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Abstract This article proposes a novel online portfolio selectiaateigy named “Passive
Aggressive Mean Reversion” (PAMR). Unlike traditionalrtdefollowing approaches, the
proposed approach relies upon the mean reversion reldtifimancial markets. Equipped
with online passive aggressive learning technique fromhimedearning, the proposed port-
folio selection strategy can effectively exploit the meawearsion property of markets. By
analyzing PAMR’s update scheme, we find that it nicely trasfiébetween portfolio return
and volatility risk and reflects the mean reversion tradiriggiple. We also present several
variants of PAMR algorithm, including a mixture algorithmhigh mixes PAMR and other
strategies. We conduct extensive numerical experimenevatuate the empirical perfor-
mance of the proposed algorithms on various real dataskéseficouraging results show
that in most cases the proposed PAMR strategy outperforimbeathmarks and almost all
state-of-the-art portfolio selection strategies undeioues performance metrics. In addition
to its superior performance, the proposed PAMR runs extiyefast and thus is very suitable
for real-life online trading applications. The experimariestbed including source code and
data sets is available [attp://www.cais.ntu.edu.sg/ ~ chhoi/PAMR/
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1 Introduction

Portfolio Selection (PS) is a practical financial enginegiproblem that requires determin-
ing a strategy of investing wealth among a set of assets &r ¢odachieve certain objectives,
such as maximizing cumulative wealth or risk-adjustedrretin the long run. In this article,
we investigatesequential portfolio selectiofalso termednline portfolio selectiopstrate-
gies, which sequentially determine portfolios based odiglytavailable information.

Traditionally in finance, portfolios are often selectedading tomean-variancehe-
ory (Markowitz|1952/) 1959) or its variants, to trade off beem return and risk. In re-
cent years, this problem has also been actively studied &dearning to select portfo-
lio perspective, with roots in the fields of machine learningadaining, information the-
ory and statistics. Rather than trading with a single staikgicomputational intelligence
techniques, learning to select portfolio approach focusea portfolio, which consists of
multiple assets/stocks. Several approaches for onlinéofiorselection, often character-
ized by machine learning formulations and effective otation solutions, have been pro-
posed in literaturel (Kelly 1956; Breiman 1961; Cover 1S9tdéntlich and Cover 1996;
Helmbold et al. 1996; Borodin and El-Yahiv 1998; Borodin ERA00, 2004, Stoltz and Lugosi
2005;| Hazan 2006; Gyorfi etlal. 2006; Blum and Mansour 20@kina and Shafer 2008;
Gyorfi et al1 2008). Despite being studied extensively, rapproaches are limited in some
aspects or the other.

Our goal of this work is to investigate a new online portfdection strategy that em-
ploys online learning techniques to exploit the financiatkats. Some existing strategies
adopt thetrend followingapproach, that is, they assume that price relative wilbfelits
historical trading days. However, this philosophy failsamlprice relatives do not go in any
particular direction, but rather actively move within a gan So in this study, we exploit
another well-known principle in finance, viz., mean revems(Jegadeesh 1990), through
an online machine learning framework. To this end, we premogaovel portfolio selection
strategy named “Passive Aggressive Mean Reversion” (PAMRiEh exploits the mean re-
version property of financial markets by online passive eggjve learning (Crammer et al.
2006). PAMR’s key idea is to formulate a new loss functiort tan effectively exploit the
mean reversion property, and then adopt passive aggressives learning to search for
optimal portfolio among the asset pool to maximize the cuating return.

Under different scenarios, the proposed PAMR strateggejthssively keeps last port-
folio or aggressively approaches a new portfolio by follewvthe mean reversion principle.
By solving three well formulated optimization problems, areive at three simple portfolio
update rules. It is interesting to find that the final portidlipdate scheme reaches certain
trade-offs between portfolio return and volatility riskgdaexplicitly reflects the mean re-
version trading rule. Moreover, we propose a mixture atgorj which mixes PAMR and
other strategies, and show that the mixture can be univérsak universal strategy is in-
cluded. The key advantages of PAMR are its highly competiferformance and fairly
attractive computation time efficiency. Our extensive ntioa experiments on various real
datasets show that in most cases the proposed PAMR stratggité performance efficient
in comparison to a number of state-of-the-art portfoli@stbn strategies under a variety of
performance metrics. At the same time, the proposed syrategys linear time with respect
to the product of the number of stocks and trading days, anmbitnputational time in back
tests is orders of magnitude less than its competitors, islgaite applicability to real-world
large scale online applications.

As a summary, our contributions in this article include:



1. We propose a new algorithm for online portfolio selectioamed “Passive Aggressive
Mean Reversion” (PAMR). To the best of our knowledge, it isfihst portfolio selection
strategy that exploits both the mean reversion propertyanite and the powerful online
passive aggressive learning technique in machine learning

2. We propose a mixture algorithm to mix the proposed PAMRétlgms and other uni-
versal strategies, resulting in a theoretically guarahtegversal mixture strategy.

3. We analyze the final portfolio update scheme of PAMR andvsthat it is essentially
related to certain trade-offs between portfolio return aoldtility risk.

4. We conduct an extensive set of numerical experiments amber of up-to-date datasets
from various markets. The results show that in most casegrdpsed PAMR strategy
not only outperforms the benchmarks (including marketxntest stock and challeng-
ing best constant rebalanced portfolio (Caver 1991) in $igiat), but also outperforms
various state-of-the-art strategies under various pedoce metrics tested.

5. We also extend the proposed strategy to handle some qataistsues for a real-life
portfolio selection task, viz., transaction cost and nratgiying, and show its practical
viability through the extensive empirical study.

6. We show that the time complexity of the proposed algorihtimear with respect to the
number of stocks per trading day, and its empirical comjmrtat time in the back tests
is quite competitive compared with the state of the artdcatithg the proposed strategy
is suitable for online large-scale real applications.

The rest of the article is organized as follows. Sedfibn enfilly states online portfolio
selection problem. Sectibm 3 reviews existing state-efdt approaches tackling this prob-
lem, and highlights their limitations. Sectibh 4 presenis proposed PAMR strategy and
analyzes the algorithm. Sectibh 5 validates the effectissrof PAMR by extensive empir-
ical studies on historical financial markets. Finally, $®tld summarizes this article and
indicates future directions.

2 Problem Setting

Let us consider a financial market with assets, over which we wish to invest. The changes
of asset prices fof trading periods are represented by a sequence of nonvegatin-zero
price relative vectory, . .., x, € R’!. Let us usex™ to denote such a sequence of vectors.
Theth component of the'™ vectorz,; denotes the ratio of closing price to last closing
price of thei'" asset on the'" trading day, thus an investment in assen thet'" trading
day increases by a factor of;.

Aninvestment in the market is specified bgartfolio vectorb; = (b1, .. ., btm ), Where
by; represents the proportion of wealth invested initheasset. Typically, we assume portfo-
lio is self-financed and no margin/short is allowed, therefeach entry of a portfolio is non-
negative and adds up to one, thattig,c A, whereA,, = {b:b e R, > ", b =1}.
The investment procedure is represented pyufolio strategythat is, a sequence of map-
pingsby = (&,..., %) ,bs RT(“D — Am,t=2,3,...,whereb; = by (x1,...,%¢_1)
is the portfolio used on the® trading period given past market price relatives ' =
{x1,...,%x¢—1}. Let us denote bp" the portfolio strategy for. trading periods.

For thet'" trading day, an investment according to portfatip results in aportfolio
daily returns;, that is, the wealth increases by a factorspf= b/ x; = 31" byiay.
Since we use price relative, the investment results in plidétive cumulative return. Thus,
aftern trading days, the investment according to a portfolio sgab” results inportfolio



cumulative wealtl$,,, which is increased by a factor §f;"_, b/ x;, that is,
n
Sn (b",x™) =S H b{ x¢,
t=1

whereS, denotes the initial wealth, and is set#bin this article for convenience.

Finally, we formulate the online portfolio selection prebi as a sequential decision
problem. The portfolio manager is a decision maker whosé go make a portfolio
strategy on financial markets to satisfy certain requirdmdn this study, his target is to
maximize the portfolio cumulative wealth. He computes lagfplios in a sequential fash-
ion. On each trading day; the portfolio manager has access to all previous sequarices
price relative vectors! ™! = {x;,...,x;_1}, and previous sequences of portfolio vectors
b?~! = {by,...,b;_1}. On the basis of these historical information, the portfotianager
computes a new portfolio vectar; for coming price relative vectat;. Note that without
historical information, the initial portfolio is set to orm. The resulting portfolio is evalu-
ated by its portfolio daily return. This procedure is regeiaintil the end of a trading period,
and the portfolio is finally evaluated according to the paitf cumulative wealth achieved.
Figure[1 models the portfolio selection problem as a sedplatgcision problem.

Initialize So = 1,bo = (&,..., 1)

for each trading day = 1,2,...,n do
(1) Portfolio manager learns the portfolis based on historical informatiom{—1, x*—1)
(2) Market reveals the market price relative
(3) Portfolio incurs a portfolio daily returs; = thxt

end for

Fig. 1: Portfolio Selection as a Sequential Decision pnoble

In the above portfolio selection model, we make several igg@ssumptions:

1. Transaction cost: we assume no transaction cost or taigts i this portfolio selection
model,

2. Market liquidity: we assume that one can buy and sell regujuantities at last closing
price of any given trading period;

3. Impact cost: we assume that market behavior is not affdeyea portfolio selection
strategy in our study.

3 Related work

In this section, we review some popular portfolio selecapproaches, and some machine
learning and trading philosophies that inspire the prop@g®roach.

3.1 Benchmark Approaches

The most common baseline Buy-And-Hold(BAH) strategy, that is, one invests his/her

wealth among a pool of assets with an initial portfolio anttledhe portfolio all the time.
The BAH strategy with ainiforminitial portfolio is referred to as uniform BAH strategy,



which is adopted as market strategy producing the markeixinu our study. Contrary to
the static BAH strategy, active trading strategies usueliignge portfolios regularly dur-
ing the entire trading periods. A classical active strategyonstant Rebalanced Portfolios
(CRP) (Cover and Gluss 1986), which keeps a fixed fractionin¥@stor's wealth in each
underlying asset every trading day. The best possible CRafegy is often calle@est CRP
(BCRP), which apparently is only a hindsight strategy. THRPGstrategy can take advan-
tage of market fluctuations for active trading, and its ulyileg idea is based on the mean
reversion principle, or known a8tly Low, Sell High To handle transaction cost issue for
CRP strategy, Blum and Kallai (1999) propossini-CRPhat partially balances between
potential return and potential transaction cost and relsaksto initial portfolio at the end of
any subset of the trading periods rather than every tradayg d

3.2 Online Learning

In this section, we briefly introduce the related work on walinachine learning (Rosenblatt
1958; Crammer and Singer 2003; Cesa-Bianchi et al. 2004n@ex et all. 2006; Fink et al.
2006) to have the learning inspiration for our wolAerceptromalgorithm (Rosenblatt 1958;
Freund and Schapire 1999) is one important online approdgbhvwpdates the learning
function by adding a new example with a constant weight whesmisclassified. Recently
a number of online learning algorithms have been propossddan the criterion of max-
imum margin i(Li and Long 1999; Genlile 2001; Kivinen etlal020 Crammer and Singer
2003] Crammer et &l. 2006; Zhao elial. 2011). For exanfp¥éaxed Online Maximum Mar-
gin (ROMMA) (Li.and Long 1990) algorithm repeatedly choosesltilgper-planes that cor-
rectly classify the existing training example with the nmamim marginPassive Aggressive
(PA) (Crammer et al. 2006) algorithm updates the classifiodtinction when a new exam-
ple is misclassified or its classification score does notekseme predefined thresholds. As
empirical studies show, the maximum margin based onlimailegalgorithms are generally
more effectively than the Perceptron algorithm. In thiscet we mainly adopt the idea of
Passive Aggressive learning since it is suitable for ourivations as further illustrated in
Sectior 4.1.

