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Abstract Although bothonline learningandkernel learninghave been studied extensively
in machine learning, there is limited effort in addressing intersecting research problems
of these two important topics. As an attempt to fill the gapaddress a new research prob-
lem, termedOnline Multiple Kernel Classification (OMKC), which learns a kernel-based
prediction function by selecting a subset of predefineddddtmctions in an online learning
fashion. OMKC is in general more challenging than typicdiralearning because both the
kernel classifiers and the subset of selected kernels ar@umk and more importantly the
solutions to the kernel classifiers and their combinatioigiits are correlated. The proposed
algorithms are based on the fusion of two online learningrétlyms, i.e., théPerceptronal-
gorithm that learns a classifier for a given kernel, andHleelgealgorithm that combines
classifiers by linear weights. We develop stochastic selestrategies that randomly select
a subset of kernels for combination and model updating, itipsoving the learning effi-
ciency. Our empirical study with5 data sets shows promising performance of the proposed
algorithms for OMKC in both learning efficiency and predictiaccuracy.

Keywords Online Learning Kernel Methods Multiple Kernels:- Perceptron Hedge:
Classification

1 Introduction

In machine learning, online learning and kernel learning @avo active research topics,
which have been studied separately for years. Online leguisi designed to sequentially
learn a prediction model based on the feedback of answengWops questions and pos-
sibly additional side informationShalev-Shwartz 2007 It distinguishes from typical su-
pervised learning algorithms that are designed to learassiflcation model from a collec-
tion of given training examples. Kernel learning aims tathean effective kernel function
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for a given learning task from training datanckriet et al. 2004Sonnenburg et al. 2006
Hoi et al. 2007. An example of kernel learning is Multiple Kernel LearnifMKL) ( Bach et al.
2004 Sonnenburg et al. 2096which finds the optimal combination of multiple kernels to
optimize the performance of kernel based learning methods.

Among various existing algorithms proposed for online ié@y (Freund and Schapire
1999 Crammer et al. 2006 several studies are devoted to examining kernel tecksiqu
in online learning settingd~feund and Schapire 199@rammer et al. 20Q&Kivinen et al.
2001; Jyrki Kivinen and Williamson. 2004 However, most of the existing kernel based on-
line learning algorithms assume that the kernel functiagivien a priori, significantly lim-
iting their applications to real-world problems. As an atf# to overcome this limitation,
we introduce a new research proble@®nline Multiple Kernel Classification (OMKC),
which aims to learn multiple kernel classifiers and theieéincombination simultaneously.
The main challenge arising from OMKC is that both the optikezhel classifiers and their
linear combinations need to lmaline learned simultaneously. More importantly, the solu-
tions to kernel classifiers and their linear combinatioressarongly correlated, making it a
significantly more challenging problem than a typical oaliearning problem.

To this end, we propose a novel OMKC framework for online héag with multi-
ple kernels, which fuses two kinds of online learning tegbes: thePerceptronalgo-
rithm (Rosenblatt 1958that learns a classifier for a given kernel, and Hhedgealgo-
rithm (Freund and Schapire 19P%at linearly combines multiple classifiers. We further
develop kernel selection strategies that randomly chom&set of kernels for model up-
dating and combination, thus improving the learning efficiesignificantly. We analyze the
mistake bounds for the proposed OMKC algorithms. Our emgiistudies withi5 datasets
show promising performance of the proposed OMKC algoriticorspared to the state-of-
the-art algorithms for online kernel learning.

The rest of this paper is organized as follows. SecBioeviews the related work in on-
line learning and kernel learning. Secti®defines the problem of online learning over mul-
tiple kernels and presents two different types of algorgh8ectiorb presents our empirical
studies that extensively evaluates the performance ofrthpoped OMKC algorithms. Sec-
tion 6 discusses some open issues and future directions. S&atmmcludes this paper.

2 Related Work

This section briefly reviews some major related work of aaliearning and kernel learning.

2.1 Online Learning

Recent years have witnessed a variety of online learningridthgns proposed and studied
in different contexts and application€fammer et al. 20Q6rang, Xu, King and Lyu 201p
For more references, please kindly refer to the overviewntihe learning irShalev-Shwartz
(2007); Cesa-Bianchi and Lugo§2006) and references therein.

A large number of recent studies in online learning are basethe framework of
maximum margin learning. Most of these algorithms eitheersed or enhanced the well-
known Perceptronalgorithm Agmon 1954 Rosenblatt 1958Novikoff 1962), a pioneering
online learning algorithm for linear prediction models.efxplar algorithms in this cate-
gory include the Relaxed Online Maximum Margin AlgorithmQRIMA) (Li and Long
2002, the Approximate Maximal Margin Classification AlgoriththLMA) ( Gentile 2001},
the Margin Infused Relaxed Algorithm (MIRAXCfammer and Singer 20§3he NORMA



algorithm (ivinen et al. 2001 Jyrki Kivinen and Williamson. 2004 the online Passive-
Aggressive (PA) algorithmsQrammer et al. 2006and the Double Updating Online Learn-
ing (DUOL) (Zhao et al. 201}, and the recent family of confidence-weighted learningalg
rithms Oredze and Crammer 2008/ang et al. 2012 Among them, several studies intro-
duce kernel functions into online learning to achieve modr classificationKivinen et al.
2002, Freund and Schapire 199@rammer et al. 2006Zhao et al. 2011 Similar to these
studies, our OMKC framework is also a kernel based approacbriine learning.

Moreover, some online learning studies mainly concern tdgét issue, i.e., online
learning with budgetGrammer et al. 20Q3avallanti et al. 200)7 which has received much
interest recently. It differs from typical online learningethods in that the number of support
vectors is bounded in training the classification modelsirge algorithms include the first
kind of approach to overcoming the unlimited growth of th@mart set Crammer et al.
2003, the shifting PerceptronCavallanti et al. 200){ the Forgetron Dekel et al. 2008
the Projectron Qrabona et al. 2008and the very recent bounded online gradient descent
algorithms Zhao et al. 201}, etc.

In addition to the above online learning studies, our worlalso related to online
prediction with expert adviceFfeund and Schapire 199Littlestone and Warmuth 1989
1994 Vovk 1998. The most well-known and successful work is probably thed¢ealgo-
rithm (Freund and Schapire 199Which was a direct generalization of Littlestone and War-
muth’s Weighted Majority (WM) algorithmL(ttlestone and Warmuth 1989.994). Other
recent studies include the improved theoretical bou@s§-Bianchi et al. 2007and the
parameter-free hedging algorith@taudhuri et al. 20Q9or decision-theoretic online learn-
ing. We refer readers to the bookdsa-Bianchi and Lugosi 20p&or the other in-depth
discussion of this subject.

2.2 Kernel Learning

How to find an effective kernel for a given task is critical t@sh kernel based methods
in machine learningghawe-Taylor and Cristianini 200€ristianini et al. 200L Most ker-
nel methods assume that a predefined parametric kernela @glynomial kernel or an
RBF kernel, is given a priori and the parameters of theseckdéunctions are usually deter-
mined empirically by cross validation. Several studieppszd to learn parametric or semi-
parametric kernel functions/matrices from labeled andfdabeled data. Exemplar tech-
nigues include cluster kernel€lfapelle et al. 2002diffusion kernels Kondor and Lafferty
2002, marginalized kernel¥@ashima et al. 2003idealized kernel learnind{vok and Tsang
2003, and graph-based spectral kernel learning approadiesdt al. 2004Hoi et al. 2006
Bousquet and Herrmann 2002

Another form of kernel learning, known as Multiple Kerneldraing (MKL) (Lanckriet et al.
2004, aims to find the optimal combination of multiple kernels &classification task.
Exemplar algorithms include the convex optimizatidrarickriet et al. 2004 the semi-
infinite linear program (SILP) approacBgnnenburg et al. 2006the subgradient descent
approach Rakotomamonjy et al. 2008and the level methodX{ et al. 2008. In addition,
several recent studiegién and Ong 2007Ji et al. 2008 Tang et al. 200paddressed other
MKL problems, such as MKL on multi-class and multi-labeleatal the compositional
kernel combination method_€e et al. 200y, multi-layer MKL (Zhuang, Tsang and Hoi
2011b, and unsupervised MKLZhuang, Wang, Hoi and Lan 20LDur work differs from
the existing MKL methods in that our goal is to resolve onlolassification tasks while
most existing MKL methods were developed to mainly tackliehalassification tasks.



