
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2013

Predictive Handling of Asynchronous Concept Drifts in Distributed Predictive Handling of Asynchronous Concept Drifts in Distributed

Environments Environments

Hock Hee ANG
Nanyang Technological University

Vivek Gopalkrishnan
Deloitte Analytics Institute Asia

Indre Zliobaite
Bournemouth University

Mykola Pechenizkiy
Eindhoven University of Technology

Steven C. H. HOI
Singapore Management University, chhoi@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
ANG, Hock Hee; Gopalkrishnan, Vivek; Zliobaite, Indre; Pechenizkiy, Mykola; and HOI, Steven C. H..
Predictive Handling of Asynchronous Concept Drifts in Distributed Environments. (2013). IEEE
Transactions on Knowledge and Data Engineering (TKDE). 25, (10), 2343-2355.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2281

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2281&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 20XX 1

Predictive Handling of Asynchronous
Concept Drifts in Distributed Environments

Hock Hee Ang, Vivekanand Gopalkrishnan, Indrė Žliobaitė, Mykola Pechenizkiy, Steven C.H. Hoi

Abstract —In a distributed computing environment, peers collaboratively learn to classify concepts of interest from each other.
When external changes happen and their concepts drift, the peers should adapt to avoid increase in misclassification errors.
The problem of adaptation becomes more difficult when the changes are asynchronous, i.e., when peers experience drifts at
different times. We address this problem by developing an ensemble approach, PINE, that combines reactive adaptation via drift
detection, and proactive handling of upcoming changes via early warning and adaptation across the peers. With empirical study
on simulated and real world datasets, we show that PINE handles asynchronous concept drifts better and faster than current
state-of-the-art approaches, which have been designed to work in less challenging environments. In addition, PINE is parameter
insensitive and incurs less communication cost while achieving better accuracy.

Index Terms —Classification, Distributed Systems, Concept Drift.

✦

1 INTRODUCTION

Distributed classification [1], [2], [3], [4] is the setting
where nodes/peers collaboratively learn from each
other in order to improve the classification accuracy
on their respective data. This learning task is chal-
lenging specially where there is a massive number of
arbitrarily connected and dynamic peers [5]. Hence
an ideal distributed classification scheme should typ-
ically be: anytime (able to produce an answer at any
time), autonomous (non-blocking), decentralized (no
single point of failure) highly scalable (able to handle
enormous number of peers), tolerant of peer failures
(prevent failures from being catastrophic) and privacy
preserving (hide private data of the peers).
Besides the above mentioned challenges, another

critical challenge for distributed classification is con-
cept drift [2], which is an important problem in many
data mining and machine learning applications. Con-
cept drift refers to situations when the data distribu-
tion changes over time unexpectedly in unforeseen

• H.H. Ang and S.C.H. Hoi are with the School of Computer Engineer-
ing, Nanyang Technological University, Singapore.
Email: {angh0024,chhoi}@ntu.edu.sg

• V. Gopalkrishnan is with Deloitte Analytics Institute Asia, Singapore.
E-mail: vivek@deloitte.com

• I. Žliobaitė is with Smart Technology Research Centre, School of
Design, Engineering and Computing, Bournemouth University, Poole,
Dorset, UK.
E-mail: izliobaite@bournemouth.ac.uk

• M. Pechenizkiy is with Department of Computer Science, Eindhoven
University of Technology, Eindhoven, The Netherlands.
Email: m.pechenizkiy@tue.nl

Manuscript received XXX; revised XXX; accepted XXX; published online
XXX.
Recommended for acceptance by XXX.
For information on obtaining reprints of this article, please send e-
mail to: tkde@computer.org, and reference IEEECS Log Number TKDE-
XXXXXXXXX.
Digital Object Identifier no. XXXXXXXXXX.

ways. Given an occurrence of concept drift, classifiers
will experience a loss in accuracy from the time the
concept changes until the time the classifiers adapt to
the new data distribution (if they adapt).
Attention to such learning scenarios has been

rapidly increasing in the last few years [6], [7], [8],
[9], [10]. Concepts drift in a number of dynamic
environments, such as data streams, distributed sys-
tems, and affect many applications, such as network
intrusion detection, spam categorization, fraud detec-
tion, epidemiological, climate or demographic data,
marketing and web analytics, financial analysis and
many more. It is crucial to address the concept drift
problem in distributed classification, as the inability
to adapt swiftly to the drifted concept often results in
significant loss of classification accuracy.
Although concept drift has been actively studied in

typical centralized settings, the phenomenon exhibits
fundamental differences in distributed environments.
While typical scenarios only model concept drift from
a single source of data, in distributed networks, each
peer can be viewed as an independent data source. In
order for peers to benefit from knowledge sharing, we
assume that data streams of a subset of peers follow
the same unknown probability distributions where
the concept may change from time to time. However,
we cannot assume that the concepts always change
instantaneously for the entire set of peers. Data is not
i.i.d. across the peers at a given point in time, but data
across a subset of peers will be identically distributed
if we look over very long period of time.
Examples of such distributed environments in-

clude disease diagnosis during epidemic outbreaks
where the epidemic originates from one country and
spreads to another with some delay, or weather pre-
diction across different regions where a cyclone brings

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 20XX 2

0

2

4

6

t0 t2 t4 t6 t8 t10 t12 t14 t16 t18 t20

0

2

4

6

t0 t2 t4 t6 t8 t10 t12 t14 t16 t18 t20

0

2

4

6

t0 t2 t4 t6 t8 t10 t12 t14 t16 t18 t20

Global

Distribution:

Peer p1:

Peer p2:

Peer p3:

A B C D E

A B C D E

A B D F

F

0

2

4

6

t0 t2 t4 t6 t8 t10 t12 t14 t16 t18 t20

A B C D E F

Fig. 1. The global distribution of data and local distri-
butions at peers. The horizontal axis represents time,
the vertical axis represents data mean. A,B,C,D and
E represent different concepts (environments).

weather changes while moving from region to region
with a certain speed and direction. In these examples,
the concept drifts from peers in some geographical
location to other peers in other locations. Although
global changes happen and need to be handled unex-
pectedly, at the local peer level adapting to changes
can be made more effective if the first peers to ‘suf-
fer’ can share their knowledge with other peers in
a controlled manner. Fig. 1 illustrates the case of
asynchronous concept drift, where peers encounter the
same concepts, but with different delays. We can see
that peer p2 experiences concept drift identical to
the global distribution whereas peer p1 experiences
the same concept drifts two time steps later. Peer p3
always experiences concept drifts later than peer p2,
but faster or slower than peer p1 and misses some con-
cepts. It is obvious that some (temporal) association
exists between peers p1 and p2. The drifts that happen
at individual peers will be referred to as local drifts
and the drift that happens at the system level will be
referred as global drift. Hence, mining and exploiting
such associations to improve both the detection of and
adaptation to the concept drifts is an essential part in
handling concept drifts in a distributed environment.

An ideal classification algorithm that deals with
the problem of concept drift in distributed networks
should possess the aforementioned desirable prop-
erties for learning in a distributed setting, and also
be able to adapt swiftly to the changes in concepts,
without adversely affecting the peers. Although there
has been much work on distributed classification,
most do not address the problem of concept drift [1],
[3]. Others assume the concept drift scenario of a
centralized setting (i.e., all peers are affected in the
same manner at the same time) [2] or are slow to
adapt, inaccurate in adaptation and requires a large
number of user inputs [4].

Most of the existing approaches that handle concept
drift [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16] are based on a centralized setting and cannot be

easily adapted for a distributed environment. While
the existing ensemble-based solution seems to be a
viable option, they are not designed to be efficient
for the demanding environment of distributed net-
works. Also, they do not consider the problem of
asynchronous concept drifts that may occur in a dis-
tributed environment and thus do not fully exploit the
environmental information to improve concept drift
detection and adaptation.
To address the above challenges, we present a novel

concept drift adaptation framework, PINE, for per-
forming distributed classification in distributed envi-
ronments. The key features of our framework are:

• it integrates both reactive and proactive adapta-
tion techniques, which predict the occurrences of
concept drifts and future concepts from historical
trends observed in the distributed network;

• the proposed approach is parameter insensitive;
• adaptation to concept drift is achieved by both

drift detection and balancing of the reactive and
proactive adaptive classifiers.

Within our framework we design a novel distributed
classification approach, which handles concept drift in
the distributed environment. We empirically demon-
strate that PINE outperforms the existing solutions
on both synthetic and real world datasets. Our study
makes fundamental contributions to distributed clas-
sification in changing environments by relaxing the
unrealistic assumption of synchronous drifts in dis-
tributed environments, as well as contributes a prin-
cipal extension of handling concept drift in machine
learning under concept drift by addressing the dis-
tributed classification scenario.
The remainder of this paper is organized as follows.

