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Abstract Although bothonline learningandkernel learninghave been studied extensively
in machine learning, there is limited effort in addressing the intersecting research problems
of these two important topics. As an attempt to fill the gap, weaddress a new research prob-
lem, termedOnline Multiple Kernel Classification (OMKC), which learns a kernel-based
prediction function by selecting a subset of predefined kernel functions in an online learning
fashion. OMKC is in general more challenging than typical online learning because both the
kernel classifiers and the subset of selected kernels are unknown, and more importantly the
solutions to the kernel classifiers and their combination weights are correlated. The proposed
algorithms are based on the fusion of two online learning algorithms, i.e., thePerceptronal-
gorithm that learns a classifier for a given kernel, and theHedgealgorithm that combines
classifiers by linear weights. We develop stochastic selection strategies that randomly select
a subset of kernels for combination and model updating, thusimproving the learning effi-
ciency. Our empirical study with15 data sets shows promising performance of the proposed
algorithms for OMKC in both learning efficiency and prediction accuracy.

Keywords Online Learning· Kernel Methods· Multiple Kernels· Perceptron· Hedge·
Classification

1 Introduction

In machine learning, online learning and kernel learning are two active research topics,
which have been studied separately for years. Online learning is designed to sequentially
learn a prediction model based on the feedback of answers to previous questions and pos-
sibly additional side information (Shalev-Shwartz 2007). It distinguishes from typical su-
pervised learning algorithms that are designed to learn a classification model from a collec-
tion of given training examples. Kernel learning aims to learn an effective kernel function
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for a given learning task from training data (Lanckriet et al. 2004; Sonnenburg et al. 2006;
Hoi et al. 2007). An example of kernel learning is Multiple Kernel Learning(MKL) ( Bach et al.
2004; Sonnenburg et al. 2006), which finds the optimal combination of multiple kernels to
optimize the performance of kernel based learning methods.

Among various existing algorithms proposed for online learning (Freund and Schapire
1999; Crammer et al. 2006), several studies are devoted to examining kernel techniques
in online learning settings (Freund and Schapire 1999; Crammer et al. 2006; Kivinen et al.
2001; Jyrki Kivinen and Williamson. 2004). However, most of the existing kernel based on-
line learning algorithms assume that the kernel function isgiven a priori, significantly lim-
iting their applications to real-world problems. As an attempt to overcome this limitation,
we introduce a new research problem,Online Multiple Kernel Classification (OMKC),
which aims to learn multiple kernel classifiers and their linear combination simultaneously.
The main challenge arising from OMKC is that both the optimalkernel classifiers and their
linear combinations need to beonline learned simultaneously. More importantly, the solu-
tions to kernel classifiers and their linear combinations are strongly correlated, making it a
significantly more challenging problem than a typical online learning problem.

To this end, we propose a novel OMKC framework for online learning with multi-
ple kernels, which fuses two kinds of online learning techniques: thePerceptronalgo-
rithm (Rosenblatt 1958) that learns a classifier for a given kernel, and theHedgealgo-
rithm (Freund and Schapire 1997) that linearly combines multiple classifiers. We further
develop kernel selection strategies that randomly choose asubset of kernels for model up-
dating and combination, thus improving the learning efficiency significantly. We analyze the
mistake bounds for the proposed OMKC algorithms. Our empirical studies with15 datasets
show promising performance of the proposed OMKC algorithmscompared to the state-of-
the-art algorithms for online kernel learning.

The rest of this paper is organized as follows. Section2 reviews the related work in on-
line learning and kernel learning. Section3 defines the problem of online learning over mul-
tiple kernels and presents two different types of algorithms. Section5 presents our empirical
studies that extensively evaluates the performance of the proposed OMKC algorithms. Sec-
tion 6 discusses some open issues and future directions. Section7 concludes this paper.

2 Related Work

This section briefly reviews some major related work of online learning and kernel learning.

2.1 Online Learning

Recent years have witnessed a variety of online learning algorithms proposed and studied
in different contexts and applications (Crammer et al. 2006; Yang, Xu, King and Lyu 2010).
For more references, please kindly refer to the overview of online learning inShalev-Shwartz
(2007); Cesa-Bianchi and Lugosi(2006) and references therein.

A large number of recent studies in online learning are basedon the framework of
maximum margin learning. Most of these algorithms either extended or enhanced the well-
knownPerceptronalgorithm (Agmon 1954; Rosenblatt 1958; Novikoff 1962), a pioneering
online learning algorithm for linear prediction models. Exemplar algorithms in this cate-
gory include the Relaxed Online Maximum Margin Algorithm (ROMMA) (Li and Long
2002), the Approximate Maximal Margin Classification Algorithm(ALMA) ( Gentile 2001),
the Margin Infused Relaxed Algorithm (MIRA) (Crammer and Singer 2003), the NORMA
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algorithm (Kivinen et al. 2001; Jyrki Kivinen and Williamson. 2004), the online Passive-
Aggressive (PA) algorithms (Crammer et al. 2006), and the Double Updating Online Learn-
ing (DUOL) (Zhao et al. 2011), and the recent family of confidence-weighted learning algo-
rithms (Dredze and Crammer 2008; Wang et al. 2012). Among them, several studies intro-
duce kernel functions into online learning to achieve nonlinear classification (Kivinen et al.
2001; Freund and Schapire 1999; Crammer et al. 2006; Zhao et al. 2011). Similar to these
studies, our OMKC framework is also a kernel based approach for online learning.

Moreover, some online learning studies mainly concern the budget issue, i.e., online
learning with budget (Crammer et al. 2003; Cavallanti et al. 2007), which has received much
interest recently. It differs from typical online learningmethods in that the number of support
vectors is bounded in training the classification models. Example algorithms include the first
kind of approach to overcoming the unlimited growth of the support set (Crammer et al.
2003), the shifting Perceptron (Cavallanti et al. 2007), the Forgetron (Dekel et al. 2008),
the Projectron (Orabona et al. 2008), and the very recent bounded online gradient descent
algorithms (Zhao et al. 2012), etc.

In addition to the above online learning studies, our work isalso related to online
prediction with expert advice (Freund and Schapire 1997; Littlestone and Warmuth 1989,
1994; Vovk 1998). The most well-known and successful work is probably the Hedge algo-
rithm (Freund and Schapire 1997), which was a direct generalization of Littlestone and War-
muth’s Weighted Majority (WM) algorithm (Littlestone and Warmuth 1989, 1994). Other
recent studies include the improved theoretical bounds (Cesa-Bianchi et al. 2007) and the
parameter-free hedging algorithm (Chaudhuri et al. 2009) for decision-theoretic online learn-
ing. We refer readers to the book (Cesa-Bianchi and Lugosi 2006) for the other in-depth
discussion of this subject.

2.2 Kernel Learning

How to find an effective kernel for a given task is critical to most kernel based methods
in machine learning (Shawe-Taylor and Cristianini 2004; Cristianini et al. 2001). Most ker-
nel methods assume that a predefined parametric kernel, e.g.a polynomial kernel or an
RBF kernel, is given a priori and the parameters of these kernel functions are usually deter-
mined empirically by cross validation. Several studies proposed to learn parametric or semi-
parametric kernel functions/matrices from labeled and/orunlabeled data. Exemplar tech-
niques include cluster kernels (Chapelle et al. 2002), diffusion kernels (Kondor and Lafferty
2002), marginalized kernels (Kashima et al. 2003), idealized kernel learning (Kwok and Tsang
2003), and graph-based spectral kernel learning approaches (Zhu et al. 2004; Hoi et al. 2006;
Bousquet and Herrmann 2002).

Another form of kernel learning, known as Multiple Kernel Learning (MKL) (Lanckriet et al.
2004), aims to find the optimal combination of multiple kernels for a classification task.
Exemplar algorithms include the convex optimization (Lanckriet et al. 2004), the semi-
infinite linear program (SILP) approach (Sonnenburg et al. 2006), the subgradient descent
approach (Rakotomamonjy et al. 2008), and the level method (Xu et al. 2008). In addition,
several recent studies (Zien and Ong 2007; Ji et al. 2008; Tang et al. 2009) addressed other
MKL problems, such as MKL on multi-class and multi-labeled data, the compositional
kernel combination method (Lee et al. 2007), multi-layer MKL (Zhuang, Tsang and Hoi
2011b), and unsupervised MKL (Zhuang, Wang, Hoi and Lan 2011). Our work differs from
the existing MKL methods in that our goal is to resolve onlineclassification tasks while
most existing MKL methods were developed to mainly tackle batch classification tasks.
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Besides learning kernels from labeled examples, several studies addressed the challenge
of learning kernel matrices from side information (e.g., pairwise constraints). Methods in
this category include nonparametric kernel learning (Hoi et al. 2007; Zhuang et al. 2009;
Chen et al. 2009; Zhuang, Tsang and Hoi 2011a), lower-rank kernel learning (Kulis et al.
2006, 2009), generalized maximum entropy models (Yang, Jin and Jain 2010), and indefi-
nite kernel learning (Chen and Ye 2008, 2009). Finally, there are some emerging studies for
online multiple kernel learning (Jie et al. 2010; Martins et al. 2011) that address some other
issues such as multi-class learning or structured prediction. We note that these studies might
have been developed in parallel or after our earlier conference paper published inJin et al.
(2010). Our work differs from them in that we focus on enhancing online classification per-
formance by choosing and combining multiple kernels, namely only a subset of kernels are
selected for updating and combining during online learningprocess. It is the kernel selection
strategies developed in this work that make the proposed learning algorithms significantly
more efficient than the existing approaches for online multiple kernel learning.

