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Near-duplicate keyframe (NDK) retrieval techniques are critical to many real-world multimedia
applications. Over the last few years, we have witnessed a surge of attention on studying near-
duplicate image/keyframe retrieval in multimedia community. To facilitate an effective approach
to NDK retrieval on large-scale data, we suggest an effective Multi-Level Ranking (MLR) scheme
that effectively retrieves NDKs in a coarse-to-fine manner. One key stage of the MLR ranking
scheme is how to learn an effective ranking function with extremely small training examples in
a near-duplicate detection task. To attack this challenge, we employ a semi-supervised learn-
ing method, semi-supervised support vector machines, which is able to significantly improve the
retrieval performance by exploiting unlabeled data. Another key stage of the MLR scheme is
to perform a fine matching among a subset of keyframe candidates retrieved from the previous
coarse ranking stage. In contrast to previous approaches based on either simple heuristics or rigid
matching models, we propose a novel Nonrigid Image Matching (NIM) approach to tackle near-
duplicate keyframe retrieval from real-world video corpora in order to conduct an effective fine
matching. Compared with the conventional methods, the proposed NIM approach can recover
explicit mapping between two near-duplicate images with a few deformation parameters and find

out the correct correspondences from noisy data simultaneously. To evaluate the effectiveness
of our proposed approach, we performed extensive experiments on two benchmark testbeds ex-
tracted from the TRECVID2003 and TRECVID2004 corpora. The promising results indicate that
our proposed method is more effective than other state-of-the-art approaches for near-duplicate
keyframe retrieval.
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Computer Vision—Applications

General Terms: Algorithm, Performance, Experimentations

Additional Key Words and Phrases: Near-Duplicate Keyframe, Image Copy Detection, Nonrigid
Image Matching, Semi-supervised Learning

1. INTRODUCTION

Near-Duplicate Keyframes (NDK) detection and retrieval techniques are beneficial
for many real-world applications, such as copyright infringement detection [Ke et al.
2004; Qamra et al. 2005], elimination of near-duplicates from web video search re-
sults [Wu et al. 2007b] and news video search [Smeaton et al. 2006]. In general,
NDK refers to a pair of keyframes in a video corpus, for which the two keyframes
of the pair are closely similar to each other apart from minor differences mostly
due to the variations of rendering conditions, capturing conditions, or editing op-
erations [Zhang and Chang 2004; Zhao et al. 2007]. NDKs are very common for
video retrieval tasks, especially for broadcast videos [Wu et al. 2007b; Zhang and
Chang 2004; Zhao et al. 2007]. Besides the reason of duplicate or near-duplicate
videos, another reason is due to imperfect video segmentation results. For exam-
ple, a naive uniform segmentation approach often leads to generate mass NDKs
in the segmentation results. Even for the state-of-the-art automatic segmentation
techniques, NDK is still commonly found in the segmentation results due to the
difficulties of setting very accurate parameters in practice.

Due to some well-known factors, NDK retrieval is a challenging research problem.
One is that videos may be captured by different devices with quite different hard-
ware under a variety of illumination conditions. Additionally, video editing often
produces extra geometric and photometric transformations and occludes the origi-
nal video by adding captions. Furthermore, there is still a lack of an effective feature
extraction method to represent NDK, while lots of feature descriptors have already
been developed for object recognition [Mikolajczyk and Schmid 2005; Everingham
et al. 2007] and face recognition [Zhao et al. 2003]. Fig. 1 shows some example pairs
of duplicate keyframes extracted from the TRECVID2003 video corpus [Smeaton
et al. 2006].

During the past several years, there has been a surge of research attention on
copy-detection and NDK retrieval in the multimedia community [Ke et al. 2004;
Qamra et al. 2005; Wu et al. 2007b; Wu et al. 2007; Zhang and Chang 2004; Zhao
et al. 2007; Chum et al. 2007; Xu et al. 2008; Zhu et al. 2008]. Some methods
directly extend the conventional content-based image retrieval (CBIR) techniques
for the NDK detection and retrieval task; these approaches often employ the sta-
tistical information extracted from the whole image, i.e., color histogram and color
moment [Qamra et al. 2005; Zhang and Chang 2004]. Although usually deemed
very efficient in finding identical copies, these methods may neglect the spatial
information, and become not very effective for real NDKs as they often fail to ad-
dress the variations of viewpoint changes, illumination changes, partial occlusions
and image editing.

Instead of extracting the features from the whole image, some alternative ap-
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proaches using local feature point matches can deal with some geometric transfor-
mations and illumination variations by taking advantage of the recent advances in
local feature descriptors [Mikolajczyk and Schmid 2005]. The major drawback of
these approaches is that they often incur heavy computational cost in finding feature
correspondences. Nevertheless, some efficient solutions have been proposed. For ex-
ample, Ke et al. [Ke et al. 2004] proposed an efficient method using locality-sensitive
hashing indexing for PCA-SIFT features. However, their method often assumes a
rigid projective geometry transformation between NDKs, which may suffer from
some outlier matches due to object movements and focal length changes. To relax
the strong rigid projection assumption, Zhang and Chang [Zhang and Chang 2004]
proposed a stochastic Attributed Relational Graph (ARG) matching framework,
which involves a computationally intensive process of stochastic belief propagation.
In most recent work, Zhao et al. [Zhao et al. 2007] proposed a one-to-one symmetric
(OOS) matching method, in which a local smoothing constraint is applied to re-
move the outlier matches. In [Ngo et al. 2006], Pattern Entropy (PE) rather than
the total number of inlier matches is employed as a similarity measure for OOS
method, which achieves the state-of-art performance on TRECVID2003 dataset.
Similar to other bipartite graph matching methods, the OOS method considers only
pairwise matches and fails to explore the spatial coherence between the two sets of
interest points in two NDKs. As shown in Fig. 1, illumination variations, partial
occlusions and image zooming lead to large PE, in which PE ≤ 0.5 is considered
as an NDK pair [Ngo et al. 2006].

To facilitate an effective approach to NDK retrieval on large-scale data, we try to
attack this challenge under a Multi-Level Ranking (MLR) framework, which inte-
grates three different ranking components into a unified solution: nearest neighbor
ranking, semi-supervised ranking, and NIM-based ranking. As the image feature
representation is essential to nearest neighbor ranking and machine learning-based
ranking methods, we also explore the effective feature extraction methods. In this
paper, five kinds of features are investigated: GIST [Oliva and Torralba 2001],
grid color moment, Gabor wavelets transform [Lades et al. 1993], Local Binary
Pattern [Ojala et al. 1996] and edge histogram.

Considering that the previous approaches employ either rigid projective mod-
els [Ke et al. 2004] or bipartite graph matching, we propose a novel Nonrigid
Image Matching (NIM) method for near-duplicate keyframe retrieval in this pa-
per. Unlike the previous conventional approaches, we assume that there may exist
nonrigid transformations between the two NDKs. The key to tackle the NIM prob-
lem is to utilize an iterative coarse-to-fine optimization scheme to progressively
reject the outliers, which takes advantage of a closed-form solution for a given set
of local feature matches. As our method takes into account local deformations, it
often obtains more inlier correspondences than conventional rigid projective geom-
etry models and the OOS graph matching method; this characteristic plays a very
important role in duplicate similarity matching. Fig. 1 shows some examples along
with the total numbers of inlier matches found by three different methods on the
same set of extracted SIFT features [Lowe 2004].

