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Modeling and Compressing 3-D Facial Expressions
Using Geometry Videos

Jiazhi Xia, Dao Thi Phuong Quynh, Ying He, Member, IEEE, Xiaoming Chen, and
Steven C. H. Hoi, Member, IEEE

Abstract—In this paper, we present a novel geometry video
(GV) framework to model and compress 3-D facial expressions.
GV bridges the gap of 3-D motion data and 2-D video, and
provides a natural way to apply the well-studied video processing
techniques to motion data processing. Our framework includes a
set of algorithms to construct GVs, such as hole filling, geodesic-
based face segmentation, expression-invariant parameterization
(EIP), and GV compression. Our EIP algorithm can guarantee
the exact correspondence of the salient features (eyes, mouth,
and nose) in different frames, which leads to GVs with better
spatial and temporal coherence than that of the conventional
parameterization methods. By taking advantage of this feature,
we also propose a new H.264/AVC-based progressive directional
prediction scheme, which can provide further 10%–16% bitrate
reductions compared to the original H.264/AVC applied for
GV compression while maintaining good video quality. Our
experimental results on real-world datasets demonstrate that GV
is very effective for modeling the high-resolution 3-D expression
data, thus providing an attractive way in expression information
processing for gaming and movie industry.

Index Terms—3-D facial expression, expression-invariant pa-
rameterization, feature correspondence, geometry video (GV),
H.264/AVC, video compression.

I. Introduction

OVER THE past decade, we have witnessed a revolution
in movie and game industries resulting from the use

of motion data. Nowadays, it is very common that actors
work in front of a blue screen and interact with invisible
computer-animated characters which are added later, trying to
fit into a computer-animated world. The movements of actors
are recorded using a motion capture (or mocap) system, by
which complex movement, realistic physical interactions, and
exchange of forces can be recreated in a physically accurate
manner. Despite the great success in movies and gaming,
the current mocap requires the subject to wear calibrated
markers. The output of motion capture is just the approximate
motion of a skeleton representing the rigid parts of the subject,
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rather than its precise geometry. Therefore, much editing work
is often needed to map the skeletal movement to a virtual
character. Furthermore, artifacts may occur when applying the
recorded motion to a virtual model with proportions different
than the captured subject.

The latest 3-D image sensing technology provides an alter-
native way to capture the moving and deforming objects. For
example, the structured light system consists of a structured
light source (such as a digital projector) and a high-speed
digital video camera, and can be set up easily in an everyday
environment. By encoding phase information of the light, it
can provide the depth information of a 3-D scene in real time.
Compared to the traditional marker-based mocap system, the
3-D camera allows us to capture the moving objects in a less
restrictive manner, i.e., without placing any markers on the
subject, and it can provide more accurate geometry data of
the objects. However, the current structured light-based 3-D
camera has several serious drawbacks that inhibits its use in
broader applications.

1) First, the scanned motion data is usually bulky. For
example, the latest high-resolution 3-D camera [1] is
able to capture 30 f/s with a resolution of 512 × 512 of
each frame, resulting in approximately 5 MB raw data
per frame as shown in Fig. 1. This imposes a significant
challenge for compressing the captured video efficiently
while maintaining the video reconstruction quality.

2) Second, the captured raw data may contain noise and/or
holes due to various reasons, such as camera occlusion,
specular reflection, shadows, light interference, depth
discontinuity, and others. Thus, much efforts are needed
to clean and repair the datasets.

3) Third, each frame of the captured motion data is in the
reference system of the scanner, and it is not registered
in the object space. Thus, the correspondences between
points in different frames are not available. However,
from the modeling point of view, it is highly desirable to
have such correspondence among frames. Furthermore,
as we will demonstrate later, the correspondence is
helpful to improve the compression ratio.

Geometry images [2] are a novel concept that intelligently
encodes the 3-D geometry into an image format, in which each
pixel {r, g, b} represents a 3-D vertex {x, y, z}. To process 3-D
motion data, it is natural to extend geometry images to geom-
etry videos (GVs) which bridges the gap of 3-D motion data
and 2-D video, and provides a way to apply the well-studied
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Fig. 1. 3-D camera is capable of capturing high-resolution motion data at
30 f/s. Both geometry (vertex coordinate) and texture (grayscale color) are
encoded in a quadrilateral mesh with approximately 250 K vertices. (a) Image
captured by conventional 2-D camera. (b) 3-D mesh captured by 3-D camera.
(c) Another view of the 3-D mesh.

video processing techniques to motion data compression and
processing. However, the existing GV techniques [3] applied
only to datasets that are created by the animators, of which the
correspondences among frames are available and the data are
usually simple and noise-free. As a result, the user only needs
to parameterize one frame, and the remaining frames can be
easily induced by the given correspondence. Unfortunately, as
mentioned above, such correspondence is not available for the
3-D motion data acquired by 3-D cameras. Thus, it is usually
very challenging to construct GVs for real-world datasets.

To solve the aforementioned challenges and promote GV to
real-world applications, this paper presents a novel framework
that can capture high-resolution 3-D facial expressions in a less
restrictive manner, store the recorded data in a compact way,
and allow users to manage, manipulate, and render the data
easily. Given the captured expression data, GV first analyzes
the geometry and detects salient features, and then parame-
terizes the motion data to a rectangular domain such that the
detected features in all frames can be mapped consistently.
Finally, the parameterized motion data are converted into a
video format such that the well-developed video compression
techniques can be used to compress the motion data. Specifi-
cally, the GV compression task in this paper is accomplished
by the state-of-the-art video coding standard—H.264/AVC [4],
together with our proposed progressive directional prediction
scheme.

The specific contributions of this paper include the
following.

1) We develop a GV framework to model 3-D facial ex-
pressions. Our framework consists of a set of algorithms,
including hole filling, geodesic-based face segmentation,
and expression-invariant parameterization (EIP). Our
algorithms are efficient and robust, and can guarantee
the exact correspondence of the salient features (eyes,
mouth, and nose) among frames.

2) We present a comprehensive analysis on GV and show
that GV is fundamentally different from natural videos
(NV) in that the GV pixels are highly correlated in both
spatial domain and temporal domain, and adhere to an
organized distribution.

3) By taking advantage of the strong coherence of GV, we
propose a new intra prediction scheme incorporated to
H.264/AVC. The proposed prediction scheme can im-
prove the rate-distortion performance for not only intra

frames but also inter frames. Our experimental results
show that the proposed scheme can achieve further 10–
16% bitrate reductions over original H.264/AVC applied
to real-world 3-D facial expressions.

