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Online Multiple Kernel Similarity Learning for
Visual Search

Hao Xia, Steven C.H. Hoi, Rong Jin, Peilin Zhao

Abstract—Recent years have witnessed a number of studies on distance metric learning to improve visual similarity search in Content-
Based Image Retrieval (CBIR). Despite their successes, most existing methods on distance metric learning are limited in two aspects.
First, they usually assume the target proximity function follows the family of Mahalanobis distances, which limits their capacity of
measuring similarity of complex patterns in real applications. Second, they often cannot effectively handle the similarity measure of
multi-modal data that may originate from multiple resources. To overcome these limitations, this paper investigates an online kernel
similarity learning framework for learning kernel-based proximity functions, which goes beyond the conventional linear distance metric
learning approaches. Based on the framework, we propose a novel Online Multiple Kernel Similarity (OMKS) learning method, which
learns a flexible nonlinear proximity function with multiple kernels to improve visual similarity search in CBIR. We evaluate the proposed
technique for CBIR on a variety of image data sets, in which encouraging results show that OMKS outperforms the state-of-the-art
techniques significantly.

Index Terms—Similarity search, kernel methods, multiple kernel learning, online learning, content-based image retrieval

✦

1 INTRODUCTION

Similarity search plays a fundamental role in a variety
of multimedia retrieval tasks [1], [2], [3], which has been
extensively studied in multimedia and computer vi-
sion fields, especially for Content-Based Image Retrieval
(CBIR) [4], [5], [6]. The crux of visual similarity search
is to find some proximity function that can effectively
measure distance/similarity between images [7], [8]. In
a conventional CBIR system, given images represented
in a vector space, the typical choices of such proximity
functions are Euclidean distance and its variants, which
are often not flexible enough to measure the proximity
of images due to the nature of the fixed rigid functions.

In recent years, researchers have noticed the limita-
tions of conventional rigid proximity functions in image
similarity search. To address this issue, one group of
active research studies are the Distance Metric Learning
(DML) algorithms [5], [9], [10], [11], which usually learn
to optimize the distance metric of proximity measure to
improve image similarity search in CBIR. Despite the
success of various DML algorithms to improve similar-
ity search of CBIR, most existing DML algorithms are
limited in two aspects. First, they typically assume the
target proximity function follows the form of general
Mahalanobis distances and restricts the DML task in
finding an optimal linear distance metric, which may
limit its capacity of measuring similarity of complex
image patterns in real applications. Second, even though
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Michigan State University, United States.
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there are few existing works [12], [13] for learning non-
linear similarity function with kernel, they usually do
not handle the similarity with multiple kernels.

To overcome the limitations of existing work, in this
paper, we propose a novel Online Multiple Kernel Sim-
ilarity (OMKS) learning scheme, which ranks images
by learning pairwise similarity of images that are rep-
resented in multiple modalities using multiple kernels.
Unlike the conventional DML techniques, the target
similarity function learned by OMKS can be any nonlin-
ear function in some reproducing kernel Hilbert spaces
induced by some predefined kernels. And different from
some batch kernel-based DML algorithms, OMKS learns
with multiple kernels in an online learning fashion [14].
Thus, OMKS is able to learn a much more flexible and
powerful proximity function to improve image similarity
search in CBIR.

The OMKS task is however very challenging because it
must on one hand learn an optimal kernel-based similar-
ity function for each kernel in each modality, and on the
other hand determine an optimal combination of multi-
ple kernels in building the final similarity function for
similarity search with all modalities. To attack the chal-
lenges, we propose a unifying online learning scheme for
OMKS, which learns both the optimal similarity function
with each individual kernel and the optimal combi-
nation of multiple kernels in a coherent and scalable
online learning framework. In particular, we apply the
online passive aggressive learning technique [15] to learn
the kernel-based similarity function for each individual
kernel, and the well-known Hedging online learning
technique to learn the optimal combination weights of
multiple kernels, from a sequence of triplet training data.
As a summary, our key contributions include:

• We propose a novel framework of learning kernel-
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based proximity functions with multiple kernels for
visual similarity search. To the best of our knowl-
edge, this is the first online learning work in CBIR
that learns to rank images based on kernel-based
similarity function using multiple kernels.

• We present an online learning algorithm for OMKS,
which learns both the optimal kernel-based simi-
larity function with an individual kernel and the
optimal combination of multiple kernels.

• We conduct an extensive set of experiments to eval-
uate the performance of the proposed technique for
CBIR on several image data sets.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 gives some preliminaries
of the related techniques. Section 4 introduces the prob-
lem definition and presents the proposed online learning
algorithm for OMKS, followed by theoretical analysis in
Section 5. Section 6 discusses the experimental results,
and section 7 sets out the conclusion of this work.

2 RELATED WORK

This section reviews related work which can be generally
grouped into three major categories as follows.

2.1 Distance Metric Learning

Distance Metric Learning (DML) from side information
(e.g., relevance feedback logs [16] or user-generated con-
tents of social images [17]) has been actively studied in
CBIR for several years. In general, most DML works aim
to learn an optimal distance metric in the family of Ma-
halanobis distances, which can be viewed as an equiva-
lent problem of learning an optimal linear projection of
original data into a new space, where Euclidean distance
is adopted to measure proximity between objects.

In literature, various DML techniques have been
proposed in both machine learning [18], [19], [20]
and multimedia [5], [9], [10], [21], [22]. Some well-
known techniques include Relevant Component Anal-
ysis (RCA) [18], Discriminative Component Analysis
(DCA) [5] using the idea of Fisher’s Linear Discriminant
Analysis, Large Margin Nearest Neighbor (LMNN) [20],
Metric Learning by Collapsing Classes [23], learning
globally-consistent local distance functions [24], Reg-
ularized Distance Metric Learning [9] and Laplacian
Regularized Metric Learning (LRML) [11], and so on.

In general, the DML task is cast as a Semi-Definite Pro-
gramming (SDP) problem due to the impose of Positive
Semi-Definite (PSD) constraint on the solution, which
is computationally intensive, especially when data is of
high dimensionality. Some recent work has attempted
to resolve the challenge, such as ITML [25] and OA-
SIS [26]. ITML uses LogDet divergence which can en-
force positive semi-definiteness automatically to bypass
the PSD constraint. OASIS drops the PSD constraint and
resolves the DML task by an online learning algorithm
to maximize the large margin criterion. OASIS is in

general a linear metric learning method. Our technique
is partially inspired to overcome the limitations of OASIS
by studying kernel-based learning techniques.

2.2 Kernel-based Learning for Image Retrieval

Kernel-based learning techniques are not new for image
retrieval. Our technique differs from the existing kernel-
based learning techniques proposed for image retrieval
in literature. For example, kernel SVM algorithms have
been proposed for active learning in CBIR [27], which
however address different types of problems as ours.

In literature, several kernel-based distance metric
learning algorithms [28], [29] were proposed for learning
similarity functions in CBIR. Also, a family of metric
learning algorithms including LMNN and NCA have
been shown to be able to be kernelized by KPCA
trick [12]. Some recent work also reveals the connections
between metric and kernel learning in [13], which may
naturally provide kernelization for a larger class of met-
ric learning methods. Our techniques differ from these
approaches in two key aspects. First, they are designed to
learn with a single kernel while the proposed algorithm
learns with multiple kernels; and second, they usually
run in a batch learning approach, which does not scale
to large-scale applications. In contrast, we present online
learning algorithms for learning a similarity function
with multiple kernels.