Compared with the previous approaches, our proposed NIM method not only
delivers better retrieval performance, but also enjoys some other salient merits. For
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Fig. 1. Some near-duplicate keyframes examples from TRECVID2003 video corpus. The caption of
each subfigure shows the total number of inlier matches with each of the three methods: projective
geometry, OOS-SIFT method (PE is below the number of inliers), and our NIM method. Since
PE > 0.5, OOS-SIFT method failed in (a-d).

example, our method is able to find the exact matching region between two NDKs,
which is often not obtainable by conventional methods. This attractive feature is
important for part-based or sub-image detection and retrieval. Additionally, our
method is rather efficient, with a processing speed of about ten pairs of keyframes
per second in a regular PC with moderate configuration.

In summary, this paper includes four main contributions. First of all, we propose
a novel Nonrigid Image Matching technique for NDK detection and retrieval,
which is significantly different from the conventional approaches. Our technique
overcomes some limitations with the existing approaches and hence offers better
performance for solving the NDK detection and retrieval tasks. Second, to enable
the proposed technique to be applicable to large-scale applications, we suggest a
Multi-Level Ranking framework that can effectively filter out irrelevant results
so as to significantly reduce the sample size for the NIM comparisons. Although this
is not the first use of the MLR approach by multimedia researchers [Hoi et al. 2003;
Hoi and Lyu 2008], our contribution is to validate its effectiveness at improving the
NIM scheme in the NDK retrieval tasks. The third major contribution is to employ
a Semi-Supervised Ranking (SSR) method by a Semi-Supervised Support Vector
Machine (S3VM) to improve the NDK learning task, which often has extremely few
labeled data. The SSR method effectively improves the filtering performance of
traditional supervised learning approaches by taking advantage of unlabeled data
information. Finally, we propose a very effective feature representation scheme for
NDK, which is one of the keys to achieve the excellent performance.

The rest of this paper is organized as follows. Section 2 reviews some existing
approaches for NDK retrieval. Section 3 presents a multi-level ranking scheme to-
gether with a semi-supervised SVM method for NDK retrieval. Section 4 proposes
the nonrigid image matching method for detecting NDK with local feature cor-
respondences. Section 5 provides our experimental results and the details of our
experimental implementation. Section 6 sets out our conclusions.

ACM Trans. on Multimedia Computing, Communications, and Applications, Vol. V, No. N, October 2009.
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2. RELATED WORK

There are numerous research efforts on near-duplicate image/keyframe detection
and retrieval in the multimedia community [Ke et al. 2004; Qamra et al. 2005; Wu
et al. 2007a; Wu et al. 2007; Zhang and Chang 2004]. Generally, most of these
existing approaches can be roughly categorized into two groups: appearance-based
methods and local feature-based methods.

The appearance-based methods often measure the similarity between two keyframes
using the extracted global visual features, such as color histogram [Zhang and
Chang 2004] and color moments [Zhao et al. 2006]. As the feature is formed by the
global statistical information, the associated spatial information is lost. A remedy
to alleviate this issue is to introduce the grid representation [Zhao et al. 2006; Zhu
et al. 2008]. As keyframes are often compactly represented in the vector space,
these appearance-based methods are advantageous for their high efficiency, and
thus can take advantage of conventional CBIR methods and mature data index-
ing techniques [Qamra et al. 2005]. The major drawback for these methods is that
they are often not very robust to partial occlusions, illumination changes, and some
geometric transformations.

On the other hand, the local feature-based methods detect local salient points in
two keyframes and measure their similarity by counting the number of inlier matches
between two keypoint sets. Usually, keypoints are the salient regions detected over
image scales and their descriptors are often invariant to certain variations and
transformations. They overcome the limitations of the global appearance-based
methods, and thus often achieve better performance [Ke et al. 2004; Zhao et al.
2007]. But they may incur a heavy computational cost for the matching of two
keypoint sets, which may contain more than one thousand of keypoints. To reduce
the total number of local feature matching between NDKs, nearest neighbor filtering
is performed to shrink the size of candidate list. On the other hand, the bag-of-
words method [Wu et al. 2007] is also introduced to NDK retrieval task, which wins
success in object recognition [Everingham et al. 2007].

Recently, local feature-based methods have been actively studied. Ke et al. [Ke
et al. 2004] employed the compact PCA-SIFT feature and speeded up the search of
nearest keypoints with the locality sensitive hashing technique for duplicate image
detection and retrieval. Sivic et al. [Sivic and Zisserman 2003] proposed the local
keypoints approach for object matching and retrieval in movies. Zhao et al. [Zhao
et al. 2007] proposed an OOS matching approach to NDK detection and reported
state-of-the-art performance. The key of the OOS method is to eliminate noisy
outliers during the one-to-one bipartite graph matching process. Most of these
methods fall in the same category of point-to-point bipartite graph matching. In the
most recent work, Xu et al. [Xu et al. 2008] proposed a Spatially Aligned Pyramid
Matching approach, which tends to robustly handle spatial shifts and scale changes.
The first matching stage calculates the pairwise distances between blocks from the
input image using SIFT features and Earth Movers Distance [Rubner et al. 2000],
and the second stage handles the piecewise spatial shifts and scale variation using
a modified Earth Movers Distance.

In this paper, the proposed NIM technique goes beyond the conventional point-to-
point bipartite graph matching methods. In contrast to the conventional techniques,
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our method not only can recover the explicit mapping between two near-duplicate
keyframes with nonrigid transformation models, but also can effectively find the
correct correspondences from noisy data. Though similar techniques are actively
studied for tracking in computer vision and graphics [Zhu and Lyu 2007; Zhu et al.
2008; Pilet et al. 2008; Zhu et al. 2009], to the best of our knowledge, we are the
first to study nonrigid image matching comprehensively for NDK retrieval tasks.

3. MULTI-LEVEL FRAMEWORK OF NEAR-DUPLICATE KEYFRAME RETRIEVAL

3.1 Framework Overview

Since directly applying local feature matching based method to large-scale applica-
tions could be computationally intensive, we employ a Multi-Level Ranking (MLR)
framework for efficiently tackling the NDK retrieval task. This framework is able
to greatly improve the efficiency and scalability of our proposed solution. This
strategy has been widely used, which is also shown to be successful in multimedia
retrieval [Hoi et al. 2003; Hoi and Lyu 2008]. As shown in Fig. 2, the proposed
MLR framework attacks the NDK retrieval task in a coarse-to-fine ranking man-
ner. Specifically, our multi-level ranking scheme integrates three different ranking
components:

—Nearest Neighbor Ranking (NNR). This is to rank the keyframes with
simple nearest neighbor search on the global features.

