1—B (23)

oA
tr(AZ) = 0 (24)

Further, it is not difficult to show thatr(AZ) = 0 is equivalentto)AZ = 0. Specifically,
givenA = 0 andZ = 0, we havetr(AZ) = tr(AY/2AY/2Z1/271/2) = | Z1/2AY/2||2.
Therefore, bytr(AZ) = 0, we should hav&'/2A'/2 = 0, which further leads tAAZ

by multiplying by Z'/? and A'/2 on both sides of the equation. Putting together with the
result in (23), we can derive the equaticAB = ¢I. Finally, combining it with the PSD
constraint,i.e.A = 0, we thus have the solution ad* = eB~!. O

Based on Proposition 4.1, we can apply it to solve the abotiengation efficiently,
which only involves simple matrix inversion. In particulare can solve the optimization
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in (19) by lettingB = XLX' 4 ~,S — 74D and assuming thaB >~ 0. Following
Proposition 4.1, the optimal solution can be expressed|msv

AF = e(XLxT S — WD)_1 (25)

In practice, the assumption thB8t = 0 may not always hold. To handle the non-positive
definite issue, we suggest to add a regularization of anitglenatrix, which results in the
following solution:

—1
AF = e(XLXT 4 .S — 4D + wlmm) (26)

where~; is a regularization parameter of an identity maffjx«.,.. We note that the
resulting solution in this situation is sub-optimal to tirggnal optimization problem.

Remark |. Regarding the solutions in (25) and (26), the parametgnerally should
be a small constant. However, since scaling does not affecpérformance of distance
metric learning, we can simply fixto 1 for metric learning tasks in practice.

Remark I1. The above result enjoys some interesting connections tedhgion of
relevant component analysis (RCA) [Bar-Hillel et al. 20G&]which the optimal metric
learned by RCA isA = C~!, whereC is the chunklet average covariance matrix. Sim-
ilarly, for the result in Eq.(26), if we sef; = 0 and ignore the regularizer of unlabeled
data, the solution reduces$o ', which is essentially equivalent to RCA by notiSgs C
(RCA forms chunklets while we do not use). Therefore, RCA barviewed as a spe-
cial case of the proposed semi-supervised DML techniqueowitconsidering dissimilar
constraints and unlabeled data.

4.3 Complexity Analysis

In this part, we analyze the computational complexity ofpheposed LRML algorithms.
We denote by LRMEPT the proposed LRML method solved by a general SDP solver, and
denote by LRMLENV the proposed fast LRML method solved by simple matrix iniers

First, in terms of space complexity, both algorithms havewlorst case complexity of
O(n?), wheren is the dataset size. The major space is used for storing ttécesil’
and L when computing the graph Laplacian, and the matri£¢esd D when computing
the pairwise similar and dissimilar matrices.

Second, in terms of time complexity, LRNRY is significantly more efficient and scal-
able than LRMIEPT. This is because the time complexity of a general SDP solased
on the interior-point approach can be hight@fm°?) [Sturm 1999], while the LRMEYY
algorithm often involves simple matrix computation for mpainversions, leading to the
worst time complexity of2(m?), wherem is the matrix dimension.

5. LRML WITH APPLICATION TO COLLABORATIVE IMAGE CLUSTERING

In this section, we investigate the proposed DML learningitéque for another application
in multimedia data mining, which aims to discover image ®ugpatterns from image
databases by exploring the historical log data of usersvegice feedback in CBIR. We
refer to such an image clustering scheme as “Collaboratiage Clustering” (CIC) that
utilizes the users’ log data information in improving clkréhg performance. The CIC
scheme can be beneficial to a lot of real applications by dexiing the cluster patterns.
For example, it can help to enhance image browsing experiand improve the retrieval
quality for an image retrieval system.
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Most clustering techniques require an effective distanetimto measure distance (dis-
similarity) between data examples. For example, conveatik-means clustering often
adopts a simple Euclidean metric for distance measure,hythiowever, is not always
effective for real problems. Applying distance metric ld@ag techniques to existing clus-
tering algorithms has been explored in literature [XingleRA02]. Below, we introduce
a clustering technique by exploiting side information irtezding the popular k-means
algorithm, which is known as the constrained k-means algari denoted by “CKmeans”
for short.

K-means is a well-known and efficient clustering algorithvhjch assigns data exam-

ples intok clusters by some iterative refinement processes [Jain #999]. In particular,
a typical k-means algorithm starts by definifignitial centroids, and then repeats an iter-
ative refinement procedure until convergence is achievede&ch step, every example is
assigned to its closest centroid based on some distanceiresagh as Euclidean distance,
and the means of the updated clusters are refined in every step

The idea of the constrained k-means algorithm is two-fald:réplacing the Euclidean
metric by the metric learned by the proposed LRML technicued (2) enforcing cer-
tain pairwise examples to be grouped in the same cluster Wiegnare linked by similar
(must-link) constraints. Similar to [Xing et al. 2002], grdimilar pairwise constraints are
enforced during clustering. Finally, Figure 1 summaritesdonstrained k-means cluster-
ing algorithm using LRML for collaborative image clustegin

Algorithm 1: Constrained k-means algorithm for collabor ative image clustering

Input

X = {x;}}¥, - acollection of image examples

S, D - sets of pairwise similar and dissimilar constraints fraadback log data

k - a predefined number of clusters

Output

{C;}r_, - partitions of clustering results

Procedure

(1) Compute Laplacian matrix from the image databdse: laplacian(X);

(2) Learn the metric by the proposed LRML methodA = LRML(X, L, S, D);

(3) Initialize a random partition{C; }*_;;

(4) Update assignments until convergence:
(a) Foreaclhx;, assignx; — Cp, wherep = arg min, ||x; — u;lla andu; = \cli,\ doxee; X
(b) Foreachx;,x;) € S (i <j),if C(xs) # C(x;), then assigx; — C(x;).

End of Algorithm

Fig. 1. The constrained K-means clustering algorithm fdlaborative image clustering.