4) Through a quantitative comparison to some existing
methods, such as discrete Ricci flow (RF) and harmonic
map (HM), we demonstrate that the proposed approach
can guarantee the exact feature correspondence among
frames, which is very helpful to compress GVs. As a
result, our method can produce GVs of better quality
and smaller size.

The rest of this paper is organized as follows. Section II
briefly reviews the related previous work. Section III presents
the 3-D motion data acquisition and pre-processing. Sec-
tion IV details the algorithm to parameterize the motion
data. Section V presents our proposed prediction scheme for
GV compression. Experimental results and discussions are
presented in Section VI. Finally, we conclude our work in
Section VII.

II. Related Work

GV bridges two different research fields, geometry pro-
cessing, and video processing. This section briefly reviews
related work in motion data acquisition and processing, 3-D
motion data compression, geometry images/videos, and video
compression.

A. 3-D Motion Data Acquisition and Processing

In recent years, we have witnessed the significant advances
in developing high-speed shape acquisition devices. Using
range scanning techniques, such as phase-shifting structure
light [1], [5], [6] and spacetime stereo [7], [8], it is possible to
scan high-resolution 3-D geometry and/or texture of moving
and deforming objects at video speeds.

Wang et al. [9] presented a data-driven approach for accu-
rate facial tracking and expression retargeting. Wang et al. [10]
simplified the 3-D human face registration problem to a 2-
D image matching problem by conformal parameterization.
Mitra et al. [11] proposed an algorithm to register large sets
of unstructured point clouds of moving and deforming objects
without computing correspondences. Chang and Zwicker [12]
presented an unsupervised algorithm that aligns a pair of
articulated shapes with significant motion and missing data.
Sharf et al. [13] developed a volumetric space-time technique
to reconstruct the moving and deforming objects from point
clouds. Wang et al. [14] developed an efficient non-rigid 3-D
motion tracking algorithm to establish inter frame correspon-
dences that facilitate the temporal study of subtle motions in
facial expressions.

Observing that the human facial expressions are isomet-
ric, Bronstein et al. [15] developed an algorithm to embed
human faces into spherical domain, by which the canonical
spherical coordinates induce an EIP. In this paper, we also
present an EIP algorithm. Our method is different from [15]
in the following aspects: 1) our algorithm guarantees exact
correspondence of the salient features (eyes, mouth and nose),
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and 2) the parameterization distortion is much less than that
of [15]. To our best knowledge, this is the first work that
can parameterize the 3-D facial expressions with guaranteed
feature correspondence.

B. 3-D Motion Data Compression

Time-varying meshes (TVM) has been introduced in 3-D
motion data compression by Han et al. [16]. TVM is a 3-D
motion representation which is generated from multiple cam-
eras [17]. Since TVM are generated from multiple viewpoint
images, frame by frame independently, TVM do not have the
correspondence among frames. The generated data is bulky
and noisy as the data is captured by the structured light-based
3-D camera. TVM cannot afford correspondences between
frames either. Although it is natural to model 3-D motion data
with TVM, there are few papers on TVM compression due to
the challenges. Han et al. [16] proposed an extended block
matching algorithm for TVM compression. By extending the
block matching algorithm from 2-D video to 3-D mesh data,
they could achieve 10–18% compression. But only inter frame
coding is used in their work. By considering both spatial
and temporal redundancies of TVM, Han et al. [18] achieved
compression of 1.9–16%. Yamasaki et al. [19] also compress
connections and color textures. Instead of marching cubes,
they used a patch-based method to describe the model. How-
ever, none of the above works has taken the correspondence
between frames into consideration.

C. Geometry Images and Videos

The concept of geometry images was pioneered by Gu
et al. [2], who parameterized the 3-D mesh into a square
domain and then encoded the normalized vertex coordinates
(x, y, z) as a pixel value (r, g, b) of a 2-D image. Therefore,
geometry images naturally bridge 3-D shape compression and
2-D image compression algorithms, e.g., [20]. Along this
direction, Lin et al. [21] presented JEPG2000 for compression
and streaming of geometry images. Peyré and Mallat [22]
presented geometric bandlets to compress geometry images
and normal maps. They showed that bandeletization algorithm
outperforms the wavelet-based compression by removing the
geometric redundancy of orthogonal wavelet coefficients.

Geometry images are an elegant representation of static
shape. To model motion data, it is a natural idea to extend
geometry images to GVs. In [3], Briceño et al. [3] parameter-
ized the animated mesh sequence onto a rectangular domain
and then formed GV. However, their method [3] applied
only to synthetic data, of which the correspondence among
frames are available. They also used 2-D wavelet-based video
compression techniques. In contrast to [3], our proposed pa-
rameterization algorithm works for real-world datesets which
may contain artifacts such as holes and noise, and do not have
the correspondence between adjacent frames. Furthermore, our
parameterization method matches the salient features among
frames in a consistent manner. As a result, the generated GVs
are highly correlated in both spatial and temporal domains.
This feature enables us to exploit the potential of H.264/AVC,
which is incorporated with many advanced video compression
techniques, for heavier compression of GV.

D. Video Compression and H.264/AVC Intra Prediction

Traditional 2-D video compression techniques can be cat-
egorized as prediction, transformation, quantization, and en-
tropy coding. Sullivan and Wiegand [23] provided a compre-
hensive review on these techniques. H.264/AVC, the state-
of-the-art video coding standard [24], has employed many
advanced compression techniques.

H.264/AVC has provided a means for spatial prediction,
namely, intra prediction. Intra prediction allows the video
encoder to predict pixel values of the current block (to be
encoded) from its previously reconstructed upper and left
neighbor pixels. As a result, intra prediction is particularly
effective for encoding video pictures with a high degree
of spatial correlations. H.264/AVC has adopted a block-size
adaptive intra prediction scheme, i.e., the prediction can be
performed at 16×16, 8×8, or 4×4 block basis for obtaining
smallest prediction errors. This scheme has provided four
prediction modes for 16×16 blocks and 8×8 blocks, and nine
prediction modes for 4×4 blocks including vertical prediction,
horizontal prediction, diagonal prediction, and others [4].
These prediction modes, however, simply “copy” and “paste”
neighbor pixels (or their weighted/unweighted averages) to the
predicted block, showing an insufficient respect to the local
pixel changes, i.e., they assume little changes between two
adjacent pixels. As a result, they cannot well model the pixel-
varying trend that inherently appeared in GVs (see Section V-
A for details). There are also many other intra frame prediction
schemes proposed, e.g., [25]–[28], focusing on reducing the
prediction complexity, and [29]–[32] aiming at reducing the
prediction errors. However, all the existing schemes are mainly
designed for NV compression instead of GV compression. In
this paper, we will present a dedicated and better intra frame
prediction scheme for our GV framework in Section V.

