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Learning Bregman Distance Functions for

Semi-Supervised Clustering

Lei Wu, Steven C.H. Hoi, Rong Jin, Jianke Zhu, Nenghai Yu

Abstract

Learning distance functions with side information plays a key role in many data mining applications.

Conventional distance metric learning approaches often assume the target distance function is represented

in some form of Mahalanobis distance. These approaches usually work well when data is in low

dimensionality, but often become computationally expensive or even infeasible when handling high-

dimensional data. In this paper, we propose a novel scheme of learning nonlinear distance functions

with side information. It aims to learn a Bregman distance function using a non-parametric approach

that is similar to Support Vector Machines. We emphasize that the proposed scheme is more general

than the conventional approach for distance metric learning, and is able to handle high-dimensional data

efficiently. We verify the efficacy of the proposed distance learning method with extensive experiments

on semi-supervised clustering. The comparison with state-of-the-art approaches for learning distance

functions with side information reveals clear advantages of the proposed technique.

Index Terms

Bregman distance, distance functions, metric learning, convex functions

I. INTRODUCTION

Effective distance function plays a key role in many machine learning and data mining

techniques, such as clustering [28], [6], classification [36], regression [37], and ranking [11].
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Learning effective distance functions is a fundamental problem in many areas in computer

science and engineering, and has a significant impact on a broad range of applications, including

text data mining, information retrieval [42], content-based image and video retrieval [17], [15],

[16], handwriting recognition, object recognition, tagging recommendation [39], social network

analysis, gene expression analysis [23], and outlier detection, among others.

For many data mining applications, the most common approach for distance measure is

Euclidian distance, which is a special case in the family of Mahalanobis distances [27], [26]

with the metric matrix A set to be an identity matrix. Despite its prevalent usages, Euclidean

distance is often not the best distance function for many real situations. In particular, methods

that adopt Euclidian distance often assume that all variables are uncorrelated, the variance across

all dimensions is one and the covariances among all variables are zeros, a scenario that is hardly

achieved in real world. In addition to Euclidean distance, cosine similarity is another popular

function for distance/similarity measure, especially for text mining applications. Although it

has been shown effective for text retrieval applications, similar to Euclidean distance, cosine

similarity assumes equal weight for every dimension, which significantly limits its applications.

Besides, there are also some other distances for specific uses, such as Kullback-Leibler (KL)

distance in measuring correlation between two distributions [9] and the Jensen-Shannon (JS)

divergence which is adopted in measuring the concept distance in visual domain [38].

Recently, learning distance functions from data has been actively studied in data mining and

machine learning. Instead of simply adopting the standard Euclidean distance, researchers have

attempted to learn distance functions from data automatically [40]. Among various studies of

learning distance functions, one emerging group of studies [40], [3], [17] focus on exploiting side

information that is often provided in the form of pairwise constraints (i.e., a constraint indicates

whether two data points are similar or not). Different from explicit class labels used for training

regular classification models, the side information of pairwise constraints often can be obtained

in a much easier and less expensive way. For multimedia applications, side information can be

obtained from user relevance feedback log data [18], [31]. For text data mining applications, side

information of pairwise constrains are available in various forms. For example, one can implicitly

acquire the pairwise constraints by computing links between web documents. In addition, side

information can also be obtained by mining the search engine query logs [32], which are vastly

available in most commercial search engines.
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In literature, various techniques have been proposed for learning distance functions from

side information. Example studies in this category include the distance metric learning (DML)

method that poses metric learning as a convex optimization [40], Relevant Components Analysis

(RCA) [3], Discriminative Component Analysis (DCA)[17], regularized distance metric learn-

ing [31], metric propagation [43], etc. Most of these existing studies assume the distance function

is represented in the form of Mahalanobis distance, which becomes hard or even infeasible to

solve when handling the high-dimensional data (since the number of variables in the optimization

is in the order of O(d2) where d is the dimensionality). In addition, the final learned metric space

is essentially a linear transformation of the Euclidian space, which may limit the capacity for

distance measure.

In contrast to the conventional DML approaches that are often restricted to learning the family

of Mahalanobis distances, in this paper, we propose a novel scheme of learning Bregman distance

functions with side information. We first give the formal definition of Bregman distance.

Definition 1: Let φ be a continuous-differentiable real-valued and strict convex function de-

fined on a closed convex set Ω, a Bregman distance function dφ(x, y) associated with the function

φ is defined as follows:

dφ(x, y) = ∇φ(x)−∇φ(y)− ⟨∇φ(y), (x− y)⟩

for any points x, y ∈ Ω.

Bregman distance or Bregman divergence [5] enjoys several salient properties [1] for distance

measure. Firstly, it generalizes Mahalanobis distance to a wider class of distance functions that

could be nonlinear in terms of the input patterns. Note that the Mahalanobis distance function can

be viewed as a special case of Bregman distances when choosing some quadratic convex function.

Second, there is a strong connection between Bregman distances and exponential families of

distributions [2]. For example, regular Kullback-Leibler divergence can be shown as a special

Bregman distance when choosing the negative entropy as the convex function.

Therefore, by learning the Bregman distances, we are able to generalize the target distance

function to a large family of nonlinear distance functions by choosing any feasible convex

functions in order to better model real complicated patterns. Bregman distance or Bregman

divergence is named after L. M. Bregman, who introduced the concept in 1967. More recently

researchers in geometric algorithms have shown that many important algorithms can be general-

June 4, 2010 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 1, NO. 1, JUL 2010 4

ized from Euclidean metrics to distances defined by Bregman divergence[2]. Although it has been

explored in some previous studies [2], to the best of our knowledge, there is no existing work

that directly addresses the challenge of learning Bregman distances from side information. In

this paper, we formally formulate this challenging problem and present some effective algorithm

with application to semi-supervised clustering with side information.

As a summary, the main contributions of this paper include: (1) we propose a novel scheme

of learning Bregman distance functions with side information; (2) we formulate the bregman

distance learning problem into quadratic program and present an effective algorithm that can

learn the optimal Bregman function from large amount of side information efficiently; (3) we

improved the clustering schemes with the Bregman distance functions learned by our technique;

and (4) we then compared the performance of the improved clustering methods with other state-

of-the-art clustering methods on semi-supervised clustering applications.

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3

proposes the framework of learning Bregman distance functions with side information, and

then formulates the learning task as a quadratic optimization problem that is solved by a

simple yet effective subgradient descent algorithm. Section 4 investigates the application of the

Bregman distance function technique to semi-supervised clustering. Section 5 conducts extensive

experiments by comparing the proposed algorithms with a number of competing distance learning

algorithms for clustering tasks. Section 6 concludes this paper.

II. RELATED WORK

Most existing studies on learning distance functions can be generally classified into two

categories: unsupervised learning and supervised learning. Unsupervised learning methods do

not use any training data, which usually exploit underlying data distribution or manifold struc-

tures. Examples in the unsupervised learning category include the well-known methods such

as Principal Component Analysis (PCA) and Multidimensional Scaling (MDS)[29], and some

manifold learning methods, such as Locally Linear Embedding (LLE)[29], Isomap [33], and

Neighborhood Preserving Embedding (NPE)[14], etc.

Supervised learning approaches learn distance functions by exploring some collections of

training data. These methods can be further classified into two groups.

One group of studies focus on learning distance metrics/functions from training data with
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explicit class labels. Example techniques include Fisher Linear Discriminant Analysis (LDA) [10]

and some recently proposed methods, such as Neighbourhood Components Analysis (NCA) [19],

Maximally Collapsing Metric Learning [12], metric learning for Large Margin Nearest Neighbor

classification (LMNN) [36], and Local Distance Metric Learning [41], etc. The other group of

studies focus on learning distance metrics from training data that are present in the form of

pairwise constraints. Our work is closely related to this group of studies. We briefly introduce

some background and several representative studies below.