—Semi-Supervised Ranking (SSR). This is to rank the keyframes with a semi-
supervised ranking method. Note that we employ the pseudo relevance feedback
technique, in which SSR chooses a short list of the most dissimilar examples from
NNR results as the negative examples.

—Nonrigid Image Matching (NIM). This is to rank the keyframes by applying
the proposed NIM method. We re-rank the top retrieved results from SSR using
NIM, where SSR greatly reduces the searching spaces for NIM.

In summary, the first two ranking components are based on global features for
efficiently filtering out the irrelevant results, and the last component provides a
fine re-ranking based on the local features. This scheme makes the proposed NIM
solution applicable to large-scale real applications.

Fig. 2. A multi-level ranking framework for NDK retrieval.

3.2 Formulation: from a Machine Learning Viewpoint

The NDK retrieval problem can be formulated as a machine learning task with
a query set of labeled image examples Q = {(x1, +1), . . . , (xl, +1)} and a gallery
set of unlabeled image examples G = {xl+1, . . . ,xl+u}, where each image example

ACM Trans. on Multimedia Computing, Communications, and Applications, Vol. V, No. N, October 2009.



ACM Transactions on Multimedia Computing, Communications and Applications · 7

xi ∈ Rd is represented in a d-dimensional feature space. The goal of the learning
task is to find the relevant near-duplicate examples from G that are closest to being
exact duplicates of examples in Q.

The learning task is tough on account of two difficulties. One is that there is no
negative examples available, as only a query set Q will be provided in the retrieval
task. The other is the small sample learning issue: very few labeled examples will
be provided in the retrieval task. To overcome the first difficulty, we adopt the idea
of pseudo-negative examples used in previous multimedia retrieval approaches [Yan
et al. 2003]. Specifically, we can conduct a query-by-example retrieval for ranking
the unlabeled data in G according to their distances from the examples in the query
set. Then we select a short list of the most dissimilar examples as the negative
examples based on the Nearest Neighbor ranking results.

To this end, with both positive and negative examples, we can formulate the
learning task as a general binary classification task, which can then be solved by
existing classification techniques. In our approach, we apply Support Vector Ma-
chines (SVM) for the learning task. SVM is a well-known and state-of-the-art
learning technique [Vapnik 1998], which we briefly review here. SVM is used for
learning an optimal hyperplane with maximal margin, and can learn nonlinear
decision boundaries by exploiting powerful kernel tricks. SVM can be generally
formulated in a regularization framework:

min
f∈HK

1

l

l∑

i=1

max(0, 1 − yif(xi)) + λ‖f‖2
HK

(1)

where f is the hyperplane function f(x) =
∑l

i=1 αiyik(x,xi), k is some kernel
function, and HK is the associated reproducing kernel Hilbert space.

While SVM can be directly applied to solve the learning task, its performance
may be poor when there are only a limited number of labeled examples. In fact,
this is the case of an NDK retrieval task as extremely few positive examples will
be provided for each query. To overcome the second difficulty, we next introduce a
semi-supervised learning technique for exploring both labeled and unlabeled data
for the retrieval tasks.

3.3 Semi-supervised Support Vector Machine

To overcome the challenge of small sample learning, we suggest a semi-supervised
retrieval (SSR) approach to attack the learning task via a semi-supervised SVM
technique. Semi-supervised learning has been extensively studied in recent years,
and numerous approaches have been proposed to exploit it [Xu et al. 2007; Zhu
2005; Zhu et al. 2008]. In this paper, we employ a unified kernel learning approach
for semi-supervised SVM. The key idea is to first learn a data-dependent kernel from
the unlabeled data, and then apply the learned kernel to train a supervised SVM
based on the regularization learning framework. In our approach, we adopt the
kernel deformation principle for learning a data-dependent kernel from unlabeled
data [Sindhwani et al. 2005].

The main idea of kernel deformation is to first estimate the geometry of the
underlying marginal distribution from both labeled and unlabeled data, and then
derive a data-dependent kernel by incorporating estimated geometry [Sindhwani
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et al. 2005]. Let H denote the original Hilbert space reproduced by kernel function

k(·, ·), and H̃ denote the deformed Hilbert space. In [Sindhwani et al. 2005], the
authors assume the following relationship between the two Hilbert spaces:

< f, g >
H̃

=< f, g >H +f⊤Mg

where f(·) and g(·) are two functions, f = (f(x1), . . . , f(x1)) evaluates the function
f(·) for both labeled and unlabeled data, and M is the distance metric that captures
the geometric relationship among all the data points. The deformation term f⊤Mg
is introduced to assess the relationship between the functions f(·) and g(·) based
on the observed data. Given an input kernel k, the explicit form of the new kernel
function k̃ can be derived as below:

k̃(x,y) = k(x,y) + κ⊤
y
d(x)

where κy = (k(x1, y), . . . , k(xn, y))⊤. The coefficients vector d(x) can be computed
by: d(x) = −(I + MK)−1Mκx, where K = [k(xi,xj)]n×n is the original kernel
matrix for all the data, and κx = (k(x1, z), . . . , k(xn, z))⊤. To capture the under-
lying geometry of the data, a common approach is to define M as a function of
graph Laplacian L, for example, M = Lp where p is an integer. A graph Laplacian
is defined as L = diag(S1) − S, where 1 denotes a vector with all one elements.
Moreover, S ∈ Rn×n is a similarity matrix and each element Si,j is calculated by:

Sij = Sji =

{
e
−

‖xi−xj‖2
2

2ς2 , xi and xj are adjacent,
0, otherwise,

where ς denotes the kernel width for a graph Laplacian. Various similarity measures
can be used to build the adjacent matrix, such as L1 norm, L2 norm, and cosine
similarity.

Consequently, the new kernel k can be formulated as follows:

k̃(x,y) = k(x,y) − κ⊤
y

(I + MK)−1Mκx (2)

Replacing the kernel k in Eqn. 1 by the kernel k̃ in Eqn. 2, we can train the
semi-supervised SVM classifier. That is to say, we employ the deformed kernel to
train a regular SVM, in which the query NDK and the selected pseudo negative
examples are treated as the labeled data. Note that Eqn. 2 can also be used to
compute the kernel for transductive learning, and the new deformed kernel matrix
K̃ ∈ Rn×n can be derived as below:

K̃ = K −K(I + MK)−1MK (3)

It can further be simplified through Kailath Variant:

K̃ = (I + KM)−1K

In addition, the above equation is equal to

K̃ = K(I + MK)−1 (4)

From the above, we summarize the complete S3VM re-ranking algorithm into Fig. 3.
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Algorithm 1 Semi-Supervised SVM Re-ranking
Input

—X: the extracted features of all images in the dataset

—k: an input kernel function

—xq : a query example (may contain multiple images)

—n−: number of pseudo-negative examples to be used

Procedure

/* offline computation before handling a query */
1: Calculate initial kernel matrix K: Kij = k(xi,xj)
2: Compute graph Laplacian L and semi-definite positive matrix M

3: Calculate the semi-supervised kernel matrix K̃ by:

k̃(x, y) = k(x,y) − κ⊤
y (I + MK)−1Mκx

/* online computation for handling a query xq */
4: for i = 1 to n
5: dist(xi) = euclidean(xq ,xi); /* euclidean distance */
6: end for
7: L− = top k max dist(dist, n−); /* get top n− most dissimilar examples */
8: L = L− ∪ {xq}
9: α = SVM solver(L,K̃) /* train an SVM classifier with the semi-supervised kernel */
10: for i = 1 to n
11: fSVM(xi) =

P

xj∈L
αjyj k̃(xi,xj); /* SVM distance */

12: end for
13: R = top k max dist(fSVM, m); /* rank top m most relevant examples by SVM*/
Output

—R: the rank list output by the SVM ranking.