Wavelet-based compression is used in JPEG-2000 for still
image compression, which supersedes the original discrete
cosine transform-based JPEG standard by improving the com-
pression performance and offering significant flexibility of the
codestream [33]. However, wavelet-based coding is not avail-
able within the H.264/AVC standard. In this paper, we choose
H.264/AVC-based compression algorithm for the efficiency of
implementation.

III. 3-D Motion Data Acquisition and

Pre-Processing

We employ the structured light-based 3-D camera system [1]
to capture the moving objects in real time. The system contains
a video camera and a structured light projector. The projector
projects digital fringe patterns that are composed of vertical
straight stripes to the object. The stripes are deformed due to
the surface profile. Then a high-speed charge-coupled device
camera synchronized with the projector captures the distorted
fringe image. Finally, by analyzing the fringe images, the 3-
D information is obtained based on the deformation using
triangulation. The system is able to capture the geometry
and texture of the moving objects in real time. Despite the
high speed, the 3-D camera system is not robust due to
various reasons, such as ambient light interference, occlusions,
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Fig. 2. Training data set and the detecting results of AAM. The salient
features are marked by red points and yellow lines. (a) Training data set.
(b) Testing data set.

shadows, and depth discontinuity. Therefore, much efforts are
needed to pre-process the captured raw data.

A. Feature Tracking

We first project the captured 3-D expressions to 2-D im-
ages, and then use active appearance model (AAM) [34] to
automatically detect the feature points. Finally, the detected 2-
D feature points are mapped back to the original 3-D meshes.
In our experiment, we collect 3-D facial expressions from five
subjects and choose one frame from each sequence to form
the training set. Then we manually label the salient features,
including nose tip, eyes, eyebrows, mouth, on the selected five
training frames. Next the trained AAM is applied to detect the
salient features in the new expression sequences. Note that
we only need to manually label on a few training frames, the
tracking on new sequences are fully automatic. Fig. 2 shows
the training frames and several examples of the automatic
detected features on non-training frames.

B. Hole Filling

The captured raw data is a genus-0 open surface M. Let
∂M = γ0 ∪ γ1 ∪ · · · γk denote boundaries where γ0 is the outer
boundary and γi, i ≥ 1 the interior holes. To fill the hole γi,
we construct a minimal surface Hi that satisfies the Laplacian
equation [35] as follows:

�v = 0, ∀v /∈ ∂Hi

with boundary conditions as follows:

v|∂Hi
= v|γi

�v|∂Hi
= �v|γi

.

The boundary conditions guarantee that the filled surface
is of C1 continuity along γi, thus, leads to visually pleasing
results. Note that we can also fill the colors using the same
equation except that the vertex position (x, y, z) is replaced by
the color (r, g, b). Fig. 3 shows the hole filling results.

Fig. 3. Captured raw data usually contains holes due to the occlusions. We
fill both the geometry and texture of the holes by constructing a minimal
surface which has C1 continuity along the hole boundaries.

C. Face Segmentation

The captured raw data contains not only the 3-D faces but
also some unnecessary information, such as cloth, hair, and
background. Observe that human expressions are approximate
isometry, in other words, the arc length in mesh surface
is preserved during mesh deformation, thus, the intrinsic
properties, such as Gaussian curvature, first fundamental form,
geodesic, conformal factor, and others, which are invariant
under isometry, can be used to segment the face. In our
framework, we adopt the geodesic since it is fairly easy
to compute and highly robust to the mesh resolution and
triangulation. With the eyes and mouth as source points, we
compute the “multiple-sources all-destinations” geodesic using
the modified Xin and Wang’s algorithm [36] which takes
only a few seconds for each frame. Fig. 4(a) and (d) shows
the computed geodesic fields. The blue lines are the iso-
lines of the geodesic fields. And the green lines serve as the
base iso-line which are generated by connecting the feature
points. Then we segment the facial expressions using the user-
specified radius which is the distance from the green line. In
our experiment, we choose the radius of 60–65 mm for male
and 45–50 mm for female faces. Finally, we remove the eyes
and mouth by specified feature points. As shown in Fig. 4,
our method leads to highly consistent segmentation results.

IV. Expression-Invariant Parameterization

In each frame of the captured motion data, the geometry
is given in the reference system of the scanner, and it is
not registered in object space, and correspondences between
points in different frames are not available. From the analysis
and editing point of view, it is highly desirable to find
the correspondence among the captured data. Motion data
parameterization serves this purpose by mapping all frames
to a parametric domain and then re-sample the data on the
domain.

Although there are large amount of literatures in surface
parameterization [37], [38], there is little work on the motion
data parameterization. The key challenging in motion data
parameterization is that it must take the temporal coherence
into consideration, i.e., the features in all frames should be
mapped consistently to the parametric domain.

This section presents a novel algorithm to parameterize
the 3-D facial expression data. The proposed algorithm is
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Fig. 4. Face segmentation using geodesic mask. Human expressions are
approximate isometry, thus, the geodesic distance is independent of the
expressions. (a), (d) We first compute a geodesic mask from the detected
features on mouth and eyes, (b) and (e) then segment the front face by the
user-specified radius. Finally, we (c), (f) remove the mouth and eyes.

guaranteed to be bijective and the salient facial features (such
as mouth, nose, and eyes) are mapped consistently onto the
parametric domain.

The input of our algorithm is a sequence of genus-0 meshes
with four boundaries. Let us denote by M the mesh and ∂M =
γ0 ∪ · · · ∪ γ3 the boundaries, where γ0 is the boundary of the
human face, γ1 and γ2 are the two eyes and γ3 is the mouth.
We define the parametric domain D ∈ R2 as a rectangle with
three holes, as a result, D has the same topology of M.

We first compute the geodesic c between two eyes, i.e., γ1

and γ2. Then we compute the geodesic d from the middle point
of c to the mouth γ3. Note that geodesic is an intrinsic property,
thus, independent of the expressions which are approximate
isometry. By slicing the mesh along the geodesics c and d,
the number of boundaries is reduced to 2. The resulted mesh
M is a genus-0 mesh with two boundaries, i.e., γ0 and γ1 ∪
γ2 ∪ γ3 ∪ c ∪ d. In the following, we use ∂M0 and ∂M1 to
denote the two boundaries of M.

