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MKBoost: A Framework of Multiple Kernel Boosting

Hao Xia∗ Steven C. H. Hoi†

Abstract

Multiple kernel learning (MKL) has been shown as a
promising machine learning technique for data mining
tasks by integrating with multiple diverse kernel func-
tions. Traditional MKL methods often formulate the
problem as an optimization task of learning both opti-
mal combination of kernels and classifiers, and attempt
to resolve the challenging optimization task by various
techniques. Unlike the existing MKL methods, in this
paper, we investigate a boosting framework of exploring
multiple kernel learning for classification tasks. In par-
ticular, we present a novel framework of Multiple Ker-
nel Boosting (MKBoost), which applies boosting tech-
niques for learning kernel-based classifiers with multiple
kernels. Based on the proposed framework, we develop
several variants of MKBoost algorithms and examine
their empirical performance in comparisons to several
state-of-the-art MKL algorithms on classification tasks.
Experimental results show that the proposed method
is more effective and efficient than the existing MKL
techniques.

1 Introduction

Kernel methods are a family of important techniques
in data mining and machine learning for their proven
state-of-the-art performance in many real data analysis
applications [19, 20]. Most existing kernel methods usu-
ally adopt some kernel function k(xi, xj) that computes
the similarity between two data examples xi and xj .
For many real-world scenarios, employing a single kernel
function may not be enough since real data may come
from multiple different sources or could be represented
in different kinds of representations. This motivates the
need of studying machine learning techniques for com-
bining multiple kernels to achieve better capability and
higher flexibility in solving real-world challenges. Such
a learning problem is often known as “Multiple Kernel
Learning” (MKL) in machine learning and data min-
ing [21].

Recent years have witnessed a surge of studies that
actively investigate various techniques for Multiple Ker-
nel Learning [18, 21, 24]. Similar to some existing ker-
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nel methods, e.g. Support Vector Machines (SVM) [23],
MKL has been demonstrated as a promising technique
for solving many real-world applications, especially for
its power of exploiting multiple kernels for fusing di-
verse information from multiple sources. For instance,
MKL techniques have been applied to resolve the chal-
lenges of Protein subcellular localization in bioinformat-
ics, speech recognition in signal processing, and anomaly
detection in data mining [6].

Despite being studied extensively, the regular MKL
methods have some critical limitations. In particu-
lar, most existing MKL methods often formulate the
problem as a convex optimization task, e.g. a Semi-
Definite Program (SDP) [16], and then attempt to re-
solve the optimization task by applying existing opti-
mization techniques. Despite the nice convex formula-
tion, it is often a great challenge for solving such compli-
cated optimization tasks. Recently, a surge of research
efforts have attempted to improve the efficiency of the
optimization task by various techniques [21, 24]. For
instance, the study in [21] formulated the MKL prob-
lem as a min-max optimization task, and proposed to
find the saddle-point solution by solving a Semi-Infinite
Linear Program (SILP). Although some encouraging
progress has been made in this research direction, ef-
ficiency and scalability issues remain a key limitation
for the existing regular MKL methods towards a real
large application.

Besides the efficiency and scalability issues, the
regular MKL methods usually assume a simple linear
combination of multiple kernels, and attempt to learn
a “flat” kernel-based classifier with the optimal linear
combination of multiple kernels (similar to a regular
SVM classifier). The classifier learned by such an
approach is often “shallow”, which may not fully exploit
the power of multiple kernels for fitting diverse patterns.

To address the above limitations of the existing
MKL methods, in this paper, we investigate a new
multiple kernel learning framework, termed “Multiple
Kernel Boosting” (MKBoost), which adapts the idea of
boosting for learning classifiers with multiple kernels.
The intuitive idea of multiple kernel boosting is to
employ the boosting framework to learn an ensemble of
multiple base kernel classifiers, each of them is equipped
with one base kernel. The weights for both the kernel



and classifier combination can be easily determined
through the boosting process. As a result, we are able to
efficiently learn a classifier with multiple kernels without
resolving a complicated optimization task as required in
a regular MKL approach.

As a summary, the contributions of this work in-
clude: (1) we present a novel framework of Multiple Ker-
nel Boosting (MKBoost), which gives a new approach
to learning kernel based classifiers with multiple kernels
efficiently; (2) we propose two kinds of MKBoost algo-
rithms: deterministic and stochastic algorithms, which
attempt to resolve the MKBoost problem to trade off of
both accuracy and efficiency; (3) we conduct extensive
experiments for empirically validating the performance
of the proposedMKBoost algorithms by comparing with
the state-of-the-art MKL algorithms.

The rest of this paper will be organized as follows.
Section 2 formulates the proposed framework of mul-
tiple kernel boosting, and gives two kinds of different
approaches for solving the MKBoost problem. Section
3 discusses our empirical study. Section 4 reviews some
related work, and Section 5 concludes this paper.

2 Multiple Kernel Boosting

In this section, we present a novel framework of multi-
ple kernel boosting (MKBoost), which adapts boosting
techniques for multiple kernel learning. Before present-
ing our MKBoost algorithms, we will first introduce the
problem and review the regular multiple kernel learning
(MKL). To ease our presentation, we will restrict our
discussion on a typical binary classification task. Sim-
ilar algorithms in this work can be easily extended to
multi-class classification tasks.