End

Fig. 3. Semi-Supervised SVM Re-ranking Algorithm

4. NONRIGID IMAGE MATCHING

In this section, we present the nonrigid image matching approach to near-duplicate
keyframe detection. We first give our formulation of the nonrigid image matching
problem, and then solve it by a coarse-to-fine optimization technique.

4.1 Formulation

Instead of assuming an affine transformation or projective projection as in the
conventional methods, we employ the nonrigid mapping relation between the NDKs.
Therefore, the proposed method can tackle not only geometric transformations and
viewpoint changes, but also small object movements. The Nonrigid Image Matching
refers to the problem of recovering the explicit mapping between the two images
with a few deformation parameters and finding out the correct correspondences
from noisy data simultaneously. This method has been successfully applied to real-
time nonrigid surface tracking in computer vision [Pilet et al. 2008; Zhu and Lyu
2007; Zhu et al. 2009]. Unlike the traditional nonrigid image registration, the NIM
method is a fully automatic solution and does not require manual initialization.

The main idea of NIM is to recover the local deformations from the salient feature
matches between the two images and to reject the outlier matches simultaneously.
Thus, we can simply choose the total number of inlier matches τ as a confidence
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measure to decide whether the two keyframes are near-duplicate or not. More
specifically, given a set of correspondences M between the model and the input
image built through a local feature matching algorithm, we manage to find the
nonrigid mapping from these correspondences. Therefore, a pair of matched points
is represented in the form of m = {m0,m1} ∈ M, where m0 is defined as the
2D coordinates of a feature point in the training image and m1 = (u, v) is the
coordinates of its match in the input image. We represent the query keyframe
as a deformation grid, which is explicitly represented by triangulated meshes with
N hexagonally connected vertices. The vertices’ coordinates are formed into a
shape vector s = (u v)⊤, where u ∈ RN and v ∈ RN are the vectors of the
coordinates of mesh vertices. Therefore, s is the variable to be estimated from the
2D correspondences.

We commence by assuming that a point m lies in a triangle whose three vertices’
coordinates are (ui, vi),(uj , vj) and (uk, vk) respectively, and {i, j, k} ⊂ [1, N ] is the
index of each vertex. The piecewise affine transformation is used to map the image
points inside the corresponding triangle into the vertices in the mesh. Thus, the
mapping function Ts(m) is defined as below:

Ts(m) =

[
ui uj uk

vi vj vk

] [
ξ1 ξ2 ξ3

]⊤
(5)

where (ξ1, ξ2, ξ3) are the barycentric coordinates for the point m, and ξ1+ξ2+ξ3 = 1.
Then, the correspondence error Ec(s) is defined as the sum of the weighted square

error residuals for the matched points, which can be formulated as follows:

Ec(s) =
∑

m∈M

ωmV(δ, σ) (6)

where V(δ, σ) is a robust estimator with compact support size σ, and ωm ∈ [0, 1] is
a weight linked with each correspondence. Moreover, δ is the residual error, which
is defined as below:

δ(m) = ‖m1 − Ts(m0)‖ (7)

The robust estimator function V(δ, σ) that assesses a fixed penalty for residuals
larger than a threshold σ is employed in the present work; this approach is relatively
insensitive to outliers [Boyd and Vandenberghe 2004]:

V(δ, σ) =

{
δ(m)
σν , M1 =

{
m|δ(m) ≤ σ2

}

σ2−ν , M2 = M1
(8)

where the set M1 contains the inlier matches, and M2 is the set of the outliers. In
addition, the order ν determines the scale of the residual. The larger the value of the
support σ is, the larger the number of the correspondences is included. Conversely,
when σ decreases, the robust estimator becomes narrower and more selective.

In general, the NIM problem approximates a 2D mesh with N vertices from the
keypoint correspondences, which is usually ill-posed. One effective way to attack
this problem is to introduce regularization, which preserves the regularity of a
deformable mesh and constrains the searching space. In particular, we consider the
following regularized objective function for energy minimization:

E(s) = Ec(s) + λrEr(s) (9)
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where Er(s) is the regularization term that represents the deformation energy,
and λr is a regularization coefficient. Similar energy functions have been used in
deformable surface fitting [Kass et al. 1988; Pilet et al. 2008; Zhu et al. 2008].

Fig. 4. Illustration of the regularization for an hexagonal unit in the mesh model.

The regularization term Er in the above formulation, also known as “internal
force” in Snakes [Kass et al. 1988], is composed of the sum of the squared second-
order derivatives of the mesh vertex coordinates. Specifically, since the mesh is
regular, the length differences between two colinear connected edges is penalized,
as illustrated in Fig. 4. Thus, the regularization energy er [Fua and Leclerc 1995;
Pilet et al. 2008] for each edge pair in the conlinear connected edges set E can be
written as follows:

er = [(u1 − u2) − (u2 − u3)]
2 + [(v1 − v2) − (v2 − v3)]

2

=
([

1 −2 1
]⊤ [

u1 u2 u3

])2

+
([

1 −2 1
]⊤ [

v1 v2 v3

])2

(10)

Let h ∈ RN be an auxiliary vector containing a set of coefficients so that we can
rewrite er with respect to the vertex coordinates:

er =
(
h⊤u

)2
+

(
h⊤v

)2
= u⊤(hh⊤)u + v⊤(hh⊤)v.

Furthermore, Er(s) can be formulated as the summation of all edge pairs:

Er(s) =
∑

E

u⊤(hh⊤)u + v⊤(hh⊤)v = s⊤
[
K 0
0 K

]
s (11)

where K =
∑

E
hh⊤ is a sparse and banded matrix, which is determined by the

structure of the explicit mesh model.