Then we compute the harmonic function f : M → R,
�f (v) = 0, ∀v /∈ ∂M, with Dirichlet boundary condition as
follows:

f (v) = 0, ∀v ∈ ∂M0

f (v) = 1, ∀v ∈ ∂M1.

Since the function f is harmonic, all its local extrema are on
the boundaries. Furthermore, the mesh M is of genus-0 with
two boundaries. According to Morse theory, f has no critical
point (the point with vanishing gradient) inside M. Therefore,
the gradient vector field ∇f has no singularity. The integration
curve of ∇f is a curve such that the tangent vector to the curve
at any point v along the curve is precisely the vector ∇f (v).
Xia et al. [39] show that each integral curve has unique ending
points, one on ∂M0, and the other on ∂M1. Furthermore, any
two integral curves do not intersect.

Algorithm 1 Expression-invariant 3-D face parameteri-
zation

Input:
M ∈ R3, the input 3-D facial expression of genus-0 mesh
with four boundaries, ∂M = γ0 ∪ · · · ∪ γ3;
D ∈ R2, the parametric domain with the same topology
of M;
Output:
The one-to-one map φ : M → D such that the salient
features (eyes, mouth, and nose) are mapped to the
corresponding features on D.

1. Compute the geodesic c between γ1 and γ2.
2. Compute the geodesic d from the middle point of c to
γ3.
3. Cut M along c and d, the resulted mesh M is of
genus-0 with 2 boundaries.
4. Process the parametric domain D in the similar way
(as steps 1–3). Let D denote the processed mesh of
genus-0 with two boundaries.
5. Compute the harmonic function f : M → R with
Dirichlet boundary condition, �f = 0, f |∂M0

= 0,
f |∂M1

= 1
6. Compute the harmonic function g : D → R with
Dirichlet boundary condition, �g = 0, g|∂D0

= 0, g|∂D1
= 1

7. Parameterize ∂M1 and ∂D1 by the arc length
parameterization, h : ∂M1 → ∂D1.
8. For each point v ∈ ∂M1

8.1 Trace the integral curve α ∈ M of the gradient
vector field ∇f .

8.2 Trace another integral curve β ∈ D starting from
h(v) ∈ ∂D1 and following the vector field ∇g.

8.3 Construct the one-to-one map φ : M → D as
φ(α) = β

9. The parameterization φ : M → D is induced from
φ : M → D.

We process the parametric domain D in the same way
and let D denote the sliced mesh with two boundaries. We
compute the harmonic function g : D → R with the same
boundary condition as f . We also construct a bijective map
between two boundary curves h : ∂M1 → ∂D1 by arc-length
parameterization.

Then the parameterization φ : M → D is constructed as
follows: for each vertex v ∈ ∂M1, trace the integral curve
α ∈ M following the gradient ∇f . Then, starting from h(v) ∈
∂D1, trace another integral curve β ∈ D. Thus, we build a one-
to-one map between two integral curves α and β. By going
through every point v ∈ ∂M1, we build the one-to-one map
between M and D which in turn induces a one-to-one map
φ : M → D.

Remark: In the parameterization algorithm, we cut the
3-D face along the geodesics connecting the three holes (i.e.,
eyes and mouth). So the resulted mesh is of genus-0 with two
boundaries. The inner boundary γ1 ∪γ2 ∪γ3 ∪c∪d is invariant
to the expressions, thus, highly consistent among all frames.
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Fig. 5. EIP. (a) Input mesh M. (b) Geodesics connecting the eyes, nose, and mouth. (c) Harmonic function with Dirichlet boundary condition. As human
facial expressions are approximate isometric transformation, the computed harmonic functions are insensitive to expressions. (d) Integral curves follow the
gradient of the harmonic function. (e) Integral curves on the parametric domain. (f) Integral curves induce the parameterization between M and D, which
guarantees the exact correspondence of the eyes, mouth, and nose. As a result, different expressions have very similar parameterization. (g) Converting the
parameterized mesh to geometry image, in which the pixel color (r, g, b) encodes the vertex position (x, y, z).

Furthermore, the outer boundary is determined by a geodesic
mask with the user-specified radius applied to all expressions.
Thus, the outer boundary is also invariant to the expression.
Observe that the harmonic function is intrinsic to the geometry
and independent of the expressions. As a result, the proposed
parameterization is invariant to the expression. Furthermore,
as proven in [39], the inner boundary of M is mapped to
the inner boundary of D precisely, thus, guarantees exact
correspondence of salient features, such as eyes, mouth, and
nose. As shown in Fig. 5, two expressions are parameterized
consistently using our approach.

V. GV Compression

In our previous work [39], we proposed a fundamental
“tailored intra prediction” (TIP) scheme for GV compression.
The TIP scheme employs a single-stage prediction, i.e., all
pixels in a block are predicted in the same way. Also, the TIP
can only predict pixels in horizontal and vertical directions
for 4×4 block size. In this section, we present the progressive
directional prediction (PDP) scheme, which employs more
accurate multistage predictions for variable block sizes in hori-
zontal, vertical, diagonal down-left, and down-right directions.
PDP is also based on the H.264/AVC intra prediction (HIP).
However, it can provide benefits to not only intra frames but
also inter frames. In the remaining of this section, we first
outline the GV structure and features, and then describe the
PDP scheme in details.

A. Analysis of GVs

Using the proposed EIP algorithm, each frame of the
motion data is mapped to a rectangular domain that can be
easily converted into a 2-D geometry image representation
as described in Section II. We define such an image as a
GV picture (GVP). Then a GV is constructed by combining
a sequence of successive GVPs. Before presenting our PDP

scheme, we first analyze GVs in both temporal and spatial
domains.

1) Temporal Coherence: The temporal feature of GV
is similar to that of NV, i.e., a block in a GVP usually
closely matches another block locating at the same or close
position in the neighbor GVP. However, the degree of temporal
correlation of GV is even stronger than that of NV. As a
result, the temporal redundancy in a GV sequence can be
significantly removed by using well-developed video compres-
sion algorithms, e.g., motion estimation in H.264/AVC [4].
For example, Fig. 6 shows that, for a NV (grayscale) and
its corresponding GV (RGB), the mean square errors (MSEs)
produced after a 32×32 Full Search motion estimation of
H.264/AVC (quantization parameter, QP = 8). It has been
observed that, after the motion estimation, the MSE of GV
in each color channel is significantly smaller than that of the
corresponding NV. In other words, the temporal redundancy
in GV has been significantly removed by motion estimation.
Therefore, we have adopted the Full Search algorithm of
H.264/AVC in our paper for temporal compression of GV.