6. EXPERIMENTAL RESULTS
6.1 Overview

In our experiments, we evaluate the effectiveness of LRMibfath CIR and CIC appli-
cations. We design the experiments for performance evatuat several aspects. First of
all, we extensively compare it with a number of state-ofdineDML techniques. Second,
we carefully examine if the proposed algorithms are eféectd learn reliable metrics by
exploiting unlabeled data for limited log data. Third, wadst if the proposed algorithms
are robust to large noisy log data. Finally, we evaluate tmeputational efficiency.
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6.2 Experimental Testbed

We employed a standard CBIR testbed used in [Hoi et al. 2006].image testbed consists
of real-world photos from COREL image CDs. It has two datss#i-Category 20-Cat)
that includes images frorz0 different categories, angD-Category {0-Cat) that includes
images fronb0 different categories. Each category contains exalilyimages that are
randomly selected from relevant examples in the COREL inf2@s. Every category
represents certain semantic topic, suctamatelope balloon butterfly car, cat, dog, and
horse etc. The way of using the images with semantic categorieblis to help us to
evaluate the retrieval performance automatically, whighificantly reduces the subjective
errors relative to manual evaluations.

Fig. 2. Some image examples from the datasets used in ourieqres.

6.3 Image Representation

Image representation is an important step for building aRC8lstem. In our experiment,
we employ three types of visual features to represent thgesiacolor, edge and texture.
Color features are widely adopted for their simplicity. Tdwdor feature in our experi-
ments is color moment, which is close to natural human pdéiaepnd whose effective-
ness has been shown in many previous CBIR studies. Thregatiffcolor moments are
used: color mean, color variance and color skewness in edohahannel (H, S, and V),
respectively. Thus, 8-dimensional color moment is adopted as the color feature.

Edge features can be effective for CBIR when contour linemafjes are evident. The
edge feature in our experiments is edge direction histogdam and Vailaya 1998]. In
our approach, an image is first translated to a gray imageaadanny edge detector is
applied to obtain its edge image. Based on the edge imagedtedirection histogram
can be computed. Each edge direction histogram is quantizeds bins of20 degrees
each. Hence ah’-dimensional edge direction histogram is used as the edgerée

Texture features are proven to be an important cue for CBiRwIr experiments, we
employ the wavelet-based texture [Manjunath et al. 2001kolor image is first trans-
formed to a gray image. Then the Discrete Wavelet Transfoom&8WT) is performed
on the gray image using a Daubechiegravelet filter. Each wavelet decomposition on
a gray2D-image results in four subimages witld& = 0.5 scaled-down image of the in-
put image and the wavelets in three orientations: horizpwméatical and diagonal. The
scaled-down image is then fed into the DWT to produce the foextsubimages. In total,
we perform &3-level decomposition, which produc#8 subimages in different scales and
orientations. Among nine of the subimages, we compute ttrmnof each subimage
separately. Hence, a wavelet-based texture featwelohensions is used to describe the
texture information.
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In sum, a36-dimensional feature vector is used to represent an imagdyding 9-
dimensional color histogramg-dimensional edge direction histogram, @dimensional
wavelet-based texture.

6.4 Real Log Data of User Relevance Feedback

In our experiments, we adopt the real log data related to REL testbed collected by
a real CBIR system with an interactive relevance feedbacthem@sm from [Hoi et al.
2006]. In the log data collection, there are two sets of @aiee feedback logs. One is a
set of normal log data, which contains small noise. The odtherset of noisy log data
of relatively large noise. For log data,l@g sessionis defined as the basic unit. Each
log session corresponds to a regular relevance feedbagikises which20 images were
judged by a user. Thus, each log session contzinabeled images that are marked as
either “relevant (positive)” or “irrelevant (negative)”.

Regarding the noise of the log data, it is mainly caused byestibe judgments from
human subjects. Given the fact that different users may Héferent opinions on judg-
ing the same image, the noise problem in collaborative imefyeval is almost inevitable
in real applications. According to the previous study [Hbak 2006], the noise of log
data is measured by its percentage of incorrect relevamggantsP,, y;se, i.€..Proise =
tot # W]r\‘;’lnxg]g‘;o‘igcmcms x 100%, whereN; and Ny, stand for the number of labeled exam-
ples acquire& for each log session and the number of logosesssiespectively.

Table I. The log data collected from users on both datasets

Datasets Normal Log Noisy Log

#Log Sessions| Noise | # Log Sessions| Noise
20-Cat 100 7.8% 100 16.2%
50-Cat 150 7.7% 150 17.1%

Finally, Table | shows the information of the log data on the testbeds. More details
on the collection of the users’ relevance feedback log datebe found [Hoi et al. 2006].

6.5 Compared Methods and Experimental Setup

We compare the proposed LRML method extensively with twaugsoof major metric
learning techniques: unsupervised approaches and medricihg with side information.
We do not compare the DML techniques for supervised claasific as they often require
explicit class labels, which is unsuitable for CIR. Althduiy may be unfair to directly
compare the unsupervised methods with supervised/sgmingsed metric learning using
side information, we still include the unsupervised resufthe results could help us ex-
amine how effective is the proposed method compared witlitioaal approaches since
there was still limited comprehensive study for applying DM CIR before. Specifically,
the compared schemes include:

—Euclidean: the baseline denoted as “EU” in short.

—Mabhalanobis: a standard Mahalanobis metdc= P!, whereP is the covariance
matrix, denoted as “Mah” in short.

—PCA: classical PCA method [Fukunaga 1990]. For all unsviped methods, the num-
ber of reduced dimensionds set tol5 in all experiments.

—MDS: classical Multidimensional Scaling method [Cox arak@994].

—Isomap: unsupervised method finding low-dimensional fiodkds with geometrical in-
formation [Tenenbaum and de Silva andJohn C. Langford 2000]
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—LLE: unsupervised method computing low-dimensional aewjinborhood-preserving
embeddings [Roweis and Saul 2000].

—DML: a popular DML method solving by an iterative convexiomization technique [Xing
et al. 2002].

—RCA: relevant component analysis [Bar-Hillel et al. 200&hich learns with only
equivalent constraints.

—DCA: discriminative component analysis, which improvésARby including dissimilar
constraints [Hoi et al. 2006].

—RML: regularized metric learning algorithm with the Froligs norm as the regular-
izer [Si et al. 2006].

—LRMLSPP: the proposed Laplacian Regularized Metric Learning methy an SDP
based algorithm.