Section 2 introduces the formal setting of the problem.
In Section 3 we present our framework for learning
with drifting concepts in distributed networks. Sec-
tion 4 reports the results of empirical evaluation of
the proposed framework. Section 5 discusses related
work and Section 6 concludes the study.

2 PROBLEM STATEMENT

In this section we introduce the formal setting of
classification in a distributed environment.
Consider a typical classification problem, where

the task is to produce a mapping from an input
vector x ∈ X in d-dimensional space to its class label
y ∈ Y , where Y denotes the class label space; e.g.,
Y = {+1,−1} for binary classification. The mapping
is then applied for classifying unseen data that is
assumed to be drawn from the same underlying
distribution. A pair of an input vector and its cor-
responding class label make an instance (x, y). A set
of instances make a dataset. Let D = [x1, . . . , xℓ]

T =
[(xi,1, . . . , xi,d)

ℓ
i=1]

T be a set of input data, and let
y = [y1, . . . , yℓ]

T be a set of corresponding class labels,
where ℓ denotes the total number of training data

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 20XX 3

instances, d denotes the dimensionality of the input
data points.
This classification problem extends to a distributed

setting as follows. Suppose there are N peers in the
distributed network, each peer p is a partition Dp of D
where ℓ =

∑

p ℓp. The goal of distributed classification
is to collaboratively learn a global prediction function
f : X → Y from the training data of all peers, which
maps a d-dimensional vector x = (x1, . . . , xd)

T ∈ X to
a corresponding class label y ∈ Y of a target concept.
In the typical (stationary) classification scenario

each training instance (x, y) is drawn from some
unknown but i.i.d. distribution P (x, y). In a non-
stationary environment the target concept is expected
to change over time. Concept drift is defined as the
change of the underlying unknown probability dis-
tribution, i.e., Pk(x, y) 6= Pj(x, y), which has occurred
from time tk to tj(tk < tj). As a result, the global
mapping f : X → Y that has been learned at time tk
may be no longer accurate at time tj , where tj > tk.
In a changing environment the training data of a
peer p can be represented as Dp = {D1

p, . . . , D
j
p},

where tj is the current time, and Dj
p is drawn from

some unknown probability distribution Pj(x, y). In
this setting given an optimal prediction function f∗

k

for Pk(x, y), it is no longer optimal for Pj(x, y), i.e. we
get Err(f∗

k ,D
k
p) < Err(f∗

k ,D
j
p), where Err(f,D) =

(
∑

xi∈D,y
i
6=f(xi)

1)/|D| is the error rate of f on D.

Hence the ultimate goal of distributed classification
in a changing environment is to minimize the error ε
for all peers over time

ε =
∑

p,t

Err(fp,D
t
p) (1)

while satisfying the constraints of the distributed
environments, where fp is the most up-to-date classifi-
cation model (potentially consisting of a combination
of multiple classifiers) of peer p at the time Dt

p is to
be classified.

3 PINE FRAMEWORK

In this section, we propose a novel framework called
Predictive and parameter INsensitive Ensemble (PINE)
for handling asynchronous drifting concepts in dis-
tributed networks. We start with a brief overview of
the proposed framework followed by detailed discus-
sions on each component of our framework.

3.1 Overview of PINE

The sequence diagram of our framework from one
peer p perspective is presented in Fig. 2. The peer
p in our system monitors its own data stream Dp,
and maintains its own ensemble of reactive predic-
tive models denoted as REMp and an ensemble of
proactive predictive models denoted as PEMp. The
reactive models are the classifiers that represent peer
p’s current data distribution, and the proactive models

par

4: Dp, estDriftTime:= checkConceptDrift(mp,Dp,(xnew,y*new))

6: mp := constructClassifier(Dp)

7: notifyDriftPushClassifier(estDriftTime,mp)

[concept drift detected]

9: verifyProactive(mr)

3: y*new := receiveDataLabel()

11: REMp := verifyReactive(mp)

r:Remote peers

1: xnew := receiveNewData()

2: ynew := predict(xnew,PEM,REM)

p:Peer

5: mp := updateClassifier(Dp)

[concept drift not detected]

par

8: assocs := mineTempAssoc(globalDriftSequence)

13: *[time = predDrifti] PEMr,REMr := updatePEM&REM(mi)

alt

12: predDrifti, mi := matchTempAssoc(assocs,p)

10: REMp := verifyReactive(mr)

Fig. 2. The proposed framework as a sequence dia-
gram.

0

2

4

6

t0 t2 t4 t6 t8 t10 t12 t14 t16 t18 t20

0

2

4

6

t0 t2 t4 t6 t8 t10 t12 t14 t16 t18 t20

m2

m2

m2

m3Peer p1:

Peer p2:

Peer p3:

m3
m2

m2

m2

m2

m2m1m1 m1

m1

m2 m2

m1 m3

m1 m1m3
m1

m2 m2

m2,

m3 m2

m1,

m2
m2

0

2

4

6

t0 t2 t4 t6 t8 t10 t12 t14 t16 t18 t20

m2

Fig. 3. An illustration of optimal proactive concept drifts
for two peers. The shaded areas indicate non detected
concept drift periods and the labels mi indicate the
optimal proactive models, where i is the peer number
from Fig. 1.

are the classifiers that may represent peer p’s future
data distribution which is different from the current
distribution. Whenever a new unseen data instance
xnew arrives, peer p consults both REMp and PEMp

and from a combination of their outputs predicts the
class label ŷnew (cf. Section 3.7).

The idea and concepts of the proactive and reactive
models is illustrated in Fig. 3 and 4 respectively, each
of which follows the example shown in Fig. 1. In
Fig. 3 and 4, we illustrate the change in concepts
of peers (change in y axis value), the concept drift
detection and adaptation (vertical dotted line) and
propagation of the newly trained models to other
remote peers (labelled arrows). For instance, peer p1’s
concept drifted at time t3 (drop in y axis value), was
detected and adapted at time t4 (vertical dotted line).

In addition, Fig. 3 shows the optimal model that
should be used before a peer’s concept drift is de-
tected and Fig. 4 shows the optimal model(s) that
should be used after a peer’s concept drift is detected,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 20XX 4

m2

m1,

m2

m1,

m2

m1,m2,

m3 m1

m1,

m2 m1

m2 m2m3

Peer p1:

Peer p2:

Peer p3:

m1,m2,

m3

m1,

m3

m3

m1, m2,

m3

m2

m2

m1,m2,

m3

m1,

m3

m1,m2,

m3

m2

m2

m1,

m3

m1,

m3

m3

m1,m2,

m3

m1,

m3 m3

m2,

m3

m2m1

m1

m1

m1,

m3

m1
m2 m2

m1,

m2,

m3 m2

m1,

m2

m1,

m2,

m3

m1 m3

m2

m1 m1

m2,

m3m2

m3

m1,m2,

m3 m2

m1

m1,

m2

0

2

4

6

t0 t2 t4 t6 t8 t10 t12 t14 t16 t18 t20

0

2

4

6

t0 t2 t4 t6 t8 t10 t12 t14 t16 t18 t20

0

2

4

6

t0 t2 t4 t6 t8 t10 t12 t14 t16 t18 t20

Fig. 4. An illustration of optimal reactive concept
drifts for two peers. The shaded areas and their labels
indicate optimal reactive models.

which is indicated in both figures by the labels in
the shaded areas. The example for proactive model
presented in Fig. 3 is as follows. Peer p1’s concept has
drifted at time t3 and was detected at time t4. Hence,
between time t3 and t4, peer p1’s current model is not
suitable for predicting its own data since the model is
made outdated by the concept drift. Similarly, peer p3
is also not suitable. As such, from time t3 to t4, peer
p2’s model should be the most accurate (optimal) for
predicting p1’s unlabelled data.

Similarly, the example for reactive model presented
in Fig. 3 is as follows. Peer p1 concept drift was
detected in time t4 and hence, from time t4 to t5, the
best models for predicting peer p1 unlabelled data are
the current models of peers p1 and p2. At time t5, peer
p3 detected its concept drift and updated its model
which it propagated to peer p1. Hence, the optimal
models for p1’s unlabelled data are those of peers
p1, p2 and p3. However, at time t7, peer p2 adapted
to a new concept which is different from that of peer
p1. Hence, peer p2’s current model at time t7 is no
longer suitable for peer p1 and the optimal models
for p1’s unlabelled data are models of p1 and p3.