2) Spatial Coherence: The spatial feature of GV is dif-
ferent from that of NV. Obviously, a GVP has a peculiar
appearance as shown in Fig. 5(g). It is apparent that the
GVP pixels are strongly correlated in spatial domain. In
particular, the neighbor pixels share very similar (but not
exactly same) pixel values. This is because that, since the
pixels represent the vertex coordinates of the 3-D face surface,
a GVP inherently has a special pixel distribution. In a small
local region of a GVP, e.g., a 4×4, 8×8, or 16×16 block
region, the pixels in that region only correspond to a very
small region of the 3-D face surface, which we can assume
to be with smoothly varying vertex coordinates. In this case,
the corresponding pixels in that GVP region will also adhere
to a smoothly varying trend. For example, Fig. 7(a) shows an
enlarged portion of a GVP (R color channel corresponding to x

coordinate), and Fig. 7(b) shows an 8×8 block extracted from
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Fig. 6. MSE comparison for NV and GV after a 32×32 Full Search motion
estimation of H.264/AVC.

Fig. 7. Pixel-varying trend of a typical GVP. (a) Enlarged portion for R color
channel. (b) 8 × 8 block showing the smoothly varying trend of pixels.

that portion. In this example, it is noticeable that the pixels
of the block are varying smoothly, because the coordinates of
that small portion in the face model gradually change.

3) GVs Versus NVs: We next provide quantitative statistics
for GV in comparison to NV. Our statistics is based on an
extension of Prewitt operator. Note that our purpose to use
Prewitt operator in this paper is for modeling the directional
varying trend of pixels instead of edge detections. Specifically,
we applied the Prewitt operator in horizontal and vertical
directions, and also extended it to diagonal down-left and
down-right directions. Then we work out the histograms based
on the Prewitt operator for different color channels of a GV in
the four directions, respectively. For example, the histograms
for a 2-D NV and its corresponding 3-D GV are shown in
Fig. 8. The histogram values are divided into 255 buckets,
which are indexed in the range of ±127.

Fig. 8(a) shows that: 1) the histograms of NV are very
similar in four directions, and 2) the histograms essentially
follow a zero-centered distribution, and the (small) differences
between adjacent pixels are almost equally distributed in
positive and negative buckets. In this context, the current
HIP, which assumes pixel invariant (as we introduced in
Section II), can compress this kind of NV very well. On the
other hand, Fig. 8(b) and (c) shows the following features
of GV: 1) the histograms are dissimilar in four directions,
and 2) the histograms of some color channels are not zero-
centered, e.g., the R color in horizontal direction and G
color in vertical direction, and this demonstrates the nature
of stronger directional pixel-varying trends of GV. Fig. 8(d)
compares the histograms in horizontal and vertical directions
of GV and NV. It is noticeable that the histograms of GV are
centered at bucket −1, indicating that most GV pixels follow a
single-direction and consistent pixel-varying trend. The above
analytical results show that GV inherently appears to have
more organized pixel distributions with stronger directional
pixel-varying trends.

Fig. 8. Histograms for NV and GV based on extended Prewitt operator in
four directions. (a) NV: grayscale. (b) GV: R channel. (c) GV: G channel.
(d) Comparisons of GV to NV.

B. Progressive Directional Prediction for GV Compression

To take advantage of the GV features we analyzed in
previous section, we have devised a new PDP scheme cor-
respondingly, including four new intra prediction modes de-
signed for the horizontal, vertical, diagonal down-left, and
diagonal down-right directions, respectively. These four modes
are incorporated into HIP. Specifically, the prediction process
of PDP is divided into the following three steps: 1) pixel-
varying trend (PVT) estimation; 2) pixel-varying map (PVM)
construction; and 3) progressive pixel prediction (PPP). We
have implemented the PDP scheme for 4×4, 8×8, and 16×16
block sizes. Please note that the PDP scheme operates in
pixel domain similar to the original intra prediction scheme
in H.264/AVC.

1) PVT Estimation: The purpose of introducing PVT is
to estimate the overall pixel-varying trend of a block in four
directions by using the available neighbor boundary pixels
(NBPs) of that block. As an example, the PVT calculation
process for a 4×4 block is illustrated in Fig. 9. In this figure,
the NBPs are marked with letters such as A, B, A2, B2, and so
on. The dashed arrows indicate the PVT calculation between
two adjacent NBPs in different directions.

Let (i, j) denote the location of the current block, e.g., (0, 0)
refers to the top-left block in the GVP, n denotes the size of
the block, e.g., n = 4 refers to a 4×4 block, (x0, y0) denote the
location of the top-left pixel in the current block to be encoded,
and P(x, y) denotes a pixel locates at (x, y). Then the PVTs for
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Fig. 9. PVT calculations based on NBPs for 4 × 4 block.

the block (i, j) in horizontal and vertical directions, denoted
by PVT hor

(i,j) and PVT ver
(i,j), are calculated by using the immediate

upper or left NBPs, shown in Fig. 9, as follows:

PVT hor
(i,j) =

1

n

n+1∑
k=0

(P(x0−1,y0−1+k)−P(x0−1,y0+k))

PVT ver
(i,j) =

1

n

n∑
k=0

(P(x0−1+k,y0−1)−P(x0+k,y0−1)).

For down-left and down-right directions, we calculate sep-
arate PVTs when using different NBPs, denoted by PVT dl1

(i,j)

and PVT dr1
(i,j) (when using the upper NBPs, e.g., A, B, C, and

D), and PVT dl2
(i,j) and PVT dr2

(i,j) (when using the left NBPs, e.g.,
I, J, K, and L) as follows:

PVT dl1
(i,j) =

1

n

n+1∑
k=0

(P(x0−1,y0+k−2)−P(x0−2,y0+k−1))

PVT dl2
(i,j) =

1

n

n∑
k=0

(P(x0−2+k,y0−1)−P(x0−1+k,y0−2))

PVT dr1
(i,j) =

1

n

n+1∑
k=0

(P(x0−1,y0+k−1)−P(x0−2,y0+k−2))

PVT dr2
(i,j) =

1

n

n∑
k=0

(P(x0−1+k,y0−1)−P(x0−2+k,y0−2)).