—LRML™V: the proposed Laplacian Regularized Metric Learning mésalved by the
matrix inversion based algorithm.

In sum, the compared schemes include 2 standard metricssupearvised metrics, 4
supervised DML, and 2 variants of the proposed semi-supetMDML method.

Regarding the setup of our experiments, we follow a stangevdedure for CBIR ex-
periments. Specifically, a query image is picked from thablase and then queried with
the evaluated distance metric. The retrieval performantiesin evaluated based on the top
ranked images ranging from tap to top 100 images. The average precision (AP) and
mean average precision (MAP) are engaged as the performaatces, which are widely
used in CBIR experiments. For the implementation of the psegd LRML algorithm,
we use a standard method for computing a normalized Laplaniirix with 6 nearest
neighbors.

Table Il. Average precision of top ranked images on the 2te@ay testbed over 2,000
gueries with thenormallog data. For each scheme, the first row shows the AP (%) and the
second row shows the relative improvement over the basginelidean) method.

TOP [ 20 [ 30 [ 40 [ 50 [ 60 [ 70 [ 8 [ 9 [ 100 [ MAP
EU 39.91 35.62 32.73 30.55 28.84 27.53 26.40 25.39 24.44 31.93
Mah 40.24 35.22 31.52 28.85 26.71 2494 23.42 22.19 21.09 30.36
+0.8% -1.1% -3.7% -5.6 % -7.4% -9.4 % -11.3% -12.6 % -13.7% -4.9 %

PCA 39.50 35.33 32.57 30.45 28.76 27.44 26.32 25.35 24.42 31.76
-1.0% -0.8% -0.5% -0.3% -0.3% -0.3% -0.3% -0.2% -0.1% -0.5%

MDS 39.80 35.69 32.85 30.63 28.90 27.61 26.47 25.47 24.50 31.99
-0.3% +0.2% +0.4 % +0.3% +0.2% +0.3% +0.3% +0.3% +0.2% +0.2%

LLE 31.52 28.43 26.26 24.67 23.40 22.34 21.46 20.68 19.87 25.72
-21.0 % -20.2 % -19.8 % -19.2 % -18.9 % -18.9 % -18.7 % -18.6 % -18.7 % -19.4 %

Isom 27.34 23.74 2152 20.04 18.92 18.04 17.23 16.56 15.88 21.38
ap -31.5 % -33.4 % -34.2 % -34.4 % -34.4 % -34.5 % -34.7% -34.8 % -35.0 % -33.0 %
XING 40.85 36.86 34.26 32.22 30.51 29.05 27.74 26.64 25.61 33.23
+2.4% +3.5% +4.7 % +5.5% +5.8% +5.5% +5.1% +4.9% +4.8 % +4.1%

RCA 43.16 38.41 35.19 32.70 30.64 29.01 27.56 26.21 24.96 33.94
+8.1% +7.8% +7.5% +7.0% +6.2% +5.4 % +4.4% +3.2% +2.1% +6.3%

DCA 4411 39.24 35.95 33.36 31.27 29.58 28.13 26.81 2551 34.66
+10.5 % +10.2 % +9.8 % +9.2% +8.4 % +7.4% +6.6 % +5.6 % +4.4 % +8.6 %

RML 43.80 39.46 36.37 34.06 32.33 30.74 29.45 28.26 27.20 35.38

+9.7% +10.8% +11.1% +11.5% +12.1% +11.7% +11.6 % +11.3% +11.3% +10.8 %

LRMLSDP 46.51 42.03 38.71 36.18 34.05 32.44 30.95 29.66 28.36 37.38

+16.5 % +18.0 % +18.3% +18.4 % +18.1 % +17.8% +17.2% +16.8% +16.0 % +17.1%

LRMLINV 46.86 4212 38.87 36.37 34.23 32.58 3111 29.82 28.52 37.54
+17.4% +18.2% +18.8 % +19.1% +18.7% +18.3% +17.8% +17.4% +16.7% +17.6 %
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Table Ill. Average precision of top ranked images on the afeGory testbed over 5,000
gueries with thenormallog data. For each scheme, the first row shows the AP (%) and the
second row shows the relative improvement over the basginelidean) method.

TOP [ 20 [ 30 [ 40 [ 50 [ 60 [ 70 [ 8 [ 90 [ 100 [ MAP
EU 36.20 | 31.93 | 28.90 | 76.68 | 24.90 | 2343 | 22.15 | 21.06 | 20.13 | 27.99
Mah 3732 | 3239 | 29.00 | 2652 | 2450 | 22.89 | 2149 | 20.33 | 19.30 | 28.02
+2.8% 1.4% 0.3% -0.6 % -1.6 % -2.3% -3.0% -3.5% -4.1% 0.1%

bCA 3533 | 3124 | 28.29 | 2617 | 2450 | 23.08 | 21.84 | 20.79 | 19.87 | 27.44
-2.6 % -2.2% -21% -1.9% -1.6 % -1.5% -1.4% -1.3% -1.3% -2.0%

DS 36.01 | 3L77 | 2880 | 2661 | 24.86 | 23.38 | 2213 | 21.04 | 20.10 | 27.87
-0.8% -0.5% -0.3% -0.3% -0.2% -0.2% -0.1% -0.1% -0.1% -0.4%

LLE 2601 | 22.24 | 19.79 | 1809 | 16.79 | 15.75 | 1488 | 14.14 | 13.48 | 19.52
-28.3% -30.3% -31.5% -32.2% -32.6 % -32.8% -32.8% -32.9% -33.0% -30.3 %

Tom 2535 | 22.09 | 2001 | 1850 | 17.27 | 1633 | 1547 | 14.74 | 14.10 | 19.60
ap -30.1 % -30.8 % -30.8 % -30.7 % -30.6 % -30.3 % -30.2 % -30.0 % -30.0 % -30.0 %
XING 37.98 | 3391 | 3114 | 29.02 | 27.25 | 2580 | 2454 | 2341 | 2244 | 30.12
+4.7% +6.2% +7.8% +8.8% +9.4% +10.1% +10.8 % +11.2% +11.5% +7.6%