4.2 Optimization

We now present an effective technique to solve the optimization task as shown
in Eqn. 9. Since the robust estimator function in Eqn. 8 is nonconvex, it leads
to a hard combinational optimization problem for the associated penalty function
approximation. To tackle this problem, we employ a progressive finite Newton
optimization method [Zhu and Lyu 2007; Zhu et al. 2009]. Given a set of inlier
matches M1, the solution for the optimization problem in Eqn. 9 can be obtained
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through solving the following two linear equations via LU decomposition:

(λrK + A)u = bu (12)

(λrK + A)v = bv (13)

where A ∈ RN×N is computed as follows:

A =
∑

m∈M1

ωm

σν
tt⊤ (14)

and the vector bu ∈ RN and bv ∈ RN are defined as below:

bu =
∑

m∈M1

ωm

σν
ut and bv =

∑

m∈M1

ωm

σν
vt (15)

where t ∈ RN containing the barycentric coordinates is defined as follows:

ti = ξ1 tj = ξ2 tk = ξ3

while the remaining elements in the vector t are all set to zero. It can be observed
that the overall complexity of the NIM method is that of a single Newton step,
which is determined by the total number of mesh vertices N .

Obviously, we can directly compute s by the above closed-form solution if the
correspondences set M contains no outliers. However, the incorrect matches can-
not be avoided in the first stage of the matching process where only local image
descriptors are compared. Therefore, a coarse-to-fine optimization scheme is intro-
duced to reject the outliers gradually, which progressively decays the support σ of
the robust estimator V(δ, σ) at a constant rate η. For each value of σ, the object
function E is minimized through the finite Newton step and the result is employed
as the initial state for the next minimization. The optimization procedure stops
when σ reaches a value close to the expected precision, which is usually one or two
pixels. Thus, the whole optimization problem can be solved within a finite number
of steps. As the derivatives of V(δ, σ) are inversely proportional to the support σ,
the regularization coefficient λr is kept constant during the optimization.

Before starting the optimization, we need to select the initial active set. One
strategy is to set the initial value of σ to a sufficiently large value in order to select
most of the correspondences into the initial active set and to avoid getting stuck
at local minima. This method may need a few steps to compensate for the errors
generated by the variations in object positions between the images. Alternatively,
we can select the active set through a modified RANSAC [Chum and Matas 2005;
Fischler and Bolles 1981] approach by taking advantage of our closed-form solution.
Note that it is usually hard to directly apply the robust estimator to a system with
a large number of free variables. To reduce the total number of RANSAC trials, we
draw from progressively larger sets of top-ranked correspondences with the highest
similarities. In the experiments, the sampling process stopped within five trials.
Since the result of RANSAC is usually quite close to the solution, the initial value
of σ can be relatively small. Thus, the proposed progressive scheme usually requires
fewer steps empirically. From above all, we summarize the details of the nonrigid
image matching (NIM) algorithm in Fig. 5.
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Algorithm 2 Algorithm of Nonrigid Image Matching (NIM)
Input

—Parameters: ν, η, λr , σ0

—Query image

Pre-compute

1: Build mesh model s0 for a query image
2: Compute K and barycentric coordinates (ξ1, ξ2, ξ3) for each keypoint m0

Nonrigid Image matching

For an image in the gallery set:
Select the active set by modified RANSAC
Set σ = σ0

Repeat

(1) Compute A and b by Eqn. 14 and Eqn. 15

(2) Solve the linear system: Eqn. 12 and Eqn. 13

(3) Calculate residual error δ by Eqn. 7 and the inlier set M1 by Eqn. 8

(4) Update σ = η · σ

Until converge!
Output

—the total number of inlier matches τ = |M1|

—the mesh vertices s

End

Fig. 5. The Nonrigid Image Matching (NIM) algorithm

4.3 Local Feature Matching

Interest point detection and matching is a fundamental research problem in com-
puter vision. Many effective approaches have been proposed in literature. One
of the most widely used methods is SIFT [Lowe 2004], which computes a his-
togram of local oriented gradients around the interest point and stores the bins in
a 128-dimensional vector. To improve SIFT, Ke et al. [Ke et al. 2004] proposed
an extended method by applying Principle Component Analysis [Fukunaga 1990]
on the gradient image, which then yields a 36-dimensional descriptor that is more
compact and faster for matching. However, the PCA-SIFT has been empirically
shown to be less distinctive than the original SIFT in a comparative study [Miko-
lajczyk and Schmid 2005], and is also slower than the original SIFT in the feature
extraction. Instead of using SIFT or PCA-SIFT, we adopt SURF [Bay et al. 2006],
another emerging local feature descriptor to detect and extract local features, which
takes advantage of fast feature extraction using integral images for image convo-
lutions. Specifically, a 64-dimensional feature vector is used for representing each
keypoint with SURF. Compared to SIFT, it is more compact and hence reduces
the computational cost for keypoint matching.

4.4 Case Studies: Detecting Various NDKs

To illustrate how the proposed NIM technique can effectively detect various NDKs
appearing in news video domains, we show part of our detection results to demon-
strate the advantages of our technique. To compare the conventional methods based
on the rigid projective geometry assumption, we also conduct the experiments with
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(a) Nonrigid image matching (b) Rigid matching

Fig. 6. Examples of our detection results on view point changes. (a) We overlaid
the estimated mesh onto the test image. (b) The model mesh is mapped to the
input image using homography estimated by rigid matching. The white lines are
the inlier matches, and the blue lines (black lines on the gray-scale printed paper)
are outlier matches. We use the same notation in the following examples.

the same set of feature correspondences using RANSAC fitting. Specifically, we
employ the homography estimation technique [Chum et al. 2007], which is typically
used in the pairwise image matching. In the experiment, we also take advantage of
the feature matching score to reduce the total number of RANSAC trails, and set
the inlier threshold to two pixels. To make comparison with the NIM results, we
map the model mesh in the reference image onto the input image with estimated
homography matrix.

(a) Nonrigid image matching (b) Rigid matching

Fig. 7. Examples of our detection results on the keyframes with object movements.

Fig. 6-11 show some examples of the detection results using NIM and rigid
matching for the various kinds of NDKs. All results on the duplicate pairs from
Columbia’s TRECVID2003 dataset can be found at webpage 1. In particular, the

1http://www.cse.cuhk.edu.hk/~jkzhu/dup_detect.html
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(a) Nonrigid image matching (b) Rigid matching

Fig. 8. Examples of our detection results on the lens changes.

(a) Nonrigid image matching (b) Rigid matching

Fig. 9. Examples of our detection results on the subimage duplicates.

(a) Nonrigid image matching (b) Rigid matching

Fig. 10. Examples of our detection results on the keyframes with small regional
changes.

proposed NIM technique can effectively detect a variety of NDKs including, but
not limited to, the following cases:

—Viewpoint change. This is very common for the shots extracted from news
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(a) Nonrigid image matching (b) Rigid matching

Fig. 11. Examples of our detection results on the keyframes with partial occlusions.

video sequences.

—Object movement. This is due to the relative movements caused by the camera
or some objects.

—Lens change. This case is caused by the changes of camera lens, such as zooming
in or zooming out.

—Subimage duplicate. Such duplicates could be caused either by lens changes
or some editing effects.

—Small regional change. These duplicates only have small regional differences.
They are often captured in the same scenario with slight changes.

—Partial occlusion. This case arises from the added captions or text descriptions
in the videos.