3 Proposed Framework for Online Classification with Multiple Kernels

We introduce the problem setting and regular Multiple Kernel Learning (MKL), and then
present the proposed framework of online multiple kernel classification.

3.1 Problem Setting and Multiple Kernel Learning

Consider a set of training examplesD = {(xi, yi), i = 1, . . . , n} wherexi ∈ R
d, yi ∈

{−1,+1}, i = 1, . . . , n, and a collection ofm kernel functionsK = {κi : X × X → R, i =

1, . . . ,m}. The goal of multiple kernel learning is to learn a kernel-based prediction function
by identifying the optimal combination of them kernels, denoted byθ = (θ1, . . . , θm) to
minimize the margin-based classification error. It is cast into the optimization below:

min
θ∈∆

min
f∈HK(θ)

1

2
|f |2HK(θ)

+C

n
∑

i=1

ℓ(f(xi), yi) (1)

where

∆ = {θ ∈ R
m
+ |θ⊤1m = 1}, K(θ)(·, ·) =

m
∑

i=1

θiκi(·, ·), ℓ(f(xi), yi) = max(0, 1− yif(xi))

In the above formulation, we use notation1m to represent a vector ofm dimensions with all
its elements being1. It can also be cast into the following mini-max optimization problem:

min
θ∈∆

max
α∈Ξ

{

α⊤
1n − 1

2
(α ◦ y)⊤

(

m
∑

i=1

θiK
i

)

(α ◦ y)
}

(2)

whereKi ∈ R
n×n with Ki

j,l = κi(xj , xl),Ξ = {α|α ∈ [0, C]n}, and◦ defines the element-
wise product between two vectors. We refer to the above formulation as a regular batch MKL
problem. Despite some encouraging results achieved recently (Rakotomamonjy et al. 2008;
Xu et al. 2008), developing an efficient and scalable MKL algorithm remains an open re-
search challenge in order to solve the challenging optimization task. Unlike the recent efforts
for online MKL studies (Jie et al. 2010; Martins et al. 2011) which are mainly concerned in
optimizing the optimal kernel combination, in this paper, we present a new framework for
online multiple kernel classification which is focused on exploring effective online combi-
nation of multiple kernel classifiers.
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3.2 The Proposed Framework of Online Multiple Kernel Classification

The proposed Online Multiple Kernel Classification (OMKC) framework is based on the
fusion of two online learning methods: the Perceptron algorithm (Rosenblatt 1958) and the
Hedge algorithm (Freund and Schapire 1997). In particular, for each kernel, the Perceptron
algorithm is employed to learn a kernel-based classifier with some selected kernel, and the
Hedge algorithm is used to update their combination weights. Algorithm 1 shows the de-
tailed steps of the proposed framework.

Algorithm 1 Deterministic Algorithm for OMKC (OMKC (D,D))

1: INPUT:
– Kernels:ki(·, ·) : X × X → R, i = 1, . . . ,m
– Weightswi(1) = 1, i = 1, . . . ,m
– Discount weightβ ∈ (0, 1).

2: Initialization : f1 = 0,w1 = 1,θ1 = 1
m
1

3: for t = 1, 2, . . . do
4: Receive an instance:xt

5: Predictŷt = sign
(

∑m
i=1 θisign

(

f t
i (xt)

)

)

6: Receive the class label:yt
7: for i = 1, 2, . . . ,m do
8: Setzti = I(ytf t

i (xt) ≤ 0)

9: Updatewt+1
i

= wi(t)βzti

10: Updatef t+1
i (x) = f t

i (x) + ztiytκi(xt, x)
11: end for
12: θt+1

i =
wt

i

Wt
, i = 1, . . . ,m, whereWt =

∑m
i=1 w

t
i

13: end for

In this framework, we usewi(t) to denote the combination weight for thei-th kernel
classifier at roundt, which is set to1 at the initial round. For each learning round, we update
the weightwi(t) by following the Hedge algorithm as follows:

wi
t+1 = wi

tβ
zi
t

whereβ ∈ (0, 1) is a discount weight parameter, which is employed to penalize the kernel
classifier that performs incorrect prediction at each learning step, andzi(t) indicates if the
i-th kernel classifier makes a mistake on the prediction of theexamplext.

Next we derive a theorem to show the mistake bound for Algorithm 1. Throughout this
paper, we assumeκ(x, x) ≤ 1 for anyx. For the convenience of following discussions, we
define the following notations:

Wt =

m
∑

i=1

wt
i , θ

t
i =

wt
i

Wt
, zti = I

(

ytf
t
i (xt) ≤ 0

)

, ŷt = sign
(

m
∑

i=1

θtisign
(

f ti (xt)
)

)

wheref ti (x) is used to represent the classifier at trialt that is constructed by using the
kernel functionκi(·, ·), andI(x) is an indicator function that outputs1 whenx is true and
0 otherwise. Here,θti essentially defines the mixture of kernel classifiers, andzti indicates
if training example(xt, yt) is misclassified by theith kernel classifier at trialt. Finally,
we define the optimal margin classification error for the kernel κi(·, ·) with respect to a
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collection of training examplesL = {(xt, yt), t = 1, . . . , T} as

F (κi, ℓ,L) = min
f∈Hκi

(

|f |2Hκi
+ 2

T
∑

t=1

ℓ(yt, f(xt))

)

(3)

Theorem 1 After receiving a sequence ofT training examples, denoted byL = {(xt, yt), t =
1, . . . , T}, the number of mistakesM made by running Algorithm1, denoted by

M =

T
∑

t=1

I(ytŷt ≤ 0) =

T
∑

t=1

I

(

m
∑

i=1

θtiz
t
i ≥ 0.5

)

is bounded as follows

M ≤ 2 ln(1/β)

1− β
min

1≤i≤m

T
∑

t=1

zti +
2 lnm

1− β
(4)

≤ 2 ln(1/β)

1− β
min

1≤i≤m
F (κi, ℓ,L) +

2 lnm

1− β
(5)

By choosingβ =
√
T√

T+
√
lnm

, we have

M ≤ 2

(

(

1 +

√

lnm

T

)

min
1≤i≤m

F (κi, ℓ,L) + lnm+
√
T lnm

)

The proof of this theorem essentially combines the proof of the Perceptron algorithm and
the Hedge algorithm. The details can be found in the Appendix. We note that the mistake
bound in above theorem can be improved if we further tune the stepsize or the classification
marginγ. However, since the focus of this study is online multiple kernel classification, we
simply fix these two parameters to be1. The above theorem also provides suggestion for
the parameterβ. It is important to note that the value forβ suggested in the bound could
be highly overestimated due to the rough approximation of

∑T
t=1 z

t
i asT . We will examine

empirically howβ affects the prediction accuracy of the proposed algorithm.
The main shortcoming of Algorithm1 is its high computational cost. First, at step 5,

to make a prediction̂yt, Algorithm 1 requires combining predictions from all the kernel
classifiers. Second, between step 7 and 11, Algorithm1 requires updating all the kernel
classifiers. When the number of kernels is large, both are computationally expensive. In the
subsequential sections, we will study kernel selection strategies that reduce the computa-
tional cost of Algorithm1 by selecting only a subset of kernels for prediction and updating.
To distinguish from those approaches, we refer to Algorithm1 as a deterministic approach
or “OMKC(D,D)” for short, because all the kernels are used for prediction and updating.

4 Online Multiple Kernel Classification (OMKC) Algorithms

4.1 OMKC by Stochastic Combination

Our first effort is to improve the computational efficiency ofAlgorithm 1 by selecting
a subset of kernels for prediction. Algorithm2 shows the key steps. It introduces the prob-
ability qi(t), i = 1, . . . ,m to denote the probability of sampling thei-th kernel at thet-th
iteration, which is computed as follows:

qi(t) = wi(t)/[ max
1≤j≤m

wj(t)] (6)
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Algorithm 2 Stochastic Combination Algorithm for OMKC (OMKC (D,S))

1: INPUT:
– Kernel functions:ki(·, ·) : X × X → R, i = 1, . . . ,m
– Weightswi(1) = 1, i = 1, . . . ,m
– Discount weightβ ∈ (0, 1).
– Smoothing parameterδ ∈ (0, 1)

2: for t = 1, 2, . . . do
3: Computeqi(t) = wi(t)/[max1≤j≤m wj(t)], i = 1, . . . , m
4: for i = 1, 2, . . . ,m do
5: Samplemi(t) = Bernoulli Sampling(qi(t))
6: end for
7: Receive an instance:xt

8: Predict:ŷ(t) = sign
(

∑m
i=1 mi(t)sign

(

f i
t (xt)

)

)

9: Receive the class label of the instance:yt
10: for i = 1, 2, . . . , m do
11: Setzi(t) = 1 if ytf i

t (xt) ≤ 0 and zero otherwise
12: Updatewi(t + 1) = wi(t)βzi(t)

13: Updatef i
t+1(x) = f i

t (x) + zi(t)ytκi(xt, x)
14: end for
15: end for

Only the sampled kernel classifiers will be combined to make the prediction. We refer to this
stochastic selection approach asstochastic combination, and Algorithm2 asOMKC (D,S).
We have the following theorem for the mistake bound of Algorithm 2.