2.1 Problem Formulation Consider a given set of
training examples D = {(xi, yi), i = 1, . . . , N} where
yi ∈ {−1,+1}, i = 1, . . . , N , and a collection of M

kernel functions K = {κj : X × X → R, j = 1, . . . ,M}.
The goal of our multiple kernel boosting task is to

learn a kernel based classifier f , which is an ensemble of
kernel classifiers using the collection of M kernel classi-
fiers from the given training data examples. Typically,
we can express such a kernel classifier as follows:

f(xi) =

T
∑

t=1

αtft(xi)(2.1)

where ft is a hypothesis learned from a boosting trial,
αt is its associated weight in the final classifier, and T is
the total number of boosting trials. The main challenge
of multiple kernel boosting is how to develop an effective
boosting scheme to learn the optimal hypothesis ft and
its combination weight αt at each boosting trial.

For instance, if we consider only a single kernel κ, ft
can be learned by applying any regular kernel classifier
such as SVM from a subset of n training examples in a
boosting trial, i.e.,

ft(x) =
n
∑

i=1

βiyiκ(xi,x)(2.2)

where βi’s are the coefficients of an SVM model. Such
an approach reduces to a regular boosting approach
using a single kernel SVM as the base classifier.

In this paper, we present two kinds of approaches to
solving the MKBoost problem to trade off both efficacy
and efficiency. Before presenting our algorithms, we first
review the basic formulation of regular MKL to better
understand the motivation and difference of our work.

2.2 Multiple Kernel Learning The goal of a reg-
ular MKL task is to identify the optimal combination
of M kernels, denoted by θ = (θ1, . . . , θM ), which min-
imizes the margin based classification error. It can be
cast into the following optimization problem:

min
θ∈∆

min
f∈HK(θ)

1

2
|f |2HK(θ)

+ C

N
∑

i=1

ℓ(f(xi), yi)(2.3)

where ∆ = {θ ∈ R
M
+ |θ

⊤eM = 1}, K(θ)(·, ·) =
∑M

j=1
θjκj(·, ·), ℓ(f(xi), yi) = max(0, 1− yif(xi)).

In the above formulation, we use notation eM to
represent a vector of M dimensions with all its elements
being 1. The above formulation can also be turned into
the following min-max optimization problem:

min
θ∈∆

max
α∈Ξ

{

α⊤eN −
1

2
(α ◦ y)⊤

(

∑M

j=1
θjK

j
)

(α ◦ y)
}

where Kj ∈ R
N×N with Kj

p,q = κi(xp, xq), Ξ =

{α|α ∈ [0, C]N}, and ◦ defines the element-wise product
between two vectors. We refer to the above formulation
as a regular MKL problem. Despite some encouraging
results achieved recently [18, 24], developing an efficient
and scalable algorithm for solving the regular MKL
problem remains an open challenge.

2.3 Deterministic MKBoost Algorithms The
general idea of MKBoost is to apply boosting techniques
to learn a classifier using multiple kernels. To this pur-
pose, we follow the typical procedure of a boosting algo-
rithm, i.e., Adaptive Boosting known as “Adaboost” [7],
which is a popular and successful boosting technique.

In particular, we repeatedly learn some kernel clas-
sifiers with multiple kernels ft through a series of boost-
ing trials t = 1, . . . , T , where T denotes the total number
of boosting trials. For each boosting trial, a distribu-
tion of weights Dt is engaged to indicate the importance



of the training examples for the classification. At each
boosting trial, we increase the weights of the wrongly
classified examples and/or decrease the weights of those
correctly classified examples in order to focus on those
examples that are hard to be correctly classified.

During each boosting trial, we first sample a subset
of n training examples according to distribution Dt and
a predefined boosting sampling ratio that determines
the proportion of training data to be sampled at each
boosting trial. Once obtaining the subset of training
data, the next key issue is how to learn the kernel based
classifier ft from these training data. The first approach
is to learn one classifier hj

t with each kernel κj from the
set of M kernels using a regular kernel method, e.g.,
SVM used in our study. Based on the set of M base
classifiers, we can further measure the misclassification
performance of each classifier h

j
t with kernel κj over

distribution Dt of the whole collection of training data:

ǫ
j
t = ǫ(hj

t) =
N
∑

i=1

Dt(i)(h
j
t (xi) 6= yi)(2.4)

As a result, we can build the classifier ft for the t-th
boosting trial by choosing the best classifier with the
smallest misclassification rate, i.e.,

ht = arg min
j∈{1,...,M}

ǫ(hj
t )(2.5)

The next step is to follow the similar procedure of
the Adaboost algorithm by computing the misclassifi-
cation rate ǫt for the combined classifier ht over the
distribution Dt on the whole collection of training data:

ǫt =
N
∑

i=1

Dt(i)(ht(xi) 6= yi)(2.6)

The last step of each boosting trial is to update the
weight of each training example Dt+1(i) as follows:

Dt+1(i) =
Dt(i)

Zt

×

{

e−αt if ht(xi) = yi

eαt if ht(xi) 6= yi

where αt =
1

2
ln(1−ǫt

ǫt
) and Zt is a normalization factor

to make Dt+1 a distribution. Finally, after finishing
all T boosting trials, the algorithm outputs the final
classifier as follows:

h(x) = sign
(

T
∑

t=1

αtht(x)
)

(2.7)

We refer to the above MKBoost algorithm as
“MKBoost-D1” for short. The details of the proposed
algorithm are shown in Algorithm 1.