From these results, we can clearly see that NIM obtains more inliers than rigid
matching. This is because that most of the NDK pairs contain the spatial defor-
mations due to object movements or different capture conditions. These deforma-
tions can be captured by the nonrigid mapping in the most cases. Being the local
feature-based methods, both NIM and rigid image matching are effective for partial
occlusions and the subimages.

5. EXPERIMENTS

In this section, we perform our empirical evaluation on the proposed techniques
for NDK retrieval task. Two key techniques in our proposed approach are studied
comprehensively in the experiments. In the first experiment, we examine the effec-
tiveness of the Multi-Level Ranking scheme for filtering out the irrelevant results. In
particular, we would like to study whether the semi-supervised ranking method us-
ing S3V M is more effective than the conventional ranking approaches. The second
and more important experiment is to evaluate the performance of the proposed NIM
technique for NDK retrieval in comparison with some state-of-the-art approaches.
In the following experiments, we mainly report quantitative evaluations.
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5.1 Experimental Testbeds and Setup

To conduct comprehensive evaluations, we employ two benchmark datasets for
NDK retrieval as our experimental testbeds. One is the widely used Columbia’s
TRECVID2003 dataset [Zhang and Chang 2004], which consists of 600 keyframes
with 150 near duplicate image pairs and 300 non-duplicate images extracted from
the TRECVID2003 corpus [Zhang and Chang 2004]. All the keyframes are with
the same size, 352 × 264. The other is CityU’s TRECVID2004 dataset 2 recently
collected by Ngo et al. [Ngo et al. 2006]. It contains 7,006 keyframes with 3,388
near-duplicate image pairs, which are selected from the TRECVID2004 video cor-
pus. In the TRECVID2004 dataset, the near-duplicate image pairs involve a total
of 1,953 keyframes, which is about 28% of the whole collection. Note that one
keyframe may be associated with several near-duplicate pairs.

In our experiments, we adopt the evaluation protocol used in [Zhao et al. 2007]
in order to make a fair comparison with the state-of-the-art approaches. More
specifically, all NDK pairs are treated as queries for performance evaluation. Each
query set Q contains a single keyframe image; other remaining keyframes are re-
garded as the gallery set G. For the retrieval task, each algorithm produces a list
of relevant results by ranking the keyframes in the gallery set. To evaluate the
retrieval performance, the average cumulative accuracy metric is adopted as a per-
formance metric [Zhao et al. 2007], in which the accuracy is measured by judging
whether the retrieved keyframe is one of the corresponding pairwise duplicates in
the ground truth query set. More specifically, cumulative accuracy is defined as
the ratio between the number of correctly retrieved NDKs and the ground truth
of total number of NDKs in the top k returned the keyframes. As a yardstick
for assessing the performance, we compare our method with the recently proposed
OOS matching algorithm [Zhao et al. 2007], one state-of-the-art method for NDK
detection and retrieval.

For the experimental setups, the kernel function used in both SVM and S3VM
is an RBF kernel with fixed width. Regarding the parameter settings, the penalty
parameter C of SVMs is set to 10 (or γA = 10−1) and the graph regularization pa-
rameter of S3VM is set to γI = 10−1. Moreover, the Laplacian graph is constructed
based on heat kernel.

All the experiments in this paper were carried out on a notebook computer with
Intel Core-2 Duo 2.0GHz processor and 2GB RAM. All the proposed methods are
implemented in Matlab, for which some routines are written in C code. The code
can be downloaded from webpage 3.

5.2 Image Representation

To facilitate the effective Nearest Neighbor Ranking and Semi-Supervised Ranking,
we need represent the images by the feature vectors, which is a key step for NDK
retrieval. In the past decade, the global feature representation techniques have been
extensively studied in image processing and CBIR community. Also, a wide variety
of global feature extraction techniques were proposed. Comparing to the four kinds

2http://vireo.cs.cityu.edu.hk/research/NDK/ndk.html
3http://www.cse.cuhk.edu.hk/~jkzhu/dup_detect.html
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of features used in [Zhu et al. 2008], we also add the GIST feature in this paper.
Therefore, we extract following five kinds of effective global features:

5.2.1 GIST Feature. GIST feature [Oliva and Torralba 2001] is an effective tool
for representing scene structure by the spatial envelope, and obtains state-of-art
performance in scene recognition. GIST is based on a set of 2D Fourier Transform
of the input image, which is partitioned into 4 × 4 grid. For each grid, the mean
value is extracted as a feature point. The size of the GIST feature vector is 512.

5.2.2 Grid Color Moment. We adopt the grid color moment to extract color
features from keyframes. Specifically, an image is partitioned into 3 × 3 grids. For
each grid, we extract three kinds of color moments: color mean, color variance
and color skewness in each color channel (R, G, and B), respectively. Thus, an
81-dimensional grid color moment vector is adopted for color features.

5.2.3 Local Binary Pattern (LBP). The local binary pattern [Ojala et al. 1996]
is defined as a gray-scale invariant texture measure, derived from a general definition
of texture in a local neighborhood. In our experiment, a 59-dimensional LBP
histogram vector is adopted.

5.2.4 Gabor Wavelets Texture. To extract Gabor texture features, each image
is first scaled to 64× 64 pixels. The Gabor wavelet transform [Lades et al. 1993] is
then applied on the scaled image with 5 levels and 8 orientations, which results in
40 subimages. For each subimage, 3 moments are calculated: mean, variance and
skewness. Thus, a 120-dimensional vector is used for Gabor texture features.

5.2.5 Edge. An edge orientation histogram is extracted for each image. We first
convert an image into a gray image, and then employ a Canny edge detector [Canny
1986] to obtain the edge map for computing the edge orientation histogram. The
edge orientation histogram is quantized into 36 bins of 10 degrees each. An addi-
tional bin is used to count the number of pixels without edge information. Hence,
a 37-dimensional vector is used for shape features.

Thus, a 809-dimensional vector in total is used to represent all the global features
for each keyframe in the datasets.

5.3 Experiment I: Ranking with NN

In this part, we evaluate the effectiveness of the proposed multi-level ranking scheme
for filtering out the irrelevant keyframes by ranking on global features. We first
evaluate the retrieval performance of the global features with nearest neighbor
ranking.

To examine how effective the global features are, we measure the retrieval perfor-
mance of different distance measures with the global features on both datasets, as
shown in Fig. 12. From the results, we first observe that different distance metrics
have different impacts on the retrieval results with the same global features. In
particular, the L1 norm outperforms both the L2 norm and the cosine metric on
both datasets, and the cosine similarity is slightly better than the L2 norm. Note
that we normalize the feature vectors into zero mean and unit variance in order
to ensure the numerical stability in computing the cosine distance measure. As a
result, we employ the L1 norm as the similarity measure in all of the remaining
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(a) TRECVID2003 Dataset
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(b) TRECVID2004 dataset

Fig. 12. Cumulative accuracy of similarity measure and features using Near-
est Neighbor Ranking on the TRECVID2003 dataset (600 keyframes) and the
TRECVID2004 dataset (7006 keyframes).

experiments.
In addition, we also assess the performance of each component of the global

features as well as the combined features. From the results shown in Fig. 12, we
can see that the approaches with the combined features clearly outperform the
approaches with individual features. For the individual features, we found that the
results using GIST feature outperforms the other four methods. Also, both GIST
feature and gird color moment significantly outperform the other three methods,
especially in a large dataset like TRECVID2004 dataset. Based on the experimental
results, we also analyze the reason for the effectiveness of GIST features in detail.
In contrast to grid color moment and color histogram, GIST features are robust to
large illumination changes and the occlusions due to video editing. Moreover, GIST
features obtain good results on the NDK with cluttered background. From these
observations, we can conclude that this mainly benefits from the effective Gabor
filters built-in GIST method which can capture the important structure information
in images.