3.3 Learning to Select Portfolio

Learning to select portfolio has been extensively studiddformation theory and machine
learning. Generally, a strategy selects one optimal sfyafie can be market strategy, chal-
lenging BCRP strategy, or even Oracle strategy which chothsebest stock every trading
day) and tries to obtain the same cumulative return.régeetof a strategy is defined as the
gap between its logarithmic cumulative wealth achievedthatof the optimal strategy.
One important type of learning to select portfolio is regnatimization approach, which
chooses BCRP strategy as the optimal strategy. Cover|(I86ppsedJniversal Portfolio
(UP) strategy, where the portfolio is historical perforro@anveighted average of all constant
rebalanced portfolio experts. The regret achieved by Cou is O¢n logn), and its run
time complexity is O¢™), wherem denotes the number of stocks amdlenotes the num-
ber of trading days. The implementation is exponential & niomber of stocks and thus
restricts the number of assets used in experiments andpplidations| Kalai and Vempala
(2002) presented a time-efficient implementation of Ce/elP based on non-uniform ran-
dom walks that are rapidly mixing, which requires poly ruxmtime O¢»"»®). Following



their work, Cover and Ordentlich (1996) developed univiggsacedures when side informa-
tiorl] is taken into account as a finite number of vallies. Cross aniB#2003) proposed
a new universal portfolio strategy tracking the best indsight wealth achievable within
target classes of linearly parameterized portfolio seqegnwhich are more general than
the standard CRP class and permit the portfolio to displaynéimuous form of dependence
on past prices or other side information. Belentepe (20083ented a statistical view of
Cover’s UP, showing that it is approximately equivalent tmastrained sequential portfolio
optimization, which connects Cover's UP with traditionagam-variance portfolio theory.

Another famous strategy Bxponential Gradien{EG) strategy/ (Helmbold et al. 1997,
1996) for online portfolio selection using multiplicativgodates. In general, EG strategy
tries to maximize the expected logarithmic portfolio daigturn (approximated using the
last price relative), and minimize the deviation betweext portfolio and last portfolio.
The regret achieved by EG is (3 log m) with O(mn) running time. While its regret is not
as tight as Cover’s UP, its linear time complexity is subs#dly less than the latter.

Recently, convex optimization has been applied to resdlggpbrtfolio selection prob-
lem (Agarwal et al. 2006; Agarwal and Hazan 2005; Hazan [26f#6zan et al. 2007). Ex-
amples includeOnline Newton SteffONS) strategyl (Agarwal et gl. 2006), which aims to
maximize the expected logarithmic cumulative wealth (agjpnated using historical price
relatives) and to minimize the variation of the expectedfpbo. ONS exploits the second
order information of the log wealth function and applie®ittie online scenario. It theoreti-
cally achieves a regret of @(log n) which is the same as Cover’s UP, and has running time
complexity of Ogn>n). Following ONS, Hazan and Seshadhri (2009) recently sega
new adaptive-regret approach with more decent theoretsallts, which essentially is an
ONS based strategy.

Another promising direction for portfolio selection is wsamaximization approach,
which is based on the notion of approaching the Oracle asptimal strategy. This idea
was followed by Borodin et all (2004) in their proposal of anamiversal portfolio strat-
egy namedAnti-Correlation(Anticor). Unlike the regret minimization approaches, idot
strategy takes advantage of the statistical propertiesnahéial market. The underlying
motivation is to bet on the consistency of positive laggesssfcorrelation and negative au-
tocorrelation. It exploits the statistical informatioroifn the historical stock price relatives
and adopts the classical mean reversion trading idea tsfénatine wealth in the portfolio.
Although it does not provide any theoretical guaranteegiitpirical results (Borodin et al.
2004) showed that Anticor can outperform all existing gmés in most cases. Unlike the
greedy algorithm by the Anticor strateqy, Li, Hoi, Zhao anolb@lkrishnan|(2011) very re-
cently proposedonfidence Weighted Mean Revers[GNWMR) strategy to actively exploit
the mean reversion property and the second order informafia portfolio, which produces
better performance than Anticor.

In addition,| Gyorfi et al.| (2006) recently introduced a femmork of Nonparametric
Kernel-based Moving Windo@X) learning strategies for portfolio selection based on non-
parametric prediction techniques (Gyorfi and Schafe3200heir algorithm first identifies
a list of similar historical price relative sequences whaselidean distances with recent
market windows are smaller than a threshold, then optimizeportfolio with respect to the
list of similar sequences. Under the same framework, Gegbdil. (20017) proposed another
variant calledNonparametric Kernel-based Semi-log-optirsttategy, which is actually an
approximation of theBX strategy, mainly to improve the computational efficience- R
placinglog utility function by Markowitz-type utility function, Ottasak and Vajda (2007)

1 side information includes interest rates, consumer condieldigures, etc.



proposedNonparametric Kernel-based Markowitz-tygieategy, which connects return and
risk (or mean and variance) with the online portfolio setatstrategy. Following the same
framework asBX strategyNonparametric Nearest Neighbor learnifg™N) strategy pro-
posed in_Gyorfi et al. (2008) aims to search for theearest neighbors in historical price
relative sequences rather than search price relativegwéthpecified Euclidean ball. This
method has been empirically shown to be a robust tradingegiyaAlong this direction,
Li, Hoi and Gopalkrishnan (2011) recently propos&atrelation-driven Nonparametric learn-
ing (CORN) strategy to search for similar price relatives vieelation coefficient and con-
siderably boosted the empirical performance of nonpangeriearning approach.

Besides the main stream of learning to selection portfalimther type of trading strat-
egy is based on switching between various strategies,shatdintaining a probability dis-
tribution among the strategies. Singer (1997) propdSedtching Portfolios(SP), which
aims to deal with changing markets by taking into accountpiesibility that the market
changes its behavior after each trading day. It switchesngnaoset of basic investment
strategies and assumes the a priori duration of using ore $testegy is geometrically dis-
tributed. Levina and Sharer (2008) proposgalissian Random WalleRW) strategy, which
is a Markov switching strategy. GRW switches among the basistment strategies as a
Gaussian random walk in the simplex of portfolios.

Last, we note that our work is very different from anotheragtgody of existing work
in literature (Kimoto et al. 1993; Tay and Cao 2001; Cao and2@03; Tsang et al. 2004;
Lu et all.| 2009), which attempted to make financial time sefdescasting and stock price
predictions by applying machine learning techniques, sisafeural networks (Kimoto etlal.
1993), decision trees (Tsang elial. 2004), and support ve@ohines (SVM). (Tay and Cao
2001; Cao and Tay 2008; Lu et/ al. 2009), etc. The key diffexdmetween these work and
ours is that their learning goal is to make explicit prediot of future prices/trends while
our learning goal is to directly optimize portfolio withoptedicting prices explicitly.

3.4 Analysis of Existing Work

One popular trading idea in realitytiend followingor momentunstrategy, which assumes
that historically better-performing stocks would stillrfem better than others in future.
Some existing algorithms, such as EG and ONS, approximatexpected logarithmic
daily return and logarithmic cumulative return respedsivesing historical price relatives.
Though this idea is easy to understand and makes fortuneariy of the best traders and
investors in the world, trend following is very hard to implent effectively. In addition,

in the short-term, the stock price relatives may not followvous trends as empirically
evidenced by Jegadeesh (11990) and Lo and MacKinlay (1990).

Besides the trend following approach, another widely aglbpipproach in the learning
community ismean reversior{Cover and Gluss 1986; Cover 1991; Borodin et al. 2004),
which is also termed asontrarian approach. This approach stems from the CRP strat-
egy (Cover and Gluss 1986), which rebalances to the initefgio every trading day. The
idea behind this approach is that if one stock performs wibrease others, it tends to perform
better than others in the next trading day. As a result, tfiaidg characteristic of a contrar-
ian strategy is the purchase of securities that have peeioorly in the past and the sale
of securities that have performed well, or quite simp8ell the Winner, Buy the LoseAc-
cording ta_Lo and MacKinlay (1990), the effectiveness of meaversion is a consequence
of positive cross-autocovariances across securities.mynexisting algorithms, CRP, UP,
and Anticor adopt this trading idea. However, CRP and UPipalgsreverse to the mean,



while empirical evidence from Anticor algorithm_(Borodihag| |[2004) shows that active
reversion to the mean may better exploit the fluctuation afriaial markets and is likely
to obtain a much higher profit. On the other hand, althoughcangctively reverses to the
mean, it is a heuristic method based on statistical coroglstto transfer the wealth within
the portfolio. In other words, it may not effectively exglttie mean reversion property.

In between, pattern matching based nonparametric leasigagithms ¥ and BNY,
etc.) can identify many market conditions including bothameeversion and trend follow-
ing. However, when locating similar price relatives, theparametric learning approaches
may locate both mean reversion and trend following pricatieds, whose patterns are es-
sentially opposite, thus weakening the maximization ofekgected cumulative wealth.

In a word, both trend following and mean reversion can geagreofit in the financial
markets, if appropriately used. In the following, we willopose an active mean reversion
based portfolio selection method. Though simple in updaiesy it empirically outperforms
the above existing portfolio selection strategies in mases. The success of the proposed
portfolio selection strategy indicates that it approgijatakes advantage of the mean rever-
sion trading idea and generates significantly high profithénback tests with real market
data.

4 Passive Aggressive Mean Reversion Approach for Portfolio Selection
4.1 Intuition and Overview

The proposed approach is motivated by Constant Rebalarm#iol®s (Cover and Gluss
1986), which adopts the mean reversion trading idea. A grbpk convincing example
showing the mean reversion idea is illustrated in Teble hs@fer a fluctuating market with
two stocks (A,B), and the stock price relative sequencgis) , (2,3) ..., where each
stock is not going anywhere but actively moving within a n@bviously, in a long-term
period, market strategy cannot achieve any abnormal rétam this sequence since the
cumulative wealth of each stock remains the same aftérading days. However, Best CRP
in hindsight can achieve a growth rate@f)" for an-trading period. Now let us analyze the
BCRP strategy on the stock price relative sequence to shewritierlying mean reversion
trading idea. Suppose the initial portfolio(i§, ) and at the end of the®" trading day, the
closing price adjusted wealth distribution beconﬁés%) with corresponding cumulative

wealth increasing by a factor éf. At the beginning of the™? trading day, portfolio manager
rebalances the portfolio to initial portfoli %, %) by transferring the wealth from better-
performing stock (B) to worse-performing stock (A) in theepious trading day. At the
beginning of the3'! trading day, the wealth transfer with the mean reversiodinigaidea
continues. Although the market strategy gains nothing, BCRn achieve a growth rate of
g per trading day using the mean reversion trading idea, wassumes that if one stock
price performs worse, it tends to perform better in the sgbset trading day.

Another motivation of the proposed PAMR algorithm is inspiirby the fact that in
financial crisis, all stocks drop synchronously or certdiocks drop significantly. Under
these situations, actively rebalancing may not be appatgpsince it puts too much wealth
on “mine” stocks, such as Bear Stearns during the recentdialasrisis. To avoid the poten-
tial risk concerning such “mine” stocks, it is a good choicstick to the previous portfolio,
which constitutes the CRP strategy. Here, the reason tosehib@ passive CRP strategy is
that identifying these “mine” stocks a priori is almost inggible, which are usually known
in hindsight. Thus, to avoid suffering too much from sucliaiions, PAMR alternates the



# day | Relative (A,B) | BCRP | BCRP Return| Wealth Proportion Notes
1 £,2) (3:3) 3 (3.3) B— A
2 eh | D : A5 A—B
3 (%72) (575) 2 (gvg) B— A

Table 1: Motivating example of CRP to show the mean reversexting idea.

strategy between “aggressive” and “passive” reversiordeing on the market conditions.
The passive mean reversion strategy avoids the high riskeohggressive approach that
would put almost all wealth on these “mine” stocks when thepdsignificantly.