We also note that our work is very different from exist-
ing kernel learning studies, such as KernelBoost [30] and
nonparametric kernel learning [31], [32], which mainly
aim to learn a kernel function/matrix consistent with
given constraints. Unlike these studies, the proposed
technique learns a kernel-based similarity function, in-
stead of a kernel function, from constraints.

Finally, some recent studies also proposed online
learning techniques to learn kernel-based similarity func-
tion for text-based image search. For example, PAMIR [3]
proposed to learn a discriminative model for the image
retrieval from text queries using online learning tech-
niques. Our study differs from PAMIR because PAMIR is
specially designed for text-based queries and thus cannot
be directly applied to the CBIR task.

2.3 Multiple Kernel Learning

Our work is also closely related to Multiple Kernel
Learning (MKL) studies [33], [34], which aim to find
the optimal combination of multiple kernels for learning
classifiers towards a given classification task. Exemplar
algorithms include the convex optimization [33], the
Semi-Infinite Linear Program (SILP) approach [34], and
the level method [35]. In addition, several recent stud-
ies [36], [37] address multiple kernel learning for multi-
class and multi-labeled data, and some other works aim
at improving its efficiency and generality [38], [39], [40].

Despite sharing the common goal of finding the op-
timal combination of multiple kernels, our technique
differs significantly from the existing MKL studies in two



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI), VOL. 1, NO. 1,JAN 2012 3

key aspects. First, we aim to learn kernel-based proxim-
ity functions for image ranking tasks while conventional
MKL studies often address classification tasks. Second,
the training data used by conventional MKL studies are
in the regular form of single data instances with class
label, while the training data in our problem are in the
form of triplet instances.

We should note that this work was also inspired by
our previous work on Online Multiple Kernel Learning
(OMKL) [41], [42]. The OMKL technique was proposed
to learn classifiers by finding an optimal combination of
multiple kernels for classification tasks, while the goal
of this work is to learn the image similarity function
from triplets for retrieval tasks in CBIR. In particular,
special care is needed in the design of algorithms to
handle the triple constraints. Finally, although MKL has
successfully been applied to several computer vision
applications [43], [44], to the best of our knowledge, this
is the first online learning work that learns a similarity
function using multiple kernels for CBIR.

3 PRELIMINARIES

To better motivate our work, we introduce some prelim-
inaries of two closely related techniques: (1) online mul-
tiple kernel learning, and (2) large scale online learning
of image similarity through ranking.

3.1 OMKL

We briefly review the recent work on Online Multiple
Kernel Learning (OMKL) [41], [42]. This technique in
general aims to address a Multiple Kernel Learning
(MKL) problem.

Specifically, given a set of training examples D =
{(xi, yi), i = 1, . . . , n} where yi ∈ {−1,+1}, i = 1, . . . , n,
and a collection of m kernel functions K = {κi : X×X →
R, i = 1, . . . ,m}, the goal of an MKL task is to identify
the optimal combination of the kernel matrices, denoted
by θ = (θ1, . . . , θm), which minimizes the margin-based
classification error. This can be formulated as the follow-
ing optimization task:

min
θ∈∆

min
f∈HK(θ)

1

2
‖f‖2HK(θ)

+ C

n
∑

i=1

l(f(xi), yi) (1)

where K(θ)(·, ·) =
∑m

i=1 θiκi(·, ·), l(f(xi), yi) =
max(0, 1− yif(xi)), and ∆ is defined by

∆ = {θ ∈ R
m
+ |θT em = 1}. (2)

The OMKL technique simplifies the MKL problem
by learning the following classification function with
multiple kernels:

f(x) =

m
∑

i=1

θisign(fi(x)) (3)

The OMKL algorithm iteratively updates the predic-
tion function by the perceptron algorithm, i.e.,

ft+1,i(x) = ft,i(x) + zi(t)ytκi(xt, x) (4)

and learns the combination weights by applying the
Hedging online learning technique, i.e.,

θi(t+ 1) = θi(t)β
zi(t) (5)

where β ∈ (0, 1) is a discount weight parameter, which is
employed to penalize the kernel classifier that performs
incorrect prediction at each learning step, and zi(t) indi-
cates if the i-th kernel classifier makes a mistake on the
prediction of the example xt.

3.2 OASIS

Below we briefly introduce another related work of
large scale online learning of image similarity through
ranking [26]. Specially, the goal of this problem is to
learn a similarity function S(pi, pj) that assigns higher
similarity scores to pairs of more relevant images, i.e.,

S(pi, p
+
i ) > S(pi, p

−
i ), ∀pi, p+i , p−i ∈ P (6)

such that r(pi, p
+
i ) > r(pi, p

−
i ) (7)

where r(·, ·) reflects the relevance between two images.

Consider a parametric similarity function that has a bi-
linear form, SW (pi, pj) = pTi Wpj where W ∈ R

d×d, the
goal is to find a parametric similarity function S such
that all triplets obey the following constraints:

SW (pi, p
+
i ) > SW (pi, p

−
i ) + 1 (8)

One can define the following hinge loss function for the
triplet:

lW (pi, p
+
i , p

−
i ) = max{0, 1−SW (pi, p

+
i )+SW (pi, p

−
i )} (9)

As a result, the batch optimization problem of this task
can be formulated as:

W = argmin
W

‖W‖2Fro + C
∑

i

ℓW (pi, p
+
i , p

−
i ) (10)

The online optimization problem is formulated as:

Wi = argmin
W

1

2
‖W −Wi−1‖2Fro + CℓW (pi, p

+
i , p

−
i ) (11)

By initializing W0 = I , the online solution of updating
W is given as:

Wi = Wi−1 + τiVi (12)

where τi = min{C, lWi−1
(pi,p

+
i
,p

−

i
)

‖Vi‖2 } and Vi = pi(p
+
i −p−i )

T .

4 ONLINE MULTIPLE KERNEL SIMILARITY

We first present our framework for online kernel similar-
ity learning, and then extend it to online multiple kernel
similarity learning.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI), VOL. 1, NO. 1,JAN 2012 4

Training Triplet

(pt,pt
+
,pt

-
)

Model

Updating

OKS Model for κ1
S1(q,p)

OMKS Model

f(q,p)=∑i θiSi(q,p)

θ1

OKS Model for κi
Si(q,p)

θi

OKS Model for κm
Sm(q,p)

θm

...

Image Database

Query

Image

Computing

Similarity Scores

Similarity Scores Ranked List

Training Phase Retrieval Phase

Model

Updating

Model

Updating

Fig. 1. The system flow of the proposed online multiple kernel similarity learning scheme for visual search.