In practice, the PVTs are good to be used in predicting
pixels that are spatially close to NBPs (see Section V-B3 for
details).

2) PVM Construction: To model the relationship in pixel-
varying trends between successive GVPs, we also construct
a temporal PVM based on the PVTs obtained from previ-
ous section at 4×4 block basis. Specifically, there are four
PVMs constructed for the four directions, including PVMhor,
PVMver, PVMdlf , and PVMdrt . For example, the PVM in the
down-left direction is given by

PVMdlf ={ 1
2 (PVT dl1

(0,0)+PVT dl2
(0,0)),... ,

1
2 (PVT dl1

(m,n)+PVT dl2
(m,n))}

where m is the number of 4×4 blocks in one row of a
GVP while n is the number of 4×4 blocks in one column.
The PVMs are a compact representation that describes the

overall pixel varying trend at picture level. For example, for a
512×512 GVP, the size of each PVM is 128×128. The PVMs
can be used as reference for predicting the pixels that are far
away from the spatial NBPs. For example, when predicting
P(x0 + 3, y0 + 3) in the current GVP (Fig. 9), we can look up
the constructed PVMs of the previous GVP to decide the way
of prediction (see Section V-B3 for details). After encoding
the current GVP, the PVMs are updated accordingly. It is to
be noted that we only need to keep PVMs for one GVP at
an instance. Therefore, the memory overhead by PVMs is
negligible.

3) Progressive Pixel Prediction: In this section, we detail
the pixel prediction process of the proposed PDP scheme.
We only present the prediction process of 4×4 blocks as an
example. The prediction process for 8×8 and 16×16 blocks
are very similar to that of 4×4 blocks.

The basic idea of PDP is to partition a block into a few
regions according to the spatial distances between the region
and the NBPs in specific directions, as shown in Fig. 11.
For horizontal direction, our partitioning only considers the
distance between the pixels in the current block and the left
NBPs of the block, as shown in Fig. 11(a). Similarly, the
partitioning in vertical direction only considers the distance
between block pixels and the upper NBPs, as shown in
Fig. 11(b). For diagonal down-left and down-right directions,
the partitioning takes into account both the left and upper
NPBs, as shown in Fig. 11(c). During the progressive pre-
diction process, we particularly use two kinds of information
for prediction: 1) the spatial correlation exploited from the
NBPs and PVTs, and 2) the temporal correlation obtained
from PVMs. From partition 1 to partition 3, we expect that the
spatial correlation shared by the NBPs and the pixels in the
partition is increasingly reduced. Accordingly, the progressive
prediction will also reduce the usage of spatial correlation,
e.g., PVT, while increasing the usage of temporal correlation,
e.g., PVM, for prediction from partition 1 to partition 3.
To demonstrate the prediction process clearer, we show the
predictions for horizontal and down-left directions in Fig. 10
as an example.

a) Partition 1 Prediction: The pixels in partition 1 are
very close to the NBPs of the block and they are very
correlated in pixel values. Therefore, these pixels, e.g.,
P(x0, y0), are predicted based on the immediate upper
or left NBPs of the block, and by using the residue
between two adjacent NBPs in a specific direction.
For example, according to Fig. 10(a), P(x0, y0) can be
predicted by I+(I-I2) in horizontal direction. In some
cases, it is possible to predict a single pixel from more
than one neighbor pixels in a direction, e.g., as shown
in Fig. 10(b), we can predict P(x0, y0) by either B+(B-
C2) or J+(J-K2) in down-left direction (�1=B-C2, �2=J-
K2). In this case, we would take the average of the two
predictions. The partition 1 prediction process for the
block locating at (i, j) can be formulated in Table I.

b) Partition 2 Prediction: Compare to the partition 1 pix-
els, the remaining pixels in the current block are less
spatially correlated to the upper and left NBPs. Our
investigations show that the partition 1 prediction would
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Fig. 10. PPP process. (a) Horizontal direction. (b) Diagonal down-left di-
rections.

not obtain good results in partition 2 due to the increased
distance (between partition 2 and the NBPs). In this case,
predicting the pixels by using the PVTs yields much
better results, because that the PVTs reflect the overall
pixel-varying trend of the block so that they can remove
the side effect caused by individual NBPs. Specifically,
the partition 2 pixel prediction is given in Table I.

c) Partition 3 Prediction: The remaining pixels in partition
3 are even further away from the NBPs. In this case, it
would not be suitable to use the varying trend calculated
based on the spatial NBPs (as for partition 1) or the
spatial PVTs (as for partition 2) for predictions. Instead,
PDP will look up the PVMs constructed from the
previous GVP and decide the pixel-varying trend and the
way of pixel interpolations from a temporal prospective.
For a particular prediction direction, PDP will look up
at corresponding PVMs for taking advantage of the
established link between successive GVPs in terms of
pixel-varying trend (as explained in Section V-B2). In
this case, a predicted pixel is formed by interpolating the
pixel changes according to the PVM in the specific di-
rection, e.g., PVMver for vertical direction. Specifically,
the partition 3 pixel predictions in horizontal, vertical,
and down-right directions are given in Table I.

For the down-left direction, in some cases, the neighbor
pixels required by prediction may not be available. For exam-
ple in Fig. 10(b), P(x0 + 3, y0 + 3) cannot be predicted in the

down-left direction since P(x0 + 2, y0 + 4) and P(x0 + 4, y0 + 1)
are not available. In this case, we can look up the horizontal
PVM and predict P(x0 + 3, y0 + 3) using P(x0 + 3, y0 + 2) as
indicated by the arrow marked with number 9 in Fig. 10(b).
In many other cases, similar operations are performed to form
the predictions.

Please note that the PDP scheme is dedicatedly designed
for GV compression. Hence, it would not provide benefits to
NV compression.

VI. Experiments

A. Experimental Setups

1) Test Sequence Capturing: In this paper, we have
captured eight test video sequences containing human facial
expressions from eight different subjects, indexed as “GV1”
to “GV8.” Each sequence consists of 200 frames with the res-
olution of 512×512. During the video capturing, the subjects
were asked to make various face expressions, e.g., laughing,
shouting, and others.

2) Experimental Setups: The video compression tool used
in this paper is JM14.2 H.264/AVC reference software [24].
Each test sequence is encoded at 30 f/s. For each video
sequence, we encoded it with original H.264/AVC and our
proposed schemes based on H.264/AVC at different bitrates
by changing the QPs in the range of −12 to 28.