In this article, we propose a novel trading strategy nameaks$iRe Aggressive Mean
Reversion”, or PAMR for short. On the one hand, the undeglgssumption of our approach
is that better-performing stocks would perform worse thdres in the next trading day.
On the other hand, if the market drops too much, we would sttipedy rebalancing the
portfolio to avoid certain “mine” stocks and their assoethtisk. In order to exploit these
intuitions, we suggest to adopt Passive Aggressive (PAnheriearning [((Crammer et al.
2006), which was originally proposed for classificatiork&ad oosely speaking, the basic
idea of PA for classification is that jfassivelykeeps previous solution if loss is zero, while
it aggressivelypdates the solution whenever the suffering loss is nonzero

Let us now describe the basic idea of the proposed strateghetal. Firstly, if the
portfolio daily return is below a certain threshold, we wiil to keep the previous portfolio
such that itpassivelyreverses to the mean to avoid the potential “mine” stockso&aly,
if the portfolio daily return is above the threshold, we vetitively rebalance the portfolio
to ensure that thexpectedgortfolio daily return is below the threshold in the belirét the
stock price relatives will reverse in the next trading dayisTsounds a bit counter-intuitive,
but it is indeed reasonable, because if the stock pricaveledverses, keeping the expected
portfolio daily return below the threshold is able to mainta high portfolio daily return
in the next trading day. Here, the expected portfolio retsrcalculated with respect to the
historical price relatives, for example, in our study, tastlprice relative, which is consistent
with EG algorithm|(Helmbold et al. 19977, 1996).

To further illustrate why aggressive reversion to the memmlze more effective than a
passive one, let us continue the example in Table 1 that harketrgoing to nowhere but
actively fluctuating. We show that in such markets, the psepstrategy is much more pow-
erful than BCRP in hindsight, a passive mean reversionritpgirategy. Tablgl2 compares
the two trading strategies. As the motivating example shokes growth rate of BCRP is
(%)” for an-trading period, while at the same time, the growth rate efgfoposed PAMR
strategy is; x (%)”‘1 (The details of the calculation/algorithm will be presehiater). We
intuitively explain the success of PAMR below.

Assume the threshold for PAMR update is seti fdhat is, if portfolio daily return is
below 1, we do nothing but keep the existing portfolio. Our stratbggins with a portfolio
(1,1). For the1®" trading day, the return i§ > 1. Then at the beginning of thg"
trading day, we rebalance the portfolio to satisfy the ctonlithatapproximateportfolio
daily return based on last price relatives is below the tiwkbsi, and the resulting portfolio
is (%, %) Although it seems that we build a portfolio such that theragimnate portfolio
return is below the threshold, in practice, as the reversiothe mean suggests, we are
maximizing the portfolio return in the next trading day. Ae wan observe, the return for
the2"d trading day is% > 1. Then following the same rule, we will rebalance the poitftd
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(3. %). As aresult, in such a market, the growth rate of the propssategy is? x (%)”71

for an-trading period, which is much more superior to that of BCIREf is,(%)".

# day | Relatives | BCRP | BCRP Return| PAMR | PAMR Return Notes
1 (1,2 i, 5 i,hH 5 rebalance tq2, 1)
2 (22,% (%%) % (%%) % rebalancetoj%%)
3 (3,2 (?,?) i (§,§) 2 rebalance tc(?g)
4 2 3) (3:3) s (3. 3) s rebalance tqz, %)

Table 2: Motivating example of comparison between BCRP sk strategy.

4.2 Formulations

Now we shall formally devise the proposed Passive Aggreddigan Reversion (PAMR)
strategy for portfolio selection problem. The PAMR stratég based on the mean rever-
sion idea as described in Sectlon]4.1, and is equipped withilgaAggressive (PA) online
learning technique (Crammer et lal. 2006).

First of all, given a portfolio vectob and a price relative vectat;, we define &e-
insensitive loss function for thé" trading day as

0 b-x: <e
b-x; —¢ otherwise’

Le (b§ Xt) = { (1)

wheree > 0 is the sensitivity parameter which controls the mean réwerthreshold. Since
typically portfolio daily return fluctuates arourid we often empirically choose < 1 in
order to buy worse performing stocks. Thesensitive loss is zero when return is less than
the reversion threshold and otherwise grows linearly with respect to the daily metéor
conciseness, let us ugeto denote/. (b; x;), that is, the--insensitive loss of the! trading
day. By defining this loss function, we can distinguish the motivating cases described in
Sectior 4.11.

In the following parts, we will formulate three variants dfet proposed strategy, and
will propose specific algorithms to solve them in the subsetjsection. Recalling thai;
denotes the portfolio vector on th&" trading day, the first proposed method for Passive
Aggressive Mean Reversion (PAMR) is formulated as the camsd optimization below:
Optimization Problem 1 (PAMR):

by :argmin% b—be|? st f(b;xe) = 0. @)

m

The above formulation attempts to find an optimal portfoliorbinimizing the deviation
from last portfoliob; under the condition of satisfying the constraint of zeresld3n the
one hand, the above approgussivelkeeps the last portfolio, that ib;; = b; whenever

¢t = 0 that means the portfolio daily return is below the threshol®n the other hand,
whenever the loss is nonzero,aggressivelyupdates the solution by forcing it to strictly
satisfy the constraint. (b;11;x¢) = 0. Itis clear that this formulation is able to address the
two motivations.
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Although the above formulation is reasonable to addressangerns, it may have some
undesirable properties in situations with noisy pricetreds, which are common in real-
word financial markets. For example, a noisy price relatigpearing in some trending
sequences may suddenly change the portfolio in a wrongtitiredue to the aggressive
update. To avoid such problems, we propose two variants bffRghat are able to trade off
between aggressiveness and passiveness. The idea ofddnguhe two PAMR variants is
similar to soft margin support vector machines by introdg@gome non-negative slack vari-
ables into optimization. Specifically, for the first variame modify the objective function
by introducing a term that scales linearly with respect,tavhich results in the following
optimization:

Optimization Problem 2 (PAMR-1):

byi1 — arg min% Ib—be|?+C¢ st £ (bsxi) < €ande >0, 3)
belAn,

whereC' is a positive parameter to control the influence of the slaiable term on the
objective function. We refer to this parameter as the agiyesess parameter similar to PA
learning (Crammer et &l. 2006) and call this variant “PAMR-1

Instead of using a linear term of slack variable, in the sdoariant, we modify the
objective function by introducing a slack variable termtthzales quadratically with respect
to ¢, which results in the following optimization problem:
Optimization Problem 3 (PAMR-2):

1
bi+1 = argmin 3 [b - bi||? + C&% s.t. le (byxg) <& 4)
beA,,

Note that in the above formulation we do not need to enforeectinstraing > 0 as¢? is
always non-negative. We refer to this variant as “PAMR-2".

4.3 Algorithms

We now derive the approximate solutions for the above thildRR formulations using
standard techniques from convex analysis (Boyd and VaretghB 2004), and present the
proposed PAMR algorithms for portfolio selection task. @feally, the following three
propositions summarize the solutions to the PAMR methods.

Proposition 1 The solution to the optimization problem 1 (PAMR) withouisidering the
non-negativity constrainty = 0) is expressed as:

b =b; — 7 (x¢ — T¢1), )

wherez; = %1 denotes the market return, angis computed as:

m

b, - x4 —

Tt zmaX{O,%}. (6)
l[xt — z: 1|

Proof The proof can be found in Appendix A.
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Proposition 2 The solution to the optimization problem 2 (PAMR-1) withoomsidering
the non-negativity constrainb(>= 0) is expressed as:

bet—Tt(Xt—.Ttl),

wherez; = %1 denotes the market return, angis computed as:

m
Tt zmaX{O,min{C,Lt_EQ}}. @)
l[xt — Z¢1]]

Proof The proof can be found in Appendix B.

Proposition 3 The solution to the optimization problem 3 (PAMR-2) withoomsidering
the non-negativity constrainb(= 0) is expressed as:

b:btht(th.Ttl),

wherez; = XL denotes the market return, angis computed as:

m
Tt = max ¢ 0, bt; Xt ; < (- (8)
Ixt — Z¢1||” + 56

Proof The proof can be found in Appendix C.

Figure[2 summarizes the details of the proposed PAMR algust Firstly, with no
historical information, the initial portfolio is set to dorm portfoliob; = (%, R %) At
the beginning of'" trading day, we rebalance according to the portfolio deieenhat the
end of last trading day. At the end &F trading day, the market reveals a stock price relative
vector, which represents the stock price movements. Siottethe portfolio and the stock
price relatives are already known, portfolio manager i€ ablmeasure the portfolio daily
returnb; - x; and the suffering los& (b¢;x:) as defined in Eq[{1). Then, we calculate an
optimal step size; based on last portfolio and stock price relatives. Giveroghtémal step
sizer:, we can update the portfolio for next trading day. Finallg, perform a normalization
step to obtain the final portfolio by projecting the updatedfplio into the simplex domain.

4.4 Analysis and Interpretation

To reflect the mean reversion trading idea, we are interéstahlyzing the resulting update
rules of the proposed PAMR algorithms, which mainly invotie portfoliob;; and the
step sizer;. In particular, we want to examine how the update rules dage@ to return and
risk — the two most important concerns in a portfolio setattiask.

First of all, we analyze the resulting portfolio update rindeq. (3) for the three PAMR
algorithms, that isb;+1 = by — 7 (x¢ — Z¢1). In the update rule, the step sizgeis non-
negative, and; is the mean return or market return. For tetgn— z;1, we can see it rep-
resents stock abnormal returns with respect to the marketext” trading day. More pre-
cisely, we can interpret it as the directional vector forweght transfer. The negative sign
before the term indicates that the resulting update schemenisistent with the motivation,
that is, the weights shall be transferred from better periiog stocks (with positive abnor-
mal returns) to worse performing stocks (with negative atmab returns) at the beginning
of next day.
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Algorithm 1: Passive Aggressive Mean Reversi®M R)
INPUT: €: sensitivity parameter; C: aggressiveness paramete

PROCEDURE
1 Initializeby = (L,..., L)
m m
2. fort=1,2,...,ndo
3: Receive stock price relatives; = (x¢1, ..., Ttm)
4: Suffer loss?t = max {0, by - x; — €}
5: Set parameters:
“
lIx¢—z¢1]12 , (PAMR)
. £ _
7t = { min< C, m} (PAMR-1)
t
(PAMR-2)

.
= 1
Ixt =212+ 55

6: Update portfolio:

bii1 =by — 7 (x¢ — T¢1)
7 Normalize portfolio:

b1 = argmin||b — by
beA,,
8: end for

END

Fig. 2: The proposed Passive Aggressive Mean Reversion [BAdttategies.

Besides, another important update is the stepsizalculated as Eq[{6), E4.1(7), and
Eqg. (8), for three PAMR methods, respectively. The step sizadaptively controls the
weights to be transferred by taking effect on the directimeator. One interesting term in

t
common for the three updates gfis L The numerator of the term equals to the

llxe—@: 1]
** portfolio daily return minus the mean reversion threshdlssuming other variables are
constant, if the return is high (low), it leads to a large (Bynalue of r, which would more
(less) aggressively transfer the wealth from better paniiog stocks to worse performing
stocks. The denominator is essentially the market quadvatiability, that is, the number
of stocks times the market variance of i trading day. In modern portfolio theory, vari-
ance of stock return is typically regarded as a volatiligkierm for a portfoliol(Markowitz
1952). As indicated by the denominator, if the risk is highw(), the step size+ would
become small (large). As a result of small (large) step shee weight transfer made by
the update scheme will be weakened (strengthened), whimbnisistent with our intuition
that prediction would be not accurate in drastically drogpinarkets, and we opt to make
relatively less transfer in order to reduce risk. MoreoW®&XMR-1 caps the step size by a
constantC, while PAMR-2 decreases the step size by adding a con%atm its denomina-
tor. Both measures can prevent drastic weight transferdga o&noisy price relatives, which
is consistent with their motivations.

From the above analysis on the updates of direction and &epwe can conclude
that PAMR nicely balances between return and risk and gleaflects the mean reversion
trading idea. To the best of our knowledge, this importaadéroff between return and risk
has been considered by only one existing approach, thabigamametric kernel-based
Markowitz-type strategyl (Ottucsak and Vajda 2007). While kernel-based Markowitz-
type strategy trades off the return and risk with respectrtolar historical price relatives,
the proposed PAMR explicitly trades off the return and risthwespect to last price rela-
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tives. This nice property distinguishes the proposed arérom most existing approaches
that often cater to return, but ignore the risk concern, aedherefore undesirable according
to modern portfolio theory (Markowitz 1952).