Besides learning kernels from labeled examples, severmikest addressed the challenge
of learning kernel matrices from side information (e.g.inpise constraints). Methods in
this category include nonparametric kernel learnikigi(et al. 2007 Zhuang et al. 2009
Chen et al. 2009Zhuang, Tsang and Hoi 201jldower-rank kernel learningKulis et al.
2006 2009, generalized maximum entropy mode¥afg, Jin and Jain 20)0and indefi-
nite kernel learning@hen and Ye 2008009. Finally, there are some emerging studies for
online multiple kernel learningl{e et al. 201pMartins et al. 201} that address some other
issues such as multi-class learning or structured predictVe note that these studies might
have been developed in parallel or after our earlier confergpaper published ifin et al.
(2010. Our work differs from them in that we focus on enhancingrmklassification per-
formance by choosing and combining multiple kernels, ngroely a subset of kernels are
selected for updating and combining during online learpiragess. Itis the kernel selection
strategies developed in this work that make the proposeditepalgorithms significantly
more efficient than the existing approaches for online migtkernel learning.

3 Proposed Framework for Online Classification with Multiple Kernels

We introduce the problem setting and regular Multiple Kétrearning (MKL), and then
present the proposed framework of online multiple kernasification.

3.1 Problem Setting and Multiple Kernel Learning

Consider a set of training examplés = {(z;,5;),i = 1,...,n} wherez; € R%, y; €
{-1,+1},i=1,...,n, and a collection ofn kernel functionsC = {k; : X x X = R,i =
1,...,m}. The goal of multiple kernel learning is to learn a kernesdzhprediction function
by identifying the optimal combination of the kernels, denoted by = (64,...,60,) to
minimize the margin-based classification error. It is catt the optimization below:

hu fer?rwlti?w 2|f|HK<9) +C;£ (i), yi) @
where
A={0€RT0 1y =1}, K(0 Ze ki )y L(f (@), yi) = max(0, 1 — y, f(24))

In the above formulation, we use notatibp, to represent a vector of dimensions with all
its elements being. It can also be cast into the following mini-max optimizatioroblem:

. T
gfélgglea;_({a ln— (aoy) (ZOK) aoy} (2)

whereK" € R"*" with K} ; = r;(x;,7;), Z = {a]a € [0,C]"}, ando defines the element-
wise product between two vectors. We refer to the above flation as a regular batch MKL
problem. Despite some encouraging results achieved fgd&akotomamonjy et al. 2008

Xu et al. 2008, developing an efficient and scalable MKL algorithm rensaém open re-

search challenge in order to solve the challenging optitisizaask. Unlike the recent efforts
for online MKL studies Jie et al. 2010Martins et al. 2011 which are mainly concerned in
optimizing the optimal kernel combination, in this papeg present a new framework for
online multiple kernel classification which is focused omplexing effective online combi-

nation of multiple kernel classifiers.



3.2 The Proposed Framework of Online Multiple Kernel Clisation

The proposed Online Multiple Kernel Classification (OMKGCrhework is based on the
fusion of two online learning methods: the Perceptron dtlgor (Rosenblatt 1958and the
Hedge algorithmKreund and Schapire 1991n particular, for each kernel, the Perceptron
algorithm is employed to learn a kernel-based classifign aitme selected kernel, and the
Hedge algorithm is used to update their combination weighigorithm 1 shows the de-
tailed steps of the proposed framework.

Algorithm 1 Deterministic Algorithm for OMKC OMKC (p, 1))

1: INPUT:
— Kernels:k;(-,") : X x X - Ri=1,...,m
— Weightsw; (1) =1,i=1,...,m
— Discount weight3 € (0, 1).
2: Initialization : f! = 0,w! =1,0' = L1
3:fort=1,2,...do
4: Receive an instance;
5 Predictj, = sign(Z?;l 0;sign(f} (:(:t)))
6 Receive the class label;
7. fori=1,2,...,mdo
8: Setz! = I(yef! (=) <0)

9: Updatew! t1 = w; (¢)8%

10: Updateff“(:v) = fi(z) + zfytni(:vt, x)

11:  end for .

12 ot = w—lt i=1,...,m, whereW; = 37 | w?
13: end for

In this framework, we use;(t) to denote the combination weight for tix¢h kernel
classifier at round, which is set tal at the initial round. For each learning round, we update
the weightw; (¢) by following the Hedge algorithm as follows:

i izt
wiy1 = wy B

wheres € (0, 1) is a discount weight parameter, which is employed to peadlie kernel
classifier that performs incorrect prediction at each lie@rstep, and;(¢) indicates if the
i-th kernel classifier makes a mistake on the prediction o&ianpler;.

Next we derive a theorem to show the mistake bound for Algorit. Throughout this
paper, we assumgz, z) < 1 for anyz. For the convenience of following discussions, we
define the following notations:

m m
We = wl, 0 = gt 2l =1 (wfl(en) <) g = sign( 3 Olsien(f(20) )
i=1

i=1

where f!(x) is used to represent the classifier at trighat is constructed by using the
kernel functionk;(-,-), andI(z) is an indicator function that outputswhenz is true and
0 otherwise. Hereﬁ essentially defines the mixture of kernel classifiers, afn'nhdicates
if training example(z¢, y:) is misclassified by théth kernel classifier at triaf. Finally,
we define the optimal margin classification error for the kéw;(-,-) with respect to a



collection of training examples = {(z¢,y:),t =1,...,T} as
T
Flri, (L) = min (m%w +2y f(:rt))> ®3)
i t=1

Theorem 1 After receiving a sequenceBitraining examples, denoted By= {(x¢,y¢),t =
1,...,T}, the number of mistake® made by running Algorithrit, denoted by

T m
M:ZI(ytﬁt SO)—Z[(Z%Z; 20-5>

t=1 t=1 1=1
is bounded as follows
T

2In(1/8) . t 2lnm
< — 17 :
M < -5 12?77115_121_‘—1—5 (4)
2In(1/8) . 2Ilnm
< —~ 17 .
<5 lglgan(m,&EHl_ﬂ 5)

By choosings = %7 we have

MgQ((l—o—Uhl—m) min F(Hi,é,ﬁ)—l—lnm—o—\/Tlnm)
T ] 1<i<m

The proof of this theorem essentially combines the proohefRerceptron algorithm and
the Hedge algorithm. The details can be found in the Appendlix note that the mistake
bound in above theorem can be improved if we further tunetéyesgze or the classification
margin-~y. However, since the focus of this study is online multipleniet classification, we
simply fix these two parameters to beThe above theorem also provides suggestion for
the parametep. It is important to note that the value f@rsuggested in the bound could
be highly overestimated due to the rough approximatioﬁj(pi1 2 asT. We will examine
empirically howg affects the prediction accuracy of the proposed algorithm.

The main shortcoming of Algorithn is its high computational cost. First, at step 5,
to make a predictionj:, Algorithm 1 requires combining predictions from all the kernel
classifiers. Second, between step 7 and 11, Algorithraquires updating all the kernel
classifiers. When the number of kernels is large, both arepotationally expensive. In the
subsequential sections, we will study kernel selectioatsgjies that reduce the computa-
tional cost of Algorithml by selecting only a subset of kernels for prediction and tipda
To distinguish from those approaches, we refer to Algorithas a deterministic approach
or “OMKC p p)” for short, because all the kernels are used for predictihupdating.

4 Online Multiple Kernel Classification (OMKC) Algorithms
4.1 OMKC by Stochastic Combination

Ouir first effort is to improve the computational efficiencyAdfjorithm 1 by selecting
a subset of kernels for prediction. Algorithershows the key steps. It introduces the prob-
ability ¢;(¢),7 = 1,...,m to denote the probability of sampling tli¢h kernel at the-th
iteration, which is computed as follows:

(1) = wi(t)/[ max_wy() ®)



Algorithm 2 Stochastic Combination Algorithm for OMK®MKC (p, g))

1: INPUT:
— Kernel functionsk;(+,-) : X x X - R,i=1,...,m
— Weightsw; (1) = 1,i=1,...,m
— Discount weight3 € (0, 1).
— Smoothing parameter € (0, 1)
2: fort=1,2,...do
3 Computey; (t) = w;(t)/[maxi<j<m w;(t)],i =1,...,m
4: fori=1,2,...,mdo
5: Samplem; (t) = Bernoulli_Sampling(g; (t))
6:
7
8

end for
Receive an instance;
Predict:j(t) = sign ( S ma(t)sign (f? (:ct))>
9:  Receive the class label of the instangge:
10: fori=1,2,...,mdo

11: Setz; (t) = 1if y¢ fi (z+) < 0 and zero otherwise
12: Updatew; (t + 1) = w; ()% ®)

13: Updateff+1(:c) = ftL(:c) + zi(t)yski(ze, x)

14:  end for

15: end for

Only the sampled kernel classifiers will be combined to makeprediction. We refer to this
stochastic selection approachséschastic combination and Algorithm2 asOMKC (p, g .
We have the following theorem for the mistake bound of Altori 2.