Theorem 2 After receiving a sequence ofT training examples, denoted byL = {(xt, yt), t =
1, . . . , T}, the number of mistakesM made by running Algorithm2 is bounded as follows if

β =
√
T√

T+
√
lnm

E[M ] ≤ 2

(

(

1 +

√

lnm

T

)

min
1≤i≤m

F (κi, ℓ,L) + lnm+
√
T lnm

)

The proof of Theorem 2 is identical to that of Theorem 1. Compared to Algorithm1, we
see that the mistake bound in expectation for Algorithm2 remains unchanged, implying
that the stochastic selection approach employed in Algorithm 2 does not affect the overall
performance significantly.

4.2 OMKC by Stochastic Updating

Our second approach is to improve the learning efficiency of Algorithm1 by sampling a
subset of kernel classifiers, based on the weights assigned to kernel classifiers, for updating.
Specifically, we introduce the sampling probabilitypi(t) which is computed by smoothing
qi(t) (defined in (6)) with a uniform distributionδ/m, i.e.,

pi(t) = (1− δ)qi(t) + δ/m, i = 1, . . . ,m

The smoothing parameterδ is introduced to guarantee that each kernel classifier will be
selected with at least probabilityδ/m, avoiding that the sampling probabilitypi(t) is con-
centrated on a few kernels. The similar idea was also used in the study of the multi-arm
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Algorithm 3 Stochastic-Update Algorithm for OMKC (OMKC (S,D))

1: INPUT:
– Kernel functions:ki(·, ·) : X × X → R, i = 1, . . . ,m
– Weightswi(1) = 1, i = 1, . . . ,m
– Discount weightβ ∈ (0, 1).

2: for t = 1, 2, . . . do
3: Computeqi(t) = wi(t)/[max1≤j≤m wj(t)], i = 1, . . . , m
4: Receive an instance:xt

5: Predict:ŷ(t) = sign
(

∑m
i=1 qi(t)sign

(

f i
t (xt)

)

)

6: Receive the class label of the instance:yt
7: Computepi(t) = (1 − δ)qi(t) + δ/m, i = 1, . . . , m
8: for i = 1, 2, . . . ,m do
9: Samplemi(t) = Bernoulli Sampling(pi(t))

10: Setzi(t) = 1 if ytf i
t (xt) ≤ 0 and zero otherwise

11: Updatewi(t + 1) = wi(t)βzi(t)mi(t)

12: Updatef i
t+1(x) = f i

t (x) +mi(t)zi(t)ytκi(xt, x)
13: end for
14: end for

bandit problem (Auer et al. 2003) to ensure the tradeoff between exploration and exploita-
tion. Based on probabilitiespi(t), we sample a subset of kernels by Bernoulli samplings
which are independently conducted in each trial, one for each kernel classifier, i.e.,

mi(t) = Bernoulli Sampling(pi(t)), i = 1, . . . ,m

wheremi(t) ∈ {0, 1} denotes the sampling result. Thei-th kernel is selected if and only if
mi(t) = 1. Algorithm 3 shows the detailed steps. We refer to this kernel selection strategy as
stochastic updatingapproach, and Algorithm3 asOMKC (S,D). The theorem below shows
the mistake bound of Algorithm3.

Theorem 3 After receiving a sequence ofT training examples, denoted byL = {(xt, yt), t =
1, . . . , T}, the expected number of mistakes made by Algorithm3, denoted by

M = E

[

T
∑

t=1

I

(

m
∑

i=1

qi(t)zi(t) ≥ 0.5

)]

,

is bounded as follows

M ≤ 2m ln(1/β)

δ(1− β)
min

1≤i≤m
F (κi, ℓ,L) +

2m lnm

δ(1− β)

By choosingβ =
√
T√

T+
√
lnm

, we have

M ≤ 2m

δ

(

(

1 +

√

lnm

T

)

min
1≤i≤m

F (κi, ℓ,L) + lnm+
√
T lnm

)

Proof Similar to the proof for Theorems 1, we first give the lower bound and upper bound
for ln (WT+1/W1) by

− ln(1/β)

T
∑

t=1

mi(t)zi(t)− lnm ≤ ln

(

WT+1

W1

)

≤ −(1− β)

T
∑

t=1

m
∑

i=1

qi(t)mi(t)zi(t),
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which leads to the following inequality

(1− β)

T
∑

t=1

m
∑

i=1

qi(t)mi(t)zi(t) ≤ ln(1/β)

T
∑

t=1

mi(t)zi(t) + lnm

Taking expectation on both sides, we have

E

[

(1− β)

T
∑

t=1

m
∑

i=1

qi(t)mi(t)zi(t)

]

≤ E

[

ln(1/β)

T
∑

t=1

mi(t)zi(t)

]

+ lnm

Sincepi(t) ≥ δ/m, then

δ(1− β)

m
E

[

T
∑

t=1

m
∑

i=1

qi(t)zi(t)

]

≤ E

[

ln(1/β)

T
∑

t=1

mi(t)zi(t)

]

+ lnm

Using the result in Theorem 1, we have the following inequality for anyf ∈ Hκi

mi(t)zi(t) ≤ |f ti − f |2Hκi
− |f t+1

i − f |2Hki
+ 2ℓ(f(xt), yt)

Combining the above results, we have

E

(

T
∑

t=1

m
∑

i=1

qi(t)zi(t)

)

≤ m ln(1/β)

δ(1− β)
min

f∈Hκi

(

|f |2Hκi
+ 2

T
∑

t=1

ℓ(yt, f(xt))

)

+
m lnm

δ(1− β)

Following the same argument as in Theorem 1, we have the result in the theorem.

As indicated in Theorem 3, the dependence of mistake bound onm isO(m lnm). Since
Algorithm 3 only chooses one kernel classifier to be updated in each iteration, the algorithm
is essentially similar to the multi-armed bandit problem. It is therefore not surprising to have
O(m lnm) dependence for our algorithm, because the same dependence can be found in the
regret bound for multi-armed bandit problem whenm is the number of arms.

It is interesting to note that the mistake bound in Theorem 3 is inverse toδ, indicating that
a largerδ may potentially lead to a better mistake bound for the combined kernel classifier. In
the extreme case when choosingδ = 1, which is equivalent to choosing the kernel classifiers
uniformly at random for updating. However, in practice, we found the approach of choosing
kernel classifiers uniformly at random usually leads to a poor performance because it wastes
time on updating the kernel classifiers with low prediction accuracy (which could lead to
poor mistake bounds due to the training on too many poor kernels). As a cautionary note
about the inconsistency between the theoretical and empirical results, we conjecture that it
is probably because the mistake bound is not tight enough to reveal the true behavior of the
algorithm.

Besides the practical issue, another problem of choosingδ = 1 is that a largerδ usually
leads to a larger number of updates, as revealed by the following corollary, leading to a
higher computational cost.

Corollary 1 After receiving a sequence ofT training examples, denoted byL = {(xt, yt), t =
1, . . . , T}, the expected number of updates made by Algorithm3, denoted by

U = E

[

T
∑

t=1

m
∑

i=1

mi(t)zi(t)

]

,
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Algorithm 4 Stochastic Algorithm for OMKC (OMKC (S,S))

1: INPUT:
– Kernel functions:ki(·, ·) : X × X → R, i = 1, . . . ,m
– Weightswi(1) = 1, i = 1, . . . ,m
– Discount weightβ ∈ (0, 1).
– Smoothing parameterδ ∈ (0, 1)

2: for t = 1, 2, . . . do
3: Computeqi(t) = wi(t)/[max1≤j≤m wj(t)], i = 1, . . . , m
4: Computepi(t) = (1 − δ)qi(t) + δ/m, i = 1, . . . , m
5: for i = 1, 2, . . . ,m do
6: Samplemi(t) = Bernoulli Sampling(pi(t))
7: end for
8: Receive an instance:xt

9: Predict:ŷ(t) = sign
(

∑m
i=1 mi(t)qi(t)sign

(

f i
t (xt)

)

)

10: Receive the class label of the instance:yt
11: for i = 1, 2, . . . , m do
12: Setzi(t) = 1 if ytf i

t (xt) ≤ 0 and zero otherwise
13: Updatewi(t + 1) = wi(t)β

zi(t)mi(t)

14: Updatef i
t+1(x) = f i

t (x) +mi(t)zi(t)ytκi(xt, x)
15: end for
16: end for

is bounded as follows ifβ =
√
T√

T+
√
lnm

U ≤ (1− δ)m

δ

(

(

1 +

√

lnm

T

)

min
1≤i≤m

F (κi, ℓ,L) + lnm+
√
T lnm

)

+ δT

Proof According to the definitions, we have the following result:

E[

T
∑

t=1

m
∑

i=1

mi(t)zi(t)] = E[

T
∑

t=1

m
∑

i=1

pi(t)zi(t)] ≤ (1− δ)E[

T
∑

t=1

m
∑

i=1

qi(t)zi(t)] + δT

Following the same argument as in Theorem 2, we have the result in Corollary 1.