Algorithm 1 The MKBoost algorithm (MKBoost-D1)

1: INPUT:
• training data: (x1, y1), . . . , (xN , yN )
• kernel functions: kj(·, ·) : X ×X → R, j = 1, . . . ,M
• initial distribution D1(i) = 1/N, i = 1, . . . , N

2: for t = 1, 2, . . . , T do

3: sample n examples using distribution Dt

4: for j = 1, 2, . . . ,M do

5: train weak classifier with kernel kj :
hj
t : X → {−1,+1}

6: compute the training error over Dt:
ǫjt =

∑N

i=1 Dt(i)(h
j
t (xi) 6= yi)

7: end for

8: select the best classifier with the minimal error rate

ht = argmin
h
j
t

ǫjt = argmin
h
j
t

N
∑

i=1

Dt(i)(h
j
t (xi) 6= yi),

9: choose αt =
1
2
ln( 1−ǫt

ǫt
), where ǫt = minj∈{1,...,M} ǫ

j
t

10: Update Dt+1(i):

Dt+1(i) =
Dt(i)

Zt

×

{

e−αt if ht(xi) = yi

eαt if ht(xi) 6= yi

Zt is a normalization factor to makeDt a distribution.
11: end for

12: OUTPUT: h(x) = sign
(
∑T

t=1 αtht(x)
)

Algorithm 2 The MKBoost Algorithm (MKBoost-D2)

1: INPUT:
• training data: (x1, y1), . . . , (xN , yN )
• kernel functions: kj(·, ·) : X ×X → R, j = 1, . . . ,M
• initial distribution D1(i) = 1/N, i = 1, . . . , N

2: for t = 1, 2, . . . , T do

3: sample a set of n examples using distribution Dt

4: for j = 1, 2, . . . ,M do

5: train weak classifier with kernel kj :
hj
t : X → {−1,+1}

6: compute the training error over Dt:
ǫjt =

∑N

i=1 Dt(i)(h
j
t (xi) 6= yi)

7: choose αj
t = 1

2
ln(

1−ǫ
j
t

ǫ
j
t

)

8: end for

9: combine the M classifiers:
ht(x) = sign

(
∑M

j=1 α
j
th

j
t(x)

)

10: compute the training error over Dt:
ǫt =

∑N

i=1 Dt(i)(ht(xi) 6= yi)
11: choose αt =

1
2
ln( 1−ǫt

ǫt
)

12: Update Dt+1(i):

Dt+1(i) =
Dt(i)

Zt

×

{

e−αt if ht(xi) = yi

eαt if ht(xi) 6= yi

Zt is a normalization factor to makeDt a distribution.
13: end for

14: OUTPUT: h(x) = sign
(
∑T

t=1 αtht(x)
)



In the above algorithm, we simply choose the best
classifier among the M kernel classifiers as the classifier
for the t-th boosting trial and the other M−1 classifiers
are simply dropped. In some situation, it is possible
that other kernel classifiers may make complementary
contribution for improving classification performance.
Thus, we propose another way to build the classifier
by combining all these M classifiers, each of which is
assigned with a combination weight. Specifically, we
suggest to build the classifier for the t-th boosting trial:

ht(x) = sign
(

M
∑

j=1

α
j
th

j
t (x)

)

(2.8)

where the weight αj
t is computed based on the misclas-

sification rate ǫ
j
t , i.e.,

α
j
t =

1

2
ln
(1− ǫ

j
t

ǫ
j
t

)

(2.9)

We refer to this MKBoost algorithm as “MKBoost-D2”
for short. The other part of this algorithm is same to the
MKBoost-D1 algorithm. The details of the proposed
MKBoost-D2 algorithm are shown in Algorithm 2.

2.4 Stochastic MKBoost Algorithms One im-
portant limitation for the above two MKBoost algo-
rithms is that they need to repeatedly train a set of
M kernel classifiers at each boosting trial. This could
be computationally intensive if the number of kernels
M is large in some applications. To address this limi-
tation, in this section, we propose a stochastic learning
approach for MKBoost, which aims to avoid the need
of training all the M kernel classifiers. To ease our pre-
sentation, we refer to the new algorithms as stochastic

MKBoost algorithms, and the previous two algorithms
as deterministic MKBoost algorithms.

The intuitive idea of a stochastic MKBoost ap-
proach is that we could try to avoid unnecessary costs
of training classifiers with some kernels that have rela-
tively poor classification performance for the classifica-
tion task. To this purpose, we introduce a variable St(j)
as the kernel sampling probability, which indicates how
likely a kernel kj will be sampled at the t-th boosting
trial. At the beginning of the MKBoost algorithm, all
S1(j) values are set to 1, which means that allM kernels
will be sampled in the first boosting trial.

For each boosting trial, we sample a subset of
kernels according to the kernel sampling probability
St. The proposed MKBoost algorithm will train kernel
classifiers only for those selected kernels. At the end
of each boosting trial, we update the kernel sampling
probability according to its classification performance:

St+1(j)← St(j)β
ǫ
j
t(2.10)

Algorithm 3 The MKBoost algorithm (MKBoost-S1)

1: INPUT:
• training data: (x1, y1), . . . , (xN , yN )
• kernel functions: kj(·, ·) : X ×X → R, j = 1, . . . ,M
• init. data distribution D1(i) = 1/N, i = 1, . . . , N
• init. kernel sampling prob. S1(j) = 1, j = 1, . . . ,M
• sampling decay rate 0 < β < 1

2: for t = 1, 2, . . . , T do

3: Sample n examples using distribution Dt

4: Sample a set of kernels Kt by sampling probability St

5: for kj ∈ Kt do

6: Train weak classifier with kernel kj :
hj
t : X → {−1,+1}

7: Compute the training error over Dt:
ǫjt =

∑N

i=1 Dt(i)(h
j
t (xi) 6= yi)

