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In this paper, we propose a novel machine learning framework called “Online Transfer 
Learning” (OTL), which aims to attack an online learning task on a target domain by 
transferring knowledge from some source domain. We do not assume data in the target 
domain follows the same distribution as that in the source domain, and the motivation of 
our work is to enhance a supervised online learning task on a target domain by exploiting 
the existing knowledge that had been learnt from training data in source domains. OTL is 
in general very challenging since data in both source and target domains not only can be 
different in their class distributions, but also can be diverse in their feature representations. 
As a first attempt to this new research problem, we investigate two different settings 
of OTL: (i) OTL on homogeneous domains of common feature space, and (ii) OTL across 
heterogeneous domains of different feature spaces. For each setting, we propose effective 
OTL algorithms to solve online classification tasks, and show some theoretical bounds of 
the algorithms. In addition, we also apply the OTL technique to attack the challenging 
online learning tasks with concept-drifting data streams. Finally, we conduct extensive 
empirical studies on a comprehensive testbed, in which encouraging results validate the 
efficacy of our techniques.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Transfer learning (TL) is an emerging family of machine learning techniques and has been actively studied in machine 
learning and AI communities in recent years [27]. In a regular transfer learning task, we assume two datasets, one from a 
source domain and the other from a target domain, are available where their data distributions or representations of the two 
domains can be very different. TL aims to build models from the target-domain dataset by exploring information from the 
source-domain dataset through some knowledge transferring process. Transfer learning is important for many applications 
where training data in a new domain may be limited or too expensive to collect. Despite being explored actively in literature 
[27,26,2,12,20], most existing approaches on transfer learning often have been studied in an offline/batch learning fashion, 
which assumes training data in the new domain is given a priori. Such an assumption may not always hold for some real 
applications where training examples may arrive in an online/sequential manner.

✩ Code and datasets are available at http://www.stevenhoi.org/OTL/.
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Unlike the existing transfer learning studies, this paper investigates a new framework of Online Transfer Learning (OTL) 
[33], which addresses the transfer learning problem in an online learning framework. Specifically, OTL makes two assump-
tions: (i) training data in the new domain arrives sequentially; and (ii) some classifiers/models had been learnt from source 
domains. Online transfer learning is beneficial to many real applications. Below we give two examples to illustrate some 
potential applications.

The first example application is for online spam detection, such as spam email filtering. Typically, a universal classifier is 
trained to detect the spam as accurately as possible by a batch learning approach [25]. However, a universal classifier might 
not be always optimal for every individual as different persons may have different opinions on the definition of spam. This 
raises an open question, i.e., how to transfer useful knowledge from the universal classifier to personalize the spam detector 
for every individual in an online learning manner. Such a problem can be naturally attacked by applying the proposed OTL 
technique, in which the key challenge is that the “spam” concept in the target domain for each individual can be very 
different from that in the source domain. For such problems, as we assume the feature spaces of both source and target 
domains are the same, we thus refer to this scenario as OTL on homogeneous domains of common feature space.

The second example application is for climate forecast in environment and climate science [24], such as weather forecast, 
earthquake and tsunami prediction. For example, consider a situation where new types of instruments or sensors are intro-
duced to improve an existing weather forecast system. In this scenario, training data with new features will be added to the 
forecast system while old features are still retained. Such a problem also can be formulated as an online transfer learning 
task, which aims to build an improved forecasting system on the new domain with the augmented features by transferring 
the knowledge of the old classifier in the source domain. This task can be potentially more challenging than the previous 
example as the feature spaces of both source and target domains are different, making it difficult to train the classifier on 
the new data by a simple transfer from the old classifier. We thus refer to this scenario as OTL across heterogeneous domains
of diverse feature spaces.