As indicated by the above corollary, a largeδ usually leads to a potentially large number of
updates. Whenδ is chosen appropriately, it could potentially improve the prediction perfor-
mance through the exploration of more kernels. However, when δ is too large, it not only
increases the number of updates, but also performs over-training on the poor kernels, leading
to high computational cost, over-complex models, and even worse prediction accuracy.

4.3 OMKC by Stochastic Updating & Stochastic Combination

Our final approach is to combine the two kernel selection strategies, i.e., stochastic com-
bination approach and stochastic updating approach. Algorithm 4 shows the details of this
approach, to which we refer asOMKC (S,S). Apparently, Algorithm4 is computationally
most efficient compared to the other approaches.
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4.4 Summary of Four OMKC Algorithms

By choosing different selection strategies for classifier updating and combination, we can
develop several variants of OMKC algorithms. Table 1 summarizes the proposed four vari-
ants of OMKC algorithms by a mixture of different updating and combination strategies.

Table 1: Summary of the variants of OMKC Algorithms. Below, Uand C denotes the se-
lection strategies forUpdateandCombination, respectively; S and D denotes theStochastic
andDeterministicapproaches, respectively.

Algorithm Name Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

OMKC(U,C) OMKC(D,D) OMKC(D,S) OMKC(S,D) OMKC(S,S)

Update strategy Deterministic Deterministic Stochastic Stochastic
Combination strategy Deterministic Stochastic Deterministic Stochastic

Among all the above four algorithms,OMKC(D,D) is the most computationally inten-
sive algorithm that updates and combines all the kernel classifiers at each iteration, while
OMKC(S,S) is the most efficient algorithm that selectively updates andcombines a subset of
kernel classifiers at each iteration. Finally,OMKC(D,S) andOMKC(S,D) are the other two
variants of OMKC algorithms in between these two extremes. To better understand their
advantages and disadvantages of these four algorithms under different situations, we will
comprehensively examine their empirical performance in our experiments.

5 Experimental Results

The goal of our empirical study is to answer the following questions: (1) Whether the pro-
posed OMKC algorithms are more effective than the regular online learning algorithms with
single kernel (e.g., Perceptron) for online classification? (2) Whether the proposed OMKC
algorithms are more effective than the state-of-the-art online MKL method in literature for
online classification? (3) How about the efficiency and efficacy of the proposed OMKC al-
gorithms using the stochastic strategy in comparison to theOMKC algorithms using the
deterministic strategy? (4) Among all the proposed OMKC algorithms, which algorithm
achieves better accuracy, efficiency, and sparsity performance? (5) How does the discount
weight parameterβ affects the performance of the proposed OMKC algorithms?

5.1 Experimental Testbed and Setup

In our experiments, we test the algorithms over a testbed of 15 diverse datasets1 obtained
from LIBSVM 2 and UCI machine learning repository3. These datasets were chosen quite
arbitrarily, with different sizes and dimensions in order to examine every aspect of the per-
formance of our algorithms. The details of these datasets are shown in Table 2.

1 All the datasets and source code in our experiments can be downloaded from:
http://www.cais.ntu.edu.sg/ ˜ chhoi/OMKC/ .

2 http://www.csie.ntu.edu.tw/ ˜ cjlin/libsvmtools/datasets/
3 http://www.ics.uci.edu/ ˜ mlearn/

http://www.cais.ntu.edu.sg/~chhoi/OMKC/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.ics.uci.edu/~mlearn/


12

Table 2: The details of 15 diverse datasets used in our experiments.

Index Dataset # Examples # Dimensions Source Comments

D1 ionosphere 351 34 UCI
D2 votes84 435 16 UCI
D3 wdbc 569 30 UCI
D4 breast 683 9 UCI a.k.a. “wisconsin”
D5 australian 690 14 UCI
D6 diabetes 768 9 UCI a.k.a. “pima-indians”
D7 fourclass 862 2 LIBSVM from (Ho and Kleinberg 1996)
D8 splice 1000 60 UCI
D9 dorothea 1150 100000 UCI KDD Cup 2001
D10 svmguide3 1243 22 LIBSVM
D11 svmguide1 3089 4 LIBSVM
D12 a3a 3185 123 LIBSVM a subset of “Adult”
D13 spambase 4601 57 UCI
D14 mushrooms 8124 112 UCI
D15 w5a 9888 300 LIBSVM a subset of (Platt 1999)

We evaluate the empirical performance of the proposed online multiple kernel learning
algorithms for online classification tasks. In particular,we predefine a pool of16 kernel
functions, including 3 polynomial kernels (i.e.,k(xi, xj) = (x⊤i xj)

p) of degree parameter
p=1, 2 and 3), and 13 gaussian kernels (i.e.,k(xi, xj) = exp(−‖xi − xj‖2/2σ2)) of kernel
width parameterσ in [2−6, 2−5, . . . , 26].

We compare the proposed four variants of OMKC algorithms with the following base-
line algorithms:

– Perceptron:the well-known Perceptron baseline algorithm with a linearkernel (Rosenblatt
1958; Freund and Schapire 1999);

– Perceptron(u): another Perceptron baseline algorithm with an unbiased/uniform com-
bination of all the kernels;

– Perceptron(*): we conduct an online validation procedure to search for the best kernel
among the pool of kernels (using the first10% training examples), and then apply the
Perceptron algorithm with the best kernel;

– OM-2: a state-of-the-art online learning algorithm for multiplekernel learning (Jie et al.
2010; Orabona et al. 2010);

For performance metrics, similar to the setups of a regular online learning task, we
adopt themistake rate, i.e., the percentage of mistakes made by the online learnerover the
total number of predictions made by the online learner. In addition, we also measure the
size of support vectors of the classifiers learned by the online learning algorithms. Finally,
we measure the average running time (including model updating and online prediction) for
learning the classifiers by the online learning algorithms.

Regarding the parameter setup, for the proposed OMKC algorithms, the parametersβ
andδ are simply fixed to0.8 and0.01, respectively. We will empirically examine the param-
eter’s impact in Section 5.6. Further, to obtain the stable average results, all online learning
experiments were conducted over20 random permutations for each dataset, and all the re-
ported results were averaged over these 20 runs, in which every experimental run was con-
ducted over a single pass of the permutated dataset. For the experimental environment, our
experiments were evaluated on a PC with 2.3G CPU and 16GB RAM by Matlab implemen-
tation.
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Table 3: Comparison of the OMKC algorithm with the OM-2 and three Perceptron based
algorithms. We conducted the student t-test on the mistake results and highlighted the best
results for each dataset. Among 15 datasets, OMKC(D,D) achieved the best on 12 datasets,
while OM-2 and Perceptron(*) achieved the best on 4 datasetsand 1 dataset, respectively.

Algorithm Perceptron Perceptron (u) Perceptron (*) OM-2 OMKC (D,D)