Therefore, the aim of our framework is to ensure
timely supply of the optimal models for each peer ei-
ther locally or ‘borrowed’ from other peers (combined
of Fig. 3 and 4).

A walk-through of the various components in our
framework illustrated in Fig. 2 is as follows.

Methods 1 & 2. First, whenever an unlabelled data
point xnew is received (receiveNewData) by peer p,
its label ynew is predicted using the models in PEMp

and REMp.

Methods 3 to 7. Once the true label y∗new of xnew
arrives (receiveDataLabel), peer p then checks if has
have been a concept drift for the received training
examples (checkConceptDrift). If the concept has
not drifted, p then updates its training dataset Dp

that represents the current concept and updates the
local classifier mp (updateClassifier). Otherwise, if
the concept has drifted, peer p then updates Dp by
removing data of the old concept and moving them to

D̂p which represents the old concept. A new local clas-
sifier mp is then built from Dp (constructClassifier).
Next, peer p notifies all other peers ri of the time its
concept drifted and sends the new local classifier mp

to them (notifyDriftPushClassifier). The details of
training local classifiers and handling concept drift are
presented in Section 3.2.
Method 8. To exploit the proactive models from

other peers, peer p mines the temporal association
rules from the sequence of concept drift occurrences
(mineTempAssoc), which are used for concept drift
prediction. These rules consist of a sequence of peers
whose concept drift occurrences were followed by the
local concept drift at peer p (cf. Section 3.3).
Methods 9 & 10. Then peer p tests all remote

classifiers mri using Dp and D̂p to verify if there
are accurate proactive classifiers (verifyProactive). If
accurate, the remote classifiers are flagged as potential
proactive models (cf. Section 3.4). In addition, it also
verifies if the remote classifiers mri are reactive clas-
sifiers (verifyReactive) and adds to REMp if accurate
(cf. Section 3.5). This marks the end of all tasks
required to be performed after the local concept drift
occurrence.
Methods 11 to 13. Next, whenever a remote peer

ri receives a notification of concept drift from peer p
and its new classifier mp, ri then tests mp using Dri

to verify if it is a reactive classifier (verifyReactive)
and adds a copy to its REMri if accurate. In addition,
peer p’s time of concept drift is recorded and checked
against the existing temporal association rules to pre-
dict if local concept drift is likely to occur in peer
ri (matchTempAssoc). When a rule is fully matched,
peers listed in the rule sequence are marked as po-
tential proactive classifiers and time-stamped at time
concept drift of ri is predicted (cf. Section 3.6).
At the time point when a local concept drift at

peer p is predicted by a temporal association rule
(updatePEM&REM), remote classifiers mri of peers
listed in the rule are then added to PEMp if they are
valid proactive classifiers and removed from REMp

(cf. Section 3.6).

3.2 (Re-)Training Local Classifiers

This section presents details of how local classifiers
are (re-)trained following arrival of every true label
depending on whether a concept drift has been de-
tected (Methods 5 & 6). The detection of concept drift
will be discussed in the next section.
In principle, any classification algorithm can be

employed at peer p. However, since we consider
distributed network settings, we select an algorithm
that has two desired properties – low time complexity
to deal with the possible large amount of data and low
model propagation cost since the models need to be
propagated to other peers. Hence, in this study, we
recommend and use the state-of-the-art linear SVM
classifier.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 20XX 5

A

A E

0

2

4

6

t0 t2 t4 t6 t8 t10 t12 t14 t16 t18 t20

F

CDD(B) CDD(C) CDD(D)

B C D

CDD(E)

0

2

4

6

t0 t2 t4 t6 t8 t10 t12 t14 t16 t18 t20

CDD(B) CDD(D) CDD(F)

Peer p1:

Peer p3: B D

Fig. 5. An example lag in drift detection. CDD(B)
represents the detection of concept drift of concept
B. Shaded area indicates the transition period where
the concept drift has changed but has not yet been
detected.

As new labelled instances arrive, the performance
of a local classifier mp is monitored for detecting
concept drift. If no change is detected, then the classi-
fier is incrementally updated with new labelled data.
Otherwise, if a change is detected, the change detector
points out the time when drift occurred. In such a case
a new classifier is trained with the data accumulated
after the occurrence of the drift. By doing so, we
can ensure that the prediction on new data will not
be affected by the old concept, which will lower the
prediction accuracy. This is a common practise among
ensemble based solutions which deal with concept
drifts [6], [10], [13], [17], [18]. This classifier is sent to
other remote peers that are likely to experience this
drift in the (near) future.
Locally learnt base classifier at peer p can become

part of REMri at any remote peer ri. In order to keep
the communication costs low, we allow p to propa-
gate its updated classifier only when the sample size
used for inducing the local base classifier increases in
geometric progression as compared to the previous
sample size, so that the improvements are substantial.

3.2.1 Detecting Concept Drift
In this section we give the details of how concept drift
detection is organized in our framework.
A change detector is a function that monitors the

historical data and signals the occurrence of concept
drift. A detector needs to see a number of instances
that represent a new concept before it can detect the
drift. The period from the time when the actual drift
occurred to the time when it was detected is called
the detection lag. A good change detector would detect
drifts accurately with as few false positives and as
small detection lag as possible. Fig. 5 illustrates the
setting of concept drift detection in our distributed
classification example. We can see the detection lags
shaded in grey. We need a change detector to estimate
the time of actual concept drift occurrence, which is
the arrival time of the oldest data point in the new
concept. This allows us to timely deploy the proactive
models whenever concept changes as illustrated in
Fig. 3.
In our framework, we detect concept drift (Method

4) for each peer using a modified version of the

ADWIN algorithm [19], which has sound theoretical
justifications and uses only a few parameters. Given
a sequence of data points, ADWIN splits the sequence
into all possible pairs of sequential windows and com-
pares the means of data within the windows. When
the absolute differences of the means are significant,
the oldest element is dropped and the comparison
repeats until no significant difference is found.
More formally, suppose µ1 and µ2 are the means

of the two sub-sequences as a result of a split. Then
the criterion for signaling a change is |µ1−µ2| > ǫcut,
where

ǫcut =

√

1

2µ
log

4n

δ
, µ =

1
1
n1

+ 1
n2

, (2)

here n is the length of the full sequence, while n1 and
n2 are lengths of the sub-sequences respectively. Note
that n = n1 + n2, and δ ∈ (0, 1) is a hyper-parameter
of the model.
Our modifications to ADWIN and motivation behind

these modifications are as follows. First, in the original
ADWIN comparisons are done over the input data
(attribute by attribute), while we run the detection
over a stream of accuracies represented as ones for
correct and zeros for wrong predictions). We do this
modification, as classification accuracy is our main
concern and evaluation criteria, besides, in some cases
concept drifts may occur without any change in the
distribution of the attributes (the real concept drift).
Second, we consider concept drift to occur when

the mean of the first window is significantly larger than
that of the second window, i.e., µ1 − µ2 > ǫcut.
Third, to speed up the detection, instead of drop-

ping a single element from a window, we drop all
elements in the previous window.
Note that even though a concept drift is detected

and old data may seem not necessary anymore, in
our framework every peer p maintains two sets of
data Dt−1

p and Dt
p corresponding to the previous and

the current concept. This is necessary for the proactive
model verification (cf. Section 3.4). In this work, the
size of the two datasets Dt−1

p and Dt
p are unbounded

as we did not find it necessary to limit their sizes. The
average size of Dt−1

p and Dt
p are less than 2000 over

all the experiments that we conducted, which is not
an unreasonable size to maintain. However, bounding
of the dataset size should only have a negligible
effect, and if the bounding window is large enough to
represent the concept (e.g., 1000 to 10000), we do not
expect any adverse effects in bounding the window
size.