Most existing studies aim to learn some distance metric in the form of Mahalanobis distances.

In particular, for any two data points given in a vector space xa, xb ∈ RD, let A ∈ Rd×d be the

distance metric, the formula of Mahalanobis distance measure can be expressed as follows:

dA(xa, xb) = ∥xa − xb∥A =
√

(xa − xb)⊤A(xa − xb) , (1)

where A is a symmetric and positive semi-definite matrix that parameterizes a family of Maha-

lanobis distances.

A variety of techniques have been proposed for learning an optimal metric in the above

framework from training data that are given in the forms of pairwise constraints. In [40],

the authors proposed a Probabilistic Global Distance Metric Learning (PGDM) method by

formulating it into a convex optimization task and then solving it by an iterative projection

algorithm. In [3], the authors proposed a Relevant Component Analysis (RCA) technique that

exploits only similar pairwise constraints for metric learning. The basic idea of RCA is to

identify and down-scale global unwanted variability of the data. In particular, given pairwise

constraints, RCA first forms a set of “chunklets”, each of them is defined as a group of

data points linked together by similar (positive) pairwise constraints. The optimal Mahalanobis

matrix learned by RCA is then computed as the inverse of the average covariance matrix

of the chunklets. RCA enjoys the merit of simplicity, but has the limitation of ignoring the

dissimilar (negative) constraints. In [17], the authors proposed an extension of RCA, known as

Discriminative Component Analysis (DCA), to explicitly address such limitation. To find the

optimal metric, DCA learns the optimized transformation by both maximizing the total variance

between the discriminative chunklets and minimizing the total variance of data points in the

same chunklets. Recently, the authors in [8] proposed an Information-Theoretic Metric Learning

(ITML) approach that also learns the Mahalanobis distance.
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Besides, there is also some work for addressing the robustness of metric learning. In [31],

the authors proposed a regularized distance metric learning method to improve the work in [40]

for noisy data. Very recently semi-supervised distance metric learning also has been proposed

for improving the metric robustness by exploiting both side information and unlabeled data

information, which basically follows the typical framework of learning Mahalanobis distances.

Different from the existing studies above, the proposed technique in this paper goes beyond

the conventional distance metric learning framework, which is often limited for learning only

the family of Mahalanobis distances. Lastly, we notice that there is some existing work on

studying Bregman divergence for data clustering [2]. Our work is considerably different from

the previous study [2] in two folds. Firstly, the previous work aims to directly optimize the

clustering performance by using Bregman divergence, while we aim to learn general distance

functions, which can be applied in a broader range of applications. Secondly, their approach is

in general an unsupervised method that does not exploit side information, while our work aims

to learn with side information.

III. LEARNING BREGMAN DISTANCE FUNCTIONS

In this section, we formally formulate the problem of learning Bregman distance functions

from side information. To make our discussion more readable, Table 1 lists the symbols to be

frequently used in the following discussions.

A. Problem Formulation

In general, we aim to learn a Bregman distance function using a non-parametric approach

that is similar to Support Vector Machines (SVM) [7]. In particular, given a reproducing kernel

Hilbert space denoted by Hκ, we aim to search for a convex function φ(x) ∈ Hκ such that the

induced Bregman distance function, denoted as dφ(xa, xb), minimizes the overall training error.

We denote by D = {(xk
a, x

k
b , yk), k = 1, . . . , n} the collection of training instances, where n

is the number of pairs. Each training instance is a tuple consisting of three elements: xk
a and xk

b

are two examples represented by vectors in a d-dimensional space; yk is a class label assigned

to the pair of examples xk
a and xk

b . The class label is positive, i.e., yk = +1 when xk
a and xk

b

are in the same class, and negative yk = −1 otherwise. We also introduce X = (x1, . . . , xN) to

represent all the input training instances in D, where N is the number of samples.
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Symbol Meaning

κ kernel function

φ convex function

H functional space

Hκ functional space with representer kernel κ

Ω feature space

ΩH a convex subspace of functional space H

L loss function

ℓ hinge loss

D collection of data samples

S+
t training set for the t-th iteration

x data sample

xa, xb sample pair

X sample matrix

y label of a sample pair

n number of pairwise constraints

N number of samples

A Mahanalobis distance metric

dA Mahanalobis distance of metric A

dB Symmetric Bregman distance function

dφ Asymmetric Bregman distance function

K N ×N kernel matrix

k the k-th pair-wise constraint

t the t-th iteration

C penalty cost parameter

I Identity matrix

β threshold parameter

γ learning rate

D dimensionality

TABLE I

THE NOTATION TABLE OF FREQUENTLY USED SYMBOLS

To define the Bregman distance function, we need to first define a convex function φ(x) :

RD 7→ R. We assume φ(x) is a strict convex function and is twice differentiable. Since a general

Bregman distance function is asymmetric and is therefore not a metric, we define the following

symmetric Bregman distance function

dB(xa, xb) = (∇φ(xa)−∇φ(xb))
⊤(xa − xb) (2)
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which can be considered as the approximation of the asymmetric Bregman distance by Taylor

expansion. The following proposition indicates the properties of dB(xa, xb).

Proposition 1: The distance function defined in (2) satisfies the following properties if φ(x)

is a strictly convex function: (a) dB(xa, xb) = dB(xb, xa), (b) dB(xa, xb) ≥ 0, (c) dB(xa, xb) =

0 ↔ xa = xb.

Proof: The first property (a) follows directly from the fact dB(xa, xb) = dφ(xa, xb) +

dφ(xb, xa) where dφ(xa, xb) is an asymmetric Bregmen distance function that is defined as

dφ(xa, xb) = φ(xa)− φ(xb)−∇φ(xb)
⊤(xa − xb).

Since φ(x) is strictly convex, we obtain dφ(xa, xb) > 0, and thus have the second property (b).

The third property (c) follows the following fact:

dB(xa, xb) = (xa − xb)
⊤∇2φ(x̃)(xa − xb)

where x̃ is a point lying between xa and xb. Given φ(x) is a strictly convex function, we have

∇2φ(x̃) ≻ 0, which leads to the third property. The Hessian matrix form can be justified by the

Mean value theorem [21].

The Bregman distance function can be viewed as a general Mahalanobis distance that intro-

duces a local distance metric A = ∇2φ(x̃). Unlike the conventional Mahalanbis distance where

metric A is a constant matrix throughout the entire space, the local distance metric A = ∇2φ(x̃)

is introduced via the Hessian matrix of convex function φ(x) and therefore depends on the

location of xa and xb.

Although the Bregman distance function defined in (2) does not satisfy the triangle inequality,

the following proposition shows the degree of violation could be bounded if the Hessian matrix

of φ(x) is bounded.

Proposition 2: Let Ω be the closed domain for x. If ∃m,M ∈ R, M > m ≥ 0 and

mI ≼ ∇2φ(x) ≼ MI, ∀x ∈ Ω

where I is the identity matrix, we have the following inequality√
dB(xa, xb) ≤

√
dB(xa, xc) +

√
dB(xc, xb) (3)

+ (
√
M −

√
m)[dB(xa, xc)dB(xc, xb)]

1/4 (4)
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The details of our proof for the above proposition can be found in Appendix A 1. As indicated

in Proposition 2, the degree of violation of the triangle inequality is essentially controlled by
√
M −

√
m. Given a smooth convex function with almost constant Hessian matrix, we would

expect that to a large degree, Bregman distance will satisfy the triangle inequality. In the extreme

case when φ(x) = x⊤Ax/2 and ∇2φ(x) = A, we have a constant Hessian matrix, leading to a

complete satisfaction of the triangle inequality.