RCA 2084 | 36.06 | 3267 | 3005 | 2798 | 26.23 | Z4.74 | 2347 | 22.33 | 3L4I

+12.5% +12.9 % +13.0% +12.6 % +12.4% +12.0% +11.7 % +11.4% +10.9 % +12.2%

DCA 4128 | 36.42 | 33.00 | 3037 | 28.25 | 2651 | 25.00 | 23.60 | 22.56 | 3L.72

+13.8% +14.1 % +14.2% +13.8% +13.5% +13.1% +12.9 % +12.5% +12.1 % +13.3%

RMIL 4100 | 37.20 | 33.86 | 3110 | 29.00 | 27.33 | 25.80 | 24.46 | 23.29 | 32.47

+15.5 % +16.5 % +17.2% +16.9 % +16.8 % +16.6 % +16.5 % +16.1 % +15.7 % +16.0 %

LRMLSDF | 4270 | 3796 | 3443 | 3182 [ 29.72 | 27.94 | 2643 | 2510 | 2391 | 33.13

+17.7% +18.9% +19.1 % +19.3 % +19.4 % +19.2 % +19.3 % +19.2 % +18.8 % +18.4 %

LRMLINV | 4282 | 3793 [ 3449 | 3186 | 29.77 | 28.02 | 2651 | 2520 | 2402 | 33.13

+17.4% +18.8 % +19.3% +19.4% +19.6 % +19.6 % +19.7 % +19.7 % +19.3% +18.4%

6.6 Experiment |: Evaluation on Normal Log Data

For of all, we evaluate the compared schemes on the normaldtag This is to examine
if the proposed algorithm is comparable or better than tlegipus DML techniques in a
normal situation. Table Il shows the experimental resultshe 20-category testbed aver-
aging over 2,000 queries with the normal log data. From tealt® we can draw several
observations. Firstly, we found that a simple Mahalanolstadce does not always out-
perform Euclidean distance. In fact, it only improved stiglon top 10 and top 20 ranked
images, but failed to obtain improvements on other casesortsity, comparing with sev-
eral unsupervised methods, it is interesting to find thay tilt MDS method achieved a
marginal improvement over the baseline. Two manifold baselipervised methods per-
formed very poor in this retrieval task. Further, compasegeral previous DML methods
with the normal log data, the RML method achieved the bestatMeerformance, which
obtained10.8% improvement on MAP over the baseline. The RCA performed thestv
among the four compared methods. Finally, comparing witthal metrics, the proposed
LRML method achieved the best performance, which signifigamproves the baseline
with about17% improvement on MAP. This shows that the proposed method i& rab
fective than the previous methods with normal log data. Vé¢e abnducted the same
comparisons on the 50-category dataset with normal log data

Table Ill shows the results on the 50-category dataset,iwili@re obtained by averaging
over 5,000 queries. Similar to the previous results, mostiparvised methods fail to im-
prove the retrieval performance compared with the bas#lindidean approach. Among
all the compared DML methods, the proposed LRML methoddudiag LRMLSPT and
LRML™V "achieved the best performance. Compared with the two sepe+vised meth-
ods, LRMLSPP tends to achieve slightly better results on the top ranksedls while
LRML ™V tends to obtain better results when returning more than @aaBked images.

In addition, we found that Xing’s method did not perform wigllthis situation. One
possible reason is that the regular DML method might be tositiee to noise. To evaluate
the robustness comprehensively, in the subsequent sgctienwill conduct experiments
on two tough situations: (1) small amount of log data, andg&)e noisy log data.
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6.7 Experiment Il: Evaluation on Small Log Data

In this experiment, we evaluate the robustness performfantearning metrics with small
amount of normal log data. This situation usually occurshathieginning stage of de-
veloping a CBIR system. Table IV shows the experimentalltesan the 20-Category
testbed with a small subset of normal log data containing 8tlog sessions which were
randomly selected from the normal log dataset. From thelteesme can see that most
supervised DML methods achieved considerably lower impmoents compared with their
results obtained on the relatively large amount of log dathé previous situation. Among
all the four compared supervised metric learning methd@sRML method achieves the
best performance, which achieved aroui¥d improvement over the baseline. Further,
when comparing with the semi-supervised DML methods, wenlesthat the two LRML
algorithms significantly outperform the other supervisddlDapproaches. For exam-
ple, the improvement achieved by the proposed LR€MLalgorithm almost doubles that
achieved by the RML method. This again shows that the praposthod is more effective
to learn better metrics by engaging unlabeled data, péatigifor limited log data.

Table IV. Average precision of top ranked images on the 2&@ay testbed over 2,000
gueries withrsmalllog data of onl\30 log sessions. For each scheme, the first row shows the
AP (%) and the second row shows the relative improvementtbedoaseline (Euclidean).

TOP [ 20 [ 30 [ 40 [ 50 [ 60 [ 70 [ 8 [ 90 [ 100 [ MAP
EU 39.91 35.62 32.73 30.55 28.84 27.53 26.40 25.39 24.44 1 31.93
MAH 40.24 35.22 31.52 28.85 26.71 24,94 23.42 22.19 21.09 | 30.36
+0.8 % -1.1% -3.7% -5.6 % -7.4% -9.4% -11.3 % -12.6 % -13.7 % -4.9 %

XING 40.17 36.26 33.54 31.52 29.89 28.55 27.44 26.38 25.36 | 32.69
0.7 % +1.8% +2.5% +32% +3.6 % +3.7% +3.9 % +3.9% +3.8 % +2.4%

RCA 4241 37.78 34.54 32.20 30.22 28.57 2711 25.79 24.62 33.41
+6.3% +6.1% +55% +5.4% +4.8% +3.8% +2.7% +1.6% +0.7 % +4.6%

DCA 41.38 37.13 34.29 32.00 30.29 28.95 27.77 26.71 2570 | 33.34
+3.7% +42% +4.8% +47% +5.0% +52% +52% +52% +5.2% +4.4%

RML 42.16 37.69 34.69 32.37 30.53 29.13 2791 26.84 | 25.78 | 33.72
+5.6 % +5.8 % +6.0 % +6.0 % +5.9% +5.8% +5.7 % +5.7 % +5.5 % +5.6 %

LRMLSDPP 44.03 39.41 36.17 33.75 31.74 30.08 28.69 27.42 26.27 35.01
+10.3% +10.6 % +10.5 % +10.5 % +10.1% +9.3% +8.7 % +8.0 % +7.5% +9.7%

LRMLINV 43.56 39.29 36.26 33.93 3211 30.53 29.19 27.96 26.78 | 35.15
+9.1% +10.3 % +10.8 % +11.1% +11.3% +10.9 % +10.6 % +10.1% +9.6% +10.1%

Similarly, we also evaluated the small log data case on thé&@gory testbed with only
50 log sessions, as shown in Table V. The relative improventantase LRML methods
over the RML method in this dataset are less significant thari20-Category case, but the
proposed two semi-supervised algorithms still achievedost improvement, which are
considerably better than other compared metric learnihgrses.