8: Update St+1(j)← St(j)β
ǫ
j
t

9: end for

10: Update St+1(j)← St+1(j)/Z
S , ZS = max(St+1)

11: ht = argminκj∈Kt ǫ(h
j
t ) =

∑N

i=1 Dt(i)(h
j
t (xi) 6= yi)

12: Compute the training error over Dt:
ǫt =

∑N

i=1 Dt(i)(ht(xi) 6= yi)
13: αt =

1
2
ln( 1−ǫt

ǫt
)

14: Update Dt+1(i)←
Dt(i)
Zt

exp(−αtyiht(xi))
15: end for

16: OUTPUT: h(x) = sign
(
∑T

t=1 αtht(x)
)

Algorithm 4 The MKBoost algorithm (MKBoost-S2)

1: INPUT:
• training data: (x1, y1), . . . , (xN , yN )
• kernel functions: kj(·, ·) : X ×X → R, j = 1, . . . ,M
• init. data distribution D1(i) = 1/N, i = 1, . . . , N
• init. kernel sampling prob. S1(j) = 1, j = 1, . . . ,M
• sampling decay rate 0 < β < 1

2: for t = 1, 2, . . . do
3: Sample n examples using distribution Dt

4: Sample a set of kernels Kt by sampling probability St

5: for kj ∈ Kt do

6: Train weak classifier with kernel kj :
hj
t : X → {−1,+1}

7: Compute the training error over Dt:
ǫjt =

∑N

i=1 Dt(i)(h
j
t (xi) 6= yi)

8: Choose αj
t = 1

2
ln(

1−ǫ
j
t

ǫ
j
t

)

9: Update St+1(j)← St(j)β
ǫ
j
t

10: end for

11: Update St+1(j)← St+1(j)/Z
S , ZS = max(St+1)

12: ht(x) = sign
(
∑

kj∈Kt
αj
th

j
t (x)

)

13: Compute the training error over Dt:
ǫt =

∑N

i=1 Dt(i)(ht(xi) 6= yi)
14: Choose αt =

1
2
ln( 1−ǫt

ǫt
)

15: Update Dt+1(i)←
Dt(i)
Zt

exp(−αtyiht(xi))
16: end for

17: OUTPUT: h(x) = sign
(
∑T

t=1 αtht(x)
)



where β ∈ (0, 1) is a constant parameter introduced as a
sampling decay factor for updating the kernel sampling
probability, and ǫ

j
t is the misclassification rate of the

kernel classifier with a selected kernel kj . The above
formula indicates the larger the misclassification rate,
the more decay penalty will be applied to the kernel to
reduce the chance of being sampled in the next trial.

By incorporating the above kernel sampling
scheme, we suggest two stochastic MKBoost algorithms,
MKBoost-S1 and MKBoost-S2, which are correspond-
ing to the previous two deterministic MKBoost algo-
rithms, respectively. The details of these two algorithms
are shown in Algorithm 3 and 4.

3 Experiments

In this section, we conduct an extensive set of experi-
ments to examine the classification performance of the
proposed MKBoost algorithms by comparing with sev-
eral state-of-the-art MKL techniques in literature.

3.1 Experimental Testbed We evaluate the per-
formance of MKBoost algorithms for both binary and
multiclass classification tasks. We randomly choose
a number of publicly available datasets from web
machine learning repositories, which can be down-
loaded from http://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/. Table 1 shows the summary
of the datasets in our experiments. Note that the sizes
of these datasets are not very large because we want to
compare our algorithms with other existing MKL algo-
rithms, most of them are often not scalable and only
applicable to relatively small datasets. In general, our
algorithms are efficient and scalable for large datasets.

Table 1: Summary of the datasets used in the exper-
iments (where C,N,D denote # classes, #examples,
#features, respectively).

Abbr. name source C N D

D1 balance-scale UCI 2 576 4

D2 german.numer Statlog 2 1000 24

D3 glass UCI 2 214 10

D4 ionosphere UCI 2 351 34

D5 monks1 UCI 2 556 6

D6 sonar UCI 2 208 60

D7 svmguide3 CWH03a 2 1243 21

D8 wdbc UCI 2 569 30

D9 segment Statlog 7 2310 19

D10 vehicle Statlog 4 846 18

3.2 Comparison Schemes In our experiments, we
compare our MKBoost algorithms against several state-
of-the-art MKL algorithms using different optimization
techniques, including the following:

• MKL-SD: An MKL algorithm solved by a Subgra-
dient Descent (SD) optimization method [18].

• MKL-SILP: An MKL algorithm solved by a Semi-
Infinite Linear Programming (SILP) approach [21].

• MKL-Level: An MKL algorithm where the opti-
mization solved by an extended level method [24].

• Lp-MKL: An extended MKL algorithm that gen-
eralizes the regular ℓ1-norm MKL method to arbi-
trary ℓp-norm MKL [14].

3.3 Experimental Setup For the setup of our ex-
periments, we follow the typical approach used in the
previous MKL studies in literature. In particular, for
each dataset, we create a set of 17 base kernels, i.e.,

• Gaussian kernels with 14 different widths
(2−6, 2−5, . . . , 27) on all features.

• Polynomial kernels of degree 1 to 3 on all features.