Ionosphere n= 351 d= 34 m= 16 best kernel expert: gaussian kernel ofσ = 1
Mistake (%) 26.82± 1.63 18.73± 1.23 22.07± 6.77 17.41± 1.20 16.07± 1.42
SV (#) 94.2± 5.7 65.8± 4.3 77.5± 23.7 128.5± 4.4 1547.5± 53.0
Time (s) 0.004± 0.000 0.003± 0.000 0.042± 0.002 0.113± 0.001 0.384± 0.024
votes84 n= 435 d= 16 m= 16 best kernel expert: polynomial kernel ofp = 1
Mistake (%) 8.17± 0.73 8.68± 0.62 9.45± 1.94 7.21± 0.68 7.38± 0.69
SV (#) 35.5± 3.2 37.8± 2.7 41.1± 8.4 56.5± 2.3 959.6± 40.2
Time (s) 0.004± 0.000 0.004± 0.000 0.045± 0.002 0.124± 0.001 0.406± 0.017
wdbc n= 569 d= 30 m= 16 best kernel expert: gaussian kernel ofσ = 64
Mistake (%) 34.51± 1.82 41.52± 3.70 12.29± 1.01 41.70± 4.06 11.70± 1.01
SV (#) 196.3± 10.3 236.3± 21.0 70.0± 5.7 237.3± 23.1 3032.2± 37.3
Time (s) 0.007± 0.000 0.008± 0.000 0.065± 0.001 0.214± 0.007 0.597± 0.013
breast n= 683 d= 9 m= 16 best kernel expert: gaussian kernel ofσ = 8
Mistake (%) 26.73± 1.19 41.90± 3.40 6.12± 0.79 44.33± 3.88 4.86± 0.51
SV (#) 182.6± 8.1 286.1± 23.2 41.8± 5.4 303.4± 26.4 1606.6± 49.9
Time (s) 0.008± 0.000 0.009± 0.001 0.068± 0.001 0.276± 0.015 0.641± 0.017
australian n= 690 d= 14 m= 16 best kernel expert: gaussian kernel ofσ = 2
Mistake (%) 39.54± 1.51 39.50± 2.70 38.04± 2.38 39.62± 2.88 37.67± 1.20
SV (#) 272.9± 10.4 272.6± 18.6 262.4± 16.4 273.4± 19.9 4743.8± 70.0
Time (s) 0.010± 0.001 0.010± 0.001 0.091± 0.003 0.266± 0.006 0.779± 0.017
diabetes n= 768 d= 8 m= 16 best kernel expert: gaussian kernel ofσ = 32
Mistake (%) 44.14± 1.86 45.18± 2.19 35.55± 2.07 45.35± 2.18 33.69± 1.29
SV (#) 339.0± 14.3 347.0± 16.8 273.0± 15.9 348.3± 16.7 4614.6± 63.8
Time (s) 0.012± 0.001 0.012± 0.001 0.099± 0.006 0.321± 0.014 0.886± 0.021
fourclass n= 862 d= 2 m= 16 best kernel expert: gaussian kernel ofσ = 8
Mistake (%) 36.29± 1.09 35.82± 1.56 3.78± 0.76 35.92± 1.65 3.19± 0.38
SV (#) 312.8± 9.4 308.8± 13.4 32.6± 6.6 309.6± 14.2 3131.0± 33.5
Time (s) 0.013± 0.001 0.012± 0.001 0.092± 0.001 0.348± 0.005 0.862± 0.010
Splice n= 1000 d= 60 m= 16 best kernel expert: gaussian kernel ofσ = 4
Mistake (%) 34.51± 1.41 30.44± 0.97 29.28± 3.84 30.79± 1.23 24.57± 1.07
SV (#) 345.1± 14.1 304.4± 9.7 292.8± 38.4 307.9± 12.3 5830.9± 90.6
Time (s) 0.015± 0.001 0.013± 0.001 0.128± 0.004 0.417± 0.013 1.122± 0.018
Dorothea n= 1150 d= 100000 m= 16 best kernel expert: gaussian kernel ofσ = 8
Mistake (%) 10.07± 0.50 10.64± 0.61 11.21± 2.93 10.70± 0.72 8.92± 0.37
SV (#) 115.8± 5.8 122.4± 7.0 128.9± 33.7 124.1± 7.6 7855.3± 69.9
Time (s) 0.031± 0.001 0.031± 0.001 0.169± 0.004 0.435± 0.013 1.647± 0.071
svmguide3 n= 1243 d= 22 m= 16 best kernel expert: gaussian kernel ofσ = 0.5
Mistake (%) 32.98± 0.62 27.73± 0.85 27.18± 2.36 22.84± 0.50 26.00± 0.78
SV (#) 410.0± 7.7 344.7± 10.5 337.9± 29.4 812.1± 10.3 6107.4± 107.7
Time (s) 0.018± 0.001 0.016± 0.000 0.163± 0.004 0.695± 0.004 1.354± 0.011
svmguide1 n= 3089 d= 4 m= 16 best kernel expert: gaussian kernel ofσ = 32
Mistake (%) 23.12± 0.34 19.12± 0.56 5.68± 0.74 19.32± 0.61 5.31± 0.29
SV (#) 714.3± 10.4 590.5± 17.4 175.3± 22.8 596.7± 18.9 7089.4± 70.3
Time (s) 0.071± 0.002 0.060± 0.002 0.331± 0.007 2.116± 0.193 3.215± 0.030
a3a n= 3185 d= 123 m= 16 best kernel expert: polynomial kernel ofp = 3
Mistake (%) 22.55± 0.51 22.09± 0.56 22.07± 0.64 20.23± 0.39 21.97± 0.52
SV (#) 718.1± 16.3 703.6± 17.9 702.8± 20.3 861.9± 15.8 16233.6± 120.3
Time (s) 0.076± 0.003 0.074± 0.002 0.502± 0.006 2.704± 0.316 4.355± 0.042
spambase n= 4601 d= 57 m= 16 best kernel expert: gaussian kernel ofσ = 4
Mistake (%) 47.37± 0.66 58.18± 1.54 26.22± 2.09 58.16± 1.50 24.36± 0.45
SV (#) 2179.7± 30.5 2677.1± 71.0 1206.6± 96.3 2676.1± 69.0 27390.0± 180.0
Time (s) 0.321± 0.006 0.385± 0.018 0.913± 0.038 5.184± 0.239 9.653± 0.141
mushrooms n= 8124 d= 112 m= 16 best kernel expert: gaussian kernel ofσ = 0.25
Mistake (%) 1.38± 0.10 0.51± 0.04 0.38± 0.02 0.37± 0.04 0.32± 0.04
SV (#) 112.2± 8.4 41.4± 3.6 30.6± 1.4 47.1± 2.8 9874.7± 74.1
Time (s) 0.074± 0.003 0.053± 0.002 0.777± 0.004 8.691± 0.070 9.275± 0.124
w5a n= 9888 d= 300 m= 16 best kernel expert: gaussian kernel ofσ = 2
Mistake (%) 12.71± 0.14 3.09± 0.09 3.27± 0.31 2.88± 0.10 3.19± 0.10
SV (#) 1257.1± 13.7 305.3± 8.5 323.1± 31.1 2007.6± 58.6 28705.4± 143.4
Time (s) 0.419± 0.009 0.137± 0.004 1.284± 0.023 17.548± 2.325 25.191± 0.268



14

5.2 Evaluation of the Deterministic OMKC Algorithm

Table 3 summarizes the average experimental results for comparing the proposed OMKC(D,D)

algorithm with three Perceptron based algorithms (i.e., Perceptron, Perceptron(u) and Per-
ceptron(*)) and the OM-2 algorithm for online MKL, on the 15 datasets. Based on the
experimental results, we performed the studentt-tests and highlighted the best results in
the table, including statistically no different results (w.r.t. the top 1 result) according to the
studentt-tests. We discuss the performance comparison as follows.

First of all, we examine the performance of the three Perceptron based algorithms. We
observe that the Perceptron algorithm using the unbiased combination of all kernels usually
outperforms the regular Perceptron using a linear kernel, except for a few datasets (e.g.,
wdbc, breast, and spambase) where Perceptron(u) is considerably worse than Perceptron
with a linear kernel. Further, among all the three Perceptron algorithms, Perceptron(*) with
the best kernel significantly outperforms other two algorithms for most cases, except for a
couple of datasets (e.g., ionosphere and votes84). This result shows that it is important to
identify the best kernel for an online learning task.

Secondly, we examine the performance of the OM-2 algorithm with comparisons to
the three Perceptron algorithms. We observe that this online MKL algorithm is often more
effective than or at least comparable to the two regular Perceptron algorithms, i.e., Percep-
tron with a linear kernel and Perceptron(u) using an unbiased combined kernel. In addi-
tion, by comparing OM-2 with Perceptron(*) that uses the best kernel, we found they are
in general quite comparable, in which Perceptron(*) tends to perform considerably better
on some datasets (such as australian, diabetes, wdbc, breast, fourclass, splice, svmguide1),
while OM-2 tends to perform better on the other datasets. This observation shows that both
identifying the best kernel and combining multiple kernelsapproaches are important and
can exhibit their advantages for different scenarios in online learning tasks.

Thirdly, among all the compared algorithms, OMKC(D,D) overall achieves the best per-
formance, which obtained the best results on 12 out of 15 datasets, significantly outper-
forming both Perceptron(*) and OM-2 algorithms which only obtained the best results on
1 and 3 out of 15 datasets, respectively. By further comparing the performance of the pro-
posed OMKC(D,D) algorithm with Perceptron(*) in detail, we found that it consistently
outperforms Perceptron(*) almost on all datasets. This shows that OMKC(D,D) is excel-
lent in tracking the best kernel classifier in the online learning task. Finally, by comparing
OMKC(D,D) with OM-2, we found that it often outperforms OM-2 for most datasets, ex-
cepts three datasets (svmguide3, a3a, w5a) where OM-2 tendsto perform better. This en-
couraging result shows that the proposed OMKC(D,D) algorithm is more effective in com-
bining multiple kernels than the state-of-the-art online MKL algorithm for online learning
tasks.