Table V. Average precision of top ranked images on the 5@@tay testbed over 5,000
gueries withrsmalllog data of only50 log sessions. For each scheme, the first row shows the
AP (%) and the second row shows the relative improvementtbedoaseline (Euclidean).

TOP [ 20 [ 30 [ 40 [ 50 [ 60 [ 70 [ 8 [ 9 [ 100 [ MAP
EU 36.29 31.93 28.90 26.68 24.90 23.43 22.15 21.06 | 20.I13 ] 27.99
MAH 37.32 32.39 29.00 26.52 2450 22.89 21.49 2033 | 19.30 | 28.02
+2.8% +1.4% +0.3% -0.6 % -1.6 % -2.3% -3.0% -3.5% -4.1% +0.1%

Xin 36.29 31.92 28.90 26.68 24,90 23.42 22.15 2105 | 20.12 | 27.99

9 0.00 % -0.03 % 0.00 % 0.00 % 0.00 % -0.04 % 0.00 % -0.05 % -0.05 % -0.02 %

RCA 39.81 35.02 31.63 29.07 27.02 25.28 23.87 2263 | 21.54 30.47
+9.7% +9.7% +9.4% +9.0% +85% +7.9% +7.8% +75% +7.0% +8.8%

DCA 38.58 34.12 30.98 28.59 26.59 25.00 23.62 2243 | 21.40 | 29.84
+6.3% +6.9% +72% +72% +6.8% +6.7% +6.6 % +6.5% +6.3% +6.6 %

RML 39.26 34.43 31.08 28.57 26.58 24.88 23.48 2225 | 21.22| 30.00
+82% +7.8% +75% +71% +6.7% +6.2% +6.0% +5.7% +5.4% +72%

LRMLSDP 40.49 35.68 32.22 29.61 27.52 25.83 24.32 23.05 | 21.93 | 31.00
+11.6 % +11.7% +11.5% +11.0% +10.5 % +10.2 % +9.8% +9.4 % +8.9 % +10.7 %

LRMLINV 39.99 35.38 32.06 29.53 27.55 25.83 24.38 2311 | 22.00 | 30.86
+10.2 % +10.8 % +10.9 % +10.7% +10.6 % +10.2 % +10.1% +9.7% +9.3% +10.3%
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6.8 Experiment lll: Evaluation on Noisy Log Data

To further validate the robustness performance, the thigeement is to evaluate the
compared schemes with noisy log data of relatively largsenoirable VI and Table VII

show the results on the 20-Category and 50-Category testlitd the log data of large
noise, respectively. We can draw some observations fromethdts as follows.

Table VI. Average precision of top ranked images on the 2@&@ay testbed over 2,000
gueries withnoisylog data of100 log sessions. For each scheme, the first row shows the
AP (%) and the second row shows the relative improvementtbedoaseline (Euclidean).

TOP [ 20 [ 30 [ 40 [ 5 [ 60 [ 70 [ 80 [ 9 [ 100 [ MAP
EU 39.91 35.62 32.73 30.55 28.84 27.53 26.40 25.39 24.44 31.93
MAH 40.24 35.22 31.52 28.85 26.71 24,94 23.42 22.19 21.09 30.36
+0.8% -1.1% -3.7% -5.6 % -7.4% -9.4% -11.3% -12.6 % -13.7 % -4.9%

XING 39.87 35.56 32.70 30.52 28.82 27.49 26.37 25.36 24.41 31.90
-0.1% -0.2% -0.1% -0.1% -0.1% -0.1% -0.1% -0.1% -0.1% -0.1%

RCA 42.59 37.75 34.45 32.00 30.00 2831 26.97 25.69 24.45 33.34
+6.7% 6.0 % 5.3 % 4.7 % 4.0 % 28% 22% 1.2% 0.0 % 4.4 %

DCA 43.60 38.66 35.33 32.86 30.84 29.17 27.84 26.58 25.37 34.26
+9.2% +85% +7.9% +7.6% +6.9% +6.0% +55% +47% +3.8% +7.3%

RML 4221 37.92 35.01 32.76 30.99 29.54 28.34 27.30 26.30 34.09
+5.8 % +6.5% +7.0% +7.2% +7.5% +7.3% +7.3% +7.5% +7.6% +6.8%

LRMLSDPP 45.95 41.07 37.85 35.37 33.43 31.83 30.40 29.15 27.89 36.69
+15.1% +15.3 % +15.6 % +15.8 % +15.9 % +15.6 % +15.2% +14.8 % +14.1% +14.9%

LRMLINV 45,55 40.88 37.67 35.17 33.14 3153 30.16 29.00 27.75 36.49

+14.1% +14.8% +15.1 % +15.1 % +14.9 % +14.5% +14.2% +14.2% +13.5% +14.3%

Table VII. Average precision of top ranked images on the B®eGory testbed over 5,000
gueries withnoisylog data of150 log sessions. For each scheme, the first row shows the
AP (%) and the second row shows the relative improvementtbedoaseline (Euclidean).