To implement the existing MKL algorithms, we
adopt the SimpleMKL toolbox [18] that includes the
implementations of both SILP and SD algorithms, and
the LevelMKL toolbox [24] that implements MKL-
Level. For running the above existing MKL algorithms,
we adopt their default settings suggested by the two
toolboxes, which employ the duality gap as the stopping
criterion, and stop the optimization process when the
duality gap is less than a threshold or the max number
of optimization iterations is reached. For Lp-MKL, as
no code available, we implemented it by ourselves, and
set p = 2 for the best tradeoff of accuracy and efficiency.

For the implementation of our MKBoost algo-
rithms, by default, we set the total number of boost-
ing trials T to 100, the boosting sampling ratio to 0.2,
and the sampling decay factor β to 2−5 for stochastic
MKBoost algorithms. For SVM, we adopt the popular
LIBSVM toolbox as the SVM solver. For the multiclass
classification tasks, we adopt a one-to-one approach to
training a set of binary classifiers. Finally, all the ex-
periments were running in Matlab on a Linux machine
with 3GHz Intel CPU and 16GB RAM.

For all the experiments, we repeat each algorithm 20
times on every dataset. Similar to the previous studies,
for each run, 50% of the examples were randomly
sampled as training data and the remaining were used
for test. The training data were normalized to have zero
mean and unit variance, and the test data were then
normalized using the mean and variance of the training
data. The penalty cost parameter C was fixed to 50
for SVM and the compared MKL algorithms. To avoid
unstable results for stochastic MKBoost algorithms, we
run 10 times under each setting and report average
performances. Finally, we report both classification
accuracy and time cost for performance evaluation.
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Figure 1: Comparison between deterministic MKBoost algorithms and MKL algorithms.

Table 2: Comparison between two deterministic MKBoost algorithms and four different MKL algorithms.

Dataset Metric MKBoost-D1 MKBoost-D2 MKL-SD MKL-SILP MKL-Level Lp-MKL

D1 accuracy 0.9858 0.9907 0.9464 0.9460 0.9726 0.9809
std ±0.0079 ±0.0057 ±0.0099 ±0.0132 ±0.0102 ±0.0078
time 0.7658 0.8683 2.9520 1.3615 5.175 4.1735

D2 accuracy 0.7361 0.7263 0.7001 0.7003 0.7 0.7065
std ±0.0117 ±0.0094 ±0.0004 ±0.0025 ±0.0000 ±0.0055
time 4.6168 4.5845 51.8245 46.9960 8.4915 12.43

D3 accuracy 0.9885 0.9890 0.9462 0.9448 0.9458 0.9646
std ±0.0140 ±0.0121 ±0.0181 ±0.0166 ±0.0181 ±0.0170
time 0.6058 0.4497 1.812 2.4105 3.57 1.488

D4 accuracy 0.9426 0.9453 0.9306 0.9249 0.93 0.9337
std ±0.0139 ±0.0103 ±0.0155 ±0.0255 ±0.0183 ±0.0200
time 0.697 0.6048 4.376 3.922 4.0235 2.683

D5 accuracy 0.9522 0.8829 0.791 0.7932 0.7835 0.8556
std ±0.0154 ±0.0199 ±0.0251 ±0.0311 ±0.0232 ±0.0221
time 1.163 1.0960 8.6205 5.051 6.527 5.0955

D6 accuracy 0.8183 0.8021 0.7752 0.7791 0.7684 0.8024
std ±0.0396 ±0.0338 ±0.0423 ±0.0427 ±0.0407 ±0.0406
time 0.5722 0.4547 2.135 1.9425 4.4125 1.012

D7 accuracy 0.8158 0.7923 0.7744 0.7746 0.7733 0.7816
std ±0.0067 ±0.0079 ±0.0038 ±0.0040 ±0.0036 ±0.0057
time 5.2625 5.2193 62.118 25.4405 33.147 16.7775

D8 accuracy 0.9663 0.9741 0.9595 0.9595 0.9597 0.9692
std ±0.0107 ±0.0074 ±0.0094 ±0.0094 ±0.0097 ±0.0079
time 0.8688 0.8285 2.514 1.576 4.9735 5.7715

D9 accuracy 0.9663 0.9675 0.9096 0.9076 0.9101 0.9406
std ±0.0030 ±0.0026 ±0.0075 ±0.0115 ±0.0087 ±0.0064
time 16.7547 17.5432 171.386 91.966 177.194 134.704

D10 accuracy 0.7877 0.7848 0.6737 0.6733 0.673 0.7371
std ±0.0085 ±0.0115 ±0.0191 ±0.0199 ±0.0186 ±0.0140
time 4.1932 4.5257 28.208 21.383 25.9065 20.429



3.4 Comparison Results We first compare the per-
formances between two deterministic MKBoost algo-
rithms (MKBoost-D1 and MKBoost-D2) and the four
existing MKL algorithms (MKL-SD, MKL-SILP, MKL-
Level, and Lp-MKL). Further, we will compare both
the accuracy and efficiency performances between the
deterministic and stochastic MKBoost algorithms. Fi-
nally, we will evaluate the effects of various parameters
that may influence the performance of the MKBoost
algorithms. To examine statistical significance of the
comparisons, for the experimental results reported be-
low, we highlight the best result in each group in bold
font by conducting student t-tests with the significance
level α = 0.05.

3.4.1 MKBoost vs. Regular MKL Figure 1 and
Table 2 show the experimental results of the compar-
isons between the two deterministic MKBoost algo-
rithms and the four existing MKL algorithms.