Theorem 2 After receiving a sequencebftraining examples, denoted By= {(z¢,y¢),t =

1,...,T}, the number of mistaked made by running Algorithr is bounded as follows if

g T
VT+vVInm

E[M] <2 ((1+ 1/ ln_m) min F(Hi,ﬂ,ﬁ)—l—lnm—l—\/Tlnm)
T ] 1<i<m

The proof of Theorem 2 is identical to that of Theorem 1. Coragao Algorithm1, we
see that the mistake bound in expectation for Algorittmemains unchanged, implying
that the stochastic selection approach employed in Algor2 does not affect the overall
performance significantly.

4.2 OMKC by Stochastic Updating

Our second approach is to improve the learning efficiencylgbAthm 1 by sampling a
subset of kernel classifiers, based on the weights assigriexdrtel classifiers, for updating.
Specifically, we introduce the sampling probabilityt) which is computed by smoothing
q;(t) (defined in 6)) with a uniform distributiors /m, i.e.,

pi(t) = (1= 0)gi(t) +6/m,i=1,....m
The smoothing parametéris introduced to guarantee that each kernel classifier will b

selected with at least probability/m, avoiding that the sampling probabilipy(¢) is con-
centrated on a few kernels. The similar idea was also useldeirstudy of the multi-arm



Algorithm 3 Stochastic-Update Algorithm for OMKGMKC (g p))

1: INPUT:
— Kernel functionsk;(+,-) : X x X - R,i=1,...,m
— Weightsw; (1) = 1,i=1,...,m
— Discount weight3 € (0, 1).
fort=1,2,...do
Computey; (t) = w;(t)/[maxi<j<m w;(t)],i =1,...,m
Receive an instance;

2:
3
4:
5:  Predictj(t) = sign( > qi(t)sign(f} (wt)))
6:
7
8

Receive the class label of the instange:
Computep; (t) = (1 — §)qi(t) +6/m,i=1,...,m

o fori=1,2,...,mdo
9: Samplem; (t) = Bernoulli_Sampling(p; (t))
10: Setz;(t) = 1if y. f}(z+) < 0 and zero otherwise
11: Updatew; (t + 1) = w; ()87 Hmi(t)
12: Updatef;  ; (z) = fi(z) + mai(t)zi(t)ye ki (e, x)
13:  end for
14: end for

bandit problem Auer et al. 2003to ensure the tradeoff between exploration and exploita-
tion. Based on probabilities; (¢), we sample a subset of kernels by Bernoulli samplings
which are independently conducted in each trial, one foh &acnel classifier, i.e.,

m;(t) = Bernoulli_Sampling(p;(¢)),i =1,...,m

wherem;(t) € {0,1} denotes the sampling result. Th#h kernel is selected if and only if
m;(t) = 1. Algorithm 3 shows the detailed steps. We refer to this kernel selectiategly as
stochastic updatingapproach, and AlgorithrfBasOMKC (g ). The theorem below shows
the mistake bound of Algorithr8.

Theorem 3 After receiving a sequencebftraining examples, denoted By= {(x¢,y¢),t =
1,...,T}, the expected number of mistakes made by Algorghaenoted by

T m
M=E [ZI (Z qi(t)zi(t) > 05)} :
t=1 =1

is bounded as follows

2mIn(1/8) . 2mInm
< P , Znam
M<=a—p) o8, Fe b0+ 555
By choosings = %, we have

MSQ_m (1+,/ln—m) min F(k;, 0, L) +Inm+ VT Inm
1) T ) 1<i<m

Proof Similar to the proof for Theorems 1, we first give the lower hdand upper bound
for In (Wp1/W1) by

T m
~1n(1/8) Y mi(®)z4(t) — nm < In (%) <=0 S amiv)z),
t=1

! t=11i=1



which leads to the following inequality

m T
—B)Zqu ) <In(1/8) Z t)+Inm

t=11i=1

Taking expectation on both sides, we have

T m T
E [(1 -8y > qi<t>mi(t>zi<t>} <E [m(l/m > mi)zi(t) | +lnm
t=11i=1 t=1
Sincep;(t) > §/m, then
T m T
6(17;5) [ qu )zi( } <E|:ln (1/8) Z +1Inm
t=1i=1 t=1

Using the result in Theorem 1, we have the following inedqudbr any f € H,

mi(0)zi(t) < ff = e, — 1T = FRu, +200F (20), 00)

Combining the above results, we have

AL mlnl ﬂ mlnm

Following the same argument as in Theorem 1, we have thet irgbke theorem.

As indicated in Theorem 3, the dependence of mistake boumd iSO (m In m). Since
Algorithm 3 only chooses one kernel classifier to be updated in eachideyée algorithm
is essentially similar to the multi-armed bandit probletis therefore not surprising to have
O(m1nm) dependence for our algorithm, because the same dependanbe tound in the
regret bound for multi-armed bandit problem wheris the number of arms.

Itis interesting to note that the mistake bound in Theoreaidverse t@, indicating that
alarger may potentially lead to a better mistake bound for the coetbkernel classifier. In
the extreme case when choosihg 1, which is equivalent to choosing the kernel classifiers
uniformly at random for updating. However, in practice, warid the approach of choosing
kernel classifiers uniformly at random usually leads to a pesformance because it wastes
time on updating the kernel classifiers with low predictimtwracy (which could lead to
poor mistake bounds due to the training on too many poor k&in&s a cautionary note
about the inconsistency between the theoretical and erapiésults, we conjecture that it
is probably because the mistake bound is not tight enougéveat the true behavior of the
algorithm.

Besides the practical issue, another problem of choasiadl is that a larges usually
leads to a larger number of updates, as revealed by the faljoworollary, leading to a
higher computational cost.

Corollary 1 After receiving a sequencebftraining examples, denoted y= {(x¢, y:),t =
., T}, the expected number of updates made by Algor8hdenoted by

T m
U=E {Z > milt)zit)

t=11i=1

I
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Algorithm 4 Stochastic Algorithm for OMKCOMKC (g g))

1: INPUT:
— Kernel functionsk;(+,-) : X x X - R,i=1,...,m
— Weightsw; (1) = 1,i=1,...,m
— Discount weight3 € (0, 1).
— Smoothing parameter € (0, 1)
2: fort=1,2,...do
3 Computey; (t) = w;(t)/[maxi<j<m wj @®)],i=1,...,m
4 Computep; (t) = (1 —§)qi(t) +6/m,i=1,...,m
5. fori=1,2,...,mdo
6:
7
8

Samplemi (t) = Bernoulli_Sampling(p; (t))
end for
Receive an instance;

9:  Predict:g(t) = 51gn< S mi(t)gs(t)sign(ff (mt))>
10:  Receive the class label of the instange:
11: fori=1,2,...,mdo

12: Setz; (t) = 1if y¢ ff (z¢) < 0 and zero otherwise
13: Updatew; (t + 1) = w; ()7 (i)

14: Updatef}, ; (z) = fH(z) + mi(t)zi(t)yeki(ze, x)
15 end for

16: end for

is bounded as follows jf = \/_J\r/\;ﬁ

U<m<<1+ ln_m) min F(k;, 4, L) +1Inm+vTIn >+5T

1) T ] 1<i<m

Proof According to the definitions, we have the following result:

T m T m
E[ZZmi(t)zi(t)]:E[;Z (1-6)E quz zi(t)] + 6T

t=11i=1 t=11i=1
Following the same argument as in Theorem 2, we have thet irstbrollary 1.

As indicated by the above corollary, a largesually leads to a potentially large number of
updates. Whe# is chosen appropriately, it could potentially improve thediction perfor-
mance through the exploration of more kernels. However,nwhis too large, it not only
increases the number of updates, but also performs oveirgaon the poor kernels, leading
to high computational cost, over-complex models, and eversevprediction accuracy.

4.3 OMKC by Stochastic Updating & Stochastic Combination

Our final approach is to combine the two kernel selectioriegias, i.e., stochastic com-
bination approach and stochastic updating approach. #tgo shows the details of this
approach, to which we refer 8MKC (g g). Apparently, Algorithm4 is computationally
most efficient compared to the other approaches.
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4.4 Summary of Four OMKC Algorithms

By choosing different selection strategies for classifigdating and combination, we can
develop several variants of OMKC algorithms. Table 1 suniwearthe proposed four vari-
ants of OMKC algorithms by a mixture of different updatinglaamombination strategies.