We have particularly adopted two H.264/AVC FRExt [5]
profiles that designed for high-fidelity video applications, in-
cluding the “CAVLC 4:4:4 Intra” profile and the “High 4:4:4”
profile (group of picture, GOP = 30 and IPBPB structure).
The peak signal-to-noise ratio (PSNR) is used to measure the
quality of reconstructed GV.

The evaluations were based on our proposed EIP method,
and employed the test conditions described in the previous
section. For compression purpose, we tested the original HIP,
our previously proposed tailored intra frame prediction (TIP
for short) in [39], and the newly proposed PDP scheme based
on H.264/AVC. The tested methods were then denoted as
“EIP+HIP,” “EIP+TIP,” and “EIP+PDP” when applied to EIP-
generated GVs.

B. Experimental Results

1) Improvement for Intra Frames: Our proposed prediction
schemes are able to reduce the size of encoded intra frames
while maintaining the video quality. To prove this, we used
context-adaptive variable-length coding (CAVLC) 4:4:4 Intra
profile in this evaluation. As an example, Fig. 12(a) compares
the resulted bitrates of tested schemes for GV1 to GV8 (when
QP = 4 and very close PSNRs are achieved). It is apparent
that our EIP+PDP outperforms both EIP+HIP and EIP+TIP,
and a bitrate reduction of 8%–15% can be usually achieved
for intra frames.

2) Improvement for Inter Frames: The proposed prediction
schemes can also provide significant benefits to inter frame
encodings. For instance, Fig. 12(b) shows the percentage of
successfully intra coded blocks in inter frames (by using
HIP, TIP, or PDP) with rate-distortion optimization (RDO)
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Fig. 11. 4 × 4 block partitions for PPP. (a) Horizontal direction. (b) Vertical direction. (c) Down-left and down-right directions.

TABLE I

Progressive Pixel Prediction

Partition 1 Prediction
Horizontal direction P(x, y) = P(x, y − 1) + P(x − 1, y) − P(x − 1, y − 1)
Vertical direction P(x, y) = P(x − 1, y) + P(x, y − 1) − P(x − 1, y − 1)

Down-left direction P(x, y) =

{ 1
2 (P(x − 1, y + 1) + �1) + 1

2 (P(x + 1, y − 1) + �2), if x=x0, y=y0

P(x − 1, y + 1) + �1, if x=x0, y 
=y0

P(x, y) = P(x + 1, y − 1) + �2, if y=y0, x 
=x0
�1 = P(x − 1, y + 1) − P(x − 2, y + 2)
�2 = P(x + 1, y − 1) − P(x + 2, y − 2)

Down-right direction P(x, y) = P(x − 1, y − 1) + P(x − 1, y − 1) − P(x − 2, y − 2)
Partition 2 Prediction

Horizontal direction P(x, y) = P(x, y − 1) + PVThor
(i,j)

Vertical direction P(x, y) = P(x − 1, y) + PVT ver
(i,j)

Down-left direction P(x, y) = 1
2 (P(x − 1, y + 1) + PVT dl1

(i,j) + P(x + 1, y − 1) + PVT dl2
(i,j))

Down-right direction P(x, y) = 1
2 (P(x − 1, y − 1) + PVT dr1

(i,j) + P(x − 1, y − 1) + PVT dr2
(i,j))

Partition 3 Prediction

Horizontal direction P(x, y) = P(x, y − 1) + PVThor
(i,j) + (PVMhor

(i,j+1) − PVMhor
(i,j))

Vertical direction P(x, y) = P(x − 1, y) + PVT ver
(i,j) + (PVMver

(i+1,j) − PVMver
(i,j))

Down-right direction P(x, y) = P(x − 1, y − 1) + 1
2 (PVT dr1

(i,j) + PVT dr2
(i,j)) + (PVMdrt

(i+1,j+1) − PVMdrt
(i,j))

and High 4:4:4 profile. The figure shows that our prediction
schemes, especially PDP, can lead to a considerably increased
percentage of well intra coded blocks. In fact, due to the
better utilization of GV features, those well intra coded blocks
(as selected by RDO) can achieve even better rate-distortion
performance than motion estimation that is usually used in
inter frames encodings (see next section for more details).

3) Improvement for the Entire Sequence: We show in this
section the rate-distortion performance of tested schemes with
High 4:4:4 profile, which encodes a GOP of 1 intra frame
followed by 29 inter frames. As an example, the results for
GV1 and GV2 sequences are shown in Fig. 13 (while we
have observed similar performance for other test sequences).
From the figure, it is clear to observe that our prediction
schemes consistently outperform EIP+HIP at various bitrates.
In particular, EIP+PDP provides an evident improvement over
both EIP+HIP and EIP+TIP in rate-distortion performance,

which demonstrated the effectiveness of the more accurate
multi-stage predictions of PDP. In the high PSNR range, e.g.,
when PSNR is greater than 65 dB, we have observed that
our EIP+PDP is usually able to achieve bitrate reductions of
10–16% over EIP+HIP (i.e., the original H.264/AVC) while
maintaining good video quality. For example, referring to
Fig. 13(a), when the PSNR is around 68.7 dB, EIP+PDP is
able to achieve a bitrate reduction of 16.1% over EIP+HIP at
the same PSNR, as well as a further bitrate reduction of 7.4%
over our previous EIP+TIP.

It is to be noted that, the improvement achieved by
EIP+PDP does not merely come from better encoding of
intra frames. For instance, when comparing Fig. 12(b) to
Fig. 13, we have discovered that the rate-distortion perfor-
mance of the tested schemes are proportional to the percentage
of successfully intra coded blocks of inter frames, i.e., the
EIP+PDP results in an increased percentage of intra coded
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Fig. 12. (a) Comparisons on encoded bitrates for GV1 to GV8 with CAVLC
4:4:4 Intra profile. (b) Percentage of intra coded blocks in inter frames with
High 4:4:4 profile.

Fig. 13. Rate-distortion performance of tested schemes with High 4:4:4
profile. (a) GV1. (b) GV2.

blocks than other schemes and as a result it achieved the best
rate-distortion performance.