4.1 Online Kernel Similarity

Our challenge is how to extend the linear similarity
function used in OASIS to its kernel version. To this end,
for a given kernel κ(·, ·) and the corresponding Hilbert
space H, we introduce a linear operator L : H 7→ H that
maps a function f ∈ H to another function L[f ] ∈ H.
Given the linear operator L, we define the similarity
function SL(p, q) as

SL(q, p) = 〈κ(q, ·), L[κ(p, ·)]〉H (13)

q ∈ X is a query image and p ∈ X is an image in
database to be retrieved. Compared to the similarity
function SW (p, q) = p⊤Wq, we observe that the linear
operator L plays the same role as matrix W . Let L be
the space that includes all the linear operators in H, i.e.,

L = {L : H 7→ H, L is a linear operator} (14)

Following the framework of OASIS, we develop a frame-
work of kernel similarity learning based on the linear
operator. It searches for the optimal linear operator by
minimizing the rank loss, i.e.,

L∗ = argmin
L∈L

‖L‖2HS + C
∑

i

ℓL(pi, p
+
i , p

−
i ) (15)

where ‖ · ‖HS is the Hilbert Schmidt norm
of the linear operator, and ℓL(pi, p

+
i , p

−
i ) =

max
(

0, 1− SL(pi, p
+
i ) + SL(pi, p

−
i )
)

.
Next, we develop an online learning algorithm for ef-

ficiently solving (15) based on the online Passive Aggres-
sive (PA) learning [15]. Similar to the OASIS algorithm,
in the proposed online learning algorithm, at each trial
t, given triplet pt, p

+
t , p

−
t , we solve the following simple

optimization problem

Lt = argmin
L∈L

1

2
‖L− Lt−1‖2HS + CℓL(pt, p

+
t , p

−
t ) (16)

where we initialize L0 to be an identity operator at the
beginning of online learning. The following proposition

gives the closed-form solution to the above optimization.

Proposition 1: The optimal solution to the optimization
problem in (16) can be expressed as:

Lt = Lt−1 + τtZt (17)

where Zt ∈ L is a rank one linear operator and is given
by Zt[h](·) = κ(pt, ·)

(

h(p+t )− h(p−t )
)

for any h ∈ H. The
coefficient τt in (17) is calculated as

τt= min

{

C,
max{0, 1− SLt−1(pt, p

+
t ) + SLt−1(pt, p

−
t )}

κ(pt, pt)(κ(p
+
t , p

+
t )− 2κ(p+t , p

−
t ) + κ(p−t , p

−
t ))

}

(18)
Proof: We rewrite the problem into a constrained

form:

min
L∈L,ξ≥0

1

2
‖L− Lt−1‖2HS + Cξ

s. t. 1− 〈κ(pt, ·), L[κ(p+t , ·)− κ(p−t , ·)]〉H ≤ ξ

We define the Lagrangian as

g(L, ξ, τ, λ) =
1

2
‖L− Lt−1‖2HS + Cξ − λξ

+τ
(

1− ξ − tr(LZ†
t )
)

where τ ≥ 0 and λ ≥ 0 are Lagrangian multipliers, and
Zt : H 7→ H is a rank one linear operator defined as

Zt[h](·) = κ(pt, ·)〈κ(p+t , ·)− κ(p−t , ·), h〉H

and Z†
t is the adjoint of Zt. By setting ∂g(L,ξ,τ,λ)

∂L
= 0, we

have the following

∂g(L, ξ, τ, λ)

∂L
= L− Lt−1 − τZt = 0

and therefore L = Lt−1 + τZt. Next, by setting
∂g(L,ξ,τ,λ)

∂ξ
= 0, we have

C − τ − λ = 0
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Since λ ≥ 0, we have τ ≤ C. Thus, we have:

g(τ) =
1

2
τ2‖Zt‖2HS + τ(1− tr(LZ†

t ))

= −1

2
τ2‖Zt‖2HS + τ(1 − tr(Lt−1Z

†
t ))

Further, by setting ∂g(τ)
∂τ

= 0, we have

∂g(τ)

∂τ
= −τ‖Zt‖2HS + 1− tr(LZ†

t )

= −τ‖Zt‖2HS + ℓLt−1(pt, p
+
t , p

−
t ) = 0

Thus, we have

τ =
ℓLt−1(pt, p

+
t , p

−
t )

‖Zt‖2HS

Combining the fact that τ ≤ C, we prove the proposition
by using the fact

‖Zt‖2HS = ‖κ(pt, ·)‖2HS‖κ(p+t , ·)− κ(p−t , ·)‖2HS

= κ(pt, pt)
(

κ(p+t , p
+
t ) + κ(p−t , p

−
t )− 2κ(p+t , p

−
t )
)

Using the above result, we can rewrite SLt
(q, p) as

SLt
(q, p) = 〈κ(q, ·), Lt[κ(p, ·)]〉H

= κ(q, p) +

t
∑

l=1

τlκ(q, pl)(κ(p
+
l , p)− κ(p−l , p)) (19)

Similar to the function learned by support vector ma-
chines (SVM), we slightly abuse the concept of Support
Vectors (SV) to define each triplet (pl, p

+
l , p

−
l ) of nonzero

coefficient τl > 0 as a support vector for the learned
linear operator. Thus, during the whole training process,
we should only keep trace of the support vectors and
their coefficients. Algorithm 1 summarizes the proposed
algorithm for Online Kernel Similarity (OKS).

Algorithm 1 Online Kernel Similarity (OKS)

INPUT: parameter C, training triplets: (pt, p
+
t , p

−
t ), an in-

put kernel κ(·, ·) : χ×χ → R

1: Initialization: L0 = I
2: for t = 1, 2, . . . , T do
3: Receive a training triplet: (pt, p

+
t , p

−
t )

4: Compute τt in (18)
5: Update Lt as (17)
6: end for

OUTPUT: S(p, q) = 〈κ(p, ·), LT [κ(q, ·)]〉

4.2 Online Multiple Kernel Similarity

We now extend the above online kernel similarity learn-
ing problem to the setting of learning with multiple ker-
nels, i.e., the Online Multiple Kernel Similarity (OMKS)
learning task. Figure 1 shows the system flow of the
proposed OMKS scheme.

Let K = {κi : X × X → R, i = 1, . . . ,m} be a
collection of m kernel functions. Our goal is to identify

the optimal combination of the m kernels, denoted by
θ = (θ1, . . . , θm), and consequentially learn the combined
kernel similarity function that can be used effectively for
image similarity search, i.e.,

f(q, p) =

m
∑

i=1

θiSi(q, p) =

m
∑

i=1

θi〈κi(q, ·), Li[κi(p, ·)]〉Hκi

(20)
where Li ∈ Li = {L : Hκi

7→ Hκi
, L is a linear operator}

and Si(q, p) = 〈κi(q, ·), Li[κi(p, ·)]〉Hκi
is the similarity

function based on the linear operator Li. To simultane-
ously learn both the combination weights {θi}mi=1 and the
linear operators {Li}mi=1, we cast multiple kernel similar-
ity learning into the following optimization problem

min
θ∈∆

min
{Li}m

i=1

1

2

m
∑

i=1

θi‖Li‖2HS +C
T
∑

t=1

ℓ(f(pt, p
+
t )−f(pt, p

−
t ))

(21)
where f(p, q) is given in (20), ∆ is defined in (2) and ℓ(z)
is the hinge loss.