Several observations can be drawn from the re-
sults. First of all, in terms of classification accuracy
performance, among the three ℓ1-norm MKL algorithms
(MKL-SD, MKL-SILP, and MKL-Level), we found that
their accuracy performances are generally comparable,
in which no one algorithm significantly performs bet-
ter than the others. This is consistent to the previous
MKL studies as all these MKL algorithms are essen-
tially based on the same formulation, but adopt dif-
ferent optimization techniques to speed up the opti-
mization process. Further, comparing the three regu-
lar MKL algorithms and the two proposed MKBoost
algorithms, we found the MKBoost algorithms consid-
erably outperform the three regular MKL algorithms
in most cases. For example, for dataset D3(“glass”),
the three regular MKL algorithms achieved the accu-
racy of no more than 95%, while the proposed deter-
ministic MKBoost algorithms are able to attain a much
higher accuracy of over 98% for both MKBoost-D1 and
MKBoost-D2 algorithms. Moreover, by examining the
performance of the state-of-the-art Lp-MKL algorithm,
we found that it often performs better than the three
regular ℓ1-norm MKL algorithms, but still performs
considerably worse than our MKBoost algorithms. Fi-
nally, by comparing the two deterministic MKBoost
algorithms themselves, we found that their classifi-
cation accuracy performances are generally compara-
ble, in which MKBoost-D1 outperformed MKBoost-D2
in some datasets (“D2”,“D5”,“D6”,“D7”,“D10”) but
failed to beat MKBoost-D2 in the other datasets.

In addition to the clear gain of classification ac-
curacy, we also found that the proposed MKBoost
algorithms enjoy the significant advantage of higher
learning efficiency over the regular MKL algorithms.

In particular, by examining the time costs of learn-
ing the classification models, we found that the two
proposed MKBoost algorithms are often significantly
more efficient than the four existing MKL algorithms.
Typically, both MKBoost algorithms are several times
(about 2∼10 times depending on datasets) faster than
the existing MKL algorithms. For example, for the
D2(“german.number”) dataset, the time costs of both
MKBoost algorithms are only about one tenth of the
costs by MKL-SD and MKL-SILP, and about half and
one-third of the costs by MKL-Level and Lp-MKL, re-
spectively. Finally, for the two proposed MKBoost al-
gorithms, their time costs are comparable as they essen-
tially share the same time complexity in theory.

All the above encouraging experimental results
show that the two MKBoost algorithms (MKBoost-D1
and MKBoost-D2) are not only more accurate than the
regular MKL algorithms for the classification tasks, but
also are able to learn the models considerably more ef-
ficiently.

3.4.2 Deterministic vs. Stochastic MKBoost

Figure 2 and Table 3 show the experimental results
of the comparisons between the two deterministic MK-
Boost algorithms (MKBoost-D1 and MKBoost-D2) and
the two stochastic MKBoost algorithms (MKBoost-S1
and MKBoost-S2). Several observations can be drawn
from the results.

First of all, it is clear to see that the stochastic
MKBoost algorithms are more efficient than the deter-
ministic MKBoost algorithms. The exact value of time
efficiency speedup achieved by the stochastic algorithms
depends on different datasets. Overall, the time cost of
the two stochastic MKBoost algorithms is about half of
the cost taken by the two deterministic algorithms as
observed from this set of experiments.

In addition to the time efficiency issue, another con-
cern is how accurate can the stochastic MKBoost algo-
rithms perform in comparison to the deterministic algo-
rithms. By further examining the classification accuracy
results in details, it is a bit surprising to find that the
two stochastic algorithms perform very well, which are
in general fairly comparable to the deterministic algo-
rithms. The difference of the accuracy values between
a deterministic algorithm and a stochastic algorithm is
often no more than 1%. Besides, for a few cases, we
even observed that a stochastic algorithm slightly out-
performed a deterministic algorithm. Finally, by com-
paring the two different stochastic algorithms, we found
that both of their accuracy and efficiency performances
are quite comparable, which is similar to the previous
comparison of the two deterministic algorithms.

The above observations show that the proposed
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Figure 2: Comparison between deterministic and stochastic MKBoost algorithms.

Table 3: Comparison between the deterministic and stochastic MKBoost algorithms.

Dataset Metric MKBoost-D1 MKBoost-D2 MKBoost-S1 MKBoost-S2

D1 accuracy 0.9858 0.9907 0.9878 0.9886
std ±0.0079 ±0.0057 ±0.0067 ±0.0061
time 0.7658 0.8683 0.4350 0.3975

D2 accuracy 0.7361 0.7263 0.7355 0.7359
std ±0.0117 ±0.0094 ±0.0106 ±0.0079
time 4.6168 4.5845 2.0623 2.0320

D3 accuracy 0.9885 0.9890 0.989 0.9879
std ±0.0140 ±0.0121 ±0.0138 ±0.0137
time 0.6058 0.4497 0.2732 0.2727

D4 accuracy 0.9426 0.9453 0.9469 0.943
std ±0.0139 ±0.0103 ±0.0130 ±0.0152
time 0.697 0.6048 0.3547 0.3527

D5 accuracy 0.9522 0.8829 0.943 0.8998
std ±0.0154 ±0.0199 ±0.0153 ±0.0221
time 1.163 1.096 0.5347 0.5423

D6 accuracy 0.8183 0.8021 0.8186 0.8076
std ±0.0396 ±0.0338 ±0.0356 ±0.0338
time 0.5722 0.4547 0.2388 0.2370