5.4 Experiment II: Re-Ranking with S3VM

In this part, we compare the proposed semi-supervised ranking approach using
the S3VM method with other conventional appearance-based methods on global
features, such as the approaches with color histogram [Zhang and Chang 2004]
and color moments [Zhao et al. 2006]. Note that we employ the Nearest Neighbor
ranking results to select the most dissimilar examples as the negative samples for
training S3VM. Fig. 13 and Fig. 15(b) shows the experimental results on the two
datasets. Obviously, S3VM significantly outperforms the color moment and color
histogram methods. Specifically, S3VM obtains about 33% improvement over the
color moment method on the TRECVID2003 dataset. To make fair comparison, we
also apply the S3VM method on the color moment. It can be clearly observed that
the semi-supervised ranking boosts the performance of the color moment method
at a large margin. Compared with the unsupervised Nearest Neighbor ranking and
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supervised SVM ranking methods, S3VM also obtains better results. In particular,
S3VM ranking method achieves very high cumulative accuracy with the top 30
returns, about 98.3%.
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Fig. 13. Comparison of the proposed semi-supervised ranking method using S3VM algorithm with
other appearance based methods on the TRECVID2003 dataset.

5.5 Experiment III: Re-ranking with NIM

5.5.1 Parameter Settings. The last key ranking stage for the MLR scheme is
the NIM ranking using the proposed NDK matching technique. To deploy the
NIM technique for the NDK retrieval task, we need to determine some parameter
settings. In general, the total number of mesh vertices determines the computa-
tional complexity and the deformation accuracy of the NIM method. Empirically,
we adopt a 14 × 16 mesh for all of our experiments. In contrast to the nonrigid
surface detection in [Zhu and Lyu 2007; Zhu et al. 2009], we employ a relatively
small regularization coefficient λr in order to allow large deformations, which is set
to 5 × 10−5 in our experiments. The order ν of the robust estimator is set to 4.
The initial support is 100 and the decay rate is 0.5. We find the optimization of
each NIM task requires around 9 iterations to achieve convergence.

5.5.2 Evaluation on the Choices of Two Thresholds. For the proposed NIM ap-
proach, there are two threshold parameters that can affect the resulting accuracy
and efficiency performance. These are: (1) the minimal number of inlier matches
for reporting positive NDKs, denoted by τp, and (2) the number of top ranked
examples to be matched by NIM, denoted by τk.

The first threshold parameter τp determines the threshold for predicting positive
results. Normally, the smaller the value of τp, the higher the recall (the hit rate).
At the same time, the precision is likely to drop with decreasing τp. Hence, it is
important to determine an optimal threshold parameter. Although we do not have
a theoretical approach to this, choosing a good τp value empirically does not seem
too difficult. To justify this, we evaluate the performance by varying the τp values.
Fig. 14(a) shows the surface of cumulative accuracies with the top 30 returned
results on the TRECVID2003 dataset when τp varies from 10 to 50 (where τk is
fixed to 50). From the results, we can see that good results can be obtained when
setting the threshold τp between 25 and 40.
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Fig. 14. Cumulative accuracy of NDK retrieval using NIM method on the
TRECVID2003 dataset. (a) A wide range of values can be chosen to determine
the threshold τp. Image pairs of less than 30 inlier matches are viewed as non-
duplicate in our experiments. (b) The overall accuracy grows with the number of
top returned examples. We choose 50 as a trade-off between accuracy and compu-
tational cost.

The second threshold parameter τk determines how many examples returned by
the S3VM ranking will be engaged for the NIM matching. Hence, it affects both the
accuracy and efficiency performance. In general, the larger the value of τk is, the
more the computational cost incurrs. However, τk value that is too small is likely to
degrade the retrieval performance. Hence, choosing a proper τk value is important
to balance the tradeoff between accuracy and efficiency performance. To see how
τk affects the performance, Fig. 14(b) shows the surface of cumulative accuracies
with the top 30 returned results obtained by varying τk from 1 to 50 (with τp fixed
to 30). From the results, we can see that the cumulative accuracy increases when
τk increases and tends to converge when τk approaches 50. Therefore, in the rest of
our experiments, we simply fix τk to 40 to achieve good efficiency. We will evaluate
the efficiency performance in a subsequent part of this paper.

5.5.3 Comparisons of NDK Retrieval Performance. To examine the performance
of the proposed NIM technique for retrieving NDKs, we compare our method with
several state-of-the-art methods, including the OOS-SIFT method [Wu et al. 2007],
the OOS-PCA-SIFT method [Zhao et al. 2007], and the Visual Keywords (VK)
methods [Zhao et al. 2007]. Beside the qualitative comparison in Section 4.4, we
also evaluate the NDK retrieval performance of the method based on the projective
geometry assumption using homography.

For the TRECVID2003 dataset, it is relatively small and widely used as a bench-
mark testbed for NDK retrieval in literature. Fig. 15(a) shows the experimen-
tal results of the cumulative accuracy of the top 30 returned keyframes on the
TRECVID2003 dataset. From the experimental results, we can draw several obser-
vations. First of all, the proposed S3VM method with global features outperforms
the OOS-PCA-SIFT method [Zhao et al. 2007] and the VK method [Wu et al. 2007],
which use local features. This again validates the effectiveness of the proposed
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(a) TRECVID2003 Dataset
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(b) TRECVID2004 dataset

Fig. 15. Comparison of cumulative accuracy of NDK retrieval results on the
TRECVID2003 dataset (600 images) and the TRECVID2004 dataset (7006 im-
ages), respectively.

semi-supervised ranking technique with S3VM. Second, the proposed NIM algo-
rithm with local features improves the S3VM ranking results at a large margin. In
particular, NIM achieves more than 8% improvement on the rank one accuracy over
S3VM. Thus, among all compared methods, the proposed NIM method achieves the
best performance, outperforming the state-of-the-art OOS-SIFT method [Wu et al.
2007]. Also, NIM is more effective than the rigid matching method. Finally, the
proposed NIM method achieves 85.3% top one retrieval result. This outperforms
the most recent Spatially Aligned Pyramid Matching method [Xu et al. 2008] which
reported 80.7% top one retrieval accuracy, by around 5.7%.