Remark. At the first glance, the formulation of mul-
tiple kernel similarity learning in (21) may be very
different from that for multiple kernel learning in (1).
This difference is in fact superficial. According to [41],
[42], the problem in (1) is equivalent to the following
optimization problem

min
θ∈∆

min
{fi}m

i=1

1

2

m
∑

i=1

θi‖fi‖2HS + C

T
∑

t=1

ℓ(f(xi), yi) (22)

where f(x) =
∑m

i=1 θifi(x). By comparing (22) to (21),
we can find that multiple kernel similarity learning is
almost identical to multiple kernel learning except that
the kernel prediction functions fi in (1) is replaced with
the linear operator Li in (21), and the loss functions are
somewhat different.

There are two sets of target variables to be learned in
the OMKS task, i.e., the combination weights of multiple
kernels, and the set of linear operators with respect to
each of different kernels. Following the idea of the online
multiple kernel learning [41], [42], we apply the Hedging
algorithm to online learn the combination weights of
multiple kernels, and then apply the online kernel simi-
larity learning algorithm to learn the similarity function
of each individual kernel.

Specifically, for each of the m kernels, e.g., κi, on every
online learning trial, we apply Proposition 1 to find the
optimal coefficient for learning the similarity function
with respect to kernel κi, and then apply the Hedging
algorithm to update the combination weights as follows:

θi(t) = θi(t− 1)βzi(t)

where β ∈ (0, 1) is a discounting parameter, and zi(t)
equals to 1 when SLt−1,i(pt, p

+
t )−SLt−1,i(pt, p

−
t ) ≤ 0, and

0 otherwise.
Algorithm 2 summarizes the proposed algorithm for

Online Multiple Kernel Similarity (OMKS). Finally, we
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Algorithm 2 Online Multiple Kernel Similarity (OMKS)

INPUT:

• Kernels: κi(·, ·) : χ× χ → R, i = 1, · · · ,m
• Combination weights θi(0) = 1, i = 1, . . . ,m
• Discount weight β ∈ (0, 1)

1: Initialize L0,i = I, i ∈ [m]
2: for t = 1, 2, . . . , T do
3: Receive a training triplet: (pt, p

+
t , p

−
t )

4: for i = 1, 2, . . . ,m do
5: Compute τt,i in (18) using Lt−1,i for Lt−1

6: Update Lt,i by (17) with Zt,i given by Zt,i[h](·) =
κi(pt, ·)

(

〈κi(p
+
t , ·), h〉Hκi

− 〈κi(p
−
t , ·), h〉Hκi

)

7: if SLt−1,i(pt, p
+
t )− SLt−1,i(pt, p

−
t ) ≤ 0 then

8: Set zi(t) = 1
9: else

10: Set zi(t) = 0
11: end if
12: Update θi(t) = θi(t− 1)βzi(t)

13: end for
14: end for

OUTPUT: f(q, p) =
∑m

i=1 θi(T )〈κi(q, ·), LT,i[κi(p, ·)]〉Hκi
.

also analyze the theoretical bounds of the two proposed
OKS and OMKS algorithms in Section 5.

Remark. It is not difficult to analyze the time com-
plexity of the proposed OKS and OMKS algorithms.
Specifically, the time complexity of OKS is O(T |SV |),
where |SV | denotes the size of support vectors of the
similarity function, and the time complexity of OMKS
is O(T |SV |m). By assuming small |SV | and m values,
both algorithms are generally linear w.r.t. the number of
training instances, making the proposed learning scheme
efficient and scalable for large applications.

5 THEORETICAL ANALYSIS

First of all, we analyze the mistake bound of the
proposed Online Kernel Similarity (OKS) algorithm as
shown in Algorithm 1 in the following theorem.

Theorem 1: Let (p1, p
+
1 , p

−
1 ), . . . , (pT , p

+
T , p

−
T ) be a se-

quence of triplet examples, where pt, p
+
t , p

−
t ∈ R

n, and
assume ‖Zt‖2HS = κ(pt, pt)(κ(p

+
t , p

+
t ) − 2κ(p+t , p

−
t ) +

κ(p−t , p
−
t )) ≤ R for all t. Then the number of prediction

mistakes M made by OKS on this sequence of examples
is bounded by:

M ≤ min
L

{

1

min(1/R, C)

[

‖L− I‖2HS + 2C
T
∑

t=1

lL(pt, p
+
t , p

−

t )
]

}

Proof:

∆t = ‖Lt−1 − L‖2HS − ‖Lt − L‖2HS

= ‖Lt−1 − L‖2HS − ‖Lt−1 − L+ τtZt‖2HS

= −2τt[(SLt−1(pt, p
+
t )− SLt−1(pt, p

−
t ))

−(SLt
(pt, p

+
t )− SLt

(pt, p
−
t ))]− τ2t ‖Zt‖2HS

≥ τt(2ℓt − τt‖Zt‖2HS − 2ℓ∗t )

where ℓt = ℓLt−1(pt, p
+
t , p

−
t ) and ℓ∗t = ℓL(pt, p

+
t , p

−
t ), thus

T
∑

t=1

τt(2ℓt − τt‖Zt‖2HS − 2ℓ∗t ) ≤
∑

∆t ≤ ‖L− I‖2HS (23)

Since τt = min(ℓt/‖Zt‖2HS , C), τt‖Zt‖2HS ≤ ℓt and τt ≤ C.

T
∑

t=1

τt(2ℓt − τt‖Zt‖2HS − 2ℓ∗t ) ≥
T
∑

t=1

(τtℓt − 2Cℓ∗t ) (24)

Combining Equation (23) and (24), we have

T
∑

t=1

τtℓt ≤ ‖L− I‖2HS + 2C

T
∑

t=1

ℓ∗t (25)

If the algorithm makes a mistake on round t then ℓt ≥ 1.
In addition, according to the assumption, we have τt =
min(ℓt/‖Zt‖2HS , C) ≥ min(1/R,C). Thus, we have:

T
∑

t=1

τtℓt ≥ min(1/R,C)M

Plugging the above result into the previous equation will
result in the conclusion stated in the theorem.

Secondly, we analyze the mistake bound of the pro-
posed Online Multiple Kernel Similarity (OMKS) algo-
rithm in Algorithm 2. For the convenience of discussions,
we define the following notations:

θt =

m
∑

i=1

θi(t), qi(t) =
θi(t)

θt

zi(t) = I
(

SLt−1,i(pt, p
+
t )− SLt−1,i(pt, p

−
t ) ≤ 0

)

where I(x) is an indicator function that outputs 1 when
x is true and 0 otherwise. Here, qi(t) essentially defines
the mixture of kernel similarity functions, and zi(t)
indicates if training example (pt, p

+
t , p

−
t ) is misclassified

by the ith kernel similarity function at trial t. Finally,
we define the optimal margin error g(κi, l,L) for the
kernel κi(·, ·) with respect to a collection of training
examples L = {(pt, p+t , p−t ), t = 1, . . . , T } satisfying
κi(pt, pt)(κi(p

+
t , p

+
t )− 2κi(p

+
t , p

−
t ) + κi(p

−
t , p

−
t )) ≤ Ri as

g(κi, l,L) = min
L







[

‖L− I‖2HS + 2C
∑

T

t=1
ℓL(pt, p

+
t , p

−

t )
]

min(1/Ri, C)







Theorem 2: After receiving a sequence of T training
examples, denoted by L = {(pt, p+t , p−t ), t = 1, . . . , T } sat-
isfying κi(pt, pt)(κi(p