D7 accuracy 0.8158 0.7923 0.8132 0.8065
std ±0.0067 ±0.0079 ±0.0066 ±0.0080
time 5.2625 5.2193 2.4548 2.4192

D8 accuracy 0.9663 0.9741 0.9673 0.9701
std ±0.0107 ±0.0074 ±0.0102 ±0.0087
time 0.8688 0.8285 0.554 0.5508

D9 accuracy 0.9663 0.9675 0.9665 0.9677

std ±0.0030 ±0.0026 ±0.0034 ±0.0028
time 16.7547 17.5432 9.366 9.2138

D10 accuracy 0.7877 0.7848 0.786 0.7853
std ±0.0085 ±0.0115 ±0.0114 ±0.0110
time 4.1932 4.5257 2.6175 2.6172
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Figure 3: Evaluation of MKBoost classification accuracy with respect to boosting parameter T .
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Figure 4: Evaluation of MKBoost learning time cost with respect to boosting parameter T .

stochastic MKBoost algorithms can effectively speed up
the deterministic algorithms by maintaining comparable
classification accuracy.

3.5 Parameter Evaluation We notice that there
are a few parameters that could affect the performance
(both accuracy and efficiency) of the proposed MKBoost
algorithms. These parameters include the total number
of boosting trials T , the sampling ratio of training data
at each boosting trial, and the sampling decay factor
β in the stochastic MKBoost algorithms. To examine
the influence of these parameters, we conduct a set of
experiments to evaluate their impacts on both accuracy
and efficiency performance in the classification tasks.

3.5.1 Evaluation of Boosting Parameter T The
first set of experiments is to examine the influence of
the total number of boosting trials T for the proposed
MKBoost algorithms. In our previous experiments,
we simply fix this parameter to 100. In this set of
experiments, we examine the experimental results by
varying the parameter T from 20 to 200. Figure 3 and
Figure 4 show the evaluation results for the impact of
the boosting parameter T on the classification accuracy
and learning time cost, respectively. Some observations
can be drawn from the evaluation results.

First of all, we observed that, in terms of classifi-
cation accuracy performance, increasing the total num-
ber of boosting trials T in general is able to boost the
accuracy performance of all the proposed MKBoost al-
gorithms consistently. Such observation is particularly
more evident when the total number of boosting trials
T is small (e.g. T < 50) at the beginning. The im-
provements of classification accuracy performance usu-
ally become very small when the parameter T is large
(e.g. T > 200).

On the other hand, we found that increasing the
value of T leads to the linear increase of the time cost
required for training the models by all the proposed
MKBoost algorithms. This is not surprising since all
the proposed MKBoost algorithms have a linear time
complexity with respect to the total number of boosting
trials T .

The above empirical observations indicate that
choosing an appropriate boosting parameter T is es-
sentially a tradeoff between classification accuracy and
efficiency performances. In practice, it is not difficult
to choose an appropriate T value that usually falls in
between 50 and 200, which sometimes also depends on
the empirical requirements of efficiency and accuracy in
a real-life application.
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Figure 5: Evaluation of MKBoost classification accuracy with respect to boosting sampling ratio.
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Figure 6: Evaluation of MKBoost learning time cost with respect to boosting sampling ratio.

3.5.2 Evaluation of Boosting Sampling Ratio

Another boosting parameter that may affect the perfor-
mance of the MKBoost algorithms is the boosting sam-
pling ratio, which determines the proportion of train-
ing data examples sampled from the whole collection
of training data at each boosting trial. Figure 5 and
Figure 6 respectively show the evaluations of accuracy
and efficiency performance with respect to the boosting
sampling ratio by varying its value from 0.05 to 0.5.

From the experimental results, we found that the
MKBoost algorithms with a large boosting sampling ra-
tio value usually produced better classification accuracy
performance. This is especially more evident when the
boosting sampling ratio is small. For example, on the
dataset “Monks1”, the MKBoost-S1 algorithm has the
accuracy of less than 93%, which was boosted to above
95% when the sampling ratio is increased to 0.3. Despite
the improvement when increasing the boosting sampling
ratio, we found that the classification accuracy tends to
saturate when the value is large enough (e.g. larger than
0.4). All these observations are not difficult to interpret
because when the sampling ratio is too small, the base
kernel classifiers trained at the boosting process may
suffer from insufficient training examples. On the other
than, employing a too large sampling ratio may lead
to sample too many training data examples for some

large dataset, which may not be somewhat redundant
for building the base classifiers at the boosting trials.

In addition to the impact on the accuracy perfor-
mance, the boosting sampling ratio parameter also af-
fects the time efficiency of the MKBoost algorithms.
Similar to the observation from the evaluation of param-
eter T , increasing the boosting sampling ratio also leads
to the increase of the time cost needed by the MKBoost
algorithms. In particular, the relationship between the
sampling ratio and the learning time cost of the MK-
Boost algorithms fully depends on the underlying algo-
rithms used in training kernel based classifiers. As we
adopt SVM for training the base kernel classifiers, the
time cost of an MKBoost algorithm thus depends on the
time cost of the SVM algorithm (e.g. the time complex-
ity of the SMO algorithm implemented in the LIBSVM
package is empirically in O(n1.4) to O(n2.3)).