3.3 Mining Temporal Associations

This section describes how the temporal associations
of concept drifts among peers are mined in our frame-
work (Method 8).
The temporal associations of the concept drift oc-

currences among peers can allow us to proactively

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 20XX 6

predict occurrence of drifts in peers. Hence minimize
the lag between the drift and adaptation of the mod-
els. In order to obtain updated temporal associations,
the temporal association rules are mined whenever a
local concept drift is detected and the old rules mined
in the previous concept drift are then forgotten and
replaced with the new rules mined.
With reference to the time notation in this paper,

an important point to note here is that while PINE
requires all peers to share a global time, no global
synchronization is required among peers as they can
simply make use of their local system clocks with pe-
riodic synchronization to the Coordinated Universal
Time (UTC) to achieve the intended purpose (with
the correct offsets). Unless the time gap between
concept drift occurrences are very close, otherwise
some differences between the local clocks and UTC is
acceptable and peers only need to synchronize with
UTC once in a while.
We need to find not only temporal associations but

also the expected delays between the occurrences of
concept drift at different peers (that can be seen also
as the propagation time of concept drift from one peer
to another). We mine this knowledge from a sequence
of global concept drift occurrence events. The setting
for this mining is formally defined as follows [20].
Given a set of peers E, a concept drift event is

a pair (A, t) where A ∈ E corresponds to a peer
whose concept has drifted at time ti. A concept
drift event sequence s is a triple (s, Ts, Te) where
s = 〈(A1, t1), (A2, t2), . . . , (An, tn)〉 is an ordered list of
concept drift events such that ti ≤ ti+1, ∀i ∈ {1, . . . , n}
and Ts and Te are the starting and ending time
where Ts ≤ ti ≤ Te, ∀i ∈ {1, . . . , n}. Hence, from
Fig. 1, we can derive the follow sequence sglobal =
(sglobal, t1, t20) where sglobal = 〈(p2, t1), (p1, t3),
(p3, t4), (p2, t6), (p1, t8), (p2, t9), (p3, t10), (p1, t11),
(p2, t15), (p1, t17), (p2, t18), (p3, t19), (p1, t20)〉.
Our problem is closely related to the frequent

episode mining problem [20], [21], [22]. Hence, from
here on, we shall use the terms episodes and temporal
association rules interchangeably. In general, an episode
can be considered as a partially ordered collection
of events occurring together [20]. Existing frequent
episode mining algorithms aim to find all possible
frequent episodes from the sequence. Our scenario
is a bit different, as our peers are only interested
in concept drift events leading to their own concept
drifts. Hence, we simplify the problem by splitting the
sequence into sub-sequences using the local concept
drift event as the delimiter, i.e., setting Ts + 1 and Te

as time of two consecutive local drifts events. Table 1
shows the resultant sub-sequences by segmenting
sglobal where p1 is the local peer, e.g., the set of sub-
sequences is {(ss1, t1, t3), (ss2, t4, t8), (ss3, t9, t11),
(ss4, t12, t17), (ss5, t18, t20)}.
In this setting we can simply apply frequent se-

quence mining algorithms [23] to find these frequent

TABLE 1
Peer p1’s segmented sequences of the global

sequence of concept drift occurrences.

Tid Segmented sequences

ss1 (p2, t1)

ss2 (p3, t4), (p2, t6)

ss3 (p2, t9), (p3, t10)

ss4 (p2, t15)

ss5 (p2, t18), (p3, t19)

episodes α denoted as a pair (V,≤, g) where V is a
set of nodes, ≤ is a partial order on V and g : V → E
is a mapping associating each node with a peer. The
interpretation of an episode is that the events in g(V)
have to occur in the order described by ≤. Formally,
an episode α = (V,≤) occurs in an event sequence
s = (s, Ts, Te) , denoted as α ∈ s , if there exists an
injective mapping h : V → {1, . . . , n} from nodes
of α to events of s such that g(i) = Ah(i) for all
i inV , and for all i, j ∈ V with i 6= j and i ≤ j we
have th(i) < th(j). For ease of reading, we present the
episodes in our text as e = A1 → A2 → · · · → An

where Ai → Aj denotes concept drift event Ai occurs
before Aj , e.g., ss2 in Table 1 can be represented as
p3 → p2.

When computing the delay from the occurrence of
an episode until the local concept drift event, we are
only interested in computing delay from the smallest
sub-sequence with the earliest ending time which
the given episode occurs in (earliest occurring sub-
sequence). This is because the episodes are matched
in a state transition manner. Hence, given an episode
α and a sequence s = (s, Ts, Te), earliest occurring se-
quence is denoted as searliest = (searliest, Ts, te) where
te = mint≤Te

{s = (s, Ts, t)|α ∈ s}. Therefore, the delay
is computed as tl − te where tl is the time the local
concept drift event occurred.

For example given a subsequence s =
〈(p2, t1), (p3, t2), (p2, t4), (p3, t5), (p1, t6))〉 and
a frequent episode e0 = p2 → p3 of peer p1,
〈(p2, t1), (p3, t2)〉 is the first occurrence of e0 and the
delay of an episode delay(e0) is computed from the
last event of the first occurrence of the episode to the
local concept drift event, e.g., delay(e0) = t6− t2.

In this setting, based on the definition of serial
episode [22], all the mined frequent episodes will have
hundred percent confidence, which is not useful at
all. Hence, we deviate from the standard definition
to define confidence as the same value as support σ
since it gives the probability a given episode leading
to a local concept drift.

In addition, we propose a new measure, delay de-
viation ddev which is the standard deviation of the ex-
pected delay leading to the local concept drifts given
a matched frequent episode, indicating the confidence
we have on the expected delay. A lower ddev implies

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 20XX 7

TABLE 2
Frequent episodes leading to concept drifts of peer p1.

For simplicity, the consequent p1 is removed.

Rid Freq. episodes Delays σ dmed ddev

e1 p2 2,2,2,2 1 2 0

e2 p3 4,1,1 0.6 1 1.732

e3 p2 → p3 1,1 0.4 1 0

e3 p3 → p2 2 0.2 2 0

a higher confidence since the expected delay covers a
smaller range and hence is more accurate.
For estimating the delay until the local concept drift

event, we define the variable expected delay dmed com-
puted as the median of the delays. Median is chosen
to reduce the effects of outliers. Table 2 provides an
illustration of the frequent episode, support, delays,
expected delay dmed and delay deviation ddev , with
reference to Table 1.
Note that the frequent sequence mining does not

compute the support, expected delay dmed and delay
deviation ddev . Hence, post processing is required. We
use the fast counting technique presented in [24] to
match the episodes and perform the statistics compu-
tations.
Finally, the filtering of the episodes, to reduce the

number of episodes mined and prevent mining of
irrelevant episodes, are as follows. Two input param-
eters, viz., min support σmin and max delay deviation
dmax−dev, are specified. The min support σmin is used
as the first cut filter when all episodes with support σ
lower than σmin are discarded. Then the max delay
deviation dmax−dev is used where rules with ddev
larger than dmax−dev are discarded. These (unfiltered)
frequent episodes, expected delay dmed and delay de-
viation ddev are then used for the temporal association
rule matching (cf. Section 3.6).

3.4 The Ensemble of Proactive Models (PEM)

This section provides the details of how the ensemble
of proactive models PEM is managed and maintained
(Method 9).
The classifier mri of a remote peer ri is considered

as a proactive classifier if it is learnt at ri after a
concept drift has occurred at that peer and we expect
that this drift will propagate in a near future to p.
Whenever peer p detects a local concept drift, the
following condition is checked for the classifier mri

of every remote peer ri:

Err(mri ,D
t−1
p)− Err(mri ,D

t
p) > ǫcut (3)

Since a significant difference have been found by the
local classifier, then a proactive classifier of a remote
peer ri should also be able to do so and obtain a
significantly higher error on the old concept compared
to the new concept, thus satisfy (3). If mri satisfies (3),
peer r is flagged as a proactive peer and the accuracy

1 − Err(mri ,D
t
p) of mri is stored and used later if it

is used as a proactive classifier.

3.5 The Ensemble of Reactive Models (REM)

In this section we detail how the ensemble of reactive
models REM is managed and maintained (Methods
10 & 11).
The ensemble of reactive models for each peer p

consists of one locally learnt model (i.e. from data
observed by peer p) and zero or more models which
were learnt remotely at other peers and validated on
recent data at p.
Every peer p stores the latest classifier mri of ev-

ery remote peers ri. Whenever a new classifier mri

arrives, the following conditions (two of which are
based on ADWIN’s measure) are checked:

Err(mri ,D
t
p) < 0.5 (4)

Err(mri ,D
t
p)− Err(mp,D

t
p) ≤ ǫcut (5)

Err(mri ,D
t
p)− Err(mri ,D

t−1
p) ≤ ǫcut (6)

where n1 and n2 of (2) are the size of the respective
datasets. If all three conditions are satisfied, then mri

is a reactive model and it is added to the reactive
ensemble and the preceding model removed, i.e.,
REMp ← mri and REMp = REMp \ m̂ri , where m̂ri is
the predecessor of mri .
In addition to the criteria of adding a classifier to an

adaptive ensemble when its error rate goes below a
certain threshold, e.g. 0.5 in (4), we employ two more
conditions specific to our distributed settings, which
we expect to improve the accuracy of the ensemble.
In (5), we verify that the error rate of mri is not
significantly higher than the local classifier mp. By
doing so, we are trying to ensure that mri is built on
data from the same concept as mp. In (6), we verify
that the error rate of mri on the previous concept is
not significantly higher than the current concept of
peer p since this might indicate that mri is built from
previous concept data and its error rate might increase
in the future.
Note that whenever local concept drift (LCD) is

identified, every remote model mri is verified and
added to REM if it passes the validation. Recall Fig. 4,
which provides an illustration the situations when the
reactive models need to be used.