Now let us briefly analyze the time complexity of the propoB&dIR algorithms. From
Figurd2, we can see that besides the normalization stepRP#thategy takes @) per trad-
ing day, wheren denotes the number of assets. Moreover, the normalizatipnogection
step (Steg in Figure[2) can be efficiently implemented (Michelot 11986:dhi et all 2008).
In our implementation, we adopt the projecﬂom:cording to_Duchi et all (2008), which
takes linear time with respect ta. Thus, the total time complexity is @), wheren is
the total number of trading days. Such time complexity isséwme as that of EG algorithm
and is much superior to other existing methods. Linear tiorapexity enables the pro-
posed algorithm to handle transactions in certain scemarfeere low latency is of crucial
importance, such as high frequency trading (Aldridge 2009)

4.5 Discussions
4.5.1 Discussion on Intuitions

Although the motivating example in Sectibn 4.1 demonssrate effectiveness of PAMR
over BCRP strategy, PAMR may not always outperform BCRP.dnegal, PAMR is an
online algorithm while BCRP is offline optimal for an i.i.d.anket (seé¢ Cover and Thomas
(1991), Theorem 15.3.1). Next, we discuss some possihiatgihs where PAMR may fail
to outperform BCRP.

Consider a special case where one stock crashes and theepfiedes, e.g., a market
sequence of two stocks @, 2), (%, 2),.... Assuming the same parameter settings as the
motivating example, BCRP will increase at an exponentie 28 as it wholly invests in the
2"d asset, while PAMR will keep a fixed wealth c%]over the trading period. Obviously,
in such a situation, PAMR performs much worse than BCRP does,PAMR produces
a cumulative wealth of against2” achieved by BCRP over a trading period. Though
not shiny in such situations, PAMR still bounds its lossesrédver, such a market, which
violates the mean reversion assumption, is occasionataat from the view point of our
empirical studies.

4.5.2 Discussion on Loss Function

In our definition of loss function, that is, Eq.](1), we use tireginal portfolio expected
returnb - x;, while it is possible to uséog utility (Latan&/ 1959) on the return, that is,
log (b - x¢). With this log utility, the optimization problems Eql](2), E4.J(3), and Hd)
are all non-convex and nonlinear, and thus difficult to sodae way to solve these non-
convex optimization problems is to ugsg’s first-order Taylor expansion at last portfolio
and ignore the higher order terms, thatdg, (b - x¢) = log (bt - x¢)+ b:f;(t (b — by). After
linear approximation, the optimization problems can beemblusing the same techniques
used in our derivation. However, such linear approximatibloss function may have some
drawbacks. First of all, linear approximation yields a uppeund on regret in terms of a
log utility loss function. There is no way to justify the goodses the linear approximation.

2 The precise matlab routirerojectOntoSimplexan be found on
http://www.cs.berkeley.edu/ ~]duchi/projects/DuchiShSiCh08/
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Moreover, if we usdog utility, then the loss function is flat, then sharply rises! dimally
flattens out. While linear approximation is good in the twoiégimes, it is typically terrible
at the point of non-differentiability and sub-par in the gitarising region.

On the other hand, for the loss function in form of Hd. (1) withlog utility or with
linear approximation ofog utility, the best possible regret in a minimax sense is attmos
O(y/n) (Abernethy et al. 2009), while trueg loss minimization algorithm can routinely
achieve Olpgn). However, although our loss function is non-differengaland it would
achieve a potential regret of Q), it is not a traditional loss function maximizing return
(like traditional loss function;- log (b - x¢)), but only a tool to realize mean reversion. Thus
the regret achieved using our loss function does not repteseegret about return, which
may not be meaningful as traditional regret bound is.

Anyway, the potential worse bound may have unknown wealasesehich may not be
elicited by the following empirical evaluations. Though omr experiments PAMR works
well, anyone who cares about its theoretical aspects shmilabtified about the possible
worse bound.

4.5.3 Discussion on Formulation

Although our formulations mainly focus on the portfolio lyaieturn without explicitly deal-
ing with risk (e.g., volatility of daily returns), the finaledived algorithms can be nicely
interpreted as certain trade-offs between risk and reasmiscussed in Sectign #.4. Such
interesting observation is further verified by our empir@saluation in Section 5.4.2, which
shows that the proposed PAMR algorithms achieve good dgksted return in terms of two
risk-related metrics (i.e., volatility risk and drawdowisk;, respectively).

Similar to previous studies, we avoid incorporating tratisa cost in the original for-
mulations, which simplifies the formulations and clearlghiights PAMR’s key ingredi-
ents. To further show the impact of transaction costs, ibisdifficult to evaluate the effect
of transaction costs, as shown in Secfion %.2.2. In thevidfig empirical study, we present
results on both cases: with and without transaction costenEhe empirical results in Sec-
tion[5.4.5, we find that in most markets, the proposed PAMRritgms work well without
or even with moderate transaction costs.

Besides, it is important to note that there are two key patarsén the proposed PAMR
algorithm and its variants, viz., the sensitivity parametand the aggressiveness parameter
C. In practice, the choice of these parameters could affecpénformance of the proposed
algorithms. To achieve a good performance in a specific mgaitkese parameters have to
be finely tuned. We will thoroughly examine the effects of thwe parameters on real-life
datasets in Sectidn 5.4.4, and make suggestions for theieatgielection of their values.

4.5.4 Discussion on PAMR Variants

In this section, we will show an example to illustrate diffet behaviors of the three update
rules, viz., PAMR, PAMR-1, and PAMR-2. As discussed in S&tf.2, one objective for
PAMR-1 and PAMR-2 is to prevent the portfolio being affected much from noisy price
relatives, which might drastically change the portfoliet lus assume the environments and
parameter settings as follows. Let tH& price relativex; = (1.00,0.01), which represents
the situations that thg"? price relative is a noise, and thé' portfolio b; = (1,0). Setting
the parameters = 0.30 andC = 1.00, let us calculate next portfolib;,;. This market
environment describes the situations where certain pelegives drop significantly, which
is similar to some stocks during recent financial crisis.Hitt tuning, the original PAMR
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algorithm would transfer a large proportion of wealth to2Hé asset in the next trading day.
This can be verified by examining the portfolio calculated®MR, viz., PAMR calculates
the update step sizg = 1.43 and obtains the subsequent portfobig,; = (0.29,0.71).
However, a natural choice of avoiding such noisy price redatis to put less proportion
of wealth to the second asset. Now, when calculating the pestfolios by PAMR-1 and
PAMR-2, we obtain the update step size= 1.00 andr = 0.71, respectively, which are
smaller than the update step size of the original PAMR, that i= 1.43. Accordingly, we
obtain the next portfoliod;; = (0.50,0.50) andb;y; = (0.65,0.35) for PAMR-1 and
PAMR-2, respectively. Clearly, PAMR-1 and PAMR-2 trangfess wealth to the™? asset
than the original PAMR does. Thus, PAMR-1 and PAMR-2 in gahsuffer relatively less
from noisy price relatives, though we cannot completelyichgoich suffering situation.

4.6 Mixture Algorithm

One theoretical result desired by existing online portfaléelection algorithms igniversal
property (Cover 1991). Since mean reversion trading ideauster-intuitive|(Borodin et al.
2004), we find it is hard to prove the universality of PAMR. ékhatively, we present a
general mixture algorithm, which guarantees worst-cas®peance, not for PAMR itself
but for the mixture algorithm.

Briefly speaking, the proposed mixture algorithm frames PARE one “expert” in a
mixture-of-experts setting, while at least one universgbdthm serves as other “experts”.
Then, the proposed mixture adopts no-regret expert leguiasa-Bianchi and Lugasi 2006)
to bound the regret of the overall system with respect to #st bf these experts. If the
mixture algorithm contains at least one universal alguﬂhthen the universality of the
mixture algorithm can be straightforwardly proved accogdtol Cesa-Bianchi and Lugbsi
(2006) (see example 10.3 and Theorem 10.3 for rigorous gyobf our implementation,
we adopt uniform buy and hold (BAH) mixture strategy, thatwe give equal proportion
of portfolio wealth to each expert, let them run, and finalbopthem again. We denote
the BAH mixture algorithm as “MIX”. Other expert learning theds, such as exponential
weighted, can also replace the buy and hold strategy, arydctire also provide provable
guarantees and get potentially stronger empirical pedoga. Though MIX seems trivial
since it has a more involved mixing rule, one can make it gatrby extending the set-
ting in a more general setting, such as the framework prapbgeAkcoglu et al. [(2002)
and.Das and Banerjee (2011). Obviously, such a mixture ithgorcan be applied to any
portfolio selection algorithm, either universal or not.

Though it is convenient to propose a mixture model congisthPAMR such that the
mixture model can achieve universality, PAMR'’s univergaigistency is still an open ques-
tion and deserves further exploration.

5 Numerical Experiments

To examine the empirical efficacy of the proposed PAMR sipatee conduct an extensive
set of numerical experiments on a variety of real datasetsut experiments, we adopt six
real datasets, which were collected from several divers@dial markets. The performance
metrics include cumulative wealth and risk-adjusted regu(wolatility risk and drawdown

3 Such statement is also appeared in footnote[1 of Borodin (2G04).
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risk). We also compare the proposed PAMR algorithms wittexsilting algorithms stated
in the related work section.

5.1 Experimental Testbed on Real Data

In this study, we focus on historical daily prices in stockrkeds which are easy to obtain
from public domains (such as Yahoo Finance and Google F&)aaad thus publicly avail-
able to other researchers. Data from other types of mankeh, &s high frequency intra-day
guotes and Forex markets, are either too expensive or haotéin and process, and thus
may reduce the experimental reproducibility. In generad, amploy six real and diverse
datasets from several types of financial matketgich are summarized in Tallé 3.

Dataset Market | Region Time frame # Trading days| # Assets
NYSE (O) | Stock us Jul.3*9 1962 - Dec.315% 1984 5651 36
NYSE (N) | Stock us Jan.15% 1985 - Jun.30t" 2010 6431 23
TSE Stock CA Jan.4th 1994 - Dec.315¢ 1998 1259 88
SP500 Stocks us Jan.2"d 1998 - Jan.315% 2003 1276 25
MSCI Index | Global | Apr. 15¢ 2006 - Mar. 315¢ 2010 1043 24
DJIA Stocks us Jan.14th 2001 - Jan.14" 2003 507 30

Table 3: Summary of the six real datasets in our numericagmxents.

The first one is NYSE dataset, one “standard” dataset pieddesy Cover|(1991) and
followed by several other researchers (Singer 1997; Heldngioal.| 1996; Borodin et al.
2004; Agarwal et al. 2006; Gyorfi etlal. 2006, 2008). Thisadat contain§651 daily price
relatives of36 stockB in New York Stock Exchange (NYSE) forz-year period from Jul.
34 1962 to Dec.31°* 1984. We denote this dataset by “NYSE (O)” for short.

The second dataset is the extended version of the above Nat&Ead. For consistency,
we collected the latest data in New York Stock Exchange (NM&fn Jan15t 1985 to Jun.
30" 2010, which consists of431 trading days. We denote this new dataset as “NYSEH.N)”
It is worth noting that this new dataset consist@®§tocks rather than the previodisstocks
owing to amalgamations and bankruptcies. All self-coeqtrice relatives are adjusted for
splits and dividends, which is consistent with the previdw¥SE (O)” dataset.

The third dataset “TSE” is collected by Borodin et al. (2Q04hich consists o8
stocks from Toronto Stock Exchange (TSE) containing prétatives of1259 trading days,
ranging from Jan4'® 1994 to Dec.31%* 1998. The fourth dataset “SP500” is collected
by|Borodin et al.|(2004), which consists &if stocks with the largest market capitalizations
in the 500 SP500 components. It ranges from Jat, 21998 to Jan. 31 2003, containing
1276 trading days.