Following the maximum margin framework, a straightforward approach is to consider the

following optimization problem, i.e.,

min
φ∈ΩHκ ,β∈R

1

2
|φ|2Hκ

+ C
n∑

k=1

ℓ(yk[dB(x
k
a, x

k
b )− β]) (5)

where ΩH = {f ∈ H : f is convex} refers to the subspace of functional space H that only

includes convex functions, ℓ(z) = max(0, 1−z) is a hinge loss, and C is a penalty cost parameter.

The main issue with the variational problem in (5) is that it is difficult to derive a representer

theorem for φ(x) because it is ∇φ(x) used in the definition of distance function rather than

φ(x). Below we will consider a special family of kernel functions κ(xa, xb) that allows for the

derivation of the representer theorem.

In this paper, we consider κ(xa, xb) in the following special forms

κ(xa, xb) = h(x⊤
a xb) (6)

where h : R 7→ R is a univariate convex function. Note that not all the convex function h(·) will

make κ(·, ·) defined (6) satisfy the Mercer’s condition (i.e., a kernel function). Examples of h(z)

that makes a kernel function κ(·, ·) in (6) are h(z) = zi or h(z) = (z + 1)i (i.e., the polynomial

kernel). It is also not difficult to show that h(z) = exp(z) will result in a kernel function for

κ(·, ·).

We then consider how to restrict h(z) to make the derivation of the representer theorem for

(5) easy. Without loss of generality, we assume h(0) = 0. First, since φ(x) ∈ Hκ, we have

φ(x) =

∫
dξκ(x, ξ)q(ξ) =

∫
dξh(x⊤ξ)q(ξ) (7)

where q(ξ) is a weight function. We further define space A and Ā as

A = span{x1, . . . , xN}, Ā = Null(x1, . . . , xN) (8)

1http://www.cais.ntu.edu.sg/∼chhoi/bregman/appendix.pdf
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We then divide the space Hκ into H∥ and H⊥ that are defined as follows

H∥ = span{κ(x, ·),∀x ∈ A}, H⊥ = span{κ(x, ·), ∀x ∈ Ā} (9)

The following proposition summarizes an important property of the reproducing kernel Hilbert

space Hκ when kernel function κ(·, ·) is restricted to Eq. (6).

Proposition 3: If the kernel function κ(·, ·) is written in the form of Equation (6) with h(0) = 0,

we have H∥ and H⊥ form a complete partition of Hκ, i.e., Hκ = H∥ ∪H⊥, and H∥⊥H⊥.

It is straightforward to verify the above Proposition. Using this proposition, we have the following

representer theorem for φ(x) that minimizes (5).

Theorem 1: The function φ(x) that minimizes (5) should be φ(x) ∈ H∥. Hence, the minimizer

φ(x) is expressed as

φ(x) ∈ H∥ =

∫
ξ∈A

dxiq(ξ)h(x⊤ξ) =

∫
duq(u)h(x⊤Xu) (10)

where u ∈ RN and X = (x1, . . . , xN).

The detailed proof to the above theorem can be found in the Appendix B 2.

B. Algorithm

To obtain the expression for φ(x), we consider the following special cases for q(ξ). q(ξ) =∑N
i=1 αiδ(ξ − xi) where αi ≥ 0. This results in

φ(x) =
N∑
i=1

αih(x
⊤
i x), (11)

and consequently dB(xa, xb) can be expressed as follows:

dB(xa, xb) =
N∑
i=1

αi(h
′(x⊤

a xi)− h′(x⊤
b xi))x

⊤
i (xa − xb)

We define h(xa) = (h′(x⊤
a x1), . . . , h

′(x⊤
a xN))

⊤, and thus we have dB(xa, xb) expressed as:

dB(xa, xb) = (xa − xb)
⊤X(α ◦ [h(xa)− h(xb)])

Notice that when h(z) = z2/2, we have dB(xa, xb) expressed as

dB(xa, xb) = (xa − xb)
⊤Xdiag(α)X⊤(xa − xb)

2http://www.cais.ntu.edu.sg/∼chhoi/bregman/appendix.pdf
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This is clearly related to Mahanabolis distance with metric equal to Xdiag(α)X⊤ =
∑N

i=1 αixix
⊤
i .

When h(z) = exp(z), we have h(x) = (exp(x⊤x1), . . . , exp(x
⊤xN)), and the resulting distance

function is no longer stationary due to the non-linear function exp(z).

In this paper, we will focus on the first situation, i.e. q(y) =
∑N

i=1 αiδ(y− xi). We thus have

(5) simplified as

min
α∈RN ,β

1

2
α⊤Kα + C

n∑
k=1

εk (12)

s. t. yk
(
(xk

a − xk
b )

⊤X(α ◦ [h(xk
a)− h(xk

b )])− β
)
≥ 1− εk,

εk ≥ 0, k = 1, . . . , n, αi ≥ 0, i = 1, . . . , N

Note that the constraint αi ≥ 0 is introduced to ensure φ(x) =
∑N

i=1 αih(x
⊤xi) is a convex

function. Here we assume h(z) is a convex function. For the convenience of presentation, we

introduce the notation zk as

zk = [h(xk
a)− h(xk

b )] ◦ [X⊤(xk
a − xk

b )] (13)

Then, the problem in (12) becomes

min
α∈RN ,β

L =
1

2
α⊤Kα + C

n∑
k=1

ℓ(yk[z
⊤
k α− β]) (14)

s. t. αi ≥ 0, i = 1, . . . , N

where ℓ(z) = max(0, 1− z). We can solve the above problem by a simple subgradient descent

approach. In particular, at each iteration, given solution α and β, we compute the gradients as

∇αL = Kα + C
n∑

k=1

∂ℓ(yk[z
⊤
k α− β])ykzk, (15)

∇βL = −C
n∑

k=1

∂ℓ(yk[z
⊤
k α− β])yk (16)

Let us denote by S+
t ∈ D as the set of training examples for which (αt, βt) suffers a non-zeros

loss, i.e. S+
t = {(zk, yk) ∈ D : yk(z

⊤
k α − β) < 1}. We can then express the sub-gradients of

f(α, β;D) at α and β as follows:

∇αL = Kα− C
∑

(zk,yk)∈S+
t

ykzk, (17)

∇βL = C
∑

(zk,yk)∈S+
t

yk (18)
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The new solution, denoted by α′ and β′, is computed as

α′
i = π[0,+∞] (αi − γ[∇αL]i) , β′ = β − γ∇βL

where α′
i denotes the ith element of vector α′ πG(x) projects x into the domain G, and γ is the

stepsize that can be decided by a line search. In our approach, for the learning rate, we set it as

γ = C
t

similar to the approach used in Pegasos algorithm [30] for solving SVM problems. The

pseudo-code of the proposed algorithm is summarized in Algorithm 1.