3.6 Balancing Reactive and Proactive Ensembles

This section specifies the details of how the Reactive
and the Proactive ensembles interact with each other
and details the role of the temporal association rules
in this process (Methods 12 & 13).
Whenever the local peer is notified of a peer’s con-

cept drift, the previously mined temporal association
rules will be checked. A match of peer’s concept drift
will transit the rule to the next state. Note that the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 20XX 8

initial state of all rules is the first item. For instance,
given a temporal association rule e4 = p4 → p2, its
initial state will be p4, meaning that it will wait for
the occurrence of peer p4’s concept drift. Given that
now p4 concept drift has occurred, then the state will
be transited to p2.
When the entire rule is matched, all peers identified

in the rule will be made into proactive candidates
until dmed of the rule has passed (from the point the
last peer’s has concept drifted). Note that if a new
rule with lower ddev is matched, the dmed of all peers
in the new rule are replaced with the new dmed as it
has a higher confidence hence taking precedence.
Whenever the delay of a proactive candidate ri

has passed, its current classifier will be added to the
proactive ensemble, i.e., PEM ← mri , and removed
from the reactive ensemble, i.e., REM = REM \mri .
At any point in time for a given peer we need

to balance between the reactive and proactive pre-
dictions depending on the expectations of concept
drift. We use the process of adding models to PEM
and removing models from REM as our mechanism
for adaptively balancing the weights between reactive
and proactive prediction. As more rules are matched,
that indicates that more peers have experienced con-
cept drift and it becomes more evident that the local
concept of a given peer is likely to drift. As such, we
need to increase the importance of the proactive pre-
diction which is achieved by increasing in the number
of models in PEM or reducing the size of REM. We
expect this simple approach to be more accurate than
assigning weights for the two ensembles. Finally, note
that whenever local concept drift (LCD) is identified,
all models in PEM are removed.

3.7 Prediction by Reactive and Proactive Ensem-
ble Models

All the previous section of the PINE framework pre-
sentation detailed the process of online training and
adaptation of the system. This final section of the
framework describes how to get a prediction from a
trained PINE for an unseen data point (Method 2).
When peer p receives a new unseen data xnew ,

its class label ynew is predicted using all models
from the reactive and proactive ensembles, i.e.,
∀i,mi ∈ REMp ∪ PEMp, using a weighted voting
approach. The weights of the models in REMp and
PEMp are computed by different ways. In particular,
the weights of model in REMp are computed based
on their error on the training data Dp of the current
concept, i.e., wi = 1 − Err(mi,Di),mi ∈ REMp.
In contrast, for the models mi ∈ PEMp, their
weights are obtained during the proactive classifier
verification or in another words it is estimated
from the performance of the previous classifier
on current concept, e.g., wi = 1 − Err(m̂i,Dp),
where m̂i denotes the predecessor of mi. Finally, the

class label is predicted by the following function:
ynew = sign

(
∑

i(wimi(xnew))
)

.

We described a general overview and detailed de-
sign choices of our framework for distributed classifi-
cation under asynchronous concept drifts. The frame-
work makes use of associations between drifts in
different peers happening over time to speed up the
adaptation by predicting the occurrence of drifts. In
the next section we empirically evaluate the perfor-
mance of PINE.

4 EXPERIMENTAL EVALUATION

We conduct extensive experiments to evaluate the per-
formance of our proposed approach. We compare the
performance of PINE with existing approaches that
can handle drifting concepts in distributed network
classification.
The main goals of our experimental study include:

• presenting the motivation and potential of proac-
tive handling of concept drift in distributed set-
tings, i.e. demonstrating that the changes in dif-
ferent peers can be related, and that correspond-
ing temporal relations between peers (w.r.t. oc-
currence of drifts) can be mined effectively;

• demonstrating that we can estimate the propa-
gation time of concept drift from one peer to
another accurately enough such that this estimate
can be used for proactive handling of concept
drift;

• showing that the proposed PINE approach, im-
proves the accuracy of RePCoDE – the state-of-
the-art approach for handling concept drift in P2P
(distributed) networks;

• demonstrating that PINE is insensitive to param-
eters;

• demonstrating that PINE has lower communica-
tion cost than existing approaches and acceptable
computational costs.

4.1 Datasets

For our experiments we use both synthetic and real
world dataset.
Synthetic data. We employ the moving hyperplane

data generator [14] that acts as a benchmark for
evaluating classifiers adapting to concept drift. With
the hyperplane we simulate both the (incremental)
gradual and sudden drifts scenarios. We choose this
data model since it has several important properties
for analyzing concept drift. First, it does not change
the prior probabilities of classes; second, the drift is
easy to quantify by the angle of rotation; third, the
hyperplane (or plane in 2D) is easy to interpret.
Our moving hyperplane generator is as follows.

A hyperplane in d-dimensional space is expressed

by the equation
∑d

i=1 wixi = w0, where wi is the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 20XX 9

weight of the attribute xi. Data instances satisfying
∑d

i=1 wixi ≥ w0 are labeled as positive and negative
otherwise. Concept drifts are introduced by changing
the weights of the attributes and the direction of
change. The generated data consists of 8 attributes of
which 2 are drifting. The probability of noise, which
means assigning a wrong class label, is set at 0.05. The
weight change per attribute is set to 0.5 and 5, the
probability of direction change is set to 0.1 and 1 and
concepts are set to drift every 10 and 500 instances,
randomized by adding a small random value, for
gradual and sudden drift scenarios respectively. Peers’
initial concepts are the same and are set to drift
to the next concept with different delays, randomly
assigned in the range of [0, 1000). We conducted 10
independent runs with every run consisting of 100
peers. Results were obtained by averaging over all
peers and runs. The total number of instances each
peer receives for one run are 17,000 and 19,000 for
the gradual and sudden drift scenarios respectively.
Real data. To verify if peers share correlated con-

cepts (and concept drifts), we conducted experiments
on real world weather data from SOD1, which con-
sists of daily observations recorded in different me-
teorological stations. The task is to predict whether
it is going to rain from 10 weather observations,
viz., mean temperature, mean dew point, mean sea
level pressure, mean station pressure, mean visibility,
mean wind speed, maximum sustained wind speed,
maximum wind gust, maximum temperature and
minimum temperature. We selected 500 worldwide
stations each representing a peer and observations
from year 2001 to 2010 consisting of 3038 days of
observations that exist in all selected stations.

4.2 Experimental setup

We compare our proposed PINE approach with three
other approaches, first two of which can be considered
as two baselines and the third one as the main existing
competitor: 1) Local – uses only the latest local adap-
tive model (based on our modified ADWIN) of a peer to
perform prediction. It represents existing centralized
solutions that does not share any information. 2) All –
uses the latest adaptive model of all peers to perform
prediction. It represents both ensemble approaches
and approaches that assume a global drifting distribu-
tion. 3) RePCoDE – an existing approach for handling
concept drift in P2P networks and has already been
shown to perform better than fixed window based
approaches on the moving hyperplane dataset [4].
The δ value of ADWIN for all adaptive detection

approaches is set as 0.25. The default min support
σ and max delay deviation ddev is set at 0.25 and
100 respectively. Parameters of RePCoDE are set as
follows: window size 100, proactive and reactive ratio

1. http://www.ncdc.noaa.gov/cgi-bin/res40.pl?page=gsod.html

0.5, number of nearest neighbor voters 10% of peers,
number of future voters 10% of peers, propagation
delay 4, concept drift threshold 0.05 and number of
sequences to match 4.
We test the approaches in a prequential manner

[25], i.e., the incoming data are first used for testing
and then for updating classifiers. Results are com-
puted as the moving average (100 data points) of
averaged prequential error rate of all peers.
For implementation, all algorithms were imple-

mented in C++. We adopt the LIBLINEAR [26] pack-
age for linear SVM as the base classifier for all
approaches. Linear SVM is chosen due to its high
efficiency and scalability for learning and model prop-
agation in distributed networks.

4.3 Performance of the compared approaches

In this section we compare the four approaches on
accuracy, communication and computational cost.