Table 1: Summary of the variants of OMKC Algorithms. Belowadd C denotes the se-
lection strategies fodpdateandCombination respectively; S and D denotes tB®chastic
andDeterministicapproaches, respectively.

Algorithm Name | Algorithm1 | Algorithm2 | Algorithm 3 | Algorithm 4
OMKC(y,¢) OMKC(pp) | OMKC(pg) | OMKCip) | OMKC(gs)
Update strategy Deterministic | Deterministic Stochastic Stochastic
Combination strategy] Deterministic Stochastic Deterministic Stochastic

Among all the above four algorithm&MKC , y is the most computationally inten-
sive algorithm that updates and combines all the kernekifiess at each iteration, while
OMKC g g) is the most efficient algorithm that selectively updates@dbines a subset of
kernel classifiers at each iteration. Final)MKC p gy andOMKC g py are the other two
variants of OMKC algorithms in between these two extremesbdtter understand their
advantages and disadvantages of these four algorithmg diffiFent situations, we will
comprehensively examine their empirical performance ineogperiments.

5 Experimental Results

The goal of our empirical study is to answer the following sfiens: (1) Whether the pro-
posed OMKC algorithms are more effective than the regulinetearning algorithms with
single kernel (e.g., Perceptron) for online classificai¢2) Whether the proposed OMKC
algorithms are more effective than the state-of-the-aiherMKL method in literature for
online classification? (3) How about the efficiency and effjcaf the proposed OMKC al-
gorithms using the stochastic strategy in comparison toah#KC algorithms using the
deterministic strategy? (4) Among all the proposed OMKGoatgms, which algorithm
achieves better accuracy, efficiency, and sparsity pegoce? (5) How does the discount
weight parametef affects the performance of the proposed OMKC algorithms?

5.1 Experimental Testbed and Setup

In our experiments, we test the algorithms over a testbed afiderse datasefsobtained
from LIBSVM 2 and UCI machine learning repositoty These datasets were chosen quite
arbitrarily, with different sizes and dimensions in ordelekamine every aspect of the per-
formance of our algorithms. The details of these datasetstaswn in Table 2.

1 Al the datasets and source code in our experiments can be nloaded from:
http://www.cais.ntu.edu.sg/ ~chhoi/lOMKC/ .

2 http://www.csie.ntu.edu.tw/ ~¢jlin/libsvmtools/datasets/
3 http://www.ics.uci.edu/ ~mlearn/


http://www.cais.ntu.edu.sg/~chhoi/OMKC/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.ics.uci.edu/~mlearn/
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Table 2: The details of 15 diverse datasets used in our erpats.

Index | Dataset | # Examples| # Dimensions| Source [ Comments

Dy ionosphere 351 34 UCl

Do votes84 435 16 UClI

D3 wdbc 569 30 UCl

Dy breast 683 9 UCI a.k.a. “wisconsin”

Ds australian 690 14 UCl

Dg diabetes 768 9 UCl a.k.a. “pima-indians”
Dy fourclass 862 2 LIBSVM | from (Ho and Kleinberg 1996
Dsg splice 1000 60 UCl

Dy dorothea 1150 100000 UClI KDD Cup 2001

Do svmguide3 1243 22 LIBSVM

Di1 svmguidel 3089 4 LIBSVM

Dqo a3a 3185 123 LIBSVM a subset of “Adult”
D13 spambase 4601 57 UCl

Dqy mushrooms 8124 112 UCI

D5 wbha 9888 300 LIBSVM | asubset ofRlatt 1999

We evaluate the empirical performance of the proposed emiinltiple kernel learning
algorithms for online classification tasks. In particulae predefine a pool of6 kernel
functions, including 3 polynomial kernels (i.é(z;,z;) = (mjccj)f’) of degree parameter
p=1, 2 and 3), and 13 gaussian kernels (kéz;, z;) = exp(—||lz; — z,||*/20?)) of kernel
width parametes in [276,27°, ... 26].

We compare the proposed four variants of OMKC algorithmé$ wie following base-
line algorithms:

— Perceptron:the well-known Perceptron baseline algorithm with a lineanel Rosenblatt
1958 Freund and Schapire 1999

— Perceptron(u): another Perceptron baseline algorithm with an unbiasédfam com-
bination of all the kernels;

— Perceptron(*): we conduct an online validation procedure to search for s kernel
among the pool of kernels (using the fit$t% training examples), and then apply the
Perceptron algorithm with the best kernel;

— OM-2: a state-of-the-art online learning algorithm for multiggnel learning {ie et al.
201Q Orabona et al. 2020

For performance metrics, similar to the setups of a regufdine learning task, we
adopt themistake ratei.e., the percentage of mistakes made by the online learmezrthe
total number of predictions made by the online learner. Iditamh, we also measure the
size of support vectors of the classifiers learned by theneriéarning algorithms. Finally,
we measure the average running time (including model upgland online prediction) for
learning the classifiers by the online learning algorithms.

Regarding the parameter setup, for the proposed OMKC d#hgosi the parameters
ando are simply fixed t@.8 and0.01, respectively. We will empirically examine the param-
eter’s impact in Section 5.6. Further, to obtain the statgage results, all online learning
experiments were conducted o&rrandom permutations for each dataset, and all the re-
ported results were averaged over these 20 runs, in whialy experimental run was con-
ducted over a single pass of the permutated dataset. Foxpeeimental environment, our
experiments were evaluated on a PC with 2.3G CPU and 16GB RAMailab implemen-
tation.
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Table 3: Comparison of the OMKC algorithm with the OM-2 andeth Perceptron based

algorithms. We conducted the student t-test on the mistedalts and highlighted the best

results for each dataset. Among 15 datasets, OMKE;) achieved the best on 12 datasets,
while OM-2 and Perceptron(*) achieved the best on 4 datasetd dataset, respectively.

Algorithm T Perceptron [ Perceptron (u) | Perceptron () | OM-2 [ OMKC (p.p)
lonosphere | n=351 d=34 m=16 best kernel expert: gaussian kernel ef 1

Mistake (%) | 26.82£1.63 | 18.73£1.23 | 22.07£6.77 | 17.41£1.20 16.07+£1.42
SV (#) 94.2+ 5.7 65.8+ 4.3 77.5+ 23.7 128.54+ 4.4 1547.5+ 53.0
Time (s) 0.004+ 0.000 | 0.003+ 0.000 | 0.042+ 0.002 0.1134+ 0.001 0.384+ 0.024
votes84 n=435 d=16 m= 16 best kernel expert: polynomial kerneb of 1

Mistake (%) | 8.17£0.73 8.68+ 0.62 945+ 194 721+ 0.68 7.38£ 0.69
SV (#) 35,5+ 3.2 37.84+ 2.7 41.1+ 8.4 56.5+ 2.3 959.6+ 40.2
Time (s) 0.004+ 0.000 0.004+ 0.000 0.045+ 0.002 0.124+ 0.001 0.406-+ 0.017
wdbc n=569 d=30 m= 16 best kernel expert: gaussian kernel of 64

Mistake (%) | 34.51+f 1.82 | 41.52+3.70 | 1229+ 1.01 | 41.70% 4.06 11.70£ 1.01
SV (#) 196.3+ 10.3 236.3+ 21.0 70.0+ 5.7 237.3+23.1 3032.2+ 37.3
Time (s) 0.007+ 0.000 | 0.008+ 0.000 | 0.065+ 0.001 0.2144+ 0.007 0.597+ 0.013
breast n=683 d= m=16 best kernel expert: gaussian kernel ef 8

Mistake (%) | 26.73£ 1.19 | 41.90&£ 3.40 6.12+0.79 4433+ 3.88 486+ 0.51
SV (#) 182.6+ 8.1 286.1+ 23.2 41.8+ 5.4 303.4+ 26.4 1606.6+ 49.9
Time (s) 0.008+ 0.000 | 0.009+ 0.001 | 0.068+ 0.001 0.2764+ 0.015 0.641+ 0.017
australian n= 690 d=14 m= 16 best kernel expert: gaussian kernel of 2

Mistake (%) | 39.54+ 1.51 [ 39.50£2.70 | 38.04+2.38 | 39.62+ 2.88 37.67£1.20
SV (#) 272.94+10.4 272.6+ 18.6 262.4+ 16.4 273.4+ 19.9 4743.8+ 70.0
Time (s) 0.010+ 0.001 0.010+ 0.001 0.091+ 0.003 0.266+ 0.006 0.779-+ 0.017
diabetes n=768 d=8 m= 16 best kernel expert: gaussian kernel ef 32