TOP [ 20 [ 30 [ 40 [ 50 [ 60 [ 70 [ 8 [ 9 [ 100 [ MAP
EU 36.29 31.93 28.90 26.68 24.90 23.43 22.15 21.06 20.13 27.99
MAH 37.32 32.39 29.00 26.52 2450 22.89 21.49 20.33 19.30 28.02
+2.8% +1.4% +0.3% -0.6 % -1.6 % -2.3% -3.0% -3.5% -4.1% +0.1%

XING 36.25 31.88 28.85 26.64 24.86 23.39 2211 21.02 20.08 27.95
-0.1% -0.2% -0.2% -0.1% -0.2% -0.2% -0.2% -0.2% -0.2% -0.2%

RCA 39.00 34.24 30.99 28.44 26.38 24.69 23.27 22.06 21.03 29.79
+75% +7.2% +7.2% +6.6 % 5.9 % +5.4% +5.1% +4.7% +45% +6.4%

DCA 39.53 34.66 31.32 28.75 26.69 25.01 23.55 22.32 21.26 30.14
+8.9% +85% +84% +7.8% +72% +6.7% +6.3% +6.0% +5.6 % +7.7%

RML 40.34 35.60 32.35 29.74 27.75 26.01 2455 23.27 22.15 31.08

+11.2% +11.5% +11.9% +11.5% +11.4% +11.0% +10.8 % +10.5 % +10.0 % +11.0%

LRMLSDPP 41.58 37.11 33.86 31.25 29.21 27.50 26.01 2474 23.59 32.48
+14.6 % +16.2 % +17.2% +17.1% +17.3% +17.4% +17.4% +17.5% +17.2% +16.0 %

LRMLINV 41.28 36.76 33.43 30.86 28.81 27.09 25.62 2431 23.18 32.10

+13.8% +15.1 % +15.7 % +15.7 % +15.7 % +15.6 % +15.7 % +15.4 % +15.2% +14.7 %

First of all, we found that the performance of most suped/B&IL methods were con-
siderably degraded when being tested on the noisy datdisitwehen comparing with the
normal data situation. Further, we found that the Xing's Dikthod failed to improve
over the baseline method due to the noise problem. The segailidated our previous
conjecture that the Xing’s DML method may be too sensitivéidise. Compared with
the Xing’s method, the other three DML methods including ROEA and RML are rel-
atively less sensitive to noise, but they still suffered aftom the noise. For example,
on the 50-Category dataset, RCA achiet®®% improvement on MAP with the normal
log data as shown in Table IV, but only achiewed% improvement on MAP with the
same amount of log data of larger noise as shown in Table Yiltohtrast, for the same
dataset, the proposed LRMP" method achievetls.4% improvement on MAP with nor-
mal log data, and is still able to ke&f.0% improvement on MAP with the larger noisy log
data without too much dropping. Similarly, the two proposecthi-supervised algorithm
performed similarly, which are considerably less sensitivthe noise.

All of the above results again validate that the proposed LRiethod is effective to
learn reliable metrics on real noisy log data by exploitin¢gabeled data information.
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6.9 Qualitative comparisons of CIR performance

In addition to the above quantitative results, we also idelsome experimental results
for qualitatively evaluating the visual retrieval perfancte by different metric learning
methods. Figure 5 to Figure 7 (in the last two pages) showehdts of visual comparison
for several different query cases. In the figures, the firaigenis each diagram is the query
image. Each diagram in each figure shows the top 10 rankecesmaturned by a distance
metric learning method and the relevant images are markeal ‘tigk” symbol. From
the results, we can see that in most situations, the proddR@dtl technique (based on
the LRML™V algorithm) returned considerably more relevant imageséntop ranked
results, which are consistent to the previous quantitaieduation results.

6.10 Experiment IV: Application to Collaborative Image Clustering

In addition to the CIR application, we also evaluate the grantince of applying the pro-
posed semi-supervised DML techniques to the collaboratiage clustering application
in exploiting user feedback log data for improving the aluistg performance.

6.10.1 Compared Methods and Experimental Set&milar to the CIR experiments,
we use the same datasets for the CIC experiments. To evaheatsdfectiveness of the
proposed techniques, we implemented and compared thevfojcschemes:

—Kmeans: the baseline k-means clustering algorithm wighEhclidean distance;
—CKmeans: the constrained k-means clustering with theiegh distance;

—RCA: the constrained k-means with the RCA metric proposgBar-Hillel et al. 2005];
—DCA: the constrained k-means with the DCA metric proposeltHioi et al. 2006];
—DML: the constrained k-means with the DML metric proposefXing et al. 2002];

—LRMLSPP: the constrained k-means algorithm with the proposed lcigutaRegular-
ized Metric Learning method that is solved by an SDP basextigthgn [Hoi et al. 2008].

—LRML™V: the constrained k-means clustering algorithm with thelaeipn Regular-
ized Metric Learning method that is solved by the matrix nsi@n based algorithm.

To conduct the clustering experiments, we set the numbelustersk to the number
of image categories in the datasets, ike= 20 in the 20-category dataset ahd= 50 in
the 50-category dataset, respectively. For the expergremeach dataset, we randomly
samplek initial examples as the cluster centroids, and then use #etie input of initial
cluster centroids for all of the compared clustering methdtfe repeat the above experi-
ment10 times for each dataset and report the average clusterifigrpemce.

6.10.2 Performance MetricsTo evaluate the clustering performance, we consider two
external clustering validation metrics that utilize thekoit category labels of the images
in the dataset. Specifically, the two measurements adoptedri CIC experiments are
the normalized mutual information [Strehl et al. 2000; Dof02] and the pairwise F1
measurement [Liu et al. 2007]. We briefly introduce them ds\ics.

The normalized mutual information (NMI) measurement [Btet al. 2000; Dom 2001]
estimates the quality of a clustering with respect to somvergunderlying class label-
ing of the data by measuring how closely the clustering dtligwr can reconstruct the the
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underlying labeling distribution in the data. The formufa\il is given as follows:

2% I(X; Xo)
H(X) + H(Xo)
where Xy and X denote the random variables of cluster memberships frongtbend
truth and the output of clustering algorithm, respectivé(X;Y) = H(X) — H(X|Y)
represents the mutual information between random vasablandY’, and H(X) repre-

sents the Shannon entropy of random variable
The second measurement is the pairwise F1 (PF1) metric fLal. 007]. It is the
harmonic mean of pairwise precision and pairwise recallclvhre defined as follows:

NMI =

recision — ##pairs correctly grouped in the same cluster @7)
p " total # pairs in the same cluster in the ground truth

recall = #pairs correctly grouped in the same cluster 29)
" total #pairs actually grouped in the same cluster

PPl — 2 prf:cllslon * recall (29)
precision + recall

The PF1 measurement is similar to the definition of clustedocuracy in [Xing et al.
2002] that measures the percentage of example pairs dygrgestipped in the same clus-
ters. The main drawback of the metric in [Xing et al. 2002]hattit equally counts two
types of example pairs: pairs that belong the same clustetgairs that belong to dif-
ferent clusters. This may be problematic in reflecting tlie tlustering performance as
most data pairs in a clustering experiment come from diffecdusters. Thus, the PF1
measurement could be more effective for validating thetetireg performance.