+
t , p

+
t )− 2κi(p

+
t , p

−
t ) +κi(p

−
t , p

−
t )) ≤

Ri, the number of mistakes M made by running the
algorithm in Algorithm 2, denoted by

M =

T
∑

t=1

I(SLt−1(pt, p
+
t )− SLt−1(pt, p

−
t ) ≤ 0)

=

T
∑

t=1

I

(

m
∑

i=1

qi(t− 1)zi(t) ≥ 0.5

)
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is bounded as follows

M ≤ 2 ln(1/β)

1− β
min

1≤i≤m

T
∑

t=1

zi(t) +
2 lnm

1− β
(26)

≤ 2 ln(1/β)

1− β
min

1≤i≤m
g(κi, l,L) +

2 lnm

1 − β
(27)

By choosing the value of β as β =
√
T√

T+
√
lnm

, we have

M ≤ 2

(

(

1 +

√

lnm

T

)

min
1≤i≤m

g(κi, l,L) + lnm+
√
T lnm

)

The proof to the above theorem essentially combines the
results of the passive aggressive learning algorithm [15]
and the Hedge learning algorithm. We omit the details
of our proof due to space limitation.

6 EXPERIMENTS

In this section, we conduct an extensive set of experi-
ments to evaluate the efficacy of the proposed algorithms
for visual similarity search in CBIR. The data sets and
code of our experiments can be found in our project web
site http://OMKS.stevenhoi.org/.

6.1 Experimental Testbed

We adopt five publicly available image data sets 1. These
five data sets have been widely used for the benchmark
of image retrieval, classification and recognition tasks.

The first testbed is the “Indoor” database2, which was
used for the research of recognizing indoor scenes [45].
This data set consists of 67 indoor categories, and a
total of 15620 images. The number of images contained
in different categories are diverse, but each category
contains at least 100 images. It is further divided into five
subsets: store, home, public spaces, leisure, working place.
We evaluate the performance of different algorithms
individually on a randomly picked subset: public spaces (
we name it “Public”, it is also used to evaluate the effect
of parameters) as well as the whole indoor collection.

The second testbed is the “Caltech256” database3,
which has been widely adopted for object recognition
and image retrieval tasks [46], [26]. This database con-
tains 256 object categories (excluding the background
category) and a total of 30607 images. Following the
similar experiments as the previous work [26], we pick
10, 20 or 50 out of the 256 classes to form three subsets
(the same sets as used in [26]), which are named as
“Caltech10”, “Caltech20”, and “Caltech50”, respectively.

The third testbed is the “Corel5000” database [5]. The
image testbed consists of real-world photos from COREL
image CDs. It has 50 categories, with each category
contains exactly 100 images that are randomly selected
from relevant examples in the COREL image CDs.

1. The data sets used in our experiments are all available in our
project website:http://www.cais.ntu.edu.sg/∼chhoi/OMKS/

2. http://web.mit.edu/torralba/www/indoor.html
3. http://www.vision.caltech.edu/Image Datasets/Caltech256/

The fourth testbed is the “ImageCLEF” database4,
which was also used in [22]. It is a medical image data
set. We also combine “ImageCLEF” with a collection of
100,000 social photos crawled from Flickr, this larger set
is named “ImageCLEF+”. For the Flickr photos, we treat
all of them as the background noisy photos, which are
mainly used to test the scalability of our algorithms.

The fifth testbed is the “Oxford Buildings” database5,
which was first used in [47]. It consists of 5062 images
collected from Flickr by searching for particular Oxford
landmarks. The query set contains 55 queries from 11
different landmarks. We name it “Oxford” for short.

6.2 Experimental Setup

For each data set (except “Oxford” which has no catego-
rial info), we randomly select a subset from each class
to make sure that all classes have the same number of
images as the one has least images in the original data
set. This can avoid the performance being dominated
by some single class of large number of images. Based
on the data set, we then randomly select 50% examples
from each class to form a training set, 10% examples
to form a validation set, 10% examples to form a query
set, and the rest 30% examples to form the test set for
retrieval evaluation. The validation set is mainly used to
determine the best parameters and the best cases of the
compared algorithms. The final results are averages over
5 splits. We measure both mean and standard deviation
of the results, and highlight the best case by performing
student t-tests with the significance level α = 0.05.

We need to generate side information in the forms of
triplet training instances for learning the similarity func-
tions by OASIS and the proposed algorithms, and also
pairwise training data instances for the kernelized ITML
algorithm (KITML) [13]. In our approach, we generate
the side information by sampling triplet constraints from
the images in the training set according to their ground
truth class labels. Specifically, we generate all positive
pairs (two images belong to the same class), and for each
positive pair we randomly select another image from
another class to form a triplet. Then two pairwise con-
straints (p, p+,+1) and (p, p−,−1) can be derived from
the triplet (p, p+, p−). After that we randomly sample
20% (i.e., RatioT rain = 20%) of all training instances
to form the training set in order to speed up the exper-
iments (as we can see in section 6.6, the performance
improves along with the number of training instances
increases and then arrives at a saturated value).

For the “Oxford” data set, we randomly split the query
set into 5 portions. Then for each split, we test the
algorithms 5 times, each time select a different portion
as query set, one portion as validation set, the others are
left as training set. This can make sure that the average of
these 5 runs is the evaluation of the whole query set. The
same as the other data sets, the final results are averaged

4. http://imageclef.org/
5. http://www.robots.ox.ac.uk/ vgg/data/oxbuildings/index.html

http://OMKS.stevenhoi.org/
http://www.cais.ntu.edu.sg/~chhoi/OMKS/
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over 5 splits. The side information can be generated
easily from the ground truth, we use all positives, and
for each positive we randomly select a negative.

We evaluated the performance of all algorithms using
some standard performance metrics for ranking in multi-
media retrieval. Specifically, for each query image in the
query set, all the test images are ranked according to
their similarities to the query image, which returns a set
of top n similar images for the query. We can measure
the precision at top n returned images by computing
the number of top-n images of the same class label
as the query image. We also adopt the standard mean
Average Precision (mAP) to evaluate the retrieval result.
In particular, the Average Precision (AP) value is the
area under precision-recall curve for a query. The mAP
value is calculated based on the average AP value of all
the queries. The precision value is the ratio of relevant
examples over the total retrieved examples, while recall
is the ratio of the relevant examples retrieved over the
total relevant examples in the database.

Finally, all of the experiments were run in MATLAB
environment on a Linux machine with 3GHz Intel CPU
and 16GB RAM.

6.3 Image Descriptors and Kernel Functions

Here we describe how to to extract features from images
by different descriptors, and how to compute different
kernel functions based on different kinds of features.

6.3.1 Image Descriptors

We adopt both global and local feature descriptors to
extract features for representing images in our experi-
ments. We have done some preprocessing of resizing all
the images to the scale of 500×500 pixels while keeping
the aspect ratio unchanged.

For global features, we extract five kinds of features,
including (1) color histogram and color moments (81
dimensions), (2) edge direction histogram (37 dimen-
sions), (3) Gabor wavelets transform (120 dimensions),
(4) Local Binary Pattern (59 dimensions), and (5) GIST
features (512 dimensions). These global features have
been widely used in previous CBIR studies.