Finally, despite the considerably better predictive performance achieved by the proposed
OMKC(D,D) algorithm, we notice that it has two limitations. The first limitation is the high
computational cost for learning and prediction. This is because OMKC(D,D) adopts the de-
terministic updating strategy which has to check every kernel classifier at each iteration,
and whenever there is a mistake for each kernel classifier, OMKC(D,D) has to update the
kernel classifier. The second limitation is the high model complexity, i.e., the size of support
vectors learned by OMKC(D,D) is significantly larger than the other algorithms. For exam-
ple, on dataset “ionosphere”, the size of support vectors learned by OMKC(D,D) is almost
12 times over that by OM-2. The high learning and model complexities make OMKC(D,D)

less efficient and attractive for some applications with a large number of kernels. This also
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indicates the importance of exploring the stochastic variants of OMKC algorithms, as to be
evaluated in the next section.

5.3 Evaluation of Stochastic Strategies for OMKC Algorithms

In this section, we evaluate the performance of several variants of OMKC algorithms using
different stochastic strategies. In particular, we examine two kinds of stochastic strategies:
stochastic updating and stochastic combinations in comparison to their deterministic coun-
terparts. Table 4 shows the experimental results by comparing the deterministic OMKC(D,D)

algorithm with the other three OMKC algorithms. Similarly,we highlighted the best results
in the table after performing studentt-tests on the mistake rates. We analyze the experimen-
tal results as follows in detail.

5.3.1 Deterministic Updating v.s. Stochastic Updating

By comparing the results of different OMKC algorithms in Table 4, we have several obser-
vations for the comparisons between the deterministic and stochastic updating approaches.

First of all, by comparing OMKC(D,D) and OMKC(S,D) which adopt the same deter-
ministic classifier combination approach, we found that OMKC(S,D) using the stochastic
updating strategy is able to improve both the time efficiencyand model complexity over
OMKC(D,D). This is not difficult to understand since OMKC(S,D) selectively updates a sub-
set of kernel classifiers at each iteration, which thus runs more efficiently and produces less
number of support vectors. Moreover, by examining the mistake rate results, we found that
OMKC(S,D) is able to achieve comparable or even better mistake rate than OMKC(D,D),
which validates the efficacy of the stochastic updating strategy.

Second, by comparing another pair of OMKC algorithms OMKC(D,S) and OMKC(S,S)
which adopt the same stochastic classifier combination approach, we can draw some similar
observation. In particular, OMKC(S,S) only significantly improves the learning efficiency
over OMKC(D,S), but also achieves better or at least comparable predictiveperformance.

Third, by comparing the two OMKC algorithms with the stochastic updating strategy
with the OM-2 algorithm, we found that both OMKC(S,D) and OMKC(S,S) can always
achieve considerably better or at least comparable performance than the existing online
MKL algorithm for most datasets.

The above observations confirm that the stochastic updatingstrategy can not only effec-
tively improve the learning efficiency of OMKC, but also maintain a highly comparable or
sometimes even better predictive performance for online learning tasks.

5.3.2 Deterministic Combination v.s. Stochastic Combination

Similarly, we can also draw several observations about the comparisons between the deter-
ministic and stochastic classifier combination approaches.

First of all, by comparing OMKC(D,D) and OMKC(D,S) which adopt the same deter-
ministic updating strategy, we found that OMKC(D,S) using the stochastic classifier combi-
nation strategy is able to significantly reduce the model complexity as compared to OMKC(D,D).
For most datasets, OMKC(D,S) is able to achieve a significant reduction of over 90 per-
cent support vectors. Despite the significant gain in the model complexity, OMKC(D,S)

tends to result in slightly worse predictive performance; nonetheless, the mistake rate re-
sults achieved by OMKC(D,S) remain quite competitive as compared to those by OM-2.
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Second, by comparing OMKC(S,D) and OMKC(S,S) which adopt the same stochastic
updating strategy, we found that OMKC(S,S) using the stochastic combination strategy is
able to significantly reduce both the model complexity and computational time cost. In ad-
dition, by examining the predictive performance, OMKC(S,S) achieves fairly comparable
mistake rates as compared to OMKC(S,D).

The above observations show that the OMKC algorithms using the stochastic classifier
combination strategy are able to considerably improve the learning efficacy by maintaining
comparable predictive performance as compared to their counterparts.
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Fig. 1: Comparison of average mistake rates during the online learning processes

5.4 Evaluation of Varied Online Learning Sizes

To further examine the performance of OMKC algorithms with respect to different sizes of
datasets for online learning, Figure 1 and Figure 2 show the changes of both average mistake
rates and average numbers of support vectors during the online learning processes. Similar
observations can be drawn from the experimental results as follows.
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Table 4: Comparison of four OMKC algorithms and the OM-2 algorithm. We conducted
student t-tests on the mistake rates and highlighted the best results for each dataset.OM-2
only achieved the best for 3 out of 15 datasets, while the bestOMKC algorithm achieved
the best for 11 out of 15 datasets.

Algorithm OM-2 OMKC (D,D) OMKC (D,S) OMKC (S,D) OMKC (S,S)

Ionosphere n= 351 d= 34 m= 16 best kernel expert: gaussian kernel ofσ = 1
Mistake (%) 17.41± 1.20 16.07± 1.42 17.21± 1.32 17.74± 1.37 17.45± 1.51
SV (#) 128.5± 4.4 1547.5± 53.0 184.6± 62.8 828.0± 46.2 344.6± 102.5
Time (s) 0.113± 0.001 0.384± 0.024 0.342± 0.007 0.326± 0.003 0.218± 0.006
votes84 n= 435 d= 16 m= 16 best kernel expert: polynomial kernel ofp = 1
Mistake (%) 7.21± 0.68 7.38± 0.69 8.02± 0.60 6.71± 0.55 7.22± 0.99
SV (#) 56.5± 2.3 959.6± 40.2 100.8± 52.6 511.4± 25.6 245.8± 76.5
Time (s) 0.124± 0.001 0.406± 0.017 0.391± 0.004 0.384± 0.003 0.252± 0.009
wdbc n= 569 d= 30 m= 16 best kernel expert: gaussian kernel ofσ = 64
Mistake (%) 41.70± 4.06 11.70± 1.01 11.66± 0.75 12.13± 0.85 11.16± 0.94
SV (#) 237.3± 23.1 3032.2± 37.3 117.3± 54.0 918.5± 49.4 361.0± 105.0
Time (s) 0.214± 0.007 0.597± 0.013 0.588± 0.014 0.513± 0.003 0.286± 0.009
breast n= 683 d= 9 m= 16 best kernel expert: gaussian kernel ofσ = 8
Mistake (%) 44.33± 3.88 4.86± 0.51 5.43± 0.46 4.24± 0.45 4.36± 0.56
SV (#) 303.4± 26.4 1606.6± 49.9 89.5± 59.7 545.9± 28.5 220.6± 74.3
Time (s) 0.276± 0.015 0.641± 0.017 0.634± 0.017 0.602± 0.007 0.350± 0.013
australian n= 690 d= 14 m= 16 best kernel expert: gaussian kernel ofσ = 2
Mistake (%) 39.62± 2.88 37.67± 1.20 38.13± 1.50 39.64± 1.46 38.60± 1.38
SV (#) 273.4± 19.9 4743.8± 70.0 522.4± 272.1 3020.4± 82.2 1911.0± 418.9
Time (s) 0.266± 0.006 0.779± 0.017 0.766± 0.017 0.731± 0.006 0.538± 0.013
diabetes n= 768 d= 8 m= 16 best kernel expert: gaussian kernel ofσ = 32
Mistake (%) 45.35± 2.18 33.69± 1.29 34.00± 1.41 32.53± 1.30 33.01± 1.26
SV (#) 348.3± 16.7 4614.6± 63.8 407.2± 223.7 3084.7± 81.1 2135.2± 410.9
Time (s) 0.321± 0.014 0.886± 0.021 0.878± 0.022 0.833± 0.018 0.626± 0.016
fourclass n= 862 d= 2 m= 16 best kernel expert: gaussian kernel ofσ = 8
Mistake (%) 35.92± 1.65 3.19± 0.38 3.54± 0.42 3.06± 0.37 3.31± 0.45
SV (#) 309.6± 14.2 3131.0± 33.5 97.5± 33.1 600.7± 22.5 117.8± 44.3
Time (s) 0.348± 0.005 0.862± 0.010 0.850± 0.004 0.747± 0.012 0.355± 0.016
Splice n= 1000 d= 60 m= 16 best kernel expert: gaussian kernel ofσ = 4
Mistake (%) 30.79± 1.23 24.57± 1.07 25.03± 0.89 26.86± 1.27 26.55± 1.15
SV (#) 307.9± 12.3 5830.9± 90.6 251.6± 61.1 3352.7± 90.2 1627.2± 633.8
Time (s) 0.417± 0.013 1.122± 0.018 1.086± 0.015 1.037± 0.013 0.696± 0.018
Dorothea n= 1150 d= 100000 m= 16 best kernel expert: gaussian kernel ofσ = 8
Mistake (%) 10.70± 0.72 8.92± 0.37 9.92± 0.50 8.03± 0.46 8.31± 0.46
SV (#) 124.1± 7.6 7855.3± 69.9 230.3± 127.6 1492.8± 41.9 537.6± 95.8
Time (s) 0.435± 0.013 1.647± 0.071 1.597± 0.020 1.130± 0.015 0.662± 0.024
svmguide3 n= 1243 d= 22 m= 16 best kernel expert: gaussian kernel ofσ = 0.5
Mistake (%) 22.84± 0.50 26.00± 0.78 26.55± 0.73 23.05± 0.50 23.91± 0.95
SV (#) 812.1± 10.3 6107.4± 107.7 448.2± 164.5 3900.0± 68.3 2174.1± 573.9
Time (s) 0.695± 0.004 1.354± 0.011 1.292± 0.008 1.273± 0.008 0.902± 0.011
svmguide1 n= 3089 d= 4 m= 16 best kernel expert: gaussian kernel ofσ = 32
Mistake (%) 19.32± 0.61 5.31± 0.29 5.60± 0.31 4.78± 0.25 4.90± 0.30
SV (#) 596.7± 18.9 7089.4± 70.3 253.7± 222.1 2286.6± 104.6 970.4± 239.5
Time (s) 2.116± 0.193 3.215± 0.030 3.038± 0.021 2.770± 0.030 1.493± 0.040
a3a n= 3185 d= 123 m= 16 best kernel expert: polynomial kernel ofp = 3
Mistake (%) 20.23± 0.39 21.97± 0.52 22.57± 0.52 20.19± 0.42 20.49± 0.50
SV (#) 861.9± 15.8 16233.6± 120.3 1044.4± 541.5 8361.4± 143.7 4758.7± 919.3
Time (s) 2.704± 0.316 4.355± 0.042 4.211± 0.050 3.590± 0.021 2.360± 0.031
spambase n= 4601 d= 57 m= 16 best kernel expert: gaussian kernel ofσ = 4
Mistake (%) 58.16± 1.50 24.36± 0.45 24.72± 0.46 24.34± 0.40 24.13± 0.49
SV (#) 2676.1± 69.0 27390.0± 180.0 1169.3± 269.5 14316.6± 180.6 6324.3± 2070.9
Time (s) 5.184± 0.239 9.653± 0.141 9.445± 0.097 6.341± 0.072 3.832± 0.063
mushrooms n= 8124 d= 112 m= 16 best kernel expert: gaussian kernel ofσ = 0.25
Mistake (%) 0.37± 0.04 0.32± 0.04 0.37± 0.03 0.29± 0.05 0.35± 0.04
SV (#) 47.1± 2.8 9874.7± 74.1 113.0± 37.4 694.5± 16.1 128.9± 40.2
Time (s) 8.691± 0.070 9.275± 0.124 9.031± 0.099 6.669± 0.048 2.724± 0.129
w5a n= 9888 d= 300 m= 16 best kernel expert: gaussian kernel ofσ = 2
Mistake (%) 2.88± 0.10 3.19± 0.10 3.78± 0.10 2.54± 0.07 2.71± 0.10
SV (#) 2007.6± 58.6 28705.4± 143.4 424.8± 160.6 4403.0± 127.3 1568.7± 653.9
Time (s) 17.548± 2.325 25.191± 0.268 24.843± 0.253 9.449± 0.079 4.727± 0.085
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Fig. 2: Comparison of average sizes of support vectors during the online learning processes