Mistake (%) | 44.14+1.86 | 45.18+£ 2.19 | 35.55+ 2.07 | 45.35% 2.18 33.69+ 1.29
SV (#) 339.0+ 14.3 347.0+ 16.8 273.0+ 15.9 348.3+ 16.7 4614.6+ 63.8
Time (s) 0.012+ 0.001 0.012+ 0.001 0.099+ 0.006 0.321+ 0.014 0.886+ 0.021
fourclass n=862 d= m=16 best kernel expert: gaussian kernel ef 8

Mistake (%) | 36.29£ 1.09 | 35.82% 1.56 3.78£0.76 35.92+ 1.65 3.19+£0.38
SV (#) 312.8+ 9.4 308.8+ 13.4 32.6+ 6.6 309.6+ 14.2 3131.0£ 335
Time (s) 0.013+ 0.001 | 0.012+ 0.001 | 0.092+ 0.001 0.3484+ 0.005 0.862+ 0.010
Splice n= 1000 d=60 m=16 best kernel expert: gaussian kernel ef 4

Mistake (%) | 34.51+ 1.41 [ 30.44£ 0.97 29.28+£3.84 | 30.79+£1.23 2457+ 1.07
SV (#) 345.1+ 14.1 304.4+ 9.7 292.8+ 38.4 307.9+ 12.3 5830.9+ 90.6
Time (s) 0.015+ 0.001 0.013+ 0.001 0.128+ 0.004 0.417+ 0.013 1.122+ 0.018
Dorothea n= 1150 d= 100000 m= 16 best kernel expert: gaussian kernel-of8

Mistake (%) | 10.07£0.50 | 10.64£0.61 | 11.21£ 293 [ 10.70£0.72 8.92+ 0.37
SV (#) 115.8+ 5.8 1224+ 7.0 128.9+ 33.7 1241+ 7.6 7855.3+ 69.9
Time (s) 0.031+ 0.001 0.031+ 0.001 0.169+ 0.004 0.435+ 0.013 1.647+ 0.071
svmguide3 n=1243 d=22 m=16 best kernel expert: gaussian kernel 0.5

Mistake (%) | 32.98£0.62 | 27.73£0.85 | 27.18£ 236 [ 22.84£0.50 26.00£0.78
SV (#) 410.0+ 7.7 344.7+ 10.5 337.9+ 29.4 812.1+ 10.3 6107.4+ 107.7
Time (s) 0.0184+ 0.001 | 0.016+ 0.000 | 0.163+ 0.004 0.695+ 0.004 1.354+ 0.011
svmguidel n=3089 d=4 m=16 best kernel expert: gaussian kernel ef 32

Mistake (%) | 23.12£0.34 | 19.12£ 0.56 5.68+£0.74 19.32+£ 0.61 531£0.29
SV (#) 714.3+ 104 590.5+ 17.4 175.3+ 22.8 596.7+ 18.9 7089.4+ 70.3
Time (s) 0.071+ 0.002 0.060+ 0.002 0.331+ 0.007 2.116+ 0.193 3.215+ 0.030
a3a n= 3185 d=123 m=16 best kernel expert: polynomial kernel ef 3

Mistake (%) | 22.55+£0.51 [ 22.09£ 0.56 | 22.07£0.64 | 20.23£0.39 21.97+£0.52
SV (#) 718.1+ 16.3 703.6+ 17.9 702.8+ 20.3 861.9+ 15.8 16233.64+ 120.3
Time (s) 0.076+ 0.003 0.074+ 0.002 0.502+ 0.006 2.704+ 0.316 4.355+ 0.042
spambase n=4601 d=57 m=16 best kernel expert: gaussian kernel ef 4

Mistake (%) | 47.37£0.66 | 58.18£ 1.54 | 26.22£2.09 [ 58.16£ 1.50 2436+ 0.45
SV (#) 2179.7+ 30.5 2677.1+£ 71.0 1206.6+ 96.3 2676.1+ 69.0 27390.0+ 180.0
Time (s) 0.321+ 0.006 | 0.385+ 0.018 | 0.913+ 0.038 5.184+ 0.239 9.653+ 0.141
mushrooms | n=8124 d=112 m=16 best kernel expert: gaussian kernel6f0.25

Mistake (%) | 1.38£ 0.10 051+ 0.04 0.38£0.02 0.37£0.04 0.32£0.04
SV (#) 112.24+8.4 41.4+ 3.6 30.6+ 1.4 47.1+ 2.8 9874.7+ 74.1
Time (s) 0.0744+ 0.003 | 0.053+ 0.002 | 0.777+ 0.004 8.691+ 0.070 9.2754+ 0.124
wbha n= 9888 d=300 m=16 best kernel expert: gaussian kernel-of2

Mistake (%) | 12.71£0.14 | 3.09+ 0.09 3.27£0.31 2.88+£0.10 3.19+£0.10
SV (#) 1257.1+ 13.7 305.3+ 8.5 323.1+31.1 2007.6+ 58.6 | 28705.4+ 143.4
Time (s) 0.419+ 0.009 0.137+ 0.004 1.284+ 0.023 17.548+4 2.325 25.191+ 0.268
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5.2 Evaluation of the Deterministic OMKC Algorithm

Table 3 summarizes the average experimental results fop@ong the proposed OMKg )
algorithm with three Perceptron based algorithms (i.erc&sron, Perceptron(u) and Per-
ceptron(*)) and the OM-2 algorithm for online MKL, on the 1%atdsets. Based on the
experimental results, we performed the studetgsts and highlighted the best results in
the table, including statistically no different resultsr{tvthe top 1 result) according to the
student-tests. We discuss the performance comparison as follows.

First of all, we examine the performance of the three Peroegtased algorithms. We
observe that the Perceptron algorithm using the unbiasetioation of all kernels usually
outperforms the regular Perceptron using a linear kernelem for a few datasets (e.g.,
wdbc, breast, and spambase) where Perceptron(u) is comsliglevorse than Perceptron
with a linear kernel. Further, among all the three Percepatgorithms, Perceptron(*) with
the best kernel significantly outperforms other two aldonis for most cases, except for a
couple of datasets (e.g., ionosphere and votes84). Thi# sf®ws that it is important to
identify the best kernel for an online learning task.

Secondly, we examine the performance of the OM-2 algorithith womparisons to
the three Perceptron algorithms. We observe that this@mKL algorithm is often more
effective than or at least comparable to the two regularéferen algorithms, i.e., Percep-
tron with a linear kernel and Perceptron(u) using an unbliasenbined kernel. In addi-
tion, by comparing OM-2 with Perceptron(*) that uses thet lxesnel, we found they are
in general quite comparable, in which Perceptron(*) teredpdrform considerably better
on some datasets (such as australian, diabetes, wdbct, foeaslass, splice, svmguidel),
while OM-2 tends to perform better on the other datasets @bservation shows that both
identifying the best kernel and combining multiple kernafgproaches are important and
can exhibit their advantages for different scenarios ifnerlearning tasks.

Thirdly, among all the compared algorithms, OMK{p, overall achieves the best per-
formance, which obtained the best results on 12 out of 15sdtasignificantly outper-
forming both Perceptron(*) and OM-2 algorithms which onlytained the best results on
1 and 3 out of 15 datasets, respectively. By further compatie performance of the pro-
posed OMKGp, py algorithm with Perceptron(*) in detail, we found that it cistently
outperforms Perceptron(*) almost on all datasets. Thisvshthhat OMKGp, ) is excel-
lent in tracking the best kernel classifier in the online méag task. Finally, by comparing
OMKC(D_’D) with OM-2, we found that it often outperforms OM-2 for mostasets, ex-
cepts three datasets (svmguide3, a3a, wba) where OM-2 temqmsform better. This en-
couraging result shows that the proposed OMK®, algorithm is more effective in com-
bining multiple kernels than the state-of-the-art onlin&IMalgorithm for online learning
tasks.

Finally, despite the considerably better predictive p@nfance achieved by the proposed
OMKC p p) algorithm, we notice that it has two limitations. The firshitation is the high
computational cost for learning and prediction. This issase OMKGp, ) adopts the de-
terministic updating strategy which has to check every é&edhassifier at each iteration,
and whenever there is a mistake for each kernel classifielOM p) has to update the
kernel classifier. The second limitation is the high modehptexity, i.e., the size of support
vectors learned by OMK(, ) is significantly larger than the other algorithms. For exam-
ple, on dataset “ionosphere”, the size of support vect@sd by OMKGp p) is almost
12 times over that by OM-2. The high learning and model coripés make OMKGp, )
less efficient and attractive for some applications withrgdanumber of kernels. This also
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indicates the importance of exploring the stochastic wsiaf OMKC algorithms, as to be
evaluated in the next section.