Algorithm 1 Algorithm of Learning Bregman distance functions
1: INPUT:

• data matrix: X ∈ RN×d

• pair-wise constraint (xk
a, x

k
b , y

k), where xk
a and xk

b are the points, and constraints yk = {+1,−1}

• penalty cost parameter C

2: OUTPUT:

• Bregman coefficients α, β

3: initialize Bregman coefficients: α = α0, β = β0

4: calculate kernel matrix: κ(xa, xb) = h(x⊤
a xb)

5: calculate vectors zk:

zk = [h(xk
a)− h(xk

b )] ◦ [X⊤(xk
a − xk

b )]

6: set iteration step t = 1;

7: repeat

8: (1) update the learning rate:

γ = C/t, t = t + 1

9: (2) update subset of training instances:

S+
t = {(zk, yk) ∈ D : yk(z

⊤
k α− β) < 1}

10: (3) compute the gradients w.r.t α and β

11: ∇αL = Kα− C
∑

zk∈S+
t
ykzk,

12: ∇bL = C
∑

zk∈S+
t
yk

13: (4) update Bregman coefficients:

14: for i = 1, 2, . . ., N do

15: αi = π[0,+∞] (αi − γ[∇αL]i)

16: end for

17: β′ = β − γ∇βL

18: until convergence
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C. Complexity Analysis

Here we discuss the time complexity of the algorithm. In general, the whole algorithm for

learning the bregman distance function has the worst case time complexity O(N2d), where d is

data dimensionality and N is the number of data points in the training data collection D. The

main computation lies in the initial steps of computing kernel matrix K and vectors zk. If we

examine the subgradient descent algorithm itself, each step essentially has a linear complexity,

i.e., O(max(N, n)). In some real application, as matrix K and vectors zk could be pre-computed,

the proposed solution is scalable to large-scale online applications.

IV. BREGMAN CLUSTERING

A. Overview

In general, the method of learning Bregman distance functions can be applied to any ap-

plication that needs to find good distance functions with side information. In this section, we

present an application, semi-supervised clustering, that adopts the distance function learned by

our technique.

In terms of efficiency and popularity, we consider to apply the Bregman distance function in

two types of well-known clustering techniques, i.e, the basic k-means clustering algorithm [13],

[20] and the hierarchial clustering [22]. It is worth noting that the Bregman function can be

also applied to other clustering algorithms. Due to the limit of space, we do not adopt other

clustering methods here.

B. P2C Bregman k-means Algorithm

One straightforward approach is to extend the regular k-means algorithm by simply replacing

the Euclidean distance with the Bregman distance. In particular, following the standard procedure

of k-means algorithm, we can repeat the following two-step iteration: (1) form k clusters by

assigning each data point to its closest cluster based on Bregman distances, and (2) update the

centroid of each cluster.

Specifically, for each data example xi, we can compute the Bregman distance between xi and

a cluster centroid ωl as:

dB(xi, ωl) = (∇φ(xi)−∇φ(ωl))
⊤(xi − ωl) (19)
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By choosing function φ(x) =
∑N

i=1 αih(x
⊤xi) and some h function, e.g. h(z) = z2/2, it can be

further written as:

dB(xi, ωl) = (α ◦X⊤xi − α ◦X⊤ωl)(xi − ωl) (20)

where α are the Bregman coefficients that are learned by the proposed Bregman distance learning

algorithm, X contains input patterns of all training instances, and ωl denotes the lth cluster

centroid. In practice, as α is usually a sparse vector (with only a few nonzero values), the

Bregman distance function can be computed efficiently.

In the above clustering approach, we measure the closeness of a data point to a cluster by

computing the Bregman distance from the data point to the cluster centroid. We refer to such a

clustering approach as a Point-to-Centroid Bregman k-means clustering method (BKM-P2C).

C. P2P Bregman k-means Algorithm

Similar to the regular k-means algorithm, the above P2C Bregman k-means algorithm rep-

resents each cluster by its centroid, which implicitly assumes data clusters are given in some

spherical shape, which may not be the case in real data. To address the limitation, instead of

adopting the cluster centroid, we propose another Point-to-Point Bregman k-means clustering

algorithm (BKM-P2P), which does not make the spherical shape assumption. The similar ideas

have been adopted in some previous clustering algorithms, such as agglomerative hierarchical

clustering [4], [25].

Different from the P2C approach, the point-to-point algorithm measures the closeness of a

data point xi to a cluster ωl by computing the average Bregman distance from data point xi

to all points in the cluster ωl. It seems that such approach may be computationally intensive

for computing many pairwise distances. However, as we can store the computed distances, it

avoids the needs of frequently updating the cluster centroids during clustering. As a result, the

computation of Bregman distances can be essentially reduced when performing online clustering.

Thus, in terms of online clustering computation, the P2P algorithm is essentially more efficient

than the P2C algorithm.

D. Bregman Distance Function with Application to Hierarchical Clustering

The scheme of learning Bregman distance functions is beneficial to hierarchical clustering,

which is a clustering method that aims to build a hierarchy of clusters. In hierarchical clustering,
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Algorithm 2 Point-to-Centroid Bregman k-means algorithm (BKM-P2C)
1: INPUT:

• data matrix: X ∈ RN×d

• Bregman coefficient: αi, i = 1, · · · , n

• number of clusters: K

2: OUTPUT:

• cluster partition: W = {Wl}Kl=1, the center of Wl is ωl

3: initialize cluster partition W = {Wl}l=1,···,K

4: set t = 0

5: repeat

6: set Wt+1
l = ∅, l = 1, . . . ,K

7: for i = 1, 2, . . . , N do

8: (1) compute P2C Bregman distances:

dB(xi, ωl) = (∇φ(xi)−∇φ(ωl))
⊤(xi − ωl)

where ∇φ(x) =
∑

i αix
⊤
i x · xi

9: (2) compute cluster assignment

l∗ = argminl dB(xi, ωl)

10: (3) update the cluster partition:

Wt+1
l∗ = Wt+1

l∗ ∪ {xi}

11: end for

12: (4) update the centroids of clusters:

ωl =
1

|Wt+1
l |

∑
xi∈Wt+1

l
xi

13: t = t + 1

14: until convergence

data examples are organized in a hierarchical tree structure, as shown in Figure 1. Different from

regular “flat” clustering approaches, such as k-means clustering, hierarchical clustering does not

require to specify the number of clusters, and thus may be flexible and provide more informative

results in some applications.

In general, there are two types of methods for hierarchical clustering: agglomerative methods,

which perform clustering via a series of “bottom-up” merging steps, and divisive methods, which

perform clustering via a series of “top-down” partitioning steps. In this study, we adopt the

agglomerative hierarchical clustering methods that are more commonly used in previous studies.
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Algorithm 3 Point-to-Point Bregman k-means Algorithm (BKM-P2P)
1: INPUT:

• data matrix: X ∈ RN×d

• Bregman coefficients: αi

• number of clusters: K

2: OUTPUT:

• cluster partition: W

3: calculate P2P Bregman distance matrix D:

dB(xa, xb) = (∇φ(xa)−∇φ(xb))
⊤(xa − xb)

where ∇φ(x) =
∑

i αix
⊤
i x · xi

4: initialize cluster partition W = {W0
l }l=1,···,K

5: set t = 0

6: repeat

7: set Wt+1
l = ∅, l = 1, . . . ,K

8: for i = 1, 2, . . . , N do

9: (1) compute cluster assignment:

k∗ = argmink
1

|Wt
k|
∑

xj∈Wt
k
dB(xa, xb)

10: (2) update the cluster partition:

Wt+1
l∗ = Wt+1

l∗ ∪ {xi}

11: end for

12: set t = t + 1

13: until convergence

   

 

              

                                                                                       
Leaf nodes 

Merge 

Hierarchical 

Clustering 

Distance Matrix 
 

Fig. 1. Illustration of the agglomerative hierarchical clustering.