As a summary, this paper addresses two challenging scenarios: (i) OTL on homogeneous domains, and (ii) OTL across 
heterogeneous domains. One straightforward approach to OTL is based on a continuous learning strategy, which initializes 
a regular online learning algorithm on the target domain with the existing classifier learnt from source domains. However, 
such a simple solution suffers from some critical drawbacks: (i) when studying OTL on homogeneous domains, it could 
suffer from negative transfer (transferred knowledge is harmful to learning target task) whenever there exists much signif-
icant difference between two conditional probabilities; and (ii) when studying OTL across heterogeneous domains, the old 
classifiers cannot be trained continuously with the new features because of the inconsistence of the two feature spaces.

In addition to these two challenges, we note that online transfer learning is in general more challenging than a classical 
batch transfer learning task. This is because in an OTL task it is very hard to directly measure the distribution difference 
of the two domains as only a predictive model of the source domain is provided, and the data instances on the target 
domain arrive on-the-fly sequentially and typically must be predicted immediately. This work aims to investigate effective 
and efficient OTL techniques to tackle these challenges.

In particular, to tackle the first challenge, we propose two ensemble learning based strategies for transferring knowledge 
from source domain by combining two sets of classifiers built on different domains. The key idea is to dynamically update 
the combination weights for the base classifiers according to their online performance. We propose two effective algorithms 
and give theoretical bounds to justify their efficacy. To tackle the second challenge, we propose a co-regularization learning 
strategy for knowledge transfer, which can effectively handle the learning task on diverse feature spaces. The key idea of 
the proposed co-regularization strategy was partially inspired by the co-training principle for batch learning tasks (semi-
supervised learning or multi-view learning) [5,29], which combines classifiers co-trained from different “views” of the same 
training instances to boost the learning efficacy.

Last but not least, we extend the idea of the proposed OTL technique to attack a real-world open challenge in data 
mining and machine learning, i.e., the concept-drifting data stream mining task [21] where the underlying distributions and 
concepts often change over time. Despite being studied extensively in literature, it remains a critical open challenge for the 
existing approaches based on either batch learning or online learning techniques. In this paper, we propose an effective 
algorithm to attack this challenge based on a natural extension of the proposed OTL technique.

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3 presents the proposed OTL 
framework and addresses the homogeneous and heterogeneous OTL tasks for classification. Section 4 presents the extension 
of OTL to address concept-drift online learning tasks. Section 5 gives our experimental results and discussions, and Section 6
concludes this work. Finally, we note that a short version of this work has appeared in the conference proceedings of 
ICML-2010 [33]. In contrast to the conference paper, a substantial amount of new contents and extensions have been 
included in this journal article.

2. Related work

Our work is mainly related to two machine learning topics: online learning and transfer learning. Below reviews some 
important related work.

Online learning (OL) has been extensively studied for years [28,7,9,32,34–36,30,19]. Unlike typical machine learning 
methods that assume training examples are available before the learning task, online learning is more appropriate for some 
real-world problems where training data arrives sequentially. Due to the merits of attractive efficiency and scalability, var-
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ious online learning methods have been proposed. One well-known approach is the Perceptron algorithm [28,14], which 
performs a simple update on the classification model when an incoming example is misclassified. Recently many online 
learning algorithms have been proposed based on the criterion of maximum margin [23,9]. One example is the Passive–
Aggressive (PA) method [9], which updates the model when a new example is misclassified or its classification confidence 
is smaller than some predefined threshold. Although the general online learning algorithms (e.g., Perceptron and PA) have 
solid theoretical guarantees and performs well on many applications, they usually keep the weights of the existing support 
vectors fixed during the whole learning process, which is clearly insufficient. To solve this issue, double updating online 
learning (DUOL) [34] is proposed to not only update the weight of the current support vector but also the weight of one 
existing support vector, which conflicts the most with the current one. Besides, traditional online learning tries to maximize 
the accuracy of the model while accuracy is unsuitable to many applications and scenarios. To tackle this problem, online 
AUC maximization (OAM) [35] is proposed to online maximize the AUC performance of the model. In addition, typical online 
learning usually stores all the misclassified examples as Support Vectors (SVs), which may result in high computational and 
memory costs. To deal with this problem, the researchers [36] have proposed a bounded online gradient descent algorithm 
(BOGD) to keep the number of stored SVs less than a pre-defined threshold. Moreover, most of online learning algorithms 
only exploit the first order information and assign all features the same learning rate, which may suffer from slow conver-
gence rates. This can be solved by second order online learning [30], which not only use the first order but also the second 
order information of the examples. More extensive surveys for online learning can be found in [8,19].