4 All the datasets and their compositions can be downloaded om fr
http://www.cais.ntu.edu.sg/ ~libin/portfolios . |Borodin et al. [(2004)'s datasets can
also be downloaded frofmttp://www.cs.technion.ac.il/ ~rani/portfolios/

5 According to_ Helmbold et all (1996), the dataset was orityinzollected by Hal Stern. The stocks are
mainly large cap stocks in NYSE, however, we do no know therai of choosing thes&6 stocks.
6 The dataset before 2007 was collected by Gabor Gelencser

(http://www.cs.bme.hu/ ~ oti/portfolio ), we collected the remaining data fro2007 to
2010 via Yahoo Finance.
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The fifth dataset is “MSCI”, a collection of global equity iocds which are the con-
stituents of MSCI World Indék It contains24 indices which represent the equity markets of
24 countries around the world, and consists of a totalaB trading days, ranging from Apr.
15% 2006 to Mar.31%¢ 2010. The final dataset is the “DJIA” dataset collected by Boragtiall.
(2004), which consists of Dow Jon88 composite stocks. DJIA containg7 trading days,
ranging from Jan. 14 2001 to Jan. 14 2003.

Besides the above six real market data, in the experimestsiso ran each dataset in
their reverses (Borodin etlal. 2004). For each dataset, eaten a reversed dataset, which
reverses the original order and inverts the price relatiwes denote these reverse datasets
using a *-1' superscript on the original dataset names. tnreathese reverse datasets are
quite different from the original datasets, and we are egtd in the behaviors of the pro-
posed algorithm on these artificial datasets.

Unlike the previous studies, the above testbed covers nongel trading periods from
1962 to 2010 and much more diversified markets, which enables us to exahow the
proposed PAMR strategy performs under different eventscaisés. For example, it cov-
ers several well-known events in the stock markets, suclofsain bubble fromi995 to
2000 and subprime mortgage crisis fra2007 to 2009. The five stocks datasets are mainly
chosen to test the capability of the proposed PAMR on registogk markets, while the
“MSCI” dataset aims to test PAMR’s capability on global ioel$, which may be potentially
applicable to “Fund on Fund” (Fdﬁ)As a remark, although we numerically test the PAMR
algorithm on stock markets, we note that the proposed girateuld be generally applied
to any type of financial markets.

5.2 Experimental Setup and Metrics

Regarding the parameter settings, there are two key pagasriatthe proposed PAMR al-
gorithms. One is the sensitivity parametesind the other is the aggressiveness parameter
C. Roughly speaking, the best values for these parametesftaeredataset dependent. In
the experiments, we simply set these parameters empjrigétiout tuning for each dataset
separately. Specifically, for all datasets and experimargset the sensitivity parameteto

0.5 in the three algorithms, and set the aggressiveness pamamét 500 in both PAMR-1

and PAMR-2, with which the cumulative wealth achieved tetale stable for the pro-
posed PAMR on most datasets. It is worth noting that theseebdor parameters are not
always the best. Our experiments on the parameter setsitibectior] 5.4.4 show that the
proposed PAMR algorithms are quite robust with respectfferdint parameter settings.

For the proposed mixture algorithm (MIX), we set the exme as initial uniform
combination of PAMR, ONS, Anticor, and™~, and individual experts are set according to
their respective studies.

We adopt the most common metriymulative wealthto primarily compare different
trading strategies. In addition to the cumulative wealt@ also adopannualized Sharpe Ra-
tio (SR) to compare the performance of different trading ators. In general, the higher
the values of the cumulative wealth, and the annualized@@hBatio, the better the per-
formance of the compared algorithm. Besides, we also adagtimum DrawdowriMDD)

7 The constituents of MSCI World Index can be found from MSCI rBa
(http://www.mscibarra.com ), accessed on 28 May 2010.

8 It is worth noting that not every index is tradable througbtenge traded funds (ETFs).

9 One can arbitrarily select experts, however, at least oiersal algorithm should be included in order
to guarantee the worst-case performance of the mixtureitidgo
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andCalmar Ratio(CR) for analyzing the downside risk of the PAMR strategye Tower
the MDD value, the more preferable the trading algorithmoesning the downside risk.
The higher the CR value, the more performance efficient tidirig algorithm concerning
the downside risk. The performance criteria are detaildterfollowing section.

5.2.1 Performance Criteria

One of the standard criteria to evaluate the performancestgegy igortfolio cumulative
wealthachieved by the strategy until the end of the whole tradingpdeln our study, we
simply set the initial wealtl$y = 1 and thus the notatiofi,, also denotegortfolio cumu-
lative returnat the end of the!" trading day, which is the ratio of the portfolio cumulative
wealth divided by the initial wealth. Another equivaleniterion isannualized percentage
yield (APY) which takes the compounding effect into account, thaAPY = ¥/S,, — 1,
wherey is the number of years correspondingridrading days. APY measures the aver-
age wealth increment that one strategy could achieve conggaliin a year. Typically, the
higher the value of portfolio cumulative wealth or annuatizpercentage yield, the more
performance preferable the trading strategy is.

For some process-dependent investors (Moodylet al. 1998)jmportant to evaluate
risk andrisk-adjusted returmf portfolios (Sharpe 1963, 1994). One common way to achieve
this is to useannualized standard deviatioof daily returns to measure the volatility risk
andannualized Sharpe Rati(8R) to evaluate the risk-adjusted return. For portfolgk i
we calculate the standard deviation of daily returns, antliptyiby /252 (here252 is the
average number of annual trading days) to obtain annuatitattlard deviation. For risk-

adjusted return, we calculaé®nualized Sharpe Ratéxccording to, SR= w where
Ry is the risk-free return (typically the return of Treasurlihifixed at4% in this work), and
op is the annualized standard deviation of daily returns. &alyi higher annualized Sharpe
Ratios indicate better performance of a trading strateggeming the volatility risk.

The investment community often analyZze@sawDown(DD) (Magdon-Ismail and Ativa
2004) to measure the decline from a historical peak in theutaitime wealth achieved by a fi-
nancial trading strategy. Formally, I8t -) denote the process of cumulative wealth achieved
by a trading strategy, that i§S+, ..., S, ..., S }. TheDrawDownat any timet, is defined
as DD(t) = max [0, max;e (o) S (i) — S (t)}. The Maximum DrawDowrfor a horizonn,
MDD (n) is defined as, MDDn) = max;¢ o, [DD (t)], which is an excellent way to mea-
sure the downside risk of different strategies. Moreoveralgo adop€almar Ratio(CR) to
measure the return relative of the drawdown risk of a padfaalculated as CR- APY
Generally speaking, the smaller the Maximum DrawDown, tbesndownside risk tolerable
the financial trading strategy. Higher Calmar Ratios indidzetter performance of a trading
strategy concerning the drawdown risk.

To test whether simple luck can generate the return of thegsexd strategy, we can also
conduct a statistical test to measure the probability of #fifuation, as is popularly done
in the fund management industty (Grinold and Kahn 1999%xtFive separate the portfolio
daily returns into two components: one benchmark-relatetitee other non-benchmark-
related by regressing the portfolio excess re@’ra@ainst the benchmark excess returns.
Formally, sy — s¢ (F) = a4+ 8 (st (B) — st (F)) + € (¢), wheres; stands for the portfolio
daily returns,s; (B) denotes the daily returns of the benchmark (market inded)sa(F)
is the daily returns of the risk-free assets (here we simplyose Treasury bill and set it

10 Excess return is daily return less risk-free return.
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to 1.000156, or equivalently, annual interest af%). This regression estimates the portfo-
lio's alpha ), which indicates the performance of the investment aftepanting for the
involved risk. Then we conduct a statistidabst to evaluate whether alpha is significantly
different from zero, by using thEStatisticﬁ, whereSE («) is the standard error for

the estimated alpha. Thus, by assuming the alpha is normlislijbuted, we can obtain the
probability that the returns of the proposed strategy anegaed by simple luck. Generally
speaking, the smaller the probability, the higher confidehe trading strategy.

5.2.2 Practical Issues

While our model described in Secti@h 2 is concise and not dicatp to understand, it
omits some practical issues in the portfolio managemenitsimg. We shall now relax some
constraints in our model to address these issues.

In reality, an important and unavoidable issuéramsaction costGenerally, there are
two ways to handle the transaction costs. The first, commadbpted by learning to se-
lect portfolio strategies, is that the portfolio selectimocess doesn't take into account the
transaction cost while the following rebalancing incuesgaction costs. The second is that
the transaction cost is directly involved in the portfolElestion process (Gyorfi and Vajda
2008). In this work, we take the first way and adppiportional transaction cosnodel pro-
posed in Blum and Kalai (1999) and Borodin et al. (2004). Tepecific, rebalancing the
portfolio incurs a transaction cost on every buy and selrajien, based upon a transaction
costratey € (0, 1). Atthe beginning of the*" trading day, the portfolio manager rebalances
the portfolio from the previous closing price adjusted fmito b,_; to a new portfoliob;,

incurring a transaction cost &f x >, (b ;) — B(t—l,i) ) where the initial portfolio is set to

(0,...,0). Thus, the cumulative wealth achieved by the end ofrietrading day can be
expressed as:

Another practical issue in portfolio selectionmrgin buying which allows the portfo-
lio managers to buy securities with cash borrowed from sgdonokers. Following previous
studies|(Cover 1991; Helmbold etlal. 1996; Agarwal €t al.€dp@e relax this constraint in
the model and evaluate it empirically in Sectlon 5.4.5. lis gtudy, the margin setting is
assumed to be0% down and50% loan, at an annual interest rateadt, so the interest rate
of the borrowed money; is set t00.000238. Thus, for each security in the asset pool, a new
asset named “Margin Component” is generated. Followingdtiven and loan percentage,
the price relative for the “Margin Component” of ass@tould be2 x z;; — 1 — ¢, wherez;;
is the price relative of the'" asset for the'" trading day. In cases af;; < 1<, that is,
certain stocks drop more than half, we simply set “Margin @onent” to0. By adding this
“Margin Component”, we magnify both the potential profit dods of the trading strategy

on theit" asset.

n

S%(’Y) = S() H |:(bt . Xt) X (1 — % X Z ‘b(tz) — E(tfl,i)

t=1

5.3 Comparison Approaches

In our experiments, we implement the proposed PAMR strasegyits two variants, viz.,
PAMR-1 and PAMR-2. We compare them with a number of benchearkl existing strate-
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gies as described in Sectigh 3. Below we summarize the listwipared algorithms, whose
parameters are set according to the recommendations feinréispective studies.

. Market: Market strategy, that is, uniform Buy-And-HoBIAH) strategy;

. Best-Stock: Best stock in the market, which is a stratadyndsight;

BCRP: Best Constant Rebalanced Portfolios strategynitsiht;

. UP: Cover's Universal Portfolios implemented accordim¢lalai and Vempale (2002),

where the parameters are sebgs= 0.004, § = 0.005, m = 100, andS = 500;
. EG: Exponential Gradient (EG) algorithm with the bestpaeter; = 0.05 as suggested
by/Helmbold et al.|(1996);
6. ONS: Online Newton Step (ONS) with the parameters sugddsi Agarwal et all (2006),
thatis;p=0,8=1,v = 3;
7. SP: Switching Portfolios with parameter= % as suggested hy Singer (1997);
8. GRW: Gaussian Random Walk strategy with parametes 0.00005 recommended
bylLevina and Shafer (2008);
9. MO: Prediction based algorithm MO with parametet 0.5 as suggested by Borodin et al.
(2000);

10. Anticor: BAH3o(Anticor(Anticor)) as a variant of Anticor to smooth the f@mance,
which achieves the best performance among the three syiroposed by Borodin etial.
(2004);

11. BX: Nonparametric kernel-based moving window/Y) strategy with’ = 5, L = 10
and threshol@ = 1.0 which has the best empirical performance according to fsgbtall
(2006);

12. BNN: Nonparametric nearest neighbor based stratg§y'j with parametersy = 5,

L =10andp, = 0.02 + 0.5% as the authors suggested (Gyorfi et al. 2008).

()]

5.4 Experimental Results
5.4.1 Experiment 1: Evaluation of Cumulative Wealth

We first compare the performance of the competing approdudesd on their cumulative
wealth. From the experimental results shown in Table 4, wedrtaw several observations
below.