The application of our technique of learning Bregman distance functions to agglomerative

hierarchical clustering is rather straightforward. In particular, a regular agglomerative clustering

method [4], [25] is achieved by firstly building a linkage graph based on the similarity between

samples and then group the most similar samples to form a binary tree, which is used to store
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the hierarchical clusters. Hierarchical clusters can be easily transformed into flat clusters by

cutting the binary tree by a threshold. A regular agglomerative clustering often simply computes

the linkage graph by Euclidean distance in many applications. Our approach is to improve the

agglomerative clustering by replacing the Euclidean distance with the Bregman distance function

learned by the proposed scheme. The remaining clustering process is the same to the regular

agglomerative clustering method.

V. EXPERIMENTS

We evaluate the performance of the proposed Bregman distance function technique with

applications to semi-supervised clustering tasks. We compare our technique with a number of

competing distance metric learning algorithms. These algorithms are the state-of-the-art distance

metric learning approaches in machine learning.

A. Experimental Testbed and Settings

In our experimental testbed, we adopt 12 real datasets with diverse classes and sample sizes

from UCI machine learning repository (http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/).

These include 5 binary datasets (such as “ionosphere” and “sonar”) and 7 multi-class datasets

(such as “letter” and “poker”). We also include 6 well-known high-dimensional text datasets, in-

cluding “Reuters-21578” and “Newsgroup” datasets, available at http://renatocorrea.googlepages.

com/textcategorizationdatasets.

The details of our experimental testbed3 are summarized in Table II.

We choose these datasets evaluating the performance of clustering algorithms for several

considerations. Firstly, these datasets enjoy different properties. Some of them are binary-class,

and some are multi-class. In addition, the feature dimensions are also quite diverse, ranging from

a few dimensions (e.g. 6 for the “liver-disorders” dataset) to very high dimensional text data

(47, 411 for “newsgroup”). Further, these datasets are widely used as benchmark datasets for

machine learning and data mining research. Finally, they are real data that allow us to examine

the empirical performance of our technique in real applications.

3In the table, “index” is used to indicate the corresponding dataset to help subsequent discussions. Da denotes datasets from the UCI datasets

and Db denotes datasets from the high-dimensional text datasets. The Reuter dataset was preprocessed by Renato Fernandes Corrêa, available

at http://renatocorrea.googlepages.com/textcategorizationdatasets
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index dataset #samples #dimensions #classes

Da1 breast-cancer 683 10 2

Da2 diabetes 768 8 2

Da3 ionosphere 251 34 2

Da4 liver-disorders 345 6 2

Da5 sonar 208 60 2

Da6 segment 2,310 19 7

Da7 iris 150 4 3

Da8 letter 15,000 16 26

Da9 dna 2,000 180 3

Da10 poker 25,010 10 10

Da11 vehicle 846 18 4

Da12 vowel 528 10 11

Db1 w1a 47,272 300 2

Db2 w2a 49,749 300 2

Db3 w6a 17,188 300 2

Db4 WebKB 4,291 19,687 6

Db5 newsgroup 7,149 47,411 11

Db6 Reuter 10,789 5,189 79

TABLE II

LIST OF DATA SETS IN OUR EXPERIMENTAL TESTBED. HERE “#” REPRESENTS “THE NUMBER OF”.

In our experiments, we first randomly sample a subset of training data points (e.g. 10% of

all data points), and then follow the previous work [40] to generate the side information by

sampling the pairwise constraints from these data points according to their ground-truth class

labels. Specifically, given the subset of randomly sampled data points, we generate all the positive

pairs (every two training data points form a positive pair if they have the same class label), and

randomly sample the same number of negative pairs from all possible negative pairs (every two

training data points form a negative pair if they have different class labels).

For performing clustering, the number of clusters is simply set to the number of classes in

the ground truth. The initial cluster centroids are randomly selected from the dataset. To enable

fair comparisons, all comparing algorithms start with the same set of initial centroids. We repeat

each clustering experiment for 20 times, and obtain the average results by averaging the results

over these 20 runs.
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B. Compared Methods

We compare the proposed two Bregman k-means algorithms (BKM-P2C and BKM-P2P)

with other existing clustering techniques, including: a standard k-means with Euclidian dist-

nace (Euc) as the baseline, the constrained k-means [35] with Euclidian distance (C-Euc) that

only exploits pairwise constraints during online clustering, k-means with distance learned by

RCA [3] (RCA), k-means with distance learned by DCA [17] (DCA), and k-means with dis-

tance learned by PGDM [40] (PGDM), the clustering method with information-theoretic metric

learning (ITML) [8], and the k-means method with DistBoost metric learning (DistBoost) [34].

Table III shows a comparison of the competing methods in three aspects, where “index”

represents each of the corresponding clustering methods to ease our subsequent discussions;

“with side-info” indicates if the algorithm uses side information for clustering; “dimension”

denotes if the algorithm is applicable to high dimensional data (“low” means it is only feasible

for low-dimensional data, while “high” means it is applicable to both high and low dimensional

data); “type-of-learning” indicates whether the algorithm is supervised or semi-supervised. The

comparison shows that regular distance metric learning approaches are often feasible only for

lower-dimensional data, while the proposed method can handle high dimensional data efficiently.

index method with side-info dimension type-of-learning

M1 Euc NO high unsupervised

M2 C-Euc YES high semi-supervised

M3 RCA YES low semi-supervised

M4 DCA YES low semi-supervised

M5 PGDM YES low semi-supervised

M6 ITML YES low semi-supervised

M7 DistBoost YES low semi-supervised

M8 BKM-P2C YES high semi-supervised

M9 BKM-P2P YES high semi-supervised

TABLE III

LIST OF COMPETING CLUSTERING ALGORITHMS.
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C. Performance Metrics

To evaluate the clustering performance, we adopt some standard performance metrics, includ-

ing pairwise Precision, pairwise Recall, and pairwise F1 measures [24]. The pairwise precision,

pairwise recall, and pairwise F1 measures can be formally defined as follows:

Precision =
#True Positive

#True Positive+#False Positive

Recall =
#True Positive

#True Positive+#False Negative

F1 =
2× Precision×Recall

Precision+Recall

D. Experiment I: Evaluation with Fixed Number of Constraints

The first set of experiments is to evaluate the clustering performance given a fixed percent of

randomly sampled points, (i.e., 10% in the experiments). First of all, different kinds of distance

metrics are learnt based on the same set of constraints among these points, and then each metric

is applied to the k-means clustering algorithm on each dataset.

Table IV and Table V show the comparison of average precision, recall, and F1 measurements

of all the competing algorithms based on the same sets of constraints over different data sets.

In the tables, “method” indicates different metric learning approaches used in the clustering

algorithm. From the experimental results, we can see that, in general the proposed Bregman

distance based k-means clustering approach outperforms other unsupervised clustering and semi-

supervised clustering methods, and is significant on “diabetes”, “sonar”, “segment”, “poker”,

“dna”, and “vowel”. In both tables, the top two highest F1 scores are highlighted in bold font.

From the experimental results, we can observe that the proposed method achieves the best

performance on most of the data sets, except for data set “liver-disorders”, “iris”, and “letter”,

where the ITML method obtains the best performance.

To further examine the significance of the performance gain, Table VIII shows the statistical

t-test (α = 5%) evaluation between the proposed BKM and other methods on ordinary clustering.