For local features, we extract the bag-of-visual-words
features using two types of descriptors: (i) the SIFT
descriptor — we adopt the Hessian-Affine interest region
detector with threshold 500; and (ii) the SURF descriptor
— we adopt the SURF detector with threshold 500. For
the clustering step, we adopt a forest of 16 kd-trees and
search 2048 neighbors to speed up the clustering task. Fi-
nally, we adopt the TF-IDF weighing scheme to generate
the final bag-of-visual-words representation. By choos-
ing different descriptors (SIFT/SURF) and vocabulary
sizes (200/1000), we totally extracted four kinds of local
features: SIFT200, SIFT1000, SURF200 and SURF1000.
For the “Oxford” data set, we use larger vocabulary sizes
(20,000 and 100,000) instead, because it prefers larger
code book size.

We apply PCA to all kinds of features and keep the
first 50 dimensions (if the original dimension is less than
50, we keep all dimensions) to improve the efficiency of
the experiment. For those features whose dimension is
larger than 10,000, Singular Value Decomposition (SVD)
is performed to keep the first 1,000 dimensions. After
dimension reduction, we normalize all feature vectors
to unit length.

6.3.2 Kernel Functions

In the above, we represent each image in our database
by a total of 9 types of different features. Based on
these features, we can build a series of kernel functions
on these features. To facilitate the learning tasks, we
normalize all the kernel values to the range of [0,1].

We adopt 4 kernel functions to build kernels on each
kind of feature, which thus results in a total of 36
different kernels. The 4 kernels used in our approach
are described as follows:

• RBF kernel: κ(x, x′) = exp(− d(x,x′)
γσ2 ), where d(·, ·) is

the Euclidean distance, the kernel parameter γ is se-
lected as the mean of the pairwise distance, σ is used
to control the bandwidth, we select σ ∈ {2−1, 20, 21}.

• Kernel using cosine similarity: κ(x, x′) = <x,x′>
‖x‖2‖x′‖2

.

We normalize the kernel κ(x, x′) = 0.5 <x,x′>
‖x‖2‖x′‖2

+0.5

to the range of [0,1].

6.4 Comparison Algorithms

To extensively examine the efficacy of the proposed algo-
rithms, we have implemented the following algorithms:

• Eucl.-Best: We test the retrieval performance of all
kinds of features on the validation set by ranking
with Euclidean distance, and then select the best
feature of the highest mAP. We report the result of
this feature by ranking with Euclidean distance.

• RCA-Best: We train the RCA [48] model on the
training set for all the features and test the retrieval
performance of all kinds of features on the valida-
tion set by RCA, and then select the best feature of
the highest mAP value. We report the result of this
feature by RCA.

• LMNN-Best: We train the LMNN [20] model on
the training set for all the features and test the
retrieval performance of all kinds of features on the
validation set by LMNN, and then select the best
feature of the highest mAP value. We report the
result of this feature by LMNN.

• OASIS-Best: We train the OASIS [26] model on the
training set for all the features and test the retrieval
performance of all kinds of features on the valida-
tion set by OASIS, and then select the best feature
of the highest mAP value. We report the result of
this feature by OASIS.

• KRCA-Best: We train the KRCA [49] model on the
training set for all the kernels and test the retrieval
performance of all kinds of kernels on the validation
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TABLE 1
Experimental results of mAP performance.

Alg. Metric Public Indoor Caltech10 Caltech20 Caltech50 Corel5000 ImageCLEF ImageCLEF+ Oxford

Eucl.-Best mAP 0.1628 0.0439 0.2220 0.1668 0.0982 0.1833 0.4125 0.1224 0.4360
std ±0.0017 ±0.0007 ±0.0068 ±0.0017 ±0.0028 ±0.0047 ±0.0131 ±0.0105 ±0.0000

RCA-Best mAP 0.1595 0.0435 0.2203 0.1656 0.0995 0.1831 0.4563 0.1413 -
std ±0.0073 ±0.0006 ±0.0085 ±0.0011 ±0.0031 ±0.0040 ±0.0130 ±0.0129

LMNN-Best mAP 0.1618 0.0447 0.2281 0.1639 0.1021 0.1958 0.4840 0.1367 -
std ±0.0096 ±0.0005 ±0.0040 ±0.0085 ±0.0029 ±0.0072 ±0.0092 ±0.0124

OASIS-Best mAP 0.1681 0.0462 0.2365 0.1777 0.0997 0.1841 0.4530 0.1388 0.6078
std ±0.0047 ±0.0009 ±0.0061 ±0.0062 ±0.0023 ±0.0056 ±0.0138 ±0.0121 ±0.0422

KRCA-Best mAP 0.1657 0.0446 0.2451 0.1855 0.1114 0.2292 0.5520 0.1222 -
std ±0.0040 ±0.0007 ±0.0052 ±0.0038 ±0.0016 ±0.0052 ±0.0165 ±0.0133

KITML-Best mAP 0.1754 0.0460 0.2513 0.1774 0.0993 0.1909 0.5434 0.1962 -
std ±0.0048 ±0.0022 ±0.0047 ±0.0079 ±0.0030 ±0.0075 ±0.0108 ±0.0164

KITML-Avg mAP 0.2083 0.0625 0.2501 0.2291 0.1298 0.3273 0.4839 0.2360 -
std ±0.0178 ±0.0038 ±0.0096 ±0.0145 ±0.0040 ±0.0059 ±0.0279 ±0.0197

Eucl.-Con mAP 0.1921 0.0568 0.2052 0.1562 0.1013 0.2542 0.3919 0.1118 0.2032
std ±0.0033 ±0.0019 ±0.0093 ±0.0038 ±0.0032 ±0.0066 ±0.0184 ±0.0092 ±0.0000

RCA-Con mAP 0.1916 0.0566 0.2137 0.1727 0.1061 0.2606 0.4974 0.1509 -
std ±0.0039 ±0.0019 ±0.0088 ±0.0046 ±0.0029 ±0.0059 ±0.0174 ±0.0128

LMNN-Con mAP 0.2009 0.0593 0.2265 0.1709 0.1114 0.2808 0.5251 0.1553 -
std ±0.0049 ±0.0020 ±0.0103 ±0.0048 ±0.0034 ±0.0080 ±0.0150 ±0.0185

OASIS-Con mAP 0.2004 0.0581 0.2249 0.1659 0.1023 0.2518 0.4751 0.1540 0.4580
std ±0.0090 ±0.0028 ±0.0088 ±0.0055 ±0.0031 ±0.0103 ±0.0166 ±0.0114 ±0.0277

KRCA-Con mAP 0.1958 0.0589 0.241 0.1971 0.1226 0.3376 0.5762 0.1624 -
std ±0.0037 ±0.0021 ±0.0153 ±0.0055 ±0.0021 ±0.0091 ±0.0222 ±0.0098

KITML-Con mAP 0.2049 0.0572 0.2468 0.1891 0.1044 0.2757 0.5597 0.1919 -
std ±0.0090 ±0.0055 ±0.0164 ±0.0096 ±0.0034 ±0.0073 ±0.0215 ±0.0104

OKS-Best mAP 0.1897 0.0513 0.2653 0.1972 0.1192 0.2407 0.5785 0.2804 0.6698
std ±0.0044 ±0.0014 ±0.0088 ±0.0099 ±0.0058 ±0.0091 ±0.0099 ±0.0114 ±0.0142