First, the results in Figure 1 validate the fact that the morethe examples received in the
online learning process, the better the performance achieved by the proposed OMKC algo-
rithms. In particular, at the beginning of an online learning task, the Perceptron(*) algorithm
with the best kernel is able to produce a smaller mistake ratethan all of the OMKC algo-
rithms; when more training examples are received, we found that the predictive performance
of the OMKC algorithms can be improved more rapidly than the Perceptron(*) algorithm.

Second, the results in Figure 2 again verified that the OMKC(D,D) algorithm produces
the most complex classifier among all the OMKC algorithms, while OMKC(D,S) produces
the simplest classifier, which is even more sparse than OMKC(S,S) when more training ex-
amples are received in the online learning process. This seems a little bit surprising, but it is
not difficult to interpret this result. The reason is becauseOMKC(D,S) using the determin-
istic updating strategy always increases the weights of those good kernels and meanwhile
decreases the weights of those poor kernels. As a result, when applying the stochastic combi-
nation strategy, only the very small set of good kernels willbe selected for the final classifier
combination (most other poor kernels will be discarded due to their small sampling weights).

Third, it seems to be a little bit surprising to observe that OMKC(S,D) sometimes can
perform even better than the deterministic OMKC(D,D) algorithm; and similarly OMKC(S,S)
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usually performs better than OMKC(D,S). However, this is possible and reasonable. We be-
lieve that it is likely to be caused by the fact that although OMKC(D,D) is good at tracking
the best kernel, it is not always guaranteed to achieve the best performance primarily because
OMKC(D,D) may rely too much on the best kernel classifier which itself may not always
outperform a combination of multiple kernels; in contrast,OMKC(S,D) is able to exploit all
the kernel classifiers more effectively by the stochastic updating strategy, and thus achieves
a good tradeoff between tracking the best kernel classifier and combining multiple kernel
classifiers.

To further verify the above argument, Figure 3 shows the evolution results of the nor-
malized weights in tracking the best kernel classifier by different OMKC algorithms. These
weights indicate how confident the algorithm trusts on the best kernel in the online learning
process. From the results, it is clear to verify that OMKC(D,D) and OMKC(D,S) using the
deterministic updating strategy are significantly better than OMKC(S,D) and OMKC(S,S)
for tracking the best kernel. These results are consistent to our previous analysis on the
relationships between several different OMKC algorithms.
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Fig. 3: Evaluation of the normalized weights in tracking thebest kernel achieved by different
OMKC algorithms
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5.5 Evaluation of Computational Time Cost

In addition to learning accuracy, time efficiency is anotherimportant concern for online
learning. In our experiments, we also examine the time efficiency by comparing different
OMKC algorithms. In particular, we are interested in examining how the stochastic algo-
rithms can reduce the computational time cost of the deterministic OMKC(D,D) algorithm.
In our implementation, all the kernels are pre-computed andstored in memory, which is to
facilitate the evaluation purpose. We report the average CPU running times obtained from
the20 runs that differ in the random draw of the sequential training examples.

Table 5: Evaluation of time efficiency by several different OMKC algorithms. The last three
columns show the time cost ratio between each of the other three OMKC algorithms over
the OMKC(D,D) algorithm.

Time (seconds) OMKC algorithms Time Ratio

Dataset Size (D,D) (D,S) (S,D) (S,S) (D,S)
(D,D)

(S,D)
(D,D)

(S,S)
(D,D)

sonar 208 0.214 0.211 0.202 0.146 98.6 % 94.5 % 68.3 %

ionosphere 351 0.384 0.342 0.326 0.218 89.1 % 85.0 % 56.8 %

votes84 435 0.406 0.391 0.384 0.252 96.3 % 94.7 % 62.1 %

wdbc 569 0.597 0.588 0.513 0.286 98.5 % 86.0 % 47.9 %

breast 683 0.641 0.634 0.602 0.350 98.9 % 93.9 % 54.5 %

australian 690 0.779 0.766 0.731 0.538 98.4 % 93.9 % 69.1 %

diabetes 768 0.886 0.878 0.833 0.626 99.0 % 94.0 % 70.6 %

fourclass 862 0.862 0.850 0.747 0.355 98.6 % 86.6 % 41.2 %

splice 1000 1.122 1.086 1.037 0.696 96.8 % 92.4 % 62.1 %

dorothea 1150 1.647 1.597 1.130 0.662 97.0 % 68.6 % 40.2 %

svmguide3 1243 1.354 1.292 1.273 0.902 95.4 % 94.0 % 66.6 %

svmguide1 3089 3.215 3.038 2.770 1.493 94.5 % 86.1 % 46.4 %

a3a 3185 4.355 4.211 3.590 2.360 96.7 % 82.4 % 54.2 %

spambase 4601 9.653 9.445 6.341 3.832 97.8 % 65.7 % 39.7 %

mushrooms 8124 9.275 9.031 6.669 2.724 97.4 % 71.9 % 29.4 %

w5a 9888 25.191 24.843 9.449 4.727 98.6 % 37.5 % 18.8 %

First of all, from the experimental results in Table 3 and Table 4, we observe that among
all OMKC algorithms, OMKC(S,S) using the stochastic updating and combination approach
is the most efficient algorithm; the two deterministic updating algorithms, OMKC(D,D) and
OMKC(D,S), are the least efficient algorithms; while the OMKC(S,D) algorithm is slower
than OMKC(S,S), but faster than OMKC(D,D).