4.3.1 Accuracy

In Fig. 6 the accuracies of the approaches are com-
pared. The increase in error rates indicates that con-
cepts in peers start to drift and the decrease indicates
that the new concepts have been learnt. For the grad-
ual hyperplane dataset (Fig. 6(a)), we observe that
the prequential error of all approaches decreases as
time passes, especially for RePCoDE and PINE which
become much better than Local and All, and PINE
achieves the lowest error among all. This is because
both RePCoDE and PINE learn from historical data
and hence can reduce error as time passes. We also
find that for all the concept drifts, i.e., when the error
starts to rise, PINE can detect and adapt to the concept
drift faster and thus achieves lower peaks in error
throughout.
For the sudden hyperplane dataset (Fig. 6(b)), we

can see that PINE consistently achieves lower pre-
quential error than all other approaches followed by
RePCoDE, then All and finally Local. This is most
likely due to the fact that in this dataset, delay among
the occurrences of peers’ concept drift are fixed and
the drifts are sudden. Hence PINE can consistently
detect concept drifts and accurately learn the temporal
association between peers’ concept drift occurrences.
For the weather dataset (Fig. 6(c)), we observe that

concept drifts consistently occurs around April every
year, which corresponds to spring and autumn in
the northern and southern hemisphere respectively.
This could indicate that the patterns of rainfall change
every year, instead of quarterly when seasons change.
Also we found that initially PINE is comparable to
RePCoDE, but as time passes, its prequential error
becomes lower than that of RePCoDE. While not
shown in the figures, note that PINE has higher
prequential error in all datasets initially. However, the
prequential error quickly reduces to become lower

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 20XX 10

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 5000 7500 10000 12500 15000

P
re

qu
en

tia
l E

rr
or

Num. Instances

RePCoDE
Local

All
PINE

(a) Gradual Hyperplane

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 5000 7500 10000 12500 15000

P
re

qu
en

tia
l E

rr
or

Num. Instances

RePCoDE
Local

All
PINE

(b) Sudden Hyperplane

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

Jun/2006 Jun/2007 Jun/2008 Jun/2009 Jun/2010

P
re

qu
en

tia
l E

rr
or

Year

RePCoDE
Local

All
PINE

(c) Weather

Fig. 6. Moving average of prequential error rate over
100 data points.

than all approaches over time. This is because PINE
learns associations from the history of concept drift
occurrences and hence several occurrences are needed
to learn the pattern of the drifts before it can perform
well.

Given that RePCoDE performs better than Local
and All in most datasets, we can see that prediction
of the future concepts does indeed reduce prequential
errors even though RePCoDE uses the fixed window

TABLE 3
Average communication cost per peer in terms of

kilobyte (models propagated).

Approach Gradual Sudden Weather

RePCoDE 634.80 (72.87) 820.99 (94.24) 654.30 (12.61)

PINE 293.51 (33.69) 609.13 (69.92) 616.73 (11.88)

TABLE 4
Average time taken (in msecs).

Data RePCoDE Local All PINE

Model Construction

Gradual 0.227 2.813 2.813 2.813

Sudden 0.252 1.311 1.311 1.311

Weather 131.3 509.2 509.2 509.2

Pre-prediction

Gradual 0.370 - - 37.32

Sudden 0.394 - - 178.0

Weather 11.48 - - 71.56

Prediction

Gradual 0.003 0.0003 0.018 0.009

Sudden 0.004 0.0004 0.019 0.010

Weather 0.010 0.0004 0.093 0.034

drift detection which is in general slower in concept
drift detection. Moreover, PINE achieving the lowest
prequential error demonstrates that in addition to
predicting future concepts, predicting when concept
drifts occurs can further reduce the prequential error.

4.3.2 Communication and computational costs

Tables 3 and 4 present communication and computa-
tional costs of the compared approaches.
The main communication cost incurred by the ap-

proach are the sending of models which is presented
in Table 3. Note that Local does not incur any com-
munication cost and the additional cost incurred by
PINE compared to All is the cost needed to notify the
time of drift. Hence, we only present the results of
RePCoDE and PINE. Table 3 shows that PINE incurs
less communication cost compared to RePCoDE. The
difference is most likely due to the adaptive detection
and propagation of models compared to the fixed
window drift detection and fixed delay model prop-
agation.
Table 4 presents the average time taken by each peer

to perform various tasks. Model construction refers
to the time taken to build a classifier. Pre-prediction
refers to the computations required before the pre-
diction, i.e., indexing, model retrieval and sequence
similarity matching for RePCoDE and temporal as-
sociation mining, temporal association rule matching
and model verifications for PINE. Prediction refers to
the time taken to predict on one unlabeled data point.
Even though PINE incurs the most computational cost
compared to other approaches, it is still acceptable as

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 20XX 11

-50

 0

 50

 100

 150

 200

 250

 0.01 0.1 1

D
el

ay
 fr

om
 T

ru
e

D
rif

t

Delta δ
(a) Delay in detection

-150

-100

-50

 0

 50

 100

 150

 1 10 100 1000

D
el

ay
 fr

om
 T

ru
e

D
rif

t

Delay Deviation ddev

(b) Delay in prediction

Fig. 9. Effects of delta δ (ADWIN) and delay deviation
ddev on delay from true drift.

the absolute time taken is very low, i.e., all tasks can
be computed in less than one second.

4.4 PINE sensitivity to the parameters

To demonstrate that the error rate of PINE is not
much affected by the choice of parameters, we tested
different parameter values and present the results in
Fig. 7 and 8. In addition, we show in Fig. 9 how delta
δ and delay deviation ddev affect the delay in detection
and prediction respectively on the sudden hyperplane
dataset, which is only possible as ground truth of the
concept drifts is known.
Fig. 7 shows the prequential error of varying delta

(ADWIN) from 0.01 to 1. For the gradual hyperplane
dataset (Fig. 7(a)), observe that as delta increases,
the prequential error decreases. This is expected as
unlike the sudden hyperplane dataset where there is
a gap in the concept drift occurrences, the concept of
the gradual hyperplane dataset is constantly drifting
and hence decreasing delta provides no benefits at
all whereas increasing delta can speed up the drift
detection thereby reducing the prequential errors.
For the sudden hyperplane dataset (Fig. 7(b)), the

prequential error initially drops when delta increases
and then raises when it is greater than 0.25. This is

expected as a lower delta value makes the drift detec-
tion more stringent but can also cause late detection
of concept drift resulting in higher prequential error
when it is too stringent. On the other hand, while a
larger delta value relaxes the drift detection criteria
and speeds up the detection, it can also introduce
more false positives resulting in higher prequential
error.
For the weather dataset (Fig. 7(c)), observe that as

delta increases, prequential error also increases. Since
we do not have any ground truth about its concept
drifts, we can only draw conclusion from the results.
It would seem that the concept of the weather dataset
fluctuates a lot and hence requires a very small delta
to detect an actual concept drift. Otherwise, it would
be very easy to trigger false positives and adversely
affect prediction accuracy. Further examination of the
experiments does shows that the weather dataset
triggers a larger number of concept drift detection as
compared to the hyperplane datasets.
Note that the maximum difference in maximum and

minimum prequential error for all the dataset is at
most 3% over the entire range of delta values from
0.01 to 1. This indicates that PINE is not sensitive to
the value of delta.
Fig. 9(a) illustrates the delay after the true concept

drift has occurred until it is being detected. Observe
that a large delta value increases the delay and its
deviation for detecting concept drift. Similar to the
prequential error, we found that the delay only varies
a little given different delta values. Nevertheless, a
good delta value should be between 0.1 and 0.5
observed from Fig. 7.
Fig. 8 shows the prequential error of varying the

max delay deviation ddev from the range 1 to 1000.
Observe from Fig. 8(a) and 8(b) that as ddev increases,
the prequential error decreases. It is intuitive that
increasing the ddev allows more rules with higher
delay deviations to be mined as demonstrated in
Fig. 9(b) which should result in higher prequential
error. However, as PINE replaces the predicted time
of concept drift of a matched rule with that of another
rule with lower ddev, it can effectively prevent the
increase in error when the ddev is set too high.
However, Fig. 8(c) shows the opposite result,

whereby as ddev increases, the prequential error also
increases. One possible explanation is that a large
number of false positive concept drifts are trigger
and this causes the rules to be mined and matched
wrongly. Hence resulting in the increase in prequen-
tial error as ddev increases. Therefore, it may be benefi-
cial to set the value of ddev only after delta is set and to
adjust it accordingly. However, it is recommended to
set a large ddev value in most cases, with the drawback
being an increase in time required to mine the rules
and perform rule matching. In addition, note that
the maximum difference between the maximum and
minimum prequential error for ddev values ranging

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 20XX 12

 0.11

 0.12

 0.13

 0.14

 0.15

 0.01 0.1 1

P
re

qu
en

tia
l E

rr
or

Delta δ

(a) Gradual Hyperplane

 0.084

 0.086

 0.088

 0.09

 0.092

 0.094

 0.096

 0.098

 0.01 0.1 1

P
re

qu
en

tia
l E

rr
or

Delta δ

(b) Sudden Hyperplane

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.01 0.1 1

P
re

qu
en

tia
l E

rr
or

Delta δ

(c) Weather

Fig. 7. Effects of delta δ (ADWIN) on error rate.