OKS-Avg mAP 0.2152 0.0677 0.2601 0.2335 0.1433 0.3542 0.5036 0.2802 0.2312
std ±0.0088 ±0.0024 ±0.0160 ±0.0041 ±0.0049 ±0.0060 ±0.0150 ±0.0104 ±0.0051

OMKS-U mAP 0.218 0.0678 0.252 0.224 0.1382 0.3633 0.5766 0.3794 0.2187
std ±0.0085 ±0.0023 ±0.0088 ±0.0056 ±0.0035 ±0.0085 ±0.0316 ±0.0234 ±0.0192

OMKS-W mAP 0.2187 0.068 0.2559 0.2255 0.1389 0.3654 0.5966 0.3991 0.2709
std ±0.0084 ±0.0024 ±0.0084 ±0.0056 ±0.0035 ±0.0085 ±0.0289 ±0.0214 ±0.2709

OMKS mAP 0.2453 0.0794 0.3253 0.2690 0.1592 0.3858 0.6681 0.4442 0.7411
std ±0.0082 ±0.0022 ±0.0035 ±0.0089 ±0.0045 ±0.0091 ±0.0176 ±0.0084 ±0.0151

Note: KITML algorithms are too computationally intensive to run on large data sets, so we report the results by a low rank scheme proposed in [13]
instead; some algorithms cannot run on “Oxford” dataset without class labels.

set by KRCA, and then select the best kernel of
the highest mAP value. We report the result of this
kernel by KRCA.

• KITML-Best: We train the kernelized ITML
(KITML) [13] model on the training set for all the
kernels, then test the retrieval performance of all
kinds of kernels by KITML on the validation set,
and finally select the best kernel of the highest
mAP value. We report the result of this scheme
using KITML with this kernel.

• KITML-Avg: We build an average kernel at first
by κ(x, x′) =

∑m
i=1

1
m
κi(x, x

′). Then we report the
result of this kernel by KITML.

• Eucl.-Con: We first concatenate all kinds of features
together, and then report the result of this feature
by ranking with Euclidean distance.

• RCA-Con: We first concatenate all kinds of features
together, and then report the result of this feature
by RCA [48].

• LMNN-Con: We first concatenate all kinds of fea-
tures together, and then report the result of this
feature by LMNN [20].

• OASIS-Con: We first concatenate all kinds of fea-

tures together, and then report the result of this
feature by OASIS [26].

• KRCA-Con: We first concatenate all kinds of fea-
tures together, then train the KRCA [49] model on
the training set for all 4 kernels of this feature and
test the retrieval performance of theses 4 kinds of
kernels on the validation set by KRCA, and select
the best kernel of the highest mAP value. We report
the result of this kernel by KRCA.

• KITML-Con: We first concatenate all kinds of fea-
tures together, then train the KITML [13] model on
the training set for all 4 kernels of this feature, then
test the retrieval performance of theses 4 kinds of
kernels by KITML on the validation set, and finally
select the best kernel of the highest mAP value. We
report the result by KITML using this kernel.

• OKS-Best: We train the OKS model by Algorithm 1
on the training set for all the kernels and test the
retrieval performance of all kinds of kernels on the
validation set by OKS, and then select the best
kernel of the highest mAP value. We report the
result of this kernel by OKS.

• OKS-Avg: We build an average kernel at first by
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κ(x, x′) =
∑m

i=1
1
m
κi(x, x

′). Then we report the
result of this kernel by Algorithm 1.

• OMKS-U: Use f(q, p) =
∑m

i=1
1
m
Si(q, p) instead of

f(q, p) =
∑m

i=1 θiSi(q, p) for OMKS.
• OMKS-W: Use f(q, p) =

∑m
i=1 θiSi(q, p) for OMKS,

but the weight is computed as θi = emAPi . mAPi is
obtained by training the OKS model on the training
set and test it on the validation set.

• OMKS: The proposed OMKS algorithm as shown in
Algorithm 2.

6.5 Experimental Results

We now present the experimental results of performance
evaluations on the data sets. We measure the perfor-
mance in terms of top-n (n = 1, 2, · · · , 5) precision
and the mAP values. We summarize in TABLE 1 the
experimental results, measured by mAP, of the compared
algorithms on all data sets. Fig. 2 illustrate the details
of the top-n precision results on two sampled data sets.
In TABLE 1, we highlight the best result in each group
in bold font by conducting student t-tests with the
significance level α = 0.05. We draw several empirical
observations from the experimental results as follows.

First of all, by comparing the linear methods based on
the best feature, we notice that RCA-Best and LMNN-
Best are not guaranteed to outperform Eucl.-Best, while
OASIS-Best can achieve consistent improvements over
Eucl.-Best.

Second, by comparing the linear methods based on
the best feature (RCA-Best and OASIS-Best) with the
kernel-based methods using the best kernel (KRCA-Best
and OKS-Best), we observed that the kernel methods
can improve the performance of the linear methods
significantly. OKS-Best consistently outperforms all the
other methods based on either single feature or single
kernel. We also got the results of full rank KIMTL-
Best (KITMLFR-Best) on three small scale data sets
”Public”, ”Caltech10” and ”Caltech20”, their mAP val-
ues are 0.1911, 0.2754, 0.1989 respectively. It seems that
KITMLFR-Best performs slightly better than OKS-Best
(though their difference is not statistically significant).
We believe this result is fairly encouraging since OKS-
Best is an online learning method while KITMLFR-Best is
a batch learning method. Despite their comparable per-
formance, we emphasize OKS-Best is empirically more
attractive due to its significant advantage in efficiency
and scalability over KITMLFR-Best. In particular, as the
time efficiency evaluation shown in TABLE 2, the run-
ning time of KITMLFR-Best is at least 700 times of that of
OKS-Best, and the gain becomes more significant when
the data set size increases. Because of the extremely high
computational cost, KITMLFR-Best simply cannot run
on large data sets as it will take several months to run
these data sets on the same machine, so we report the
results by a low rank scheme proposed in [13] instead.
The dimension of KITML is set to 1/5 that of the original
dimension and no more than 200. It can be observed that

though this low rank scheme can improve the efficiency,
it causes some loss in performance, such as for ”Oxford”
data set when the dimension is reduced from bout 5,000
to 200, KITML failed to beat the baseline, so they were
not include in TABLE 1. These promising results show
that the proposed OKS algorithm is able to learn the
similarity function more effectively and efficiently than
the state-of-the-art techniques.

TABLE 2
Training time (seconds) of KITML versus OKS.

Public Caltech10 Caltech20
KITMLFR-Best 887.76 63.54 888.80

KITML-Best 15.07 2.34 15.16
OKS-Best 0.59 0.09 0.43

Third, we found that the methods based on the con-
catenated feature do not always outperform those based
on the best feature. For example, consider the “Eu-
clidean” distance, the feature concatenation approach
outperforms the best feature only on dataset ”Public”,
”Indoor”, ”Caltech50”, ”Corel5000”, but fails on the
other datasets. This observation implies that the feature
concatenation is not optimal for combining different
kinds of features.