To further examine the results comprehensively, Table5 further shows the details of
quantitative evaluations of time cost and average speedup achieved by stochastic algorithms
over OMKC(D,D) across various datasets. We have several observations fromthe results.
First, similar to the previous results, we found that the twodeterministic updating algo-
rithms, OMKC(D,D) and OMKC(D,S), have similar time efficiency, in which OMKC(D,S) is
slightly more efficient than OMKC(D,D) because OMKC(D,S) only selectively combines a
subset of kernel classifiers during the online prediction. Second, comparing the two updating
approaches for OMKC, the results again verified that algorithms using the stochastic updat-
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ing are considerably more efficient than the deterministic updating algorithms. Specifically,
compared with the OMKC(D,D) algorithm, OMKC(S,S) usually saves about30% ∼ 80%

time cost, while OMKC(S,D) saves about5% ∼ 60% time cost.
In addition, we observe that the larger the dataset size, themore time cost typically can

be saved by the two stochastic updating algorithms. For example, on dataset w5a with 9888
examples, OMKC(S,S) saves over8% time cost, while OMKC(S,D) saves over60% time
cost. Finally, we note that the specific ratio of time cost saved by OMKC(S,S) or OMKC(S,D)

is also dependent on the number of kernels. Nonetheless, theobservations show that the
stochastic algorithms are important and scalable for large-scale online learning tasks.

5.6 Effect of Discount Weight Parameterβ

One important parameter in the proposed OMKC algorithms is the discount weight param-
eterβ. For all the previous experiments, we simply fix parameterβ to 0.8 in all situations.
Although we have given the choice ofβ in the analysis of mistake bound, those values tend
to be highly overestimated due to the approximation of

∑T
t=1 z

t
i asT . In this section, we

aim to empirically examine the effect of the discount weightparameter. Figure 4 shows the
performance of proposed OMKC algorithms on several randomly chosen datasets withβ
varied from0.05 to 1.0.
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Fig. 4: Evaluation of the impact by the discount weight parameter (β).
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According to Figure 4, we observe that different values ofβ do affect the prediction
performance of the OMKC algorithms for most datasets. Further, we also observe that there
is no a single best value ofβ that is universally optimal for every dataset. Finally, we found
that for both OMKC(D,D) and OMKC(S,S) algorithms, the bestβ often falls in the range
between 0.7 and 0.9. We believe that this is because whenβ is too small (e.g. smaller than
0.5), it penalizes too much on the misclassified kernel classifiers at the very beginning of the
learning process, leading to a poor performance in finding the optimal combination weights.
We note that this is in general consistent with our analysis since the optimal choice ofβ is√
T/[

√
T +

√
lnm], which is a large value whenT is large.

6 Discussions and Future Directions

Despite the encouraging results achieved, the current OMKCsolutions can be improved in
many aspects since it is a new open research problem. Below wediscuss several possible
directions for future research investigation.

First of all, the approach to learning each individual kernel-based classifier can be im-
proved. The current approach used in our OMKC algorithms is an adaption of the regular
kernelPerceptronalgorithmRosenblatt(1958); Freund and Schapire(1999). It is possible to
improve the learning performance and scalability by engaging more advanced online learn-
ing algorithms (Crammer et al. 2006; Orabona et al. 2008; Zhao et al. 2012).

Second, the approach to combining the kernel-based classifiers for prediction can be
improved. Instead of using the Hedge algorithm, we might explore other more general ap-
proaches that perform the online prediction with expert advices, such as the general “Follow
the Perturbed Leader” approaches (Kalai and Vempala 2005; Hutter and Poland 2005).

Third, instead of assuming a finite set of given kernels, it might be possible to investigate
OMKC for learning with an infinite number of kernels, which issomewhat similar to other
existing infinite kernel learning studies (Argyriou et al. 2006; Chen and Ye 2008).

Fourth, the current algorithms are designed for online classification tasks. It is also possi-
ble to investigate online to batch conversion algorithms for the batch classification extension
by following similar studies in literature (Dekel and Singer 2005; Dekel 2008).

Fifth, to further speedup our techniques for very large scale applications, it is possible
and not difficult to parallelize our method by exploring emerging parallel computing tech-
nologies, such as multi-processor and multi-core programming techniques.

Finally, it is possible to extend the proposed OMKC framework for various real ap-
plications. For example, the current approach assumes online learning with two-class data
examples. Future work is necessary to handle multi-class learning applications.

7 Conclusions

This paper investigated a new problem, “Online Multiple Kernel Classification” (OMKC),
which aims to attack an online learning task by learning a kernel based prediction function
from a pool of predefined kernels. To solve this challenge, wepropose a novel framework
by combining two types of online learning algorithms, i.e.,the Perceptron algorithm that
learns a classifier for a given kernel, and the Hedge algorithm that combines multiple kernel
classifiers by linear weighting. The key to an OMKC task is a proper selection strategy to
choose a set of kernels from the pool of predefined kernels foronline classifier updates and
classifier combination towards prediction. To address thiskey issue, we present two kinds of
selection strategies: (i) deterministic approach that simply chooses all of the kernels, and (ii)
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stochastic approach that randomly samples a subset of kernels according to their weights.
Specifically, we proposed four variants of OMKC algorithms by adopting different online
updating and combination strategies (i.e., deterministicor stochastic). It is interesting to find
that each of these four OMKC algorithms enjoys different merits for different scenarios.

To examine the empirical performance of the proposed OMKC algorithms, we con-
ducted extensive experiments on a testbed with 15 diverse real datasets. The promising re-
sults reveal three major findings: (1) all the OMKC algorithms always perform better than
a regular Perceptron algorithm with an unbiased linear combination of multiple kernels,
mostly perform better than the Perceptron algorithm with the best kernel found by valida-
tion, and often perform better or at least comparably than a state-of-the-art online MKL al-
gorithm; (2) for the two different updating strategies, thestochastic updating strategy is able
to significantly improve the efficiency by maintaining at least comparable performance as
compared with the deterministic approach; (3) for the two different combination strategies,
the deterministic combination strategy usually performs better results, while the stochastic
combination strategy is able to produce a significantly moresparse classifier.
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Appendix A: Proof of Theorem 1

Proof The proof essentially combines the results of the Perceptron algorithm (Rosenblatt
1958) and the Hedge algorithm (Freund and Schapire 1997).

We attempt to boundln(WT+1/W1) from both the above and the below. To achieve this
goal, we first derive the upper bound ofln(Wt+1/Wt) as follows:

ln
Wt+1

Wt
= ln

(

m
∑

i=1

wi(t)

Wt
βzi(t)

)

≤ −(1− β)

m
∑

i=1

qi(t)zi(t)

By adding the inequalities of all trials, we have

ln

(

WT+1

W1

)

≤ −(1− β)

T
∑

t=1

m
∑

i=1

qi(t)zi(t)

On the other hand, we haveln(WT+1/W1) lower bounded as follows

ln

(

WT+1

W1

)

≥ ln
wi(T + 1)

W1
= − ln(1/β)

T
∑

t=1

zi(t)− lnm

Sincef it+1(x) = f it (x) + zi(t)ytκi(xt, x), for anyf ∈ Hki
, we have

|f it+1 − f |2Hκi
= 〈f it − f, f it − f〉Hκi

+ z2i (t)〈κi(xt, ·), κi(xt, ·)〉Hκi
+ 2zi(t)yt〈κi(xt, ·), f it − f〉Hκi

= |f it − f |2Hκi
+ zi(t)

2κi(xt, xt)− 2zi(t)yt(f(xt)− f it (xt))

≤ |f it − f |2Hκi
+ zi(t) + 2zi(t)ℓ(f(xt), yt)) + 2zi(t)(−1 + ytf

i
t (xt))

≤ |f it − f |2Hκi
+ 2ℓ(f(xt), yt))− zi(t)



24

In the last step, we usezi(t)ytf it (xt) ≤ 0. We thus have

zi(t) ≤ −|f it+1 − f |2Hki
+ |f it − f |2Hκi

+ 2ℓ(f(xt), yt)

As a result, we have the following inequality hold for anyf ∈ Hκi

ln

(

WT+1

W1

)

≥ − ln(1/β)

(

|f |2Hκi
+ 2

T
∑

t=1

ℓ(f(xt), yt)

)

− lnm

By putting the lower and the upper bounds forln(WT+1/W1) together, we have

T
∑

t=1

m
∑

i=1

qi(t)zi(t) ≤
ln(1/β)

(1− β)
min

f∈Hki

(

|f |2Hκi
+ 2

T
∑

t=1

ℓ(f(xt), yt)

)

+
lnm

1− β

Since
T
∑

t=1

I

(

m
∑

i=1

qi(t)zi(t) ≥ 0.5

)

≤ 2

T
∑

t=1

m
∑

i=1

qi(t)zi(t),

we have the result in the theorem. Finally, to suggest the value for parameterβ, by assuming
∑T

t=1 zi(t) ≤ T and ln(1/β)
1−β ≤ 1/β, we can derive the solution for parameterβ as follows:

β =
√
T√

T+
√
lnm

, which leads to the final result as stated in the theorem.
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