3.5.3 Evaluation of the Sampling Decay Factor

β for Stochastic MKBoost Algorithms The last
set of experiments is to examine the effect of the
sampling decay factor β for the two stochastic MKBoost
algorithms (MKBoost-S1 and MKBoost-S2). Figure 7
and Figure 8 show the evaluation of sampling decay
factor in terms of classification accuracy and learning
time cost performances, respectively. From the results,



10
−4

10
−3

10
−2

10
−1

10
0

0.984

0.986

0.988

0.99

0.992

0.994

0.996

beta

ac
cu

ra
cy

Balance−scale

 

 

MKBoost−D1
MKBoost−D2
MKBoost−S1
MKBoost−S2

(a) “Balance-scale”

10
−4

10
−3

10
−2

10
−1

10
0

0.88

0.9

0.92

0.94

0.96

beta

ac
cu

ra
cy

Monks1

 

 

MKBoost−D1
MKBoost−D2
MKBoost−S1
MKBoost−S2

(b) “Monks1”

10
−4

10
−3

10
−2

10
−1

10
0

0.8

0.81

0.82

0.83

0.84

beta

ac
cu

ra
cy

Sonar

 

 

MKBoost−D1
MKBoost−D2
MKBoost−S1
MKBoost−S2

(c) “Sonar”

Figure 7: Evaluation of accuracy of stochastic MKBoost algorithms with respect to the sampling decay factor β.

10
−4

10
−3

10
−2

10
−1

10
0

0.2

0.4

0.6

0.8

1

beta

tim
e

Balance−scale

 

 

MKBoost−D1
MKBoost−D2
MKBoost−S1
MKBoost−S2

(a) “Balance-scale”

10
−4

10
−3

10
−2

10
−1

10
0

0.2

0.4

0.6

0.8

1

1.2

beta

tim
e

Monks1

 

 

MKBoost−D1
MKBoost−D2
MKBoost−S1
MKBoost−S2

(b) “Monks1”

10
−4

10
−3

10
−2

10
−1

10
0

0.1

0.2

0.3

0.4

0.5

0.6

beta

tim
e

Sonar

 

 

MKBoost−D1
MKBoost−D2
MKBoost−S1
MKBoost−S2

(c) “Sonar”

Figure 8: Evaluation of time cost of stochastic MKBoost algorithms with respect to the sampling decay factor β.

we found that when setting β to 1 in the extreme
case, the two stochastic algorithms converge to the two
respective deterministic algorithms, respectively. This
is not surprising as β = 1 indicates that there is no
decay at all for all the kernels, as a result the stochastic
algorithm reduces the deterministic one. Further, we
observed that when decreasing the value of β, the
time cost can be consistently decreased since only some
kernels will be sampled for training due to the decay
effect. However, there is no a consistent trend for the
impact on the accuracy performance by varying the β

value. But in general we found that both stochastic
MKBoost algorithms are fairly robust to the value of
β, in which the accuracy results of the two stochastic
algorithms using varied β values are usually in between
the results of the two deterministic algorithms.

4 Related Work

Kernel methods have been extensively studied in lit-
erature [20, 5]. Most kernel methods usually assume
some predefined parametric kernels, e.g. a gaussian
kernel, is given a priori, where the parameters of these
kernel functions are usually determined empirically by
cross validation. Several studies have been proposed
to learn parametric, semi-parametric or nonparamet-
ric kernel functions/matrices from labeled and/or un-

labeled data. Example techniques include cluster ker-
nels [3], diffusion kernels [15], marginalized kernels [13],
graph-based spectral kernel learning methods [25, 10, 2],
nonparametric kernel learning [9, 26] and so on.

Recently, Multiple Kernel Learning (MKL) [16, 16,
21, 17, 24, 12] has been actively studied, which aims to
learn kernel based models by finding the optimal combi-
nation of a set of predefined kernels for a classification
task. Example algorithms include MKL by the SDP
approach [16], MKL by the SILP approach [21], MKL
using the subgradient descent approach [18], and MKL
by the level based optimization [24]. Recently, some
emerging works also attempt to improve the regular
MKL. For example, the ℓp-norm MKL method extended
the regular ℓ1-norm MKL for arbitrary ℓp-norm MKL
with p > 1. Besides, some recent studies [27, 11, 8, 22]
also attempted to address other issues of MKL, such
as multi-class and multi-labeled classification. Unlike
the existing MKL methods that often have to solve a
complicated optimization task for combining multiple
kernel classifiers, our work learns to combine multiple
kernel classifiers using a boosting approach, which is
more efficient and scalable than the regular MKL ap-
proaches. Finally, we note that our work is also related
to some existing works that employ boosting for learn-
ing mixture-of-kernel models [1] or kernel design[4].



5 Conclusions

This paper presented a novel framework of multiple ker-
nel boosting (MKBoost) for classification with multiple
kernels. Unlike regular MKL methods that often have
to solve challenging optimization tasks with multiple
kernels, the proposed MKBoost technique is simple and
easy to learn effective classification models with multiple
kernels by exploiting the advantage of efficient boost-
ing techniques. To further trade off between accuracy
and efficiency in a classification task, we first proposed
two deterministic MKBoost algorithms to train a set of
kernel-based classifiers using all kernels at every boost-
ing trial; we then presented two stochastic MKBoost
algorithms that randomly sample a subset of kernels at
a boosting trial. We found that MKBoost empirically
achieved better accuracy than the regular MKL algo-
rithms, and performed much more efficiently than the
state-of-the-art MKL techniques. Besides, we also found
that the stochastic MKBoost algorithms considerably
improved the efficiency of the deterministic algorithms
by maintaining comparable accuracy. For future work,
an open problem is to theoretically analyze the gener-
alization performance of the MKBoost algorithms.
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