Fourth, OKS-Avg outperforms OKS-Best on
dataset ”Public”, ”Indoor”, ”Caltech20”, ”Caltech50”,
”Corel5000”, but fails on the other data sets. In general,
it is hard to conclude which is always better the
other. We believe whether or not the average kernel
outperforms the best kernel should depend on the
properties of the underlying data set and individual
kernels. If the best kernel significantly outperforms the
other kernels or there are a number of very poor kernels
for the given data set, OKS-Best would be more likely
to outperform OKS-Avg on such data set.

Fifth, OMKS-U and OMKS-W outperform OKS-Best
in most cases, but fail on “Caltech10” and ”Oxford”.
This is primarily because some kernels have very poor
performance, which in turn reduces the effectiveness of
the uniform and the simple weighted combination. This
result again motivates the importance of studying more
advanced kernel combination approaches.

Finally, by examining the results of the proposed
algorithm, we found that it consistently outperforms the
other algorithms on all the data sets. This promising
result shows that OMKS is able to learn an effective
similarity function with multiple kernels by learning the
optimal combination weights.

6.6 Evaluation with Varied-Size Training Data

In the previous experiments, we fixed training data by
setting the parameter of RatioT rain to 20%. In this
section, we evaluate the impact of varied amounts of
training triplets for the proposed algorithms, as well
as OASIS-Best which also adopts the same amounts of
triplets as input.
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Fig. 2. Top-n precision results on “Public” and “Caltech10” data set.

Fig. 3 shows the evaluation results under varied values
of RatioT rain used for building the similarity functions
on two sampled data sets. From the results, we observed
that all the algorithms in comparison share the similar
performance trend as the number of training triplets in-
creases. In particular, the larger the value of RatioT rain,
the better the retrieval performance can be achieved by
the learning algorithms. Moreover, when RatioT rain is
large enough, e.g., over 40%, the improvements by most
of the learning algorithms tend to become smaller, which
is mainly attributed to sufficiently large amount of train-
ing data. Finally, similar to the previous experiments,
for all the cases under varied values of RatioT rain,
the proposed OMKS algorithm can perform significantly
better than the other competing algorithms.

6.7 Experiments Under Another Setup

Table 3 shows the experimental results obtained by
following exactly the same settings as the previous work
of OASIS [26], where “OASIS-Ori” is our implementation
of OASIS based on the original features used in [26], and
the others are the same as those described in Section 6.4
using our own features.

First of all, by comparing “OASIS-Ori” with the results
published in [26], they are very similar, where the only
slight differences were caused due to the randomization
issues, i.e., different random splits, random generated
training triplets and cross validation ranges.

Second, as our implemented algorithms adopt differ-
ent features, the results of ”OASIS-Best” are different
from those of ”OASIS-Ori”. In general, our single best
feature tends to perform worse than the original features
used in [26]; we conjecture this may be because they have
adopted a well-design feature for this particular data set.

Third, by comparing the results of ”OMKS”, ”OKS-
Best”, ”OASIS-Best” and ”Eucl.-Best”, it is again to
validate that our proposed algorithms ”OMKS” and
”OKS-Best” are significantly more effective by following
another different experimental setup.

Finally, no matter which kinds of features used by
OASIS, our algorithms can always make consistent im-
provements over the results of OASIS by following the
same experimental setup in [26] .

6.8 Qualitative Comparison

In the last experiment, we sample several query images,
and compare the top ranked images retrieved by differ-
ent methods. Fig. 4 shows the qualitative comparisons
of six different query examples obtained by four dif-
ferent algorithms, including “OASIS-Best”, “OKS-Best”,
“OMKS-U” and “OMKS”. From the visual results, we
observe that in general, “OKS-Best” retrieves more rel-
evant images than “OASIS-Best”, as illustrated by the
results for the first two queries. This result implies the
importance of introducing nonlinear similarity functions
in ranking. But at the same time, we notice that for
all the other 4 queries, the results by “OKS-Best” are



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI), VOL. 1, NO. 1,JAN 2012 12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

RatioTrain

m
A
P

OASIS−Best

OKS−Best

OMKS−U

OMKS−W

OMKS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

RatioTrain

m
A
P

OASIS−Best

OKS−Best

OMKS−U

OMKS−W

OMKS

(a) “Public” (b) “Caltech10”

Fig. 3. Evaluation of RatioTrain on both “Public” and “Caltech10” data set.

TABLE 3
Mean average precision and precision at top 1, 10 and

50 on the Caltech object data sets.
Caltech10 OMKS OKS-Best OASIS-Best OASIS-Ori

Mean avg prec. 40±1.7 35±1.3 24±1.1 31±1.1
Top 1 prec. 59±1.8 49±3.3 35±3.4 45±2.1

Top 10 prec. 49±2.5 41±1.2 29±1.4 38±1.8
Top 50 prec. 27±1.3 25±1.0 20±0.5 23±0.3

Caltech20 OMKS OKS-Best OASIS-Best OASIS-Ori
Mean avg prec. 31±0.6 25±0.7 20±0.5 19±0.7

Top 1 prec. 49±2.1 39±0.9 29±1.1 28±2.5
Top 10 prec. 39±0.8 31±1.0 24±0.9 23±1.1
Top 50 prec. 22±0.3 18±0.6 16±0.4 15±0.7

Caltech50 OMKS OKS-Best OASIS-Best OASIS-Ori
Mean avg prec. 20±0.5 15±0.6 10±0.3 12±0.4

Top 1 prec. 36±1.5 26±1.5 16±1.5 20±0.6
Top 10 prec. 27±0.7 20±0.9 13±0.5 16±0.5
Top 50 prec. 15±0.2 12±0.3 9±0.1 10±0.3

not so perfect, which often returns irrelevant images
similar to OASIS-Best. The result of query 3 and 4
indicates that “OMKS-U” tends to perform better than
“OKS-Best”, validating the importance of incorporating
multiple kernels built from diverse modalities. On the
other hand, “OMKS-U” does not outperform “OKS-
Best”. For example, for query 5, “OKS-Best” obtained 3
relevant images out of 4, while “OMKS-U” only obtained
1. Overall, OMKS overcomes the limitations of OMKS-
U and is able to always find relevant images for all
the queries, showing the significance of appropriately
weighing individual kernels.

7 CONCLUSIONS

This paper addressed a fundamental problem of learning
similarity functions for ranking images towards visual
similarity search. To overcome the limitations of conven-
tional distance metric learning techniques, we proposed
a novel Online Multiple Kernel Similarity (OMKS) learn-
ing scheme that can effectively improve image similarity

search by learning nonlinear proximity functions beyond
conventional linear distance metric learning framework.
By exploring the power of multiple kernels in combining
multi-modal data, OMKS learns a much more flexible
and powerful kernel-based proximity function to im-
prove image similarity search in CBIR. We developed
an efficient online learning algorithm and extensively
evaluated the proposed algorithms for image similarity
search on a number of public image databases. Our em-
pirical results showed that OMKS significantly surpasses
the state-of-the-art linear and nonlinear metric learning
techniques for image similarity search. Despite being
tested on image retrieval tasks, the proposed framework
is rather generic for any multimedia retrieval tasks [50].
For future work, we plan to explore more applications
and address other practical challenges of the proposed
OMKS framework for large-scale applications, such as
the convergence rate [51] and budget online learning
issues [52].
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