_20-Category (N=2000. C=20. D=36) 50-Category (N=5000, C=50, D=36)

Normalized Mutual Information
L L L
Normalized Mutual Information

Fig. 3. Comparison of different clustering methods basetherNMI measurement. The
left diagram shows the results on the 20-Category datasktrenright one shows the
results on the 50-Category dataset. In each diagram, ttzeimahne left side shows the
measurement results obtained in the case of normal log waike the bars in the right
side shows the ones obtained in the case of noisy log data.

6.10.3 Evaluation of Clustering Result$zigure 3 shows the evaluation results of the
NMI measurement on the two datasets. We can draw a few oltiersdrom the results.
First of all, similar to the results obtained in CIR experitte&g among most test cases, the
two proposed LRML algorithms achieved the best clusteriadgrmance in term of the
NMI measurement. Secondly, we found that the relative im@moents obtained by the
two proposed LRML algorithms in the noisy log data situatése more significant than

i o

yyyyyyyyyy
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the results obtained in the normal log data situation. Théravalidates the importance of
exploiting unlabeled data in learning more effective arichbde metrics. Finally, compar-
ing the two LRML algorithms, their performance are compéain which the LRMISPP
algorithm tends to outperform the LRMYY algorithm sightly in the 20-Category dataset.

Further, Figure 4 gives the evaluation results of the paiewil measurement on the
two datasets. Similar observations were obtained. Fronfigioees, we found that the
LRML SPP algorithm tends to outperform LRML'V slightly in the 20-Category dataset,
while the LRML™V performs slightly better than LRMIP? in the 50-Category dataset.
From both clustering validation metrics, the two proposB#IL algorithms obtained con-
siderably better improvements than other competing mietaigiing methods.

Finally, Table VIl and Table IX give the details of the expaental results for the CIC
clustering experiments, in which the relative improversemter the baseline are clearly
indicated within the parentheses. We can see that the ireprenmts are as significant as
the ones obtained in the previous CIR experiments.

_20~Category (N=2000, C=20,D=36) _ 50-Category (N=5000, C=50, D=36)

nnnnnnnnnn noisy case

Fig. 4. Comparison of different clustering methods basethemairwise F1 measurement.
The left diagram shows the results on the 20-Category dadaskthe right one shows the
results on the 50-Category dataset. In each diagram, ttzeimahne left side shows the
measurement results obtained in the case of normal log Waike the bars in the right
side shows the ones obtained in the case of noisy log data.

Table VIII. Evaluation of clustering results based on the INiveasurement. For the com-
pared metrics, the constrained kmeans algorithm is usdtkadustering algorithm.

Methods [ 20-Category [ 50-Category

| Normal Case [ Noisy Case | Normal Case [ Noisy Case

Kmeans 0.322+ 0.006 0.322+ 0.006 0.399+ 0.002 0.399+ 0.002
Ckmeans | 0.337£0.007(+4.8%) | 0.323E0.005(+0.4%) | 0.407£0.003(+2.%) | 0.402E0.004(+0.8%)
RCA 0.361+0.016(+12.2%) | 0.345+0.018(+7.%) | 0.442£0.007(+10.9%) | 0.422+0.005(+5.8%)
DCA 0.366+0.014(+13.66) | 0.346+0.014(+7.5%) | 0.445+0.005(+11.65) | 0.4274+0.005(+7.0%)
DML 0.380+0.008(+18.0%) 0.323+0.005(+0.%%) 0.452+0.003(+13.%) 0.401+0.003(+0.5%)
RML 0.367+0.011(+14.%) 0.3370.005(+4.7%) 0.445+0.007(+11.6%) 0.413+0.005(+3.7%)
LRMLSPP | 0.405+0.015(+25.84) | 0.372£0.008(+15.64) | 0.453+0.005(+13.6%) | 0.442+0.004(+10.9%)
LRML'™V | 0.400+0.013(+24.%) | 0.364£0.009(+13.%) | 0.459+0.005(+15.%) | 0.435+0.004(+9.%)

6.11 Experiment V: Time Performance Evaluation

The last experiment is to evaluate the time efficiency of tRML algorithms. All ex-
periments were run on a PC of 3.4GHz CPU and 3GB RAM in the matfevironment.
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Table IX. Evaluation of clustering results based on thevpai F1 measurement. For the
compared metrics, the constrained kmeans algorithm isasséue clustering algorithm.

20-Categor: 50-Categor’

Methods I Normal Case [ o Noisy Case I Normal Case [ o Noisy Case

Kmeans 0.191+0.007 0.191+ 0.007 0.153+0.003 0.153+0.003
Ckmeans 0.206+0.010(+7.5%%) 0.196+0.008(+2.%%) 0.160+0.005(+4.9%) 0.152+-0.003(-0.5%)
RCA 0.2274-0.011(+18.%) | 0.216+-0.012(+12.8%) | 0.18%-0.007(+23.80) | 0.167-0.006(+9.0%)
DCA 0.229+0.010(+19.%) 0.215+0.013(+12.4%) 0.1914+-0.007(+25.%) 0.172+0.006(+12.%)
DML 0.236+0.005(+23.%) | 0.195+0.008(+1.9%) | 0.190+0.005(+24.06) | 0.1514+-0.004(-1.%)
RML 0.229+0.015(+19.5%) 0.205+0.009(+7.0%) 0.192+0.009(+25.5%) 0.165+0.006(+8.%%)
LRMLSPP | 0.254+0.021(+32.64) | 0.225+0.008(+17.8) | 0.196+0.007(+28.4%) | 0.184+0.004(+20.%)
LRMLINV | 0.249+0.013(+30.%) | 0.225+0.011(+17.%) | 0.204+0.008(+33.8%) | 0.184+0.005(+20.%)

Table X shows the evaluation results of time efficiency byedént metric learning meth-
ods on both datasets with the same amount of normal log datatiffie cost in the table
includes all preprocessing cost, such as the time cost opating the Laplacian matrix.
Several observations can be drawn from the results. Firali,ofve found that the two

LRML algorithms are less efficient than some unsupervisetsupervised methods, in-
cluding MAH, RCA and DCA, while it is considerably more efait than the regular DML
method that is solved by a convex optimization method. S&lgphy comparing the pro-
posed LRML methods with the RML approach, we found that the hRML algorithms
took smaller time cost on the 20-Category dataset, how#wey,took significantly more
time when being tested on the 50-Category dataset. The kepneor their difference is
that for both semi-supervised methods, we need to compatkahlacian matrix and its
related matrix computation, which takes more time for ladpasets.