First of all, we observe that learning to select portfolicattgies generally perform
better than three common benchmarks, which shows thatribieiping to investigate learn-
ing algorithms for portfolio selection. Second, we find thkhough the cumulative wealth
achieved by the regret minimization approaches (UP, EG ai8)0s higher than market
strategy, their performance is significantly lower thant thehieved by the wealth maxi-
mization approaches (AnticaRX andBNY). This shows that to achieve better investment
return, it is more powerful and promising to exploit the vikahaximization approaches for
portfolio selection. Third, from the top two results indied on each original dataset, it is
clear that the proposed PAMR strategy (PAMR, PAMR-1, and IRAR) significantly out-
performs most (except DJIA datasets) competitors inclydinticor, BX andBNY, which
are the state of the arts. The encouraging results in cuiveilaealth validate the impor-
tance of exploiting the mean reversion property in the firdnmarkets by an effective
online learning strategy. On the other hand, though MIX $#a benchmarks on the DJIA
dataset, PAMR algorithms perform bad on the DJIA datasest fitay be attributed to the
reason that the motivating mean reversion does not exisiisrdataset. This raises an im-
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Methods NYSE(O) NYSE(N) TSE SP500 MSCI DJIA
Market 14.50 18.06 1.61 1.34 0.91 0.76
Best-stock 54.14 83.51 6.28 3.78 1.50 1.19
BCRP 250.60 120.32 6.78 4.07 1.51 1.24
UP 26.68 31.49 1.60 1.62 0.92 0.81
EG 27.09 31.00 1.59 1.63 0.93 0.81
ONS 109.19 21.59 1.62 3.34 0.86 153
SP 27.08 31.55 1.60 1.65 0.93 0.81
GRW 27.73 30.45 1.61 1.64 0.93 0.81
MO 113.50 40.94 1.26 1.74 0.92 0.77
Anticor 2.41E+08 6.21E+06 39.36 5.89 3.22 2.29
BK 1.08E+09 4.64E+03 1.62 2.24 2.64 0.68
BNN 3.35E+11 6.80E+04 2.27 3.07 13.47 0.88
PAMR 5.14E+15 1.25E+06 | 264.86 5.09 15.23 0.68
PAMR-1 5.13E+15 1.26E+06 | 260.26 5.08 15.51 0.69
PAMR-2 4.88E+15 1.36E+06 | 249.95 5.00 16.87 0.71
MIX 1.28E+15 1.84E+06 78.58 4.36 8.16 1.35
Methods | NYSE(O) T | NYSE(N)"T | TSE-T [ SP500°T | MSCI-T | DJIA-T
Market 0.12 1.27 1.67 0.88 1.26 1.44
Best-stock 0.33 24.59 37.65 1.65 3.45 2.77
BCRP 2.86 56.60 58.61 1.91 3.45 2.98
UP 0.23 0.3 1.18 1.10 1.26 1.54
EG 0.22 0.38 1.21 1.08 1.27 1.53
ONS 0.84 1.01 1.62 2.97 1.73 2.35
SP 0.23 0.35 1.19 1.10 1.27 1.54
GRW 0.24 0.34 1.18 1.09 1.26 1.55
MO 0.88 2.16 4.80 1.17 1.56 1.83
Anticor 1.38E+03 4.26E+04 7.24 9.64 6.31 458
BK 2.77E+07 162.74 8.81 1.01 4.47 1.43
BNN 4.60E+09 3.57E+04 66.09 1.89 30.06 1.85
PAMR 2.03E+04 3.07E+04 2.67 7.42 40.33 6.61
PAMR-1 2.02E+04 3.09E+04 2.68 7.43 39.82 6.62
PAMR-2 2.11E+04 3.21E+04 2.75 7.32 39.83 6.65
MIX 1.18E+09 2.70E+04 19.40 5.50 19.62 3.85

Table 4: Cumulative wealth achieved by various tradingtegyias on the six datasets and
their reversed datasets. The top two best results in eaabeatare highlighted in bold font.

portant question, “How to select the portfolio pool sucht th& motivating mean reversion
exists on target portfolio?” Secti@n 5.5.2 provides sonseuksions on this question.

Further examining the details, we find that the most impvegsérformance is achieved
by PAMR on the standard NYSE (O) dataset, where its initiahbegrows by a factor
of more thans quadrillion at the end of the2-year period. We note that the main reason
PAMR achieved such exceptional results is that it is poweduexploit highly volatile
price relatives. To verify this, we examine the detailed@enance of PAMR in Tablgl4 by
looking into individual stocks, and we find that it relies saterably on one single stock
(“Kin Ark”) which has the highest volatility in terms of stdard deviation. After removing
this stock from the portfolio, we find that the cumulative Vtleaignificantly reduces to
1.27E+08. We will investigate the volatility issue in more details &gother experiment on
dataset sensitivity in Section 5.4%.3.

On the reverse datasets, though not performing as shinyasitlinal datasets, PAMR
also performs well. Though some algorithms fail badly, ircakes, PAMR beats the bench-
marks, including the market and BCRP strategies. In cedases, it beats all competitors.
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It is worth noting these reverse datasets are artificialsgsawhich never exist in real mar-
kets. PAMR’s performance on these datasets provides savidgnces that mean reversion
does exist in even reverse market datasets and PAMR carsstuteexploit it.

In addition to the final cumulative wealth, we are also insézd in examining how the
cumulative wealth changes over different trading periéagure[3 shows the trends of the
cumulative wealth by the proposed PAMR algorithm and fogoathms (two benchmarks
and two state-of-the-art algorithms). From the resultscae see that the proposed PAMR
strategy consistently surpasses the benchmarks and thpetiogistrategies over the entire
trading period on most datasets (except DJIA datasetsghwdgain validates the efficacy
of the proposed technique.
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Fig. 3: Trends of cumulative wealth achieved by variouststii@s during the entire trading
period on the stock datasets.

Finally, to measure whether the excess return can be sinfyéyreed by luck, we con-
duct a statisticat-test as described in Sectibn 5J2.1. Td0le 5 shows thetitatisesults,
which clearly show that the observed excess return is iniiples® obtain by simple luck in
most datasets. To be specific, the probabilities for achgethe excess returns by luck are
almost0 on datasets except DJIA. However, the statistics on DJIAs#dtshow that in this
dataset, the assumption of mean reversion may not exisertheless, the results show that
the PAMR strategy is a promising and reliable portfolio s technigue to achieve high
return with high confidence.

5.4.2 Experiment 2: Evaluation of Risk and Risk-adjusteifRe

We now evaluate the risk in terms of volatility risk and drameh risk, and the risk-adjusted
return in terms of annualized Sharpe ratio and Calmar ratgure[4 shows the evaluation
results on the six datasets. In addition to the proposed PAMRalso plot two benchmarks
(Market and BCRP) and two state-of-the-art algorithms {@rtandBN™) for comparison.
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| Statistics | NYSE(O) | NYSE(N) [ TSE | SP500] MSCI | DJIA |

Size 5651 6431 1259 1276 1043 507

Mean Excess Return (PAMR)  0.0069 0.0026 0.0054 | 0.0017 | 0.0029 | -0.0003
Mean Excess Return (Market) 0.0005 0.0005 0.0004 | 0.0003 | 0.0000 | -0.0004
Winning Ratio 0.5587 0.5175 0.5687 | 0.5337 | 0.5925 | 0.5187
« 0.0063 0.0021 0.0049 | 0.0013 | 0.0029 | 0.0002
B8 1.2095 1.1241 1.4982 | 1.2375| 1.1177 | 1.2393
t-statistics 15.7829 5.9979 3.9241 | 2.0020 | 6.1358 | 0.2195
p-value 0.0000 0.0000 0.0000 | 0.0227 | 0.0000 | 0.4132

Table 5: Statistical-test of the performance of the PAMR on the stock datasets.

As shown in Figurél4, Figufe ¥a aind 4b depict the volatilisk istandard deviation of daily
returns) and the drawdown risk (maximum drawdown) on thestirk datasets. Figukel4c
and Figuré_4d compare the corresponding Sharpe ratio amiaC ghtio.

In previous cumulative wealth results, we find that PAMR egld the highest cumu-
lative return on most original datasets. Of course, highrrets associated with high risk,
which is commonly acceptable in finance, as no real finanogtliment can guarantee a
high return without risk. The volatility risk in Figufe ha®his that PAMR almost achieves
the highest risk in terms of volatility risk. On the other dathe drawdown risk in Figuie #b
shows that PAMR achieves modest drawdown risk in most ditaSkese results validate
the above notion that high return is often associated wigh hisk.

To further evaluate the return and risk, we examine the adjlested return in terms
of annualized Sharpe ratio and Calmar ratio. The resultashio Figured 4t and Figulfe #d
clearly show that PAMR achieves excellent performance istroases, except DJIA dataset.
These encouraging results show that PAMR is able to reacbdtgade-off between return
and risk, even though we do not explicitly consider risk im problem formulation.

5.4.3 Experiment 3: Dataset Sensitivity

As observed in Sectidn 5.4.1, it is interesting that PAMRhgdithe excess return from the
stock markets. In this section, we aim to examine how theseatsensitivity affects the
proposed PAMR strategy by evaluating performance on dstasdifferent volatilities.

To examine the effect of the dataset volatility, we create datasets each consisting of
5 stocks , chosen from NYSE (N) dataset according to theirtNityavalues. To be specific,
we ranked th@3 stocks based on their daily volatility values measured &ydard deviation
of the logarithm of the price relatives (Hull 2008). Then weated two datasets of different
volatility: NYSE (H) and NYSE (L), each consisting 6fstocks of the highest and lowest
volatility values, respectively. Tablg 6 shows the resalthieved by various strategies on
these two datasets.

From the results, we find that different strategies performardely on these two datasets.
The regret minimization approaches (UP, EG and ONS), perfeell regardless of the mar-
ket volatilities as the theoretical universal propertywspowhile the wealth maximization
approaches (AnticoBX andBNY) and the proposed PAMR strategy achieved significantly
higher cumulative wealth on NYSE (H), the high-volatilitptdset. These results show that
the volatility of datasets does considerably affect songerithms, including the wealth
maximization approaches and the proposed PAMR strategcif@lly, we find that the
proposed PAMR strategy could benefit much from a high-vdlatilataset. For example,
on the NYSE (L) dataset, the cumulative wealth achieved byIRAalgorithm is about 32,
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Fig. 4: Risk and risk-adjusted performance of various sgiass on the six different datasets.
In each diagram, the rightmost bars represent the restiisvaz by PAMR.

which is significantly boosted td.35E+05 on the NYSE (H) dataset. To further examine
which algorithm can benefit most from high-volatility deggswve calculate the “H/L ratio”
value, which is the ratio of cumulative wealth achieved om liigh-volatility dataset over
that achieved on the low-volatility dataset. From the gtiwe can observe that the PAMR
strategy obtained the highest H/L ratio, indicating thatviBcan benefit most from the
high-volatility dataset among all the competing methods.

Portfolio [ NYSE (L) | NYSE (H) | HIL ratio

Market 24.69 9.15 0.37
Best-stock 43.87 17.46 0.40
BCRP 48.16 62.52 1.30
upP 32.89 26.12 0.79
EG 32.33 25.84 0.80
ONS 38.96 30.67 0.53
Anticor 1.79E+03 | 1.43E+05 79.89
BK 19.49 3.82E+03 | 196.00
BNN 180.85 1.99E+05 | 1.10E+03
PAMR 132.25 1.39E+05 | 1.05+03
PAMR-1 132.23 1.66E+05 | 1.26E+03
PAMR-2 142.53 2.05E+05 | 1.44E+03

Table 6: Cumulative wealth achieved by various strategiepartfolios of extreme volatil-
ities. The “H/L ratio” column shows the ratio between the clative wealth achieved on
the high-volatility dataset and that achieved on the lovatitity dataset.
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5.4.4 Experiment 4: Parameter Sensitivity

We now evaluate how different choices of parameters affecperformance of the proposed
PAMR strategy. All three PAMR algorithms require to set sévity parametere, while
aggressiveness parameteis needed for PAMR-1 and PAMR-2.