These tests show that in most data sets, BKM statistically outperforms the other methods

significantly (5%). In particular, for 6 out of the 12 test sets, BKM significantly outperforms all

other seven methods, while for the rest 6 data sets, BKM achieves the similar best performance

that is comparable to the ITML method.
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breast diabetes

method precision recall F1 precision recall F1

Euc 70.01±0.58 72.06±1.48 71.02±1.55 51.56±0.91 56.27±1.56 53.82±1.55

C-Euc 94.71±1.15 76.71±0.08 84.76±1.76 58.61±1.46 53.56±0.78 55.97±0.34

RCA 84.76±1.65 93.08±1.30 88.73±1.27 58.54±1.89 61.79±1.34 60.12±1.72

DCA 90.74±0.16 91.50±0.21 91.12±1.48 60.87±0.84 63.60±1.81 62.20±0.59

PDGM 89.07±0.90 81.07±0.82 84.88±0.68 56.10±0.21 55.33±0.88 55.71±0.43

ITML 95.87±1.50 85.86±1.49 90.59±1.47 73.82±0.44 67.76±0.21 70.66±1.96

DistBoost 92.74±1.95 92.95±0.78 92.84±1.86 62.25±0.84 68.31±1.38 65.14±0.40

BKM-P2C 98.20±1.00 94.53±1.47 96.33±0.08 99.23±1.87 64.65±0.79 78.29±1.30

BKM-P2P 98.78±0.82 98.09±0.41 98.43±0.31 96.42±1.28 63.24±0.13 76.38±0.69

ionosphere liver-disorders

method precision recall F1 precision recall F1

Euc 59.59±1.29 50.44±1.46 54.63±0.54 61.48±1.03 47.01±1.68 53.28±0.40

C-Euc 54.61±1.61 46.34±0.73 50.13±0.48 60.20±1.38 49.72±1.79 54.46±1.40

RCA 96.50±1.87 46.10±0.59 62.39±0.91 59.00±0.01 48.68±1.12 53.35±0.41

DCA 62.24±0.92 63.26±0.18 62.74±1.51 67.90±1.50 49.15±0.45 57.02±1.04

PDGM 61.10±0.84 63.56±0.38 62.30±0.33 92.37±0.98 48.94±1.36 63.98±0.47

ITML 96.49±0.73 58.00±0.11 72.45±1.51 91.09±0.65 51.67±1.22 65.94±0.71

DistBoost 73.85±1.87 64.25±1.36 68.72±1.46 49.01±0.69 49.35±0.80 49.18±0.93

BKM-P2C 95.83±1.36 58.86±0.37 72.93±1.55 94.59±1.54 49.76±1.29 65.22±1.64

BKM-P2P 97.24±1.96 62.55±1.22 76.13±0.63 95.41±1.55 50.40±1.92 65.96±1.72

sonar segment

method precision recall F1 precision recall F1

Euc 52.23±0.91 48.95±0.99 50.54±0.76 31.20±1.16 32.82±0.59 31.99±0.87

C-Euc 58.75±1.70 51.23±1.85 54.73±1.25 59.05±1.42 61.59±0.17 60.30±0.93

RCA 99.51±1.33 67.93±0.14 80.75±0.73 62.01±0.01 63.99±0.62 62.99±0.97

DCA 98.06±1.60 59.46±1.70 74.03±0.04 63.89±1.11 61.72±1.91 62.78±0.75

PDGM 95.98±0.37 69.62±1.11 80.70±0.41 61.31±1.38 59.78±0.58 60.54±0.38

ITML 97.65±1.73 55.50±0.77 70.78±0.97 62.35±1.00 60.29±1.04 61.31±1.28

DistBoost 75.90±1.81 74.04±0.53 74.96±1.23 66.18±1.17 61.88±1.40 63.96±0.41

BKM-P2C 98.76±0.65 74.21±0.64 84.75±0.20 65.59±0.50 69.54±1.43 67.51±0.57

BKM-P2P 98.98±1.21 72.91±1.13 83.96±1.45 70.20±0.37 67.13±0.04 68.63±0.53

TABLE IV

EVALUATION OF CLUSTERING PERFORMANCE (AVERAGE PRECISION, RECALL, AND F1) FOR NINE DIFFERENT CLUSTERING

METHODS ON Da1-Da6 . THE TOP TWO BEST F1 SCORES WERE HIGHLIGHTED WITH BOLD FONT IN EACH DATASET.
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iris poker

method precision recall F1 precision recall F1

Euc 78.75±1.66 81.42±0.80 80.07±0.42 30.05±0.03 30.72±0.97 30.38±1.46

C-Euc 79.30±0.06 87.92±0.45 83.39±0.19 33.74±1.23 37.34±0.47 35.45±0.05

RCA 84.15±1.86 87.12±0.65 85.61±1.06 39.78±0.43 43.11±0.64 41.38±1.38

DCA 88.32±1.65 89.75±1.41 89.03±1.84 43.05±0.57 55.14±1.62 48.35±1.63

PDGM 77.67±1.60 87.56±1.29 82.32±1.11 56.40±0.63 42.58±0.41 48.52±0.63

ITML 98.38±0.69 95.56±0.75 96.95±0.11 50.33±1.38 48.88±1.72 49.60±0.52

DistBoost 89.56±0.32 87.70±1.66 88.62±1.49 47.24±0.56 47.53±1.94 47.39±1.49

BKM-P2C 96.39±1.52 89.98±0.40 93.07±1.40 57.48±1.42 62.12±1.66 59.71±0.32

BKM-P2P 98.30±0.88 93.12±0.52 95.64±1.23 57.25±1.20 61.09±0.08 59.11±1.84

dna letter

method precision recall F1 precision recall F1

Euc 60.86±0.23 64.54±0.62 62.65±0.31 11.70±0.63 20.77±0.79 14.97±0.61

C-Euc 69.39±1.56 68.25±1.99 68.81±1.46 21.79±1.11 16.81±1.82 18.98±1.82

RCA 69.60±1.80 72.21±1.03 70.88±0.54 25.55±0.83 22.80±0.90 24.09±1.76

DCA 72.91±0.39 68.83±0.89 70.81±1.94 23.66±1.28 25.59±1.73 24.59±1.41

PDGM 66.31±1.05 67.21±1.63 66.76±1.79 23.99±1.42 28.14±0.66 25.90±0.70

ITML 74.89±0.38 78.04±0.01 76.44±0.28 40.13±1.31 41.50±0.40 40.80±1.03

DistBoost 71.70±0.97 70.96±0.77 71.33±0.20 26.57±1.33 28.57±0.46 27.53±1.71

BKM-P2C 75.06±0.23 78.74±1.04 76.86±0.23 37.28±1.86 41.56±1.42 39.31±1.68

BKM-P2P 78.56±0.71 75.75±1.40 77.13±1.50 40.06±0.56 42.12±1.61 41.07±0.98

vehicle vowel

method precision recall F1 precision recall F1

Euc 29.08±1.56 31.34±0.38 30.17±0.31 24.75±0.36 24.67±1.83 24.71±0.66

C-Euc 54.17±0.11 52.95±0.68 53.56±0.62 50.86±0.56 53.98±1.18 52.38±1.90

RCA 39.17±1.58 43.96±1.82 41.43±1.67 35.18±1.92 30.25±1.64 32.53±0.25

DCA 30.43±0.21 33.66±0.77 31.96±0.02 22.41±1.66 27.84±1.49 24.83±0.57

PDGM 65.13±0.13 66.65±0.61 65.88±1.67 33.01±0.46 36.24±1.31 34.55±0.50

ITML 72.36±0.80 69.15±1.46 70.72±0.17 59.94±0.86 63.99±0.62 61.90±1.78

DistBoost 66.77±0.49 58.57±1.57 62.40±1.41 51.75±1.68 61.39±1.89 56.16±1.88

BKM-P2C 73.14±1.14 71.37±1.88 72.24±0.18 62.73±1.22 66.86±1.72 64.73±0.80

BKM-P2P 73.66±0.37 69.48±1.96 71.51±1.80 63.29±1.63 65.31±1.34 64.29±1.76

TABLE V

EVALUATION OF CLUSTERING PERFORMANCE (AVERAGE PRECISION, RECALL, AND F1) FOR NINE DIFFERENT CLUSTERING

METHODS ON Da7-Da12 .
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E. Experiment II: Evaluation with Varied Number of Constraints

This experiment aims to study the influence of the pair-wise constraints for the text clustering

performance. We randomly sample the positive and negative constraints among 10% of all

points to 50% with increased 10% for each level. At each level, all the methods share the same

constraints and random initializations. The average performances over 20 random initializations

for each level are compared between the different methods to evaluate the influence of these

constraints for each algorithm.