Turning next to the TRECVID2004 dataset, due to its large size, we have a diffi-
culty of comparing our method with other existing methods, such as the OOS-SIFT
and OOS-PCA-SIFT methods, which are computationally very intensive. There-
fore, we only compare our method with some conventional approaches. Fig. 15(b)
shows the experimental results on the TRECVID2004 dataset. Similar to the previ-
ous dataset, NIM achieves the best performance among all the compared methods
on this dataset. For other compared methods, S3VM performs significantly bet-
ter than both supervised SVM and NN methods. We can find that both NIM
and rigid matching method improve the S3VM ranking results. In particular, NIM
outperforms the method based on rigid projective geometry assumption.

It is also interesting to compare the proposed methods with our recent work
in [Zhu et al. 2008]. We plot the NDK retrieval performance evaluation results on
both TRECVID2003 dataset and TRECVID2004 dataset in Fig. 16. From the re-
sults, we first observe that the propose methods all outperform their corresponding
algorithms in [Zhu et al. 2008] on both datasets. More specifically, the NN rank-
ing method in this paper performs significantly better than the method without
GIST feature. Specifically, there is around 10% improvement over the NN rank-
ing in [Zhu et al. 2008]. Based on the improved NN ranking method, both S3VM
and NIM achieve better results, with around 5% improvement over the previous
methods on TRECVID2004 dataset.
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(a) TRECVID2003 Dataset
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(b) TRECVID2004 dataset

Fig. 16. Comparison of the proposed approach with the previous method on the TRECVID2003
dataset (600 images) and the TRECVID2004 dataset (7006 images), respectively.

Finally, to give more insights of the proposed technique, we are interested in
checking when our method may fail. To this purpose, we here briefly analyze the
cases and attempt to find some possible reasons. Fig. 17 shows some failure cases,
where all of the top one retrieved examples by the proposed method are not the
true duplicates. We can roughly categorize the failure cases into three groups. The
main reason for the first group is because the query image is too blur or smooth to
extract the discriminative feature points by the local feature detector. In particular,
some transition video effects will lead to the blur keyframes, as shown in the first
row. Note that keyframe extractors usually report the transition as keyframe. As
for the second group, NIM method fails because that the spatial variations between
NDK are too large to be modeled as nonrigid mapping, especially for the object
movements in different directions. The second row shows an example. For the
last group, the false results are mainly due to the visual similarities across NDK,
e.g., crowds often share very similar global and local features. As shown in the
third row, the first two examples are visually very similar to the query image, but
they are not labeled as the true duplicates according to the ground truth. We also
have some qualitative analysis of these failure cases on both TRECVID2003 and
TRECVID2004 dataset. According to the above definition, we find the proportions
of the failure cases in each category are 38%, 34% and 28% on TRECVID2004
dataset and 26%, 35% and 39% on TRECVID2004 dataset, respectively. This
indicates that the proportion of failure cases in each category is similar and visually
similar NDK leads to more false positives on a large dataset.

5.6 Evaluation of Computational Cost

Finally, we empirically study the efficiency performance of the proposed NIM and
S3VM methods. In our experiment, both the local features and global appear-
ance features are extracted offline. Table I and Table II summarize the overall
computational time for comparing all pairs of keyframes on both datasets. From
these results, it can be observed that NIM is more efficient than the OOS-SIFT
method [Wu et al. 2007] and less efficient than the VK method which simply com-
putes the similarity of visual words. Note that the VK approach usually requires
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(a) Query Image (b) Top three retrieval results

Fig. 17. Failure examples in showing when the presented method may fail.

much preprocessing time for extracting the visual keywords offline. Additionally,
we clearly see that the methods using global features are significantly more efficient
than the ones using local feature matching. This again demonstrates the effec-
tiveness and importance of the proposed multi-level ranking scheme for improving
efficiency. Finally, we also plot the computational cost and retrieval accuracy with
respect to the number of top ranked examples (τk) to be compared by NIM in
Fig. 18. The results show that the larger the value of τk, the higher the computa-
tional cost and the better the matching accuracy. In particular, we found that the
cumulative accuracy tends to converge to the best result when τk approaches to
50. In the real-world applications, one can choose an appropriate τk to balance the
tradeoff between accuracy and efficiency. For example, when τk equals to 10, each
query for NIM takes about 1 second and achieves rather high cumulative accuracy,
at about 93%.

Table I. Comparison of overall time cost of 300 queries on the TRECVID2003 dataset.
NIM S3VM NN OOS [Wu et al. 2007] VK [Wu et al. 2007]

12.7min 3sec 1sec 6.5hour 1.5min

Table II. Comparison of overall time cost of 1,953 queries on the TRECVID2004 dataset.
NIM S3VM NN OOS [Wu et al. 2007] VK [Wu et al. 2007]

83.5min 8.1min 30sec N/A N/A
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Fig. 18. Computational efficiency and retrieval performance on the TRECVID2003 dataset. The
left vertical axis shows mean cumulative accuracy of the top 30 returned results, and the right
vertical axis represents the overall time cost for all 300 queries.

6. CONCLUSIONS AND FUTURE WORK

In this paper, a novel method is presented for dealing with the Near-Duplicate
Keyframe (NDK) retrieval, which comprises an effective multi-level ranking scheme
and a novel nonrigid image matching technique. To reduce the overall computa-
tional cost, we also proposed an effective multi-level ranking scheme together with
a semi-supervised ranking technique using semi-supervised SVM (S3VM) to boost
the ranking performance with the unlabeled data. Compared with conventional ap-
proaches with either bipartite graph matching or projective geometry, the proposed
nonrigid image matching (NIM) algorithm not only recovers the explicit nonrigid
mapping between two NDKs but also effectively locate the correct correspondences
using a robust coarse-to-fine optimization scheme. Moreover, our method can de-
tect the NDK pairs accurately while recovering the local deformations between
them simultaneously. Furthermore, we also developed a new feature extraction
method to improve the NDK retrieval accuracy. We conducted extensive evalu-
ations on two testbeds extracted from the TRECVID corpora. The encouraging
experimental results demonstrated that our approach is clearly more effective than
traditional methods, especially in dealing with cases involving local deformations
and viewpoint changes, which commonly occur in practice.

Despite promising results obtained by the proposed methods, some limitations
and future directions should be mentioned. First of all, the feature representa-
tion scheme can be further improved. Our current approach simply concatenates
various features, in which weights of different features are not fully optimized. Fea-
ture selection and feature weighting techniques can be studied to further enhance
the retrieval performance. Second, our work focuses on the NDK retrieval task,
whereas it may be more appropriate to detect NDKs directly from a collection of
images in some applications. In contrast to the retrieval task, one challenge to
the NDK detection task is to determine optimal thresholds for reporting NDKs.
We will explore this in future work. Finally, the efficiency of the proposed multi-
level ranking scheme can be further improved. In particular, the nearest neighbor
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ranking stage could be still computationally intensive for very large-scale datasets.
In future work, we can improve this by adopting some effective high-dimensional
indexing techniques, such as locality-sensitive hashing [Andoni and Indyk 2008].
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