 0.122
 0.123
 0.124
 0.125
 0.126
 0.127
 0.128
 0.129

 1 10 100 1000

P
re

qu
en

tia
l E

rr
or

Delay Deviation ddev

(a) Gradual Hyperplane

 0.089

 0.09

 0.091

 0.092

 0.093

 0.094

 0.095

 1 10 100 1000

P
re

qu
en

tia
l E

rr
or

Delay Deviation ddev

(b) Sudden Hyperplane

 0.292

 0.293

 0.294

 0.295

 0.296

 1 10 100 1000

P
re

qu
en

tia
l E

rr
or

Delay Deviation ddev

(c) Weather

Fig. 8. Effects of delay deviation ddev on error rate.

from 1 to 1000 is only 0.7%. This indicates that PINE
is not sensitive to the value of ddev .
Although the results of varying support are not

presented, we still provide a discussion on its results.
The prequential error obtained by varying support the
range 0.01 to 1 is stagnant except until 0.75 where it
drops slightly and increases by 0.5% upon reaching 1.
The increase in support filters out temporal associa-
tion rules that are not significant but when set too high
it also removes useful rules, hence resulting in the
increase in error when support is set to 1 as no rules
are mined. Hence, it is easy to derive that any low
value of support should be sufficient to maintain low
prequential error, but a trade off would be an increase
in time required to mine the rules and perform rule
matching.
From the spectrum of variations analyzed, we can

conclude that PINE does not rely on parameters
heavily. It is exploitation of the links between peers
that makes PINE perform better than the other ap-
proaches.

5 RELATED WORK

Existing works on classification in non stationary
distributed environments studies only the simplified
problem settings. Bhaduri et al. [2] propose a decision
tree for P2P networks that can adapt to a sudden
change happening in all peers simultaneously. Such
scenario, as our weather data experiments suggest,
is too simple to be realistic. Chen et al. [27] explore

web mining from multiple distributed data streams,
where each distributed site learns a local Bayesian
Network (BN) model, but it needs to send a subset of
the relevant observations to a centralized site, which is
often not available in many distributed environments.
In our settings observations must not be transmitted
over the network.

A number concept drift handling techniques have
been developed in the last decade, we overview only
the most relevant studies. A number of techniques
employ only a single model, where the previous
model (or a part of it) is regularly replaced with a
new one [2], [8], [14]. Single model approaches are
not suitable for distributed environments due to the
nature of their centralized settings. In contrast, en-
semble techniques keep many individual models [6],
[10], [13], [17], [18], the system adapts via combination
rules or model selection. Typically only incremental
updates are done, the ensemble is not replaced at
every time step or as soon as a change happens.
Distributed network forms a natural ensemble, where
each peer can contribute to one or more individual
models.

An individual model update can be organized in
an evolving manner or using detectors. The evolv-
ing techniques do not care whether a change has
happened or not. In contrast, detectors aim to de-
tect changes and then drop the old data. Evolving
ensembles are among the most popular techniques
for handling concept drift [6], [9], [10], [13], [15],
[17]. Evolving techniques do not update their individ-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 20XX 13

ual models, but they can discard and replace them.
In distributed settings each local model represents
a physical peer, thus we cannot throw away local
models and build new ones. Thus evolving ensembles
are not of direct relevance to our work. Hence, in our
settings it is natural to use detectors for managing
training sets at the local model level.
Approaches with detectors monitor and describe

data over time, adaptive actions are taken based
on warning signals. Changes can be detected while
monitoring the incoming data distribution [28], [29]
or performance indicators, for instance, the streaming
error [30]. Change detection is a widely researched
field on its own [31], in addition, a number of works
are dedicated to change detection in concept drift
context [11], [30], [32], [33], [34], [35]. These ap-
proaches handle concept drift using only a single cen-
tralized model, whereas distributed setting requires a
distributed approach. Nevertheless, change detection
techniques are important for efficient detection of the
concept changes. Hence, we integrate ADWIN change
detection [34] into our propose framework.
All the above approaches are reactive, time needs

to pass before a change is detected and they start
to adapt. Several proactive solutions exist that aim to
predict a change before it happens [4], [36]. RePro [36]
incorporates change predictions into a reactive ensem-
ble. The prediction using a Markov chain is purely
based on historical data, it does not explore relations
between local models. In our present study we do not
forecast changes, as by definition they happen unex-
pectedly. Instead we speed up the detection process,
using early warnings, issued by other peers in the
network.
RePCoDE [4] performs sequence matching to find

peers with similar historical change patterns and use
this information to manage the weights of the local
models in an ensemble over time. The approach has
several limitations. It detects concept drift using fixed
windows which is often slower compared to adaptive
techniques [19]. In addition, RePCoDE fails to fully
exploit the association knowledge of the peers; it
performs only pairwise sequence matching which can
result in less accurate results as compared to mining
from multiple associations. Finally, the performance
of RePCoDE is sensitive to optimizing a number of
parameters.
Classifier ensembles that are designed for handling

reoccurring contexts [37], [38], [39] resemble PINE
as they maintain local models, that are explicitly re-
sponsible for particular regions of the instance space.
However, they do not adapt online and they do
not use mechanisms to update the local models, as
relevant for distributed problem.
To sum up, the existing solutions are unsuitable

or insufficient for deploying in distributed environ-
ments, as they are either based on centralized settings
or ignore the relationships between peers.

6 CONCLUSION

In this paper we proposed a novel framework PINE
for handling asynchronous concept drift in classifica-
tion in distributed networks. Our framework is an
ensemble learning approach that combines reactive
adaptation via drift detection, and proactive han-
dling of upcoming changes via early warning and
adaptation across the peers. Extensive experiments on
synthetic and real world datasets illustrate that PINE
adapts well to both gradual and sudden concept drifts
and outperforms the state-of-the-art approaches.

REFERENCES

[1] P. Luo, H. Xiong, K. Lü, and Z. Shi, “Distributed classification
in peer-to-peer networks,” in KDD, 2007, pp. 968–976.

[2] K. Bhaduri, R. Wolff, C. Giannella, and H. Kargupta, “Dis-
tributed decision-tree induction in peer-to-peer systems,” Sta-
tistical Analysis and Data Mining, vol. 1, no. 2, pp. 85–103, 2008.

[3] H. H. Ang, V. Gopalkrishnan, W. K. Ng, and S. C. H. Hoi,
“Communication-efficient classification in P2P networks,” in
ECML/PKDD (1), 2009, pp. 83–98.

[4] ——, “On classifying drifting concepts in p2p networks,” in
ECML/PKDD (1), 2010, pp. 24–39.

[5] S. Datta, K. Bhaduri, C. Giannella, R. Wolff, and H. Kargupta,
“Distributed data mining in peer-to-peer networks,” Internet
Computing, vol. 10, no. 4, pp. 18–26, 2006.

[6] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavalda,
“New ensemble methods for evolving data streams,” in KDD,
2009, pp. 139–148.

[7] S. Bach and M. Maloof, “A bayesian approach to concept
drift,” in NIPS, 2010, pp. 127–135.

[8] E. Ikonomovska, J. Gama, and S. Dzeroski, “Learning model
trees from evolving data streams,” Data Mining and Knowledge
Discovery, vol. 23, pp. 128–168, 2011.

[9] M. Masud, Q. Chen, L. Khan, C. Aggarwal, J. Gao, J. Han, and
B. Thuraisingham, “Addressing concept-evolution in concept-
drifting data streams,” in ICDM, 2010.

[10] L. L. Minku, A. P. White, and X. Yao, “The impact of diversity
on online ensemble learning in the presence of concept drift,”
IEEE Transactions on Knowledge and Data Engineering, vol. 22,
pp. 730–742, 2010.

[11] G. Widmer and M. Kubat, “Learning in the presence of concept
drift and hidden contexts,” Machine Learning, vol. 23, no. 1, pp.
69–101, 1996.

[12] R. Klinkenberg, “Learning drifting concepts: Example selec-
tion vs. example weighting,” Intelligent Data Analysis, vol. 8,
pp. 281–300, 2004.