Fig. 2 shows the F1 scores of the compared algorithms on each of the constraint levels. Each

sub-figure corresponds to one dataset. The horizontal axis is the number of constraints, and the

vertical axis is the F1 score. This experiment is to compare the performance of all algorithms

on various UCI datasets.

From Fig. 2, we observe that the number of constraints significantly affects the performance

of data clustering. For most datasets, we observe an improvement in data clustering when the

number of constraints is increased. We also observe that for most datasets, the proposed BKM

method is able to gain more improvement in data clustering than the other methods, particularly

when the number of constraints is large. This indicates that BKM is more effective in exploring

the side information than the other methods. Finally, it is worthwhile pointing out that in some

cases (i.e., “breast” dataset), the F1 score drops with the increasing number of constraint. The

similar result was also found in some previous study [24].

F. Experiment III: Evaluation on High-dimensional Text Data

Due to the high computational complexity, some of the baseline methods are incapable of

handling high dimensional data, such as texts. In this study, we restrict the comparison to the

baseline methods that can deal with the high dimensional text datasets, i.e., RCA, DCA, and

ITML. We also include the text clustering method based on cosine similarity (Cos for short).

Table VII summarizes the F1 scores on the “w1a”, “w2a”, “w6a”, “WebKB”, “20newsgroup”,

and “reuter21578” datasets. The best F1 scores are highlighted in bold font in Table VII. The

results show that the proposed algorithm is applicable to learn distance functions for high

dimensional data, and it outperforms the other baseline methods for semi-supervised clustering.

Note that the baseline methods: RCA, DCA, ITML can only handle the first three datasets, and

fail to learn appropriate distance metrics for the remaining high-dimensional text datasets due
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Fig. 2. Clustering performance comparison under different constraint levels (Continued). The x axis is the number of constraints,

and the y axis is the average F1 score. The subfigures correspond to dataset Da1 ∼ Da12.
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Clustering methods w1a w2a w6a

Euc 71.26±0.29 69.36±0.82 72.13±0.41

Cos 72.28±0.11 69.58±0.62 74.35±0.55

C-Euc 80.55±0.53 85.55±0.92 69.93±0.99

C-Cos 81.18±1.01 87.73±0.89 69.85±1.06

RCA 83.34±1.07 88.59±1.05 84.49±1.91

DCA 84.29±1.01 88.17±1.18 85.51±0.97

ITML 86.15±0.38 89.91±1.07 86.67±1.91

BKM-P2C 87.87±0.55 92.98±0.78 94.49±0.41

BKM-P2P 88.07±0.56 93.13±0.86 94.96±0.29

Clustering methods WebKB newsgroup reuter

Euc 32.38±0.36 14.15±0.28 40.71±0.41

Cos 32.71±0.93 15.81±0.18 42.13±0.03

C-Euc 57.76±0.96 15.51±0.38 48.87±0.88

C-Cos 59.27±0.87 16.13±0.34 47.58±0.69

RCA OOM OOM OOT

DCA OOM OOM OOT

ITML OOT OOM OOT

BKM-P2C 69.91±0.72 21.91±0.31 59.91±1.07

BKM-P2P 73.39±0.55 22.27±0.49 60.98±1.02

TABLE VI

F1 PERFORMANCE OF K-MEANS CLUSTERING ON THE HIGH DIMENSIONAL TEXT DATA. “EUC” REPRESENTS THE

APPLICATION OF THE EUCLIDIAN DISTANCE IN K-MEANS CLUSTERING. “COS” DENOTES THE COSINE DISTANCE IN

K-MEANS CLUSTERING. “C-EUC” USES THE EUCLIDIAN DISTANCE IN CONSTRAINED K-MEANS, AND “C-COS” APPLIES

THE COSINE DISTANCE IN CONSTRAINED K-MEANS. ONLY APPLICABLE METHODS ARE SHOWN. OOM INDICATES “OUT OF

MEMORY”, AND OOT INDICATES “OUT OF TIME”. AVERAGE F1 SCORE IS USED IN THE EVALUATION.

to either the “out of memory” (OOM) or the “out of time” (OOT) errors. Among the available

competing methods, BKM performs best on almost all datasets except the “w2a” data, where

C-Euc achieves comparable performance as BKM.

There are several reasons to explain why Bregman distance is superior to Mahalanobis distance

in both effectiveness and efficiency for high-dimensional data. Firstly, the Bregman distance
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can be nonlinear by choosing some appropriate convex functions while conventional Maha-

lanobis distance is essentially a linear transformation of the original feature space that limits

the capacity of forming flexible distance measures. Secondly, Bregman distance is locality

sensitive to the sample pairs while Mahanalobis distance is in general stationary on the whole

data set. Thirdly, when calculating the Bregman distance for any two samples xa and xb,

we avoid the need of loading the whole metric/matrix A into memory, and require only for

computing (∇φ(xa)−∇φ(xb)) in the memory according to Eq. (2). This is clearly more memory

efficient, especially for higher dimensional data. Finally, for calculating the distance, traditional

Mahanalobis distance (xa − xb)
⊤A(xa − xb) needs O(d + 1) vector multiplications; while the

Bregman distance (∇φ(xa)−∇φ(xb))
⊤(xa − xb) only needs O(1) vector multiplication which

is thus computationally more efficient.

G. Experiment IV: Evaluation on Hierarchical Clustering

In this experiment, we evaluate the performance of distance learning methods with applications

to hierarchical clustering. The agglomerative hierarchical clustering method is adopted in our

study. In order to effectively evaluate the clustering result, we convert the hierarchical clustering

result into a flat cluster by a threshold, which is automatically determined by the number of

categories of the data. Both the UCI data sets and the text data sets are used in this experiment.

Fig. 3 shows the comparison of F1 scores by varying the number of constraints from 100 to 1, 000.

Table VII summarizes the F1 scores of hierarchical clustering using 1, 000 randomly selected

constraints. Note “Euc” stands for the hierarchical clustering method in Euclidian space, and

other methods are the application of the respective metric in hierarchical clustering.

According to the results in Fig. 3 and Table VII, we observe that the proposed approach overall

outperforms the other baseline methods, for both UCI datasets and text datasets. We also examine

the statistical significance. Table VIII shows the statistical t-test (α = 5%) results for hierarchical

clustering. From the results, we found that the proposed method performs considerably better

than the other methods on “breast”, “liver”, “sonar”, “iris”, and “poker” data sets. It achieves the

similar performance as the ITML method on dataset “a1a”, and “letter”, and performs equally

well as DCA on dataset “dna”, “a1a”, “ionosphere”.

Finally, we also evaluate the performance on high dimensional text data as listed in Table VII.