First, we examine the effect of the sensitivity parameten the cumulative wealth
achieved by PAMR. As becomes greater than PAMR degrades to uniform CRP strategy
and the wealth stabilizes at the wealth achieved by unifoRP.CThus, we evaluate the
effect of e in the range of0, 1.5]. FigurelB shows the cumulative wealth achieved by PAMR
with varying e and those of the two benchmarks, that is, Market and BCREegtes. Most
results, besides DJIA dataset, show that the cumulativéthvaehieved by PAMR grows
asc approaches), that is, the more sensitive the higher the wealth, whicldags that
the motivating mean reversion does exist on the stock markébreover, in most cases,
the cumulative wealth achieved by PAMR tends to stabilize asosses certain dataset
dependent thresholds. As stated before, we cheesé.5 in the experiments, with which
the cumulative wealth becomes stabilized in most casesIMyaate that on some datasets
PAMR with e = 0 achieves the best. Though= 0 means moving more weights to the worse
performing stocks, it may not mean moving everything to tleesivstock. On the one hand,
the objectives in the formulations would prevent next moidffar from last portfolio. On the
other hand, PAMR-1 and PAMR-2 are designed to alleviate tige fthanges. In a word, this
experimental results clearly show that the proposed dlguris robust with respect to the
mean reversion sensitivity parameter. On the other sidehéofailing case, DJIA, the mean
reversion effect is different. As approaches, the cumulative wealth achieved by PAMR
drops. This phenomena can be interpreted as that the niogvaean reversion does not
exist in the DJIA dataset, at least in the sense of our mativat

Second, we evaluate the other important parameter for bBhRR1 and PAMR-2 al-
gorithms, that is, aggressiveness paraméteFigure[® and FigurEl 7 show the effects on
the cumulative wealth with varying sensitivity parametérom 0 to 1.5 and aggressiveness
parametelC' from 50 to 5000, on PAMR-1 and PAMR-2, respectively. Each heat map in-
dicates the cumulative wealth achieved by PAMR with différ@ ande combination. The
indication bar on the right side of each heat map illustrtaseach color represents a level
of cumulative wealth achieved. It is clear that in most casgsept DJIA, we observe that
ase decreases and increases, the cumulative wealth increases and thenizésbils and
C cross certain data-dependent thresholds. Moreover, wefidoles not have a significant
effect on the cumulative wealth achieved. We also find thaptioposed PAMR algorithms
are not so parameter sensitive, since a wide range of vatuesspond to the highest cumu-
lative wealth. This again exhibits that the proposed PAMRBtsgy is robust with respect to
its parameters. Similarly, the heat map on DJIA again shtvasthe mean reversion effect
does not exist on the dataset, in the sense of our motivation.

5.4.5 Experiment 5: Evaluation of Practical Issues

For areal-world application, there are some importanttpraldssues for portfolio selection,
including the issues of transaction cost and margin buylihgs experiment aims to examine
how these practical issues affect the proposed PAMR sirateg

First, transaction cost is an important and unavoidableeighat should be addressed
in practice. In our experiment, we adgpbportional transaction cosnodel stated in Sec-
tion[5.2.2 to test the effect of the transaction cost on tiop@sed PAMR strategy. Figuré 8
depicts the effect of proportional transaction cost wheMRAs applied on the six datasets,
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Fig. 5: Parameter sensitivity of the cumulative wealth aeéd by PAMR with respect to
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10%° 108
2
10° 10° 10° 10
o 3) 3)
2 4 2 2 101
10 10 10 102 10
1 15 1 15 5 1 15
€ €

0 05 0 05 0 0
€

(@) NYSE (O) (b) NYSE (N) (c) TSE

° 0
1
10° 10°
o 3
3
10% 10?
1
0 05 1 15 0 05 1 15
€ €
(d) SP500 (e) MSCI (f) DJIIA

Fig. 6: Parameter sensitivity of the cumulative wealth aedd by PAMR-1 with respect to
sensitivity parameter and aggressive parameter

where the transaction cost rat@aries from0 to 1%. We only present the results achieved by
PAMR since the effect of its variants, that is, PAMR-1 and AR, is quite similar to that
of PAMR. For comparison, we also plot the results achievednystate-of-the-art strate-
gies (Anticor and3™Y) and the cumulative wealth achieved by the two benchmarksR(B
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sensitivity parameter and aggressive parametér

and Market). Since BCRP is the target strategy for regretmiiation approaches (UP, EG
and ONS) and for consistency, we do not plot the results aetiiby these approaches.

From the results shown in the figure, we can observe that PAMRnthstand reason-
able transaction cost rates. For example, with a trangactist rate 06.2%, PAMR can beat
the BCRP strategy on the four datasets. The break-everattims cost rates with respect
to the market index ranges from1% to 0.7% on the datasets, except DJIA. Since PAMR
more actively reverses to the mean and thus results in mastidportfolio changes, it sur-
passes Anticor with low or medium transaction costs whilenderperforms Anticor with
high transaction costs, On the other hand, it outperfdﬁ%@ in most cases. Note that the
transaction cost rate in real market is fdwThis experiment clearly shows the practical ap-
plicability of the proposed PAMR strategy when we take teenti®n cost into consideration.

Second, margin buying is another practical concern for bwedd portfolio selection
task. In the following, we evaluate the performance of theraaches when margin buying
is allowed with the model described in Section 5.2.2. Talpesgents the cumulative wealth
achieved by the competing approaches without/with marng on the six stock datasets.
As we can observe, when margin buying is allowed, the prdlfityplof PAMR increases,
and in most cases, it achieves higher cumulative wealth éktzer competing approaches.
These results clearly demonstrate that the proposed PAMEgy can be extended to han-
dle margin buying issue and benefit from margin buying, ang thas a better practical
applicability.

11 For example, without consideration taxes and bid-ask rdotere Broker charges 0.005$ per share
traded. Considering the average price of Dow Jones Conepissiiround 50$ (Accessed on June 2011),
the percentage is abo0t01%.
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Fig. 8: Scalability of the cumulative wealth achieved by PRMith respect to transaction
costrate {). The break-even transaction cost rates to the market adeaboud.7%, 0.4%,
0.1%, 0.3% and0% on the six datasets, respectively.

. NYSE(O) NYSE(N) TSE
Algorithm e With ML [ NoML — with ML | No ML with ML
Market 145 15.75 18.06 17.68 1.61 1.71
Best-stock | 54.14 54.14 83.51 173.18 6.28 10.53
BCRP 250.6 3755.09 | 120.32 893.63 6.78 21.23
uP 27.41 62.99 31.49 57.03 1.60 1.69
EG 27.09 63.28 31.00 55.55 1.59 1.68
ONS 109.19 517.21 21.59 228.37 1.62 0.88
Anticor 2.41E+08 1.05E+15| 6.21E+06 5.41E+09 | 39.36 18.69
BK 1.08E+09 6.29E+15| 4.64E+03  3.72E+06| 1.62 1.53
BNN 3.35E+11 3.17E+20| 6.80E+04 5.58E+07| 2.27 2.17
PAMR 5.14+15  55/E+25 | 1.25E+06 1.12E+09] 264.86 72042

PAMR-1 5.13+15 555E+25 | 1.26E+06  1.13E+09| 260.26  720.96
PAMR-2 4.88E+15 5.10E+25| 1.36E+06 1.27E+09 | 249.95 711.90

. SP500 MSCI DIA
Algorithm e WiR ML | No ML with ML | No ML with ML
Market 1.34 1.03 0.01 0.69 0.76 0.59
Best-stock | 3.78 3.78 1.50 1.50 1.19 1.19
BCRP 4.07 6.48 1.51 1.54 1.24 1.24
uP 162 1.75 0.92 0.71 0.81 0.66
EG 1.63 1.70 0.93 0.72 0.81 0.65
ONS 3.34 7.76 0.86 0.33 153 2.21
Anticor 5.89 10.73 3.22 3.40 2.29 2.89
BK 2.24 1.88 2.64 6.56 0.68 0.56
BNN 3.07 3.29 14.47 150.49 0.88 0.67
PAMR 5.0 1501 15.23 68.83 0.68 0.84
PAMR-1 | 5.08 15.90 1551 68.62 0.69 0.83
PAMR-2 | 5.00 16.26 16.87 70.08 0.71 0.86

Table 7: Cumulative wealth achieved by various strategigbe stock datasets with/without
margin loans (ML). Top two achievements on each datasetightighted.
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5.4.6 Experiment 6: Evaluation of Computational Time Cost

Our last experiment is to evaluate the computational timgtscof different approaches,
which is also an important issue in developing a practictihertrading strategy. As stated
in Sectior 4.8, the proposed PAMR algorithm enjoys line@etcomplexity per iteration,
which is comparable to EG algorithm. Taljle 8 presents thepctational time cost (in
seconds) of the performance comparable approaches (Ait@ndB™N) on the six stock
datasets. All the experiments were conducted on an Intet £Quad2.66GHz processor
with 4GB RAM, using Matlak2009b on Windows XP.

From the results, we can clearly see that in all cases theopeabPAMR takes signifi-
cant less computational time than the three performanceamble strategies. Even though
the computational time in the back tests, especially pélirigaday, is small, it is important
in certain scenarios such as high frequency trading (AdgiiZl009), where transactions may
occur in a fraction of a second. Nevertheless, the residerlgl demonstrate the computa-
tional efficiency of the proposed PAMR strategy, which isoad® important concern for
real-world large-scale applications.

Methods | NYSE (O) | NYSE (N) TSE SP500 MSCI DJIA
Anticor 2.57E+03 | 1.93E+03 | 2.15E+03 387 306 175
BK 7.89E+04 | 5.78E+04 | 6.35E+03| 1.95E+03 | 2.60E+03 802
BNN 4.93E+04 | 3.39E+04 | 1.32E+03| 2.91E+03| 2.55E+03| 1.28E+03
PAMR 8 7 2 1 1 0.3

Table 8: Computational time cost on the real datasets (iorks).

5.5 Discussions and Threads to Validity
5.5.1 Discussion on Model Assumption

Any statement about such encouraging empirical resultdduoe incomplete without ac-
knowledging the simplified assumptions made in Sedflon 2e€all, we had made several
assumptions regarding transaction cost, market liquigitgt market impact, which would
affect the practical deployment of the proposed algorithm.

The first assumption is that no transaction cost exists. ti@d5.4.5 we have already
examined the effect of varying transaction costs, and thelteshow that the proposed al-
gorithm can withstand moderate transaction costs. Cuyravith the wide-spread adoption
of electronic communication networks (ECNs) and multilatérading facilities (MTFs) on
financial markets, various online trading brokers chargg genall transaction cost rates,
especially for large institutional investors. They alse asflat-ratéd, based on the volume
threshold one reaches. Such measures can facilitate tkfeljpomanagers to lower their
transaction cost rates.

The second assumption is that the market is liquid and onbwaand sell any quantity
at the quoted price. In practice, low market liquidity résuh a largebid-ask spread-
the gap between prices quoted for an immediate bid and andimteeask. As a result, the

12 For example, for US equities and options, E*Tratigif{s://global.etrade.com/gl/home
accessed on 16 March 2011.) charges @99 for $50000+ or 30+ stocks per quarter.
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execution of orders may incur a discrepancy between thegpsent by the algorithm and the
prices actually executed. Moreover, stocks are often ¢raenultiples oflot, which is the
standard trading unit containing certain number of stoekesh In this situation, the quantity
of the stocks may not be arbitrary divisible. In the expernitsgwe have tried to minimize
the effect of market liquidity by choosing the stocks thatéhkarge market capitalization,
which usually have small bid-ask spreads and discrepamdyttaus have a high market
liquidity.

The other assumption is that the portfolio strategy wouleeh#o impact on the market,
that is, the stock market will not be affected by the tradilggpathm. In practice, the impact
can be neglected if the market capitalization of the padf@ not too large. However, as
the experimental results show, the portfolio wealth geteery PAMR increases astronom-
ically, which would inevitably impact the market. One simpay to handle this issue is to
scale down the portfolio, as done by many quantitative fuMtsreover, the development
of algorithmic trading, which slices a big order into mulésmaller orders and schedules
these orders to minimize the market impact, can signifigatetrease the potential market
impact of the proposed algorithm.

Here, we emphasize again that this study assumes a “perdeketh) which is consistent
with previous studies in literature. It is important to nthiat even in such a perfect financial
market, no algorithm has ever claimed such high performaesgecially on the standard
NYSE (O) dataset. Though it is common investment knowletige past performance may
not be reliable indicator of future performance, such highfgrmance does provide us
confidence that the proposed PAMR algorithm may work wellitnife unseen markets.