[13] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority:
An ensemble method for drifting concepts,” Journal of Machine
Learning Research, vol. 8, pp. 2755–2790, 2007.

[14] G. Hulten, L. Spencer, and P. Domingos, “Mining time-
changing data streams,” in KDD, 2001, pp. 97–106.

[15] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-
drifting data streams using ensemble classifiers,” in KDD,
2003, pp. 226–235.

[16] I. Zliobaite, “Learning under concept drift: an overview,”
Vilnius University, Tech. Rep., 2009.

[17] W. N. Street and Y. Kim, “A streaming ensemble algorithm
(sea) for large-scale classification,” in KDD, 2001, pp. 377–382.

[18] S. H. Bach and M. A. Maloof, “Paired learners for concept
drift,” in ICDM, 2008, pp. 23–32.

[19] A. Bifet and R. Gavalda, “Adaptive learning from evolving
data streams,” in IDA, 2009, pp. 249–260.

[20] H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery
of frequent episodes in event sequences,” Data Mining and
Knowledge Discovery, vol. 1, no. 3, pp. 259–289, 1997.

[21] S. K. Harms and J. S. Deogun, “Sequential association rule
mining with time lags,” Journal of Intelligent Information Sys-
tems, vol. 22, no. 1, pp. 7–22, 2004.

[22] T.-Y. Lee, E. T. Wang, and A. L. P. Chen, “Mining serial episode
rules with time lags over multiple data streams,” in DaWaK,
2008, pp. 227–240.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 20XX 14

[23] M. J. Zaki, “Spade: An efficient algorithm for mining frequent
sequences,” Machine Learning, vol. 42, no. 1/2, pp. 31–60, 2001.

[24] S. Laxman, P. S. Sastry, and K. P. Unnikrishnan, “A fast
algorithm for finding frequent episodes in event streams,” in
KDD, 2007, pp. 410–419.

[25] J. Gama, R. Sebastiao, and P. P. Rodrigues, “Issues in evalu-
ation of stream learning algorithms,” in KDD, ser. KDD ’09.
ACM, 2009, pp. 329–338.

[26] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sun-
dararajan, “A dual coordinate descent method for large-scale
linear svm,” in ICML, 2008, pp. 408–415.

[27] R. Chen, K. Sivakumar, and H. Kargupta, “Distributed web
mining using bayesian networks from multiple data streams,”
in ICDM, 2001, pp. 75–82.

[28] X. Song, M. Wu, C. Jermaine, and S. Ranka, “Statistical change
detection for multidimensional data,” in KDD, 2007, pp. 667–
676.

[29] D. Kifer, S. Ben-David, and J. Gehrke, “Detecting change in
data streams,” in VLDB, 2004, pp. 180–191.

[30] J. Gama, P. Medas, G. Castillo, and P. P. Rodrigues, “Learning
with drift detection,” in SBIA, 2004, pp. 286–295.

[31] M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes -
Theory and Application. Prentice-Hall, Inc., 1993.

[32] M. Leeuwen and A. Siebes, “Streamkrimp: Detecting change
in data streams,” in ECML/PKDD, 2008, pp. 672–687.

[33] K. Nishida and K. Yamauchi, “Detecting concept drift using
statistical testing,” in Discovery Science, 2007, pp. 264–269.

[34] A. Bifet and R. Gavalda, “Learning from time-changing data
with adaptive windowing,” in SDM, 2007.

[35] R. Klinkenberg and I. Renz, “Adaptive information filtering:
Learning in the presence of concept drifts,” in Learning for Text
Categorization, 1998, pp. 33–40.

[36] Y. Yang, X. Wu, and X. Zhu, “Mining in anticipation for
concept change: Proactive-reactive prediction in data streams,”
Data Mining and Knowledge Discovery, vol. 13, no. 3, pp. 261–
289, 2006.

[37] I. Katakis, G. Tsoumakas, and I. Vlahavas, “Tracking recurring
contexts using ensemble classifiers: an application to email
filtering,” Knowledge and Information Systems, vol. 22, pp. 371–
391, 2010.

[38] J. B. Gomes, E. Menasalvas, and P. A. C. Sousa, “Tracking
recurrent concepts using context,” in RSCTC, 2010, pp. 168–
177.

[39] I. Zliobaite, J. Bakker, and M. Pechenizkiy, “Towards context
aware food sales prediction,” in ICDM Workshops, 2009, pp.
94–99.

Hock Hee Ang is a PhD student in the
School of Computer Engineering at Nanyang
Technological University in Singapore. His
research interests include distributed data
mining and ensemble learning.

Vivekanand Gopalkrishnan is the director
of research for the Deloitte Analytics Institute.
He has nearly 20 years of experience in
research, teaching, consulting on the devel-
opment of practical solutions to real-world
issues using analytics.

Vivek has advised clients on strategies for
driving data-driven insights, and specialises
in architecting innovative solutions that mine
insights even when the data is not well-
behaved. His research covers data mining,

machine learning and data warehousing, and he has published over
50 papers in these fields.

Vivek continues to actively serve the academic and research
communities. He is on the editorial boards and review committees
of leading research journals, and on the program committees of top
international data mining and information management conferences.
As a passionate educator, he continues to guide university academic
programmes and research councils in analytics.

Indr ė Žliobait ė is a Lecturer in Computa-
tional Intelligence at Bournemouth Univer-
sity UK. She received her PhD from Vil-
nius University, Lithuania in 2010. I. Žliobaitė
has six years of experience in credit anal-
ysis in banking industry. Her research in-
terests concentrate around online data min-
ing, including learning from evolving stream-
ing data, change detection, adaptive and
context-aware learning, predictive analytics
applications. Recently she has co-chaired

workshops at ECMLPKDD 2010 and ICDM 2011, co-organized
tutorials at CBMS 2010 and PAKDD 2011 on adaptive learning.
She is a Research Task Leader within the INFER.eu project that
is developing evolving and robust predictive systems. For further
information see http://zliobaite.googlepages.com.

I. Žliobaitė’s research has received partial funding from the Eu-
ropean Commission within the Marie Curie Industry and Academia
Partnerships & Pathways (IAPP) programme under grant agreement
no 251617.

Mykola Pechenizkiy is Assistant Profes-
sor at the Department of Computer Sci-
ence, Eindhoven University of Technology,
the Netherlands. He received his PhD in
Computer Science and Information Systems
from the University of Jyvaskyla, Finland in
2005. He has broad expertise and research
interests in data mining and data-driven intel-
ligence, and its application to various (adap-
tive) information systems serving industry,
commerce, medicine and education. He has

coauthored over 70 publications and has been organizing several
workshops (HaCDAIS@ECML/PKDD2010, LEMEDS@AIME2011),
conferences (IEEE CBMS 2012, EDM 2011, IEEE CBMS 2008,
BNAIC 2009) and tutorials (at ECML/PKDD 2012, PAKDD 2011,
IEEE CBMS 2010, ECML/PKDD 2010) in these areas. Recently, he
has co-edited the Handbook of Educational Data Mining and served
as a guest editor of the special issues in SIGKDD Explorations,
Elsevier’s DKE and AIIM, and Springer’s Evolving Systems journals.
Currently, he takes a leading role in NWO HaCDAIS, STW CAPA, EIT
ICT Labs Stress@Work and NL Agency CoDaK projects information
on which can be found at http://www.win.tue.nl/ mpechen/

Steven C. H. Hoi is an Assistant Profes-
sor of the School of Computer Engineering
at Nanyang Technological University, Singa-
pore. He received his Bachelor degree from
Tsinghua University, P.R. China, in 2002, and
his Ph.D degree in computer science and
engineering from The Chinese University of
Hong Kong, in 2006. His research interests
are machine learning and data mining and
their applications to multimedia information
retrieval (image and video retrieval), social

media and web mining, and computational finance, etc. He has
published over 100 referred papers in top conferences and journals
in related areas. He has served as general co-chair for ACM SIGMM
Workshops on Social Media (WSM’09, WSM’10, WSM’11), program
co-chair for the fourth Asian Conference on Machine Learning
(ACML’12), book editor for “Social Media Modeling and Computing”,
guest editor for ACM Transactions on Intelligent Systems and Tech-
nology (ACM TIST), technical PC member for many international
conferences, and external reviewer for many top journals and world-
wide funding agencies, including NSF in US and RGC in Hong Kong.
He is a member of IEEE and ACM.

	Predictive Handling of Asynchronous Concept Drifts in Distributed Environments
	Citation

	fig_param_conf_acc_weather.eps