Transfer learning (TL) has been actively studied recently [27]. The goal of TL is to extract knowledge from one or more 
source domains and then apply them to solve a learning task on a target domain. A variety of TL methods have been pro-
posed in different learning settings. These methods can be roughly classified into three categories: inductive, transductive, 
and unsupervised learning approaches. Inductive TL [26] aims to induce the model in the target domain with the aid of 
knowledge transferred from the source domains; transductive TL [2,12] aims to extract the knowledge from the source do-
mains to improve the prediction tasks in the target domain without labeled data in the target domain; while unsupervised 
TL aims to resolve unsupervised learning tasks in the target domain [31,11]. Moreover, according to different feature rep-
resentation, TL can be classified as homogeneous TL or heterogeneous TL [1] where the feature spaces of source and target 
domains can be different. A comprehensive survey on batch transfer learning can be found in [27].

Although both online learning and transfer learning have been actively studied in literature, to the best of our knowledge, 
we are the first to formulate transfer learning in an online learning framework [33]. In addition, it is also important to note 
that OTL is different from online multi-task learning [13], which aims to learn multiple tasks in parallel in an online learning 
setting. Finally, our work is also related to some existing studies on concept-drifting learning and mining in machine learning 
and data mining literature [17,22,6]. In data mining, most existing work usually adapt some batch learning algorithms to 
attack concept-drift learning/mining tasks using various instance selection/weighting strategies and heuristics. As our work 
is focused on online learning methodology, we exclude the detailed discussions on a large body of related work on batch 
learning studies in data mining. We refer readers to some comprehensive surveys in data mining [37,15]. Below we review 
some representative work on online learning methods to handle concept drift in machine learning.

In machine learning literature, various online learning methods have been proposed to handle concept drift learning 
[17,3,18,16]. The well-known techniques include several variants of Perceptron-style algorithms [4,6,10]. For example, the 
Shifting Perceptron [6] attempts to tackle the concept drift challenge by diminishing the important of early updates by 
introducing some time-changing decaying factor. Most of the existing techniques usually assume some fixed or slowly 
changing input distribution, and typically cannot effectively handle sudden concept drift in a challenging real-world scenario. 
Unlike the existing approaches, we extend the idea of online transfer learning to tackle the problem of online learning with 
concept drift which can tackle sudden concept drift more effectively than the state-of-the-art approaches.

3. Online Transfer Learning

In this section, we first present a framework of Online Transfer Learning (OTL) for classification, and then propose 
algorithms to solve the OTL tasks under two different settings. We note that although the following discussion is focused on 
classification tasks, the similar techniques and principles could be generalized to other data mining and machine learning 
tasks, such as regression or ranking.

3.1. Problem formulation

Let us denote by Xs ×Ys the source/old data space, where Xs = R
m and Ys = {−1, +1}. Assume that a source classifier 

is a linear vector v ∈ R
m . Typically the source classifier v can be obtained by applying existing learning techniques, such as 

online learning by the Perceptron algorithm [28,14] or regular batch learning by support vector machines (SVM).
The goal of an online transfer learning (OTL) task is to learn some prediction function f (xt) on a target domain in an 

online fashion from a sequence of examples {(xt , yt) | t = 1, . . . , T } in some data space X × Y . Without loss of generality, 
we assume a linear prediction model is used for the prediction function, i.e., f (xt) = sign(w�

t xt).
Specifically, during the OTL task, at the t-th trial of online learning task, the learner receives an instance xt , and the 

goal of online learning is to find a good prediction function such that the predicted class label sign(w�
t xt) can match its
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true class label yt . The key challenge of OTL is how to effectively transfer the knowledge from the old/source domain 
to the new/target domain for improving the online learning performance. Next, we study OTL in two different settings: 
homogeneous OTL vs. heterogeneous OTL.