5.5.2 Discussion on PAMR Assumption

Though the proposed algorithm performs well on most datase¢ can not claim that
PAMR can perform well on arbitrary portfolio pools. It is wbrnoting that PAMR re-
lies on the assumption that mean reversion exists in a fiorfjool, that is, buying worse
performing stocks is profitable. Preceding experimentsnseeshow that in most cases
mean reversion does exist in the market. However, it is ptiisible that this assumption
fails to exist in certain cases, especially when portfoblponents are wrongly selected.
PAMR'’s performance on DJIA dataset indicates that meanrse@we may not exist in its
portfolio components. Though both based on mean reverBidR|R and Anticor are for-
mulated with different time periods of mean reversion, vahicay interpret why Anticor
achieves a good performance on DJIA. Thus before investingal market, it is of cru-
cial importance to ensure that the motivating mean reverdaes exist among the portfo-
lio pools. In academic, mean reversion property in singbelshas been extensively stud-
ied (Poterba and Summers 1088; Hillebrand 2003; Exlev|&G4), one natural way is
to calculate the sign of auto-correlation (Poterba and Sewrsrfi988). On the contrary, the
mean reversion property among a portfolio lacks acadertentn. Compared with mean
reversion in single stock, for a portfolio, not only the meawversion of single stock matters,
but rather the interaction among stocks matters.

On the other hand, the mixture algorithm, that is, MIX, perie well on the DJIA
dataset, beating three benchmarks. As we discussed iro8gc, the mixture algorithm
can provide a worst-case guarantee, which is lacked forrigmal PAMR algorithms. This
can somehow solve the problem that PAMR itself does not hawerat-case guarantee.
Moreover, it is worth noting that even with worst-case gatga, some existing universal
algorithms also perform poorly on the dataset.



32

Now let us briefly analyze the reason that PAMR failed on DJidtest whether mean
reversion exists in the DJIA dataset, we propose a naidingastrategy to test our mo-
tivating mean reversion in the dataset. The test stratetyytee weights proportional to
differences between assets’ returns and that of last beslt,ghat is, last best stock will
be given zero weight, while the worst performing stock w#l given a maximum weight.
We are interested in whether this simple algorithm prodposstive return among existing
datasets. If it produces positive daily return, then theieggion that buying worse stocks
may work well. Otherwise, our motivating assumption fallee test is conducted on all six
datasets. We calculated their arithmetic average dailymstand their standard deviations
of daily returns. Since we are interested in absolutionrnetwe compare their average val-
ues withl. From the statistics in Tablé 9, we can find that the five sigfubdatasets release
average profit 1.0), while DJIA releases average loss {.0). Thus, on DJIA dataset, it is
expected to produce losses by purchasing worse perforrtoegssin the portfolio. Though
expected daily loss is small, it would produce huge cumegalbss with a long trading
period.

Statistics | NYSE (O) | NYSE (N) TSE SP500 MSCI DJIA
Mean 1.000940 | 1.000835 | 1.000431| 1.000544| 1.000819| 0.999848
Std. dev. | 0.008920 | 0.013162 | 0.008562| 0.014879| 0.016423| 0.016682

Table 9: Average daily return and standard deviation of élsegtrategy.

It is interesting to observe above results, however, we aaadlaim that this method
can definitely identify successful portfolio pools. Analyg the mean reversion property in
portfolio scenario and selecting portfolio componentshsiinait the portfolio satisfies mean
reversion deserve further attention.

5.5.3 Discussion on Back Tests

Back tests in historical markets may suffer from “data-gog bias” issue. One common
“data-snooping bias” is dataset selection issue. On thenand, we selected four datasets,
that is, NYSE (O), TSE, SP500, and DJIA datasets, based @iopeestudies without con-
sideration to the proposed approach. On the other hand, vetoged the PAMR algorithm
based solely on NYSE (O) dataset, while other five datasefSENN), TSE, SP500, MSCI
and DJIA datasets) were obtained after the algorithm wag fidveloped. However, even
we are cautious about the dataset selection issue, it nibgpgiear in the experiments, es-
pecially for the datasets with relatively long history, ttisga NYSE (O) and NYSE (N). The
NYSE (O) dataset, pioneered by Cover (1991) and followedthgraresearchers, becomes
one “standard” dataset in the learning community. Sinceiittains36 large cap NYSE
stocks that survived in hindsight f@2 years, thus it suffers from extreme survival bias.
Nevertheless, it still has the merit to compare the perfogaaamong algorithms as done
in all previous work. The NYSE (N) dataset, as a continuatbiNYSE (O), contain®3
assets survived from previoids stocks for anothe25 years. Therefore, it becomes even
worse than the previous NYSE (O) dataset in terms of surbias. In a word, even the
experiment results on these datasets clearly show thetieéfieess of the proposed PAMR
algorithm, one can not make claims without noticing the diefficies of these datasets.
Another common bias is asset selection issue. Four of theesasets (NYSE (O), TSE,
SP500, and DJIA) are collected by others, and to the best okmawledge, their assets
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are mainly the largest blue chip stocks in their respectieekets. As a continuation of
NYSE (O) dataset, we self-collected NYSE (N) , which againtams several largest sur-
vival stocks in NYSE (O). The remaining dataset (MSCI) iss#maccording to the world
indices. In a word, we try to avoid the asset selection biasavbitrarily choosing the rep-
resentative stocks in their respective markets, whichllyshave large capitalization and
thus high liquidity. Moreover, investing in these largessets may reduce the market im-
pact caused by the proposed portfolio strategy. Finalligang existing model assumption
and experimental setting, we do not consider the assetsvajlality, such as the bankrupt
stocks and penny stocks. On the one hand, the bankrupt saakisdifficult to acquire,
thus we cannot observe their behaviors and predict the ihaf PAMR on datasets with
bankrupt stocks. In reality, the bankruptcy situation heaysprarely for the blue chip stocks
as typically a bankrupt stock would be removed from the Ifgblae chip stocks before it
actually goes bankruptcy. On the other hand, the penny stiadk the required liquidity
to support the trading frequency in current research. Bssione could also explore many
practical strategies to exclude the low quality stocks ftbenasset pool at some early stage,
such as some financial methods via either technical or furdtahanalysis.

6 Conclusion

In this article, we proposed a novel portfolio selectiomtggy, “Passive Aggressive Mean
Reversion” (PAMR). Motivated by the idea of mean reversind passive aggressive learn-
ing, PAMR outperforms all benchmarks and various existingtsgies on a number of real
datasets from different markets. PAMR can also be easigneldd to handle certain prac-
tical issues, e.g., transaction cost and margin buyinghAtsame time, PAMR executes
in much less time than existing approaches, making it sleitfals online applications. We
also find that the update scheme of PAMR is based on the tfadetaveen the return and
volatility risk, which is ignored by most existing learnisgrategies. This interesting prop-
erty connects the PAMR strategy with modern portfolio tlyeamhich may provide further
explanation from the aspect of finance.

Although in most cases the proposed PAMR strategy achiavesueaging empirical
results, it is still far from perfect for a real investmenskaand may be improved in the
following aspects. First of all, though universality mayt he required in real investment,
PAMR’s universality is still an open question. Second, nohexisting algorithms considers
the bankrupt assets, which may happen in real investmastthts interesting to study the
behaviors and bankrupt assets and design strategies titekeim. Besides, we note that
PAMR sometimes fails when the mean reversion property doegxist in the portfolio
components. Then it is crucial to propose efficient methodedt mean reversion. Finally,
though PAMR handles the issue of transaction costs wed ribt formally addressed in our
problem formulation. It would be interesting to incorp@rdihe transaction cost issue when
formulating the problem in order to improve the performantease of high transaction
costs and gain higher break-even ratios with respect to #rkehindex.
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Appendix
Appendix A: Proof ofProposition 1]

Proof First, if £ = 0 thenb, satisfies the constraint in EqJ(2) and is clearly the optimal
solution.

Now let us focus on the case whefle # 0. To solve the problem, we define the La-
grangian of the optimization problem in Ef] (2) to be,

L(b,m ) = 5 Ib—bif? +7(x b=+ AL b 1), ©)

wherer > 0is a Lagrange multiplier related to the loss functiaiis the Lagrange multiplier
associated with the simplex constraint, andenotes the column vector of 1s. Note that
the non-negativity of portfolid is not considered here since introducing this term causes
too much complexity, and alternatively we project the risglportfolio into a simplex to
enforce the non-negativity constraint.

Setting the partial derivatives a@f with respect to the elements bfto zero gives,

oL
0= % Z(b—bt)-l—‘l'xt—l—)\l.
Multiplying both sides with1 ", andb "1 = 1, we can get\ = —x¢ - 1. Moreover, since

z; = X1 wherez; is the mean of the'™ asset price relative, or the market return, we can

m

rewrite X in the following form,
A= —TZt. (10)
And the solution for is,
b:bth(thi'tl). (11)

Plugging Eq.[(ID) and EJ_(IL1) to Ef] (9), we get,
L(r)= %TQ e — 2e1)% = 72 - (x¢ — Fel) + 7 (be - x¢ — €)
— %72 st — 212 + 7 (by - %t — €) .
Note that in the derivation of the above formula, we used tiieWing formula, that is,
e — &1|* = x¢ - x¢ — 22 (x¢ - 1) + 27 (1-1) = xp - x¢ — &g (x¢ - 1) = x¢ - (x¢ — T41) .

Setting the derivative of (7) with respect tar to 0, we get,

oL
0= 22 = —7lxt — 21| + by - x¢ — €.
or
Thenr can be set to the following formula,
b: - xt — ¢
¢ — @1
Sincer > 0, we projectr to [0, co), thus,
. _ t
T:max{(), b - Xt 62}: le 5
l[x¢ — Z:1]] llx¢ — Z:1]]

Note that in case of zero market volatility, that |js; — i:t1|\2 =0, we just setr = 0. And
we can state the update scheme for the case whete0 and the case wheré > 0 by
settingr. Thus, we simplify the notation according to Ed. (1) and sliegvunified update
scheme.
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Appendix B: Proof ofProposition 2

Proof We derive the solution of PAMR-1 following the same procedas the derivation of
PAMR. Let us consider the situation when the loss isnabd we get the Lagrangian,

1
L(b,&rpN) =5 b= bil? +7(x b =€) +£(C—7— )+ A(1-b—1).

Setting the partial derivatives af with respect to the elements bfto zero gives,

oL
0= % = (b*bt)+TXt+A1,
Multiply both side with1 ", andb™1 = 1, we can get\ = —7%*t1 = —r%,. And the
approximation solution is
bet—T(Xt—a_:tl).

Next, note that the minimum of the terfC — = — u) with respect tc€ is zero whenever
C—71—p=0.If C—7—p#0thenthe minimum can be made to approack. Since we
need to maximize the dual we can rule out the latter case aselthe following constraint
on the dual variableg; — = — u = 0. The KKT conditions confing to be non-negative so
we conclude that < C. We can project to the interval[0, C] and get,

el t
T = max {O,min{C, Ltz}} = min{C, %}
llxt — Z41|] [[xt — Z¢1]]

Also note that we simplify the notation according to Eg. (bl ahow the unified update
scheme.

Appendix C: Proof oProposition 3

Proof We derive the solution following the derivations of the PAMRd PAMR-1. Let us
focus on the situation when the loss is f@nd we can get the Lagrangian,

1
E(b,ﬁ,r,u,)\):5||b—bt||2+7'(b-xt—e)+C’§2—T§+)\(1~b—1).

Setting the partial derivatives af with respect to the elements bfto zero gives,

oL
0= b = (b —byt) + 7x¢ + A1,
Multiply both side with1 ", andb'1 = 1, we can geth = —7%1 = —7z. And the
approximation solution is,
b:bt*T(th.Tl).

Setting the partial derivatives af with respect to the elements oto zero gives,

oL T
0=FF=206-1 = &=5

Expressing as above and replacirtg we rewrite the Lagrangian as

€

2
£y = =2 (e =212+ 55 ) +7 (bt xe — ).
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Take the derivative with respect toand set it to zero, we can get,

ot 1
T or 2C
Then we get the update schemerpfnd project it td0, oo)

0 :-T(||xt—5;t1||2+ )—i—(bt-xt—e).

bs - xt — € Zi
7T =max | 0, — T = — T
x¢ — Ze1]|” + 5 lIx¢ — 21" + 5
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