5.3 Evaluation of Stochastic Strategies for OMKC Algorigim

In this section, we evaluate the performance of severahntgiof OMKC algorithms using
different stochastic strategies. In particular, we exantimo kinds of stochastic strategies:
stochastic updating and stochastic combinations in cosgrato their deterministic coun-
terparts. Table 4 shows the experimental results by compére deterministic OMK(, p)
algorithm with the other three OMKC algorithms. Similanlye highlighted the best results

in the table after performing studentests on the mistake rates. We analyze the experimen-
tal results as follows in detail.

5.3.1 Deterministic Updating v.s. Stochastic Updating

By comparing the results of different OMKC algorithms in Ta$, we have several obser-
vations for the comparisons between the deterministic ssahastic updating approaches.

First of all, by comparing OMKg, )y and OMKGg ) Which adopt the same deter-
ministic classifier combination approach, we found that OB, using the stochastic
updating strategy is able to improve both the time efficieanyg model complexity over
OMKC p py- Thisis not difficult to understand since OMKE, selectively updates a sub-
set of kernel classifiers at each iteration, which thus ruaeerefficiently and produces less
number of support vectors. Moreover, by examining the rkéstate results, we found that
OMKC s p) is able to achieve comparable or even better mistake rate@aKC p ),
which validates the efficacy of the stochastic updatingetra

Second, by comparing another pair of OMKC algorithms OMKG) and OMKCg g)
which adopt the same stochastic classifier combinatioroagpr, we can draw some similar
observation. In particular, OMKG g only significantly improves the learning efficiency
over OMKCp g, but also achieves better or at least comparable predjstifermance.

Third, by comparing the two OMKC algorithms with the stodimsipdating strategy
with the OM-2 algorithm, we found that both OMKEp) and OMKGg gy can always
achieve considerably better or at least comparable pedioecsn than the existing online
MKL algorithm for most datasets.

The above observations confirm that the stochastic updsatiategy can not only effec-
tively improve the learning efficiency of OMKC, but also mi@im a highly comparable or
sometimes even better predictive performance for onliamiag tasks.

5.3.2 Deterministic Combination v.s. Stochastic Comlbamat

Similarly, we can also draw several observations about dheparisons between the deter-
ministic and stochastic classifier combination approaches

First of all, by comparing OMKG, )y and OMKGy, gy which adopt the same deter-
ministic updating strategy, we found that OMI§Cs using the stochastic classifier combi-
nation strategy is able to significantly reduce the modelglerity as compared to OMK@ ).
For most datasets, OMKG g is able to achieve a significant reduction of over 90 per-
cent support vectors. Despite the significant gain in the ehadmplexity, OMKGp, g)
tends to result in slightly worse predictive performancenetheless, the mistake rate re-
sults achieved by OMKg, g) remain quite competitive as compared to those by OM-2.
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Second, by comparing OMKG 1) and OMKGg gy which adopt the same stochastic
updating strategy, we found that OMK{s, using the stochastic combination strategy is
able to significantly reduce both the model complexity anhgetational time cost. In ad-
dition, by examining the predictive performance, OMKG, achieves fairly comparable
mistake rates as compared to OMKG,).

The above observations show that the OMKC algorithms usiagstochastic classifier
combination strategy are able to considerably improvedhening efficacy by maintaining
comparable predictive performance as compared to theiteqearts.
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Fig. 1: Comparison of average mistake rates during the efdiarning processes

5.4 Evaluation of Varied Online Learning Sizes

To further examine the performance of OMKC algorithms witkpect to different sizes of
datasets for online learning, Figure 1 and Figure 2 showhheges of both average mistake
rates and average numbers of support vectors during theedelarning processes. Similar
observations can be drawn from the experimental resultsllasvt.
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Table 4: Comparison of four OMKC algorithms and the OM-2 aiftpon. We conducted
student t-tests on the mistake rates and highlighted therésdlts for each datas€&dM-2
only achieved the best for 3 out of 15 datasets, while the ®&#C algorithm achieved

the best for 11 out of 15 datasets.

Algorithm | OM-2 | OMKC (D,D) | OMKC (D,S) | OMKC (3,D) | OMKC (3,8)
lonosphere | n=351 d=34 m=16 best kernel expert: gaussian kernel ef 1

Mistake (%) | 17.41£1.20 16.07£1.42 1721+ 1.32 17.74£1.37 1745+ 151
SV (#) 128.5+ 4.4 1547.5+ 53.0 184.6+ 62.8 828.0+ 46.2 344.6+ 102.5
Time (s) 0.1134+ 0.001 0.384+ 0.024 0.342+ 0.007 0.326+ 0.003 0.218+ 0.006
votes84 n=435 d=16 m= 16 best kernel expert: polynomial kerneb of 1

Mistake (%) 7.21+£0.68 7.38+£0.69 8.02+ 0.60 6.71+ 0.55 7.22+0.99
SV (#) 56.5+ 2.3 959.6+ 40.2 100.8+ 52.6 511.4+ 25.6 245.8+ 76.5
Time (s) 0.124-+ 0.001 0.406+ 0.017 0.391-+ 0.004 0.384+ 0.003 0.252+ 0.009
wdbc n=569 d=30 m= 16 best kernel expert: gaussian kernel of 64

Mistake (%) | 41.70% 4.06 11.70+£ 1.01 11.66£ 0.75 12.13+ 0.85 11.16+ 0.94
SV (#) 237.3+23.1 3032.2+ 37.3 117.3+ 54.0 918.5+ 49.4 361.0+ 105.0
Time (s) 0.2144 0.007 0.597+ 0.013 0.588+ 0.014 0.5134+ 0.003 0.286+ 0.009
breast n=683 d=9 m=16 best kernel expert: gaussian kernel ef 8

Mistake (%) | 44.33% 3.88 486+ 0.51 5.43+0.46 424+ 0.45 436+ 0.56
SV (#) 303.4+ 26.4 1606.6+ 49.9 89.5+ 59.7 545.9+ 28.5 220.6+ 74.3
Time (s) 0.276+ 0.015 0.641+ 0.017 0.634+ 0.017 0.602+ 0.007 0.350+ 0.013
australian n= 690 d=14 m= 16 best kernel expert: gaussian kernel of 2

Mistake (%) | 39.62+ 2.88 37.67£1.20 38.13+ 1.50 39.64+ 1.46 38.60+ 1.38
SV (#) 273.4+ 19.9 4743.84+ 70.0 522.44+272.1 3020.4+ 82.2 1911.0+ 418.9
Time (s) 0.266-+ 0.006 0.779+ 0.017 0.766-+ 0.017 0.731+ 0.006 0.538+ 0.013
diabetes n=768 d=8 m= 16 best kernel expert: gaussian kernel ef 32

Mistake (%) | 45.35F% 2.18 33.69£ 1.29 34.00+ 1.41 3253+ 1.30 33.0I1£1.26
SV (#) 348.3+ 16.7 4614.6+ 63.8 407.24+ 223.7 3084.7+ 81.1 2135.2+ 410.9
Time (s) 0.321+ 0.014 0.886+ 0.021 0.878-+ 0.022 0.833+ 0.018 0.626+ 0.016
fourclass n=862 d=2 m=16 best kernel expert: gaussian kernel ef 8

Mistake (%) | 35.92+ 1.65 3.19+£0.38 3.54+£0.42 3.06£ 0.37 3.31£0.45
SV (#) 309.6+ 14.2 3131.0+ 335 97.5+ 33.1 600.7+ 22.5 117.8+ 44.3
Time (s) 0.348+ 0.005 0.862+ 0.010 0.850+ 0.004 0.7474+ 0.012 0.355+ 0.016
Splice n=1000 d=60 m=16 est kernel expert: gaussian kernel f

Mistake (%) | 30.79+ 1.23 2457+ 1.07 25.03+£0.89 26.86+ 1.27 26.55+ 1.15
SV (#) 307.9+ 12.3 5830.9+ 90.6 251.6+ 61.1 3352.7+ 90.2 1627.2+ 633.8
Time (s) 0.417+ 0.013 1.122+4 0.018 1.086+ 0.015 1.037+ 0.013 0.696+ 0.018
Dorothea n=1150 d= 100000 m= 16 best kernel expert: gaussian kernel-0f8