3.2. Online Transfer Learning on homogeneous domains

We start by studying the homogeneous OTL, in which we assume the source and target domains share the same feature 
space, i.e., X = Xs and Y = Ys . One key challenge of this task is to address the covariate shift problem. This raises the 
challenge of transferring knowledge from source domain to target domain.

The basic idea of our OTL solution is based on the ensemble learning strategy. In particular, we first construct an entirely 
new prediction function w only from the data in the target domain in an online fashion, and then learn an ensemble 
prediction function that is the mixture of both the old and the new prediction functions, i.e., v and w, which thus can 
transfer the knowledge from the source domain. The remaining issue is then how to effectively combine the two prediction 
functions for handling the covariate shift issue.

In order to effectively combine the two prediction functions v and wt at the t-trial of the online learning task, we 
introduce two combination weighting parameters, α1,t and α2,t , for the two prediction functions respectively. At the t-th 
step, given an instance xt , we predict its class label by the following prediction function:

ŷt = sign

(
α1,tΠ

(
v�xt

) + α2,tΠ
(
w�

t xt
) − 1

2

)
(1)

where Π(z) ∀z ∈ R is a projection function, i.e., Π(z) = max(0, min(1, z+1
2 )). At the beginning of the OTL task, we simply 

initialize α1,1 = α2,1 = 1
2 . In order to perform effective transfer for the subsequent trials of the OTL task, in addition to 

updating the function wt+1 by some online learning method, e.g. the PA algorithm [9], we expect the two weights of both 
prediction functions, i.e., α1,t and α2,t , should be adjusted dynamically. We thus suggest the following scheme for updating 
the weights:

α1,t+1 = α1,t st(v)

α1,t st(v) + α2,t st(wt)
, α2,t+1 = α2,t st(wt)

α1,t st(v) + α2,t st(wt)
(2)

where st(u) = exp{−η�∗(Π(u�xt), Π(yt))}, ∀u ∈R
m and �∗(z, y) is a loss function which is set to �∗(z, y) = (z − y)2 in our 

approach. Finally, Algorithm 1 summarizes the proposed HomOTL-I algorithm. Before we analyze the mistake bound of the 
proposed algorithm, we first introduce a proposition as follows.

Algorithm 1 Homogeneous Online Transfer Learning (HomOTL-I).
Input: the old classifier v ∈R

m and initial trade off C
Initialize w1 = 0 and weights α1,1 = α2,1 = 1

2
for t = 1, 2, . . . , T do

receive instance: xt ∈ X
predict ŷt = sign(α1,tΠ(v�xt ) + α2,tΠ(w�

t xt ) − 1
2 )

receive correct label: yt ∈ {−1, +1}
compute α1,t+1 = α1,t st (v)

α1,t st (v)+α2,t st (wt )
, α2,t+1 = α2,t st (wt )

α1,t st (v)+α2,t st (wt )

suffer loss: �t = [1 − yt w�
t xt ]+

if �t > 0 then
wt+1 = wt + τt yt xt , where τt = min{C, �t/‖xt‖2}

end if
end for

Proposition 1. When using the square loss �∗(z, y) = (z − y)2 for z ∈ [0, 1] and y ∈ [0, 1], the above exponentially weighting update 
method and setting η = 1/2, we have the bound of the ensemble algorithm as:

T∑
t=1

�∗(α1,tΠ
(
v�xt

) + α2,tΠ
(
w�

t xt
)
,Π(yt)

)

≤ 2 ln 2 + min

{
T∑

t=1

�∗(Π(
v�xt

)
,Π(yt)

)
,

T∑
t=1

�∗(Π(
w�

t xt
)
,Π(yt)

)}
(3)

The proof of the above proposition is in Appendix A. By Proposition 1, we can derive the mistake bound of the HomOTL-I
algorithm as follows.
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Theorem 1. Let us denote by M the number of mistakes made by the HomOTL-I algorithm, we then have M bounded from above by:

M ≤ 4 min{Σv,Σw} + 8 ln 2 (4)

where Σv = ∑T
t=1 �∗(Π(v�xt), Π(yt)) and Σw = ∑T

t=1 �∗(Π(w�
t xt), Π(yt)).