The encouraging results again verify the efficacy of the proposed method.
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Fig. 3. Hierarchical clustering performance comparison under different constraint levels (Continued). The x axis is the number

of constraints, and the y axis is the average F1 score. The subfigures correspond to dataset Da1 ∼ Da12.
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Hierarchical clustering w1a w2a w6a

Euc 89.27±1.08 89.92±1.87 74.83±1.19

Cos 90.12±1.11 91.05±1.21 89.92±1.03

RCA 93.08±1.02 93.82±1.12 91.98±0.99

DCA 92.19±1.09 93.38±0.86 93.32±1.02

ITML 92.92±0.94 94.33±1.28 93.32 ±0.86

Bregman 94.54±1.04 96.76±1.09 96.96±1.21

Hierarchical clustering WebKB newsgroup reuter

Euc 78.22±1.45 22.85±1.92 61.34±1.17

Cos 80.54±1.12 23.95±1.22 62.56±1.31

RCA OOM OOM OOT

DCA OOM OOM OOT

ITML OOT OOM OOT

Bregman 81.91±0.64 27.79±0.69 66.96±0.98

TABLE VII

F1 PERFORMANCE OF HIERARCHICAL CLUSTERING ON HIGH DIMENSIONAL TEXT DATA. OOM AND OOT INDICATES “OUT

OF MEMORY” AND “OUT OF TIME”, RESPECTIVELY. THE BEST RESULTS ARE MARKED IN BOLD.

H. Experiment V: Computational Complexity

The computational complexity for the clustering algorithm is mainly determined by both

distance calculation and clustering scheme. For the k-means algorithm in the original Euclidian

space, the distance between two points need O(d), where d is the dimension of the space. The

total complexity for k-means is O(TKNd), where T is the number of iteration; K is the cluster

number, and N is the point number. The computational complexity for the constrained k-means

is the O(T (KN + n)d), where n is the number of pair-wise constraints.

The computational complexity of the Mahalanobis distance metric learning algorithms are

determined by the training and clustering times. After projecting the points into the new RCA

or DCA space, the clustering algorithm is almost the same with the original k-means algorithm.

Thus the main computation lies on the training process. In the training process, both RCA and

DCA will calculate the inverse of the covariance matrix. Besides, the DCA will also calculate

the negative co-variant matrix. Calculating the inverse of large scale matrix is NP hard problem.
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t-test for k-means clustering results

Dataset M1 M2 M3 M4 M5 M6 M7

Da1 YES YES YES YES YES YES YES

Da2 YES YES YES YES YES YES YES

Da3 YES YES YES YES YES NO YES

Da4 YES YES YES YES YES NO YES

Da5 YES YES YES YES YES YES YES

Da6 YES NO NO NO YES YES YES

Da7 YES YES YES YES YES NO YES

Da8 YES YES YES YES YES NO YES

Da9 YES YES YES YES YES YES YES

Da10 YES YES YES YES YES NO YES

Da11 YES YES YES YES YES YES YES

Da12 YES YES YES YES YES NO YES

t-test for hierarchical clustering results

Dataset M1 M2 M3 M4 M5 M6 M7

Da1 YES N/A YES YES YES YES YES

Da2 YES N/A NO NO NO NO NO

Da3 YES N/A YES NO NO YES YES

Da4 YES N/A YES YES YES YES YES

Da5 YES N/A YES YES YES YES YES

Da6 YES N/A YES YES YES YES NO

Da7 YES N/A YES NO YES YES YES

Da8 YES N/A YES NO YES YES YES

Da9 YES N/A YES YES YES YES YES

Da10 YES N/A YES YES YES NO YES

Da11 YES N/A YES YES YES YES YES

Da12 YES N/A YES NO YES NO YES

TABLE VIII

t-TEST RESULTS OF K-MEANS CLUSTERING AND HIERARCHICAL CLUSTERING RESULTS (α = 5%) BETWEEN BKM AND

OTHER METHODS. Mi IS THE i-TH METHOD INDEXED IN TABLE III. Dj IS THE j-TH DATASET INDEXED IN TABLE II.

“YES” AT METHOD Mi AND DATASET Dj REPRESENTS THE BREGMAN METHOD SIGNIFICANTLY OUTPERFORMS METHOD

Mi ON DATASET Dj , AND “NO” REPRESENTS NON-SIGNIFICANT.
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UCI M1 M2 M3 M4 M5 M6 M7

Da1 < 0.01 0.02 0.59 0.10 72 0.10 0.09

Da2 < 0.01 0.02 0.74 0.10 68 0.13 0.12

Da3 < 0.01 0.01 0.46 0.02 8 0.18 0.14

Da4 < 0.01 0.01 0.26 0.03 25 0.11 0.13

Da5 < 0.01 0.01 0.52 0.03 27 0.09 0.10

Da6 < 0.01 0.05 0.70 0.26 63 0.13 0.13

Da7 < 0.01 < 0.01 0.09 0.01 8 0.03 0.04

Da8 < 0.01 0.04 0.52 7.37 68 0.85 0.58

Da9 < 0.01 0.36 1.37 0.04 33 0.54 0.67

Da10 < 0.01 0.05 0.59 0.05 38 0.16 0.13

Da11 < 0.01 0.02 0.41 0.11 65 0.11 0.10

Da12 < 0.01 0.01 0.45 0.04 31 0.04 0.04

Average 0.01 0.05 0.56 0.68 42 0.20 0.19

Text M1 M2 M3 M4 M5 M6 M7

Db1 1.22 3.41 n/a 2.88 n/a 3.13 3.24

Db2 1.23 4.13 n/a 3.39 n/a 3.37 3.70

Db3 0.54 1.32 n/a 1.18 n/a 0.16 0.14

Db4 n/a n/a n/a n/a n/a 0.22 0.22

Db5 n/a n/a n/a n/a n/a 12.99 11.39

Db6 n/a n/a n/a n/a n/a 4.57 4.37

Average n/a n/a n/a n/a n/a 4.07 3.84

TABLE IX

COMPARISON OF AVERAGE DISTANCE LEARNING TIME COST BY DIFFERENT METHODS (SECONDS).

So these methods are not applicable for large scale dataset.

For the Bregman distance function learning, we adopting the P2P scheme, we can calculate

the P2P distance outside the iteration. Thus the computational complexity of the generating

the P2P distance is O(N2d). This computational complexity seems much larger than the P2C

scheme, which only needs O(TKNd). However, once this distance matrix is generated, there

is no need to calculate the distance between points or centers any more in the clustering

iteration. So this process can be performed offline, and the online clustering process only needs
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O(TK). Considering the online phase, the Bregman distance function with P2P scheme makes

the clustering very efficient.

In this experiment, we evaluate the computational complexity of these algorithms by the

overall running time, including both the time for training a distance function and the time for

data clustering. The average time over the twelve UCI datasets of each algorithm is listed in Table

IX, which shows that with the P2P scheme, the Bregman distance based clustering algorithm

has a shorter running time than many baseline methods. We also list the average running time

of the proposed algorithm for the six text datasets.

VI. CONCLUSIONS

In this paper, we proposed to learn Bregman distance functions for semi-supervised cluster-

ing algorithms using a non-parametric approach that is similar to SVM. Rather than learning

some distance metric in the form of Mahalanobis distance, the Bregman distance function

can handle high-dimensional data efficiently, and generalize squared Euclidean distance to a

general metric space, which is a bijection between regular exponential families and regular

Bregman divergences. We also incorporated the Bregman distance function into the k-means

clustering algorithm and hierarchical clustering algorithms. Experiments of data clustering on a

number of UCI datasets and several high dimensional text datasets have shown that the Bregman

distance function outperforms other distance metric learning algorithms on both F1 measure and

applicability. It also shows that increasing the side information for the learning process in general

is able to boost the final clustering results. Finally, the statistical t-test on both k-means clustering

and hierarchical clustering results showed that the proposed distance function outperforms the

other regular distance metrics significantly in most cases.
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