Mistake (%) | 10.70£ 0.72 8.92+£0.37 9.92+ 0.50 8.03£ 0.46 8.31+£0.46
SV (#) 1241+ 7.6 7855.3+ 69.9 230.3+ 127.6 1492.8+ 41.9 537.6+ 95.8
Time (s) 0.435+ 0.013 1.647+ 0.071 1.597+ 0.020 1.1304 0.015 0.662+ 0.024
svmguide3 n=1243 d=22 m=16 est kernel expert: gaussian kernel €f0.5

Mistake (%) | 22.84£ 0.50 26.00£0.78 26.55+£0.73 23.05£ 0.50 2391+ 0.95
SV (#) 812.1+ 10.3 6107.4+ 107.7 448.2+ 164.5 3900.0+ 68.3 2174.1+ 573.9
Time (s) 0.695+ 0.004 1.354+ 0.011 1.292+ 0.008 1.273+ 0.008 0.902+ 0.011
svmguidel n=3089 d=4 m=16 best kernel expert: gaussian kernel ef 32

Mistake (%) | 19.32£ 0.61 531+£0.29 5.60+£0.31 478+ 0.25 490+ 0.30
SV (#) 596.7+ 18.9 7089.4+ 70.3 253.7+222.1 2286.6+ 104.6 970.4+ 239.5
Time (s) 2.116+ 0.193 3.215+ 0.030 3.038-+ 0.021 2.770+ 0.030 1.4934+ 0.040
a3a n= 3185 d=123 m=16 best kernel expert: polynomial kernel ef 3

Mistake (%) | 20.23£ 0.39 21.97+£0.52 2257+ 052 20.19+ 0.42 20.49+ 0.50
SV (#) 861.9+ 15.8 16233.6+ 120.3 | 1044.44+541.5 | 8361.4+ 143.7 4758.74+ 919.3
Time (s) 2.704+ 0.316 4.355+ 0.042 4.211+ 0.050 3.590+ 0.021 2.360+ 0.031
spambase n=4601 d=57 m=16 best kernel expert: gaussian kernel ef 4

Mistake (%) | 58.16F 1.50 2436+ 0.45 2472+ 0.46 2434+ 0.40 2413+ 0.49
SV (#) 2676.1+ 69.0 27390.04 180.0 | 1169.3+ 269.5 | 14316.6+ 180.6 | 6324.3+ 2070.9
Time (s) 5.1844 0.239 9.653+ 0.141 9.445+ 0.097 6.341+ 0.072 3.832+ 0.063
mushrooms | n=8124 d=112 m=16 best kernel expert: gaussian kernel-6f0.25

Mistake (%) 0.37£0.04 0.32£0.04 0.37£0.03 0.29£ 0.05 0.35£0.04
SV (#) 47.1+ 2.8 9874.7+ 74.1 113.04+ 37.4 694.5+ 16.1 128.9+ 40.2
Time (s) 8.691+ 0.070 9.275+ 0.124 9.031+ 0.099 6.669+ 0.048 2.724+ 0.129
wbha n= 9888 d= 300 m=16 best kernel expert: gaussian kernel-of2

Mistake (%) 2.88+£0.10 3.19+£ 0.10 3.78£ 0.10 254+ 0.07 271+ 0.10
SV (#) 2007.6+ 58.6 | 28705.44+ 143.4 | 424.8+ 160.6 4403.0+ 127.3 1568.7+ 653.9
Time (s) 17.548+ 2.325 25.191+ 0.268 24.843+ 0.253 9.449+ 0.079 4.727+ 0.085
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g. 2: Comparison of average sizes of support vectors dguhie online learning processes

First, the results in Figure 1 validate the fact that the ntbesexamples received in the
online learning process, the better the performance aetiby the proposed OMKC algo-
rithms. In particular, at the beginning of an online leagniask, the Perceptron(*) algorithm
with the best kernel is able to produce a smaller mistakethete all of the OMKC algo-
rithms; when more training examples are received, we fohatthe predictive performance
of the OMKC algorithms can be improved more rapidly than teecBptron(*) algorithm.

Second, the results in Figure 2 again verified that the OMKg; algorithm produces
the most complex classifier among all the OMKC algorithmsile®@MKC , gy produces
the simplest classifier, which is even more sparse than OpK{when more training ex-
amples are received in the online learning process. Thissedittle bit surprising, but it is
not difficult to interpret this result. The reason is becaO8&KC p, ) using the determin-
istic updating strategy always increases the weights dfelgmod kernels and meanwhile
decreases the weights of those poor kernels. As a result agmying the stochastic combi-
nation strategy, only the very small set of good kernelslvélselected for the final classifier
combination (most other poor kernels will be discarded dukeir small sampling weights).

Third, it seems to be a little bit surprising to observe thMKL s ) sometimes can
perform even better than the deterministic OMiKGy) algorithm; and similarly OMKGs )
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usually performs better than OMKE . However, this is possible and reasonable. We be-
lieve that it is likely to be caused by the fact that althouglKi , ) is good at tracking
the best kernel, itis not always guaranteed to achieve thigleformance primarily because
OMKC p py may rely too much on the best kernel classifier which itsel mat always
outperform a combination of multiple kernels; in contr&¥KC s ) is able to exploit all
the kernel classifiers more effectively by the stochastitatipg strategy, and thus achieves
a good tradeoff between tracking the best kernel classifidrcambining multiple kernel

classifiers.

To further verify the above argument, Figure 3 shows theutiai results of the nor-
malized weights in tracking the best kernel classifier bfed#nt OMKC algorithms. These
weights indicate how confident the algorithm trusts on tret kernel in the online learning
process. From the results, it is clear to verify that OMKG)) and OMKCy, ) using the
deterministic updating strategy are significantly bettemt OMKCs py and OMKCg g)
for tracking the best kernel. These results are consistenut previous analysis on the
relationships between several different OMKC algorithms.
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OMKC algorithms
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5.5 Evaluation of Computational Time Cost

In addition to learning accuracy, time efficiency is anotheportant concern for online
learning. In our experiments, we also examine the time efiiy by comparing different
OMKC algorithms. In particular, we are interested in examgnhow the stochastic algo-
rithms can reduce the computational time cost of the detestic OMKCp, ) algorithm.
In our implementation, all the kernels are pre-computedsiaced in memory, which is to
facilitate the evaluation purpose. We report the average @mning times obtained from
the 20 runs that differ in the random draw of the sequential trajréramples.

Table 5: Evaluation of time efficiency by several differetIRC algorithms. The last three
columns show the time cost ratio between each of the othee ttiMKC algorithms over
the OMKC(D,D) algorithm.

Time (seconds) | OMKC algorithms Time Ratio
Dataset | Size || (D,D) | (D,S) | (S,D) | (S,S) | ;gg)) | gg;g)) | (<]§:f)>)
sonar 208 0.214 | 0.211 | 0.202 | 0.146 || 98.6% | 94.5% | 68.3 %
ionosphere | 351 0.384 | 0.342 | 0.326 | 0.218 || 89.1% | 85.0% | 56.8%
votes84 435 0.406 | 0.391 | 0.384 | 0.252 || 96.3% | 94.7% | 62.1%
wdbc 569 0.597 | 0.588 | 0.513 | 0.286 || 98.5% | 86.0% | 47.9%
breast 683 0.641 | 0.634 | 0.602 | 0.350 || 98.9% | 93.9% | 54.5%

australian 690 0.779 | 0.766 | 0.731 | 0.538 || 98.4% | 93.9% | 69.1 %
diabetes 768 0.886 | 0.878 | 0.833 | 0.626 || 99.0% | 94.0% | 70.6 %
fourclass 862 0.862 | 0.850 | 0.747 | 0.355 || 98.6% | 86.6% | 41.2%
splice 1000 1.122 1.086 | 1.037 | 0.696 || 96.8% | 92.4% | 62.1 %
dorothea 1150 1.647 1.597 | 1.130 | 0.662 || 97.0% | 68.6% | 40.2%
svmguide3 | 1243 1.354 | 1.292 | 1.273 | 0.902 || 95.4% | 94.0% | 66.6 %
svmguidel | 3089 3.215 | 3.038 | 2.770 | 1.493 || 945% | 86.1% | 46.4%
a3a 3185 4.355 | 4.211 | 3590 | 2.360 || 96.7% | 82.4% | 54.2%
spambase | 4601 9.653 | 9.445 | 6.341 | 3.832 || 97.8% | 65.7% | 39.7%
mushrooms| 8124 9.275 | 9.031 | 6.669 | 2.724 || 97.4% | 71.9% | 29.4%
wba 9888 || 25.191 | 24.843 | 9.449 | 4.727 || 98.6% | 37.5% | 18.8%

First of all, from the experimental results in Table 3 andl&ah we observe that among
all OMKC algorithms, OMKGg g using the stochastic updating and combination approach
is the most efficient algorithm; the two deterministic updigtlgorithms, OMKGp, ,) and
OMKC p g, are the least efficient algorithms; while the OMKGy) algorithm is slower
than OMKGg ), but faster than OMKG, p).