Table X. Comparisons of Time Performance (seconds)
Algorithm | MAH | RCA [ DCA | DML | RML [ LRMLSPP T RMLIVV
20-Category| 0.015 | 0.036 | 0.045| 199.174 | 11.310 9.860 9.130
50-Category| 0.032 | 0.078 | 0.081 | 2004.479| 12.448 71.335 70.704

To justify the efficiency of the proposed algorithm, we futinspect the time cost taken
in different stages of the proposed distance metric legraigorithms. Table XI shows the
results of time cost in different stages of the comparedrélyns. In the table{;, and
txLx represent the time cost of computing the Laplacian matrik ite related matrix
computation respectively, which are engaged only in thei-seipervised methodsip
represents the time cost of computing the two similarityrioasS andD in (16) andiopr
denotes the time cost of solving the optimization problere.ddh draw some observations
from the results. First of all, we found the major computatidthe two LRML algorithms
is paid for computing the Laplacian matrix. Further, for guaring the time cost used
in solving the optimization problems, we found that the msgd LRMLUNV algorithm
achieved a significant speedup compared with the SDP bapedaahes. For example, on
the 20-Category dataset, the time cost for solving the dpéition by LRML'NV is about
70 times faster than LRMIP?, and is almost over 700 times faster than RML. The
speedup results are even more significant on the 50-Catdgtaget.

Table XI. Evaluation of time cost taken in different stagescpnds)

. [ 20-Category [ 50-Category
Algorithms [t Jitxex [ tsp | topr | total J| 4. [ #xix | tsp | topr | total
RML 0.000 | 0.000 | 1.239 | 13.203 | 14.442 0.000 0.000 | 3.426 | 9.022 12.448

LRMLSPF 9.022 | 0.200 | 1.282 | 1.331 | 11.835 || 66.534 | 0.689 | 3.525 | 0.587 | 71.335
LRML™YY 9.250 | 0.189 | 1.275| 0.017 | 10.732 || 66.565 | 0.684 | 3.452 | 0.004 | 70.704
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6.12 Discussions

We discuss two important issues that were found from our goaiexperiences, and
provide some suggestions for further improvements.

First, we notice that one disadvantage of the proposed LRMthod lies in the stage
of computing the Laplacian matrix, which will take non-tetime cost,0(n? logn), for
large applications. This, however, is not very critical feal DML applications because
the stage of computing the Lapalcian matrix often can be doae offline manner. Hence,
with a pre-computed Lapalcian matrix, the LRML method casdiged very efficiently by
our proposed algorithms. Further, to efficiently compute lthplacian matrix, we adopt
some efficient data structure to speed up the computatiomaltticular, we propose to
adopt the Cover tree technique [Beygelzimer et al. 2006pe®d up the computation of
Laplacian matrix. The construction of the cover tree strteetakeO(n log n) time, and
the batch query of searching for k-nearest neighbors on ti@endata set can be found
in O(n) time. Hence, using the cover tree data structure to find theeseneighbors, we
can considerably reduce the time complexity of computinglagian fromO(n? log n) to
O(nlogn), making large-scale applications feasible.

Second, we discuss some advantages and disadvantagestfoo firoposed algorithms,
LRMLSPP and LRMLNV,  First of all, in terms of computational cost, LRMLY is
clearly more efficient than LRMEP? for solving the optimization. In particular, LRMPP
is only feasible for small applications due to the bottldnefcstandard SDP solvers, while
LRML SPP can solve significantly larger problems. Further, in terfnsmopirical accuracy
for retrieval and clustering, we found that the two algarithare essentially comparable.
No one method is significantly better than the other. Butpims situation, we found that
the solution of LRMISPP tends to be slightly more stable than the solution of LRMY.

7. CONCLUSIONS

We proposed a novel framework of semi-supervised distareteiariearning for solving
collaborative image retrieval and clustering, where tla lag data of user relevance feed-
back are analyzed to discover useful information and inféinoal metrics. To fully exploit
the unlabeled data, we proposed a Laplacian RegularizeddMegtarning (LRML) tech-
nigue, which leverages the distribution of unlabeled daid @nsures the smoothness of
metric learning through a regularization framework. Twaevradgorithms were proposed
to resolve the optimization problem efficiently. We condubcéxtensive experiments over
various adverse conditions and compared the proposed thetitlo a large number of
standard options and competitive methods. The results shatthe LRML method is
more effective than the state-of-the-art methods for liegrreliable metrics from realistic
log data that are probably noisy and scarce.

Despite encouraging results obtained, the current worlsba® limitations. First, the
stage of constructing the graph Laplacian matrix usuakgs$anontrivial computational
cost, which could be further improved by applying some effitidata structures. Second,
the distance metric learned by the proposed method is éaetinear, which may be
somewhat restrictive to some complicated applicationsfutare, we may study kernel
based techniques [Yan et al. 2006] to consummate the prdpeskenique.
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Fig. 5. Comparison of retrieval performance given a “roseény. Each diagram shows
top 10 returned images by one metric learning method. Tharfiege is the query image
and the relevant images are marked with a “tick” symbol.
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Fig. 7. Comparison of retrieval performance given a “biet*muery. Each diagram shows
top 10 returned images by one metric learning method. Thdrfiege is the query image
and the relevant images are marked with a “tick” symbol.
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