4) Subjective Compression Results: Fig. 14(a)–(d) shows
sample frames of original GV3 (male face), and the re-
constructed GVs by EIP+PDP with different compression
ratios. We have observed that our scheme will result in no

Fig. 14. Experimental results. (a) Sample frames of the original video
sequence. (b)–(d) Reconstructed videos at various compression ratios by our
H.264/AVC-based PDP scheme. (e) One sample frame of the original video
sequence. (f)–(h) Reconstructed videos at various compression ratios by HIP,
TIP, and PDP, respectively. The statistics of each video are bitrates and PSNR,
respectively.

visual distortion (PSNR around 69–70 dB) at a reasonable
compression ratio, e.g., 71:1 for GV3, as shown in the fig-
ure. At higher compression ratios, e.g., 239:1 for GV3, the
reconstructed frames yet maintain good quality (PSNR around
59–61 dB), which still can reasonably reflect accurate human
facial expressions, although slight deformations can be found
in the boundaries of the human face. However, at very high
compression ratios, e.g., over 600:1, the decoded frames are
visually distorted.

The right part of Fig. 14 compares the same frame coded
by HIP, TIP, and PDP, respectively, at the same QPs. We show
the results for a small QP (=5), a medium QP (=15), and a
large QP (=28) as an example. For the small and medium
QPs, the figure shows that PDP requires considerably lower
bitrates for encoding the frame while achieving similar or
better PSNR than HIP and TIP. For the large QP, all the
prediction schemes result in similar PSNR and similar bitrates
due to the significant distortions caused by this QP, i.e., PDP
would not provide gains under this large QP. However, within
the scope of this paper, we only care about high-quality video
applications with small or medium QPs, which can benefit
from our proposed PDP scheme.

5) Comparisons to Other Parameterization Methods:
We present the evaluation results on comparing our EIP
method to some other parameterization algorithms, e.g., the
HM method [14] and the discrete RF method [40]. Note
that both HM and RF do not consider the salient feature
correspondence of the input model, thus, the eyes, nose, and
mouth are mapped to different locations for different frames,
as shown in Fig. 15(b) and (c). In other words, HM and RF
are not invariant to the expressions. Our method, in sharp
contrast to HM and RF, is invariant to the expressions and can
guarantee the exact feature correspondence among different
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Fig. 15. Compared to other parameterization techniques. (a) Input Facial
expression. (b) HM [14]. (c) RF [40]. (d) Our method. (e) MSE. Our algorithm
leads to the results that are highly consistent and insensitive to the expressions.
Thus, the constructed GVs have better spatial and temporal coherence than
that of other methods. As shown in (e), EIP leads to stronger temporal
coherence evidenced by smaller MSE produced after a 32×32 Full Search
motion estimation (QP = 12).

Fig. 16. Comparison of EIP to other parameterization methods (for GV2).
(a) EIP leads to stronger spatial coherence evidenced by the GV histograms
(horizontal component of R channel and vertical component of G channel).
(b) EIP leads to significantly better rate-distortion performance than other
methods.

frames. As shown in Fig. 15(d), our EIP can lead to results
that are highly consistent and insensitive to the expressions.
Thus, the constructed GVs by EIP have stronger temporal and
spatial coherence than other methods, which results in better
compression ratios.

From the temporal perspective, Fig. 15(e) compares the av-
erage MSE produced by EIP to those produced by HM and RF
after a 32×32 Full Search motion estimation of H.264/AVC
(for GV2, three color channels, and QP = 12 as an example).
The results show that our EIP can achieve smaller MSE than
other methods, and this demonstrates that EIP can lead to a
stronger temporal coherence in the resulted GVs. From the
spatial perspective, Fig. 16(a) compares the histograms of GV2
generated by our EIP to those generated by HM and RF (by
using the extended Prewitt operator as we described in Section
V-A). The histograms show that the resulted pixel distributions
of EIP are much more concentrated than other methods, and
the pixels are apparent to have stronger spatial coherence with

TABLE II

Comparison of 3-D Geometry Compression Methods

Object Feature Compression Geometry
Alignment Ratio (%) Distortion

(RMS/ML) (%)
Han et al. [16] General 3-D model No 10–18 0.16
Han et al. [18] General 3-D model No 1.9–16 0.07–0.13
Our method Facial expression Yes 0.41 0.10

an organized directional pixel-varying trend. Consequently,
when combined to our PDP scheme (i.e., EIP+PDP), our
EIP method can achieve better compression results over other
methods. Fig. 16(b) compares the rate-distortion performance
of all the tested methods for GV2. The figure shows that our
EIP, which provides stronger temporal and spatial coherence
of GV, can achieve significantly better performance over other
methods.

6) Comparisons to Other 3-D Motion Data Compression
Methods: At last, we present the comparison of our method
to other 3-D motion data compression methods, such as TVM
by Han et al. [16], [18], as shown in Table II. The statistics of
TVM are from the paper [16] and [18], respectively, where the
ratio root mean square/max length (RMS/ML) measures the
normalized geometry distortion. More details of this measure
can be found in [16]. To make a fair comparison, we chose our
compression results with a PSNR of 60.9 dB and RMS/ML
0.10%, which is of similar quality as the TVM results.
However, our method results in a much better compression
ratio than TVM [16], [18]. This reason is as follows. Our GVs
work for 3-D expressions, and can guarantee the exact cor-
respondence of salient features among frames. Consequently,
the temporal redundancy is largely eliminated. TVM methods,
however, work for general 3-D models, which do not have such
correspondence. Considering the significant gain of compres-
sion ratio, our method is more practical and effective for 3-D
expressions. Again, this justifies that the strong temporal and
spatial coherence of GVs facilitate the compression algorithm.
As a future direction, we will investigate techniques to extend
our expression-invariant parameterization algorithm to general
3-D models with guaranteed feature correspondence.

VII. Conclusion

This paper presented a novel framework to model and en-
code 3-D facial expressions using GVs. Within our framework,
we parameterized the 3-D expressions with guaranteed feature
correspondence and stored them into a video format, allowing
the 3-D data being significantly compressed by well-studied
video compression techniques. Compared to other parameteri-
zation methods, our method can lead to results that are highly
consistent and insensitive to the expressions, and a higher
degree of coherence of constructed GVs, which is highly
desirable for video compression. Our experimental results on
real-world datasets showed that our framework was very ef-
fective for modeling 3-D facial motion data, and our predictive
compression scheme can lead to considerably improved rate-
distortion performance over the original H.264/AVC without
any extra costs thus allowing better GV compression.
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Limitations and Future Work: Our feature correspondence-
based parameterization does not work for partial 3-D faces,
e.g., when the subject rotate his/her face away from the cam-
era. In the future, we will investigate on finding the correspon-
dence between partial 3-D faces. We will also quantitatively
evaluate other compression techniques (e.g., wavelet, bandelet,
and others) applied to GVs. It would also be interesting
to extend the current GV framework to model 3-D human
motions.
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