To further examine the results comprehensively, Tabfarther shows the details of
quantitative evaluations of time cost and average speethipwed by stochastic algorithms
over OMKCp p) across various datasets. We have several observationstfieonesults.
First, similar to the previous results, we found that the tlaerministic updating algo-
rithms, OMKC(D_’D) and OMKQDVS), have similar time efficiency, in which OMK((}SVS) is
slightly more efficient than OMKG, ) because OMK(@; ) only selectively combines a
subset of kernel classifiers during the online predicti@tdhd, comparing the two updating
approaches for OMKC, the results again verified that algor# using the stochastic updat-
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ing are considerably more efficient than the determinigbidating algorithms. Specifically,
compared with the OMK(, ) algorithm, OMKCg g) usually saves abow0% ~ 80%
time cost, while OMKGg ) saves aboui% ~ 60% time cost.

In addition, we observe that the larger the dataset sizentre time cost typically can
be saved by the two stochastic updating algorithms. For plgran dataset w5a with 9888
examples, OMKQ:S_’S) saves oveR% time cost, while OMKQSVD) saves ovep0% time
cost. Finally, we note that the specific ratio of time cosestlyy OMKCg g) or OMKCg p)
is also dependent on the number of kernels. Nonethelesgbervations show that the
stochastic algorithms are important and scalable for tamgde online learning tasks.

5.6 Effect of Discount Weight Parameter

One important parameter in the proposed OMKC algorithmbeasdiscount weight param-
eter 3. For all the previous experiments, we simply fix paramgtéo 0.8 in all situations.
Although we have given the choice gfin the analysis of mistake bound, those values tend
to be highly overestimated due to the approximatiorﬁ‘:;f:1 2! asT. In this section, we
aim to empirically examine the effect of the discount weightameter. Figure 4 shows the
performance of proposed OMKC algorithms on several rangarhbsen datasets with
varied from0.05 to 1.0.
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According to Figure 4, we observe that different valueg3ado affect the prediction
performance of the OMKC algorithms for most datasets. Feurtle also observe that there
is no a single best value gfthat is universally optimal for every dataset. Finally, weerfid
that for both OMKGp, p) and OMKGg ) algorithms, the best often falls in the range
between 0.7 and 0.9. We believe that this is because \itiemoo small (e.g. smaller than
0.5), it penalizes too much on the misclassified kernel flassat the very beginning of the
learning process, leading to a poor performance in findiegtitimal combination weights.
We note that this is in general consistent with our analyisisesthe optimal choice of is
VT/IVT + v/Inm), which is a large value whefi is large.

6 Discussions and Future Directions

Despite the encouraging results achieved, the current O@ions can be improved in
many aspects since it is a new open research problem. Belodiseess several possible
directions for future research investigation.

First of all, the approach to learning each individual kédresed classifier can be im-
proved. The current approach used in our OMKC algorithmsiadaption of the regular
kernelPerceptroralgorithmRosenblat{1958); Freund and Schapif@999. It is possible to
improve the learning performance and scalability by engggiore advanced online learn-
ing algorithms Crammer et al. 20Q8Jrabona et al. 200&hao et al. 201

Second, the approach to combining the kernel-based ckssitir prediction can be
improved. Instead of using the Hedge algorithm, we might@epother more general ap-
proaches that perform the online prediction with experi@el; such as the general “Follow
the Perturbed Leader” approach&slai and Vempala 20Q5Hutter and Poland 2005

Third, instead of assuming a finite set of given kernels, ghhbe possible to investigate
OMKC for learning with an infinite number of kernels, whichsemewhat similar to other
existing infinite kernel learning studieArgyriou et al. 2006 Chen and Ye 2008

Fourth, the current algorithms are designed for onlinesifigstion tasks. It is also possi-
ble to investigate online to batch conversion algorithnighie batch classification extension
by following similar studies in literaturdDekel and Singer 200®ekel 2008.

Fifth, to further speedup our techniques for very largeeseglplications, it is possible
and not difficult to parallelize our method by exploring egieg parallel computing tech-
nologies, such as multi-processor and multi-core prograngitechniques.

Finally, it is possible to extend the proposed OMKC framewfor various real ap-
plications. For example, the current approach assumeseoldarning with two-class data
examples. Future work is necessary to handle multi-classileg applications.

7 Conclusions

This paper investigated a new problem, “Online Multiple ierClassification” (OMKC),

which aims to attack an online learning task by learning adebased prediction function
from a pool of predefined kernels. To solve this challengeprogose a novel framework
by combining two types of online learning algorithms, ithe Perceptron algorithm that
learns a classifier for a given kernel, and the Hedge alguoritiat combines multiple kernel
classifiers by linear weighting. The key to an OMKC task is @per selection strategy to
choose a set of kernels from the pool of predefined kernelsrflime classifier updates and
classifier combination towards prediction. To addresskiysissue, we present two kinds of
selection strategies: (i) deterministic approach thapsirohooses all of the kernels, and (ii)
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stochastic approach that randomly samples a subset oflkexoeording to their weights.
Specifically, we proposed four variants of OMKC algorithnysaulopting different online

updating and combination strategies (i.e., determingstatochastic). It is interesting to find
that each of these four OMKC algorithms enjoys differentitador different scenarios.

To examine the empirical performance of the proposed OMKgorihms, we con-
ducted extensive experiments on a testbed with 15 diveeelatasets. The promising re-
sults reveal three major findings: (1) all the OMKC algorithalways perform better than
a regular Perceptron algorithm with an unbiased linear é¢oation of multiple kernels,
mostly perform better than the Perceptron algorithm with lilest kernel found by valida-
tion, and often perform better or at least comparably thamate ®f-the-art online MKL al-
gorithm; (2) for the two different updating strategies, sih@chastic updating strategy is able
to significantly improve the efficiency by maintaining atseaomparable performance as
compared with the deterministic approach; (3) for the twitetent combination strategies,
the deterministic combination strategy usually perforrattds results, while the stochastic
combination strategy is able to produce a significantly nspase classifier.
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Appendix A: Proof of Theorem 1

Proof The proof essentially combines the results of the Percegtlgorithm Rosenblatt
1958 and the Hedge algorithn-eund and Schapire 1997

We attempt to bounth(Wr 1 /W7) from both the above and the below. To achieve this
goal, we first derive the upper boundlefWw,,/W;) as follows:

In lef—:l —In (Zl w&ﬁt)/f%(”) Zqz )zt
By adding the inequalities of all trials, we have
In (@) =AY S s
Wl t=11i=1
On the other hand, we have(W, /W) lower bounded as follows

T
Wi wi(T+1)
n|—— ) >In——= n(1 —1
n( W )* R (1/8) ;zl o

1

Sincef}, (z) = f}(:c) + 2 (t)yeri (21, ), for any f € Hy,, we have

\fior = B, = (ff = £ 0 = P, + 28O i@ ), mi(@e N, + 220Oye(kile, ), = P,

= i = B, + 200 kiwe o) = 22(8)ye (f (2) = fi ()
< UfE = e, +2(8) + 2200 (2e), y0)) + 22:(0) (—1 + e fi (ar))
< UfE = e, +200f (@e), pe)) — 2i(0)

)x
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In the last step, we usg(t)y: f{ (z:) < 0. We thus have
zi(t) < —|fiyr — o, + 1 = Fle., +20(f (o), ve)
As a result, we have the following inequality hold for afy H.,
W T
In (%) > ~In(1/8) <|f|3% +2Zé<f<wt>,yt>) o
t=1
By putting the lower and the upper bounds fefW, ., /W) together, we have

L& In(1/8) . d Inm
.Y walt) < T2 gy min |f|%~i+2;e<f<mt>7yt> +1-3

T m T m
oI <Z ai(t)zi(t) = 05) <23 ) i)z,
t=1 =1 t=11i=1
we have the result in the theorem. Finally, to suggest thesvialr parametes, by assuming
Zthl zi(t) <T and% < 1/B, we can derive the solution for parameteas follows:

— VT - i i
B = T which leads to the final result as stated in the theorem.
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