Proof. First notice that whenever there is a mistake at some t-th step, we should have |α1,tΠ(v�xt) + α2,tΠ(w�
t xt) −

Π(yt)| ≥ 1
2 . Thus, we haves

T∑
t=1

�∗(α1,tΠ
(
v�xt

) + α2,tΠ
(
w�

t xt
)
,Π(yt)

)

=
T∑

t=1

(
α1,tΠ

(
v�xt

) + α2,tΠ
(
w�

t xt
) − Π(yt)

)2 ≥ 1

4
M

Combining the above fact with Proposition 1, we have

1

4
M ≤ min{Σv,Σw} + 2 ln 2

where Σv = ∑T
t=1 �∗(Π(v�xt), Π(yt)) and Σw = ∑T

t=1 �∗(Π(w�
t xt), Π(yt)). The theorem follows directly by multiplying 4

at both sides of the above. �
Remark. To better understand the mistake bound, we denote by Mv and Mw the mistake bounds of model v and wt , 
respectively. We first note that �∗(Π(v�xt), Π(yt)) is the upper bound of 1

4 Mv instead of Mv (because �∗ is a square loss 
and both Π(v�xt) and Π(yt) are normalized to [0, 1]); similarly, �∗(Π(w�

t xt), Π(yt)) is the upper bound of 1
4 Mw . Further, 

if we assume �∗(Π(v�xt), Π(yt)) ≈ 1
4 Mv and �∗(Π(w�

t xt), Π(yt)) ≈ 1
4 Mw , we have M ≤ min{Mv, Mw} + 8 ln 2. This gives 

a strong theoretical support for the HomOTL-I algorithm. However, please note that: while HomOTL-I will only make a 
constant number of mistakes more than the best base learner, the best base learner may still suffer some regret. Despite 
the nice result in theory, we note this bound may be further improved so that it can tell us exactly how much we can 
leverage the classifier from the source domain to improve over the target domain. However, this can be a very hard open 
challenge since an online transfer learning task is in general more challenging than a classical batch transfer learning task 
because in an OTL task only a linear classifier is stored for a source domain and the new instances for the target domain 
are received online sequentially, it is hard/almost impossible to directly compare the distributions of the source domain and 
the target domain.

In addition to the above loss-based updating algorithm, we also provided the following mistake-driven Algorithm 2.

Algorithm 2 Homogeneous Online Transfer Learning (HomOTL-II).
Input: the old classifier v ∈R

m and initial trade off C , discount weight β ∈ (0, 1)

Initialize w1 = 0 and weights θi,1 = 1, αi,1 = 1
2 where i = 1, 2

for t = 1, 2, . . . , T do
receive instance: xt ∈ X
predict ŷt = sign[α1,t sign(v�xt ) + α2,t sign(w�

t xt )]
receive correct label: yt ∈ {−1, +1}
compute z1,t = I(yt v�xt ≤0) and z2,t = I(yt w�

t xt ≤0)

update θi,t+1 = θi,tβ
zi,t , where i = 1, 2

suffer loss: �t = [1 − yt w�
t xt ]+

if �t > 0 then
wt+1 = wt + τt yt xt , where τt = min{C, �t/‖xt‖2}

end if
αi,t = θi,t

Θt
, where i = 1, 2 and Θt = ∑2

i=1 θi,t

end for

In this framework, we use θi,t to denote the combination weight for the two classifiers at round t , which is set to 1 at 
the initial round. For each learning round, we update the weight θi,t by following the Hedge algorithm as follows:

θi,t+1 = θi,tβ
zi,t

where β ∈ (0, 1) is a discount weight parameter, which is employed to penalize the classifier that performs incorrect pre-
diction at each learning step, and zi,t indicates if the corresponding classifier makes a mistake on the prediction of the 
example xt .

Next we derive a theorem to show the mistake bound for Algorithm 2.
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Theorem 2. After receiving a sequence of T training examples, denoted by L = {(xt , yt), t = 1, . . . , T }, the number of mistakes M
made by running Algorithm 2, denoted by

M =
T∑

t=1

I(yt ŷt≤0) =
T∑

t=1

I
(
∑2

i=1 αi,t zi,t≥0.5)

is bounded as follows

M ≤ 2 ln(1/β)

1 − β
min

i∈{1,2}
Mi + 2 ln 2

1 − β
(5)

where Mi = ∑T
t=1 zi,t for i = 1, 2. By choosing β =

√
T√

T +√
ln 2

, we have

M ≤ 2

((
1 +

√
ln 2

T

)
min

i∈{1,2}
Mi + ln 2 + √

T ln 2

)

Proof. We bound ln(Θt+1/Θt) from both the above and the below. Firstly, to upper bound ln(Θt+1/Θt), we have

ln
Θt+1

Θt
= ln

(
2∑

i=1

θi,t

Θt
β zi,t

)
≤ −(1 − β)

2∑
i=1

αi,t zi,t

By adding the inequalities of all trials, we have

ln

(
ΘT +1

Θ1

)
≤ −(1 − β)

T∑
t=1

2∑
i=1

αi,t zi,t

On the other hand, we have ln(ΘT +1/Θ1) lower bounded as follows

ln

(
ΘT +1

Θ1

)
≥ ln

θi,T +1

Θ1
= − ln(1/β)

T∑
t=1

zi,t − ln 2

Since

T∑
t=1

I
(
∑2

i=1 αi,t zi,t≥0.5)
≤ 2

T∑
t=1

2∑
i=1

αi,t zi,t,

we have the result in the theorem. Finally, to suggest the value for parameter β , by assuming 
∑T

t=1 zi,t ≤ T and ln(1/β)
1−β

≤
1/β , we can derive the solution for parameter β as follows: β =

√
T√

T +√
ln 2

, which leads to the final result as stated in the 
theorem. �
3.3. Online Transfer Learning across heterogeneous domains

In this section, we study the OTL problem across heterogeneous domains where the source and target domains have 
different feature spaces.

Heterogeneous OTL is generally more challenging than homogeneous OTL. It is very hard, if not completely impossible, 
to perform knowledge transfer if the feature spaces of source and target domains are not overlapped at all. To simplify the 
difficulty a bit, we assume the feature space of the source domain is a subset of that of the target domain. As two feature 
spaces are not the same, we cannot directly apply the algorithm in the previous section. Below we propose a multi-view 
approach to solve the challenge.

Formally, we denote the data on the target domain as: {(xt , yt) | t = 1, . . . , T }, where xt ∈ X = R
n ⊃ R

m and yt ∈
{−1, +1}. Without loss of generality, we assume the first m dimensions of X represent the old feature space Xs . In the 
multi-view setting, we split each data instance xt into two instances x1,t ∈Xs and x2,t ∈X /Xs .

The key idea of our heterogeneous OTL method is to adopt a co-regularization principle of online learning two clas-
sifiers w1,t and w2,t simultaneously from the two views, and predict an unseen example on the target domain by 
ŷt = sign( 1

2 (w�
1,tx1,t + w�

2,tx2,t)).
For the specific algorithm, we initialize the classifier for the first view by setting w1,1 = v, and setting w2,1 = 0 for 

the second view. For a new example in the online learning task, we update the new functions w1,t+1 and w2,t+1 by the 
following co-regularization optimization:



82 P. Zhao et al. / Artificial Intelligence 216 (2014) 76–102

(w1,t+1,w2,t+1) = arg min
w1∈Rm,w2∈Rn−m

γ1

2
‖w1 − w1,t‖2 + γ2

2
‖w2 − w2,t‖2 + C�(w1,w2; t) (6)

where γ1, γ2 and C are positive parameters, and the loss is defined as:

�(w1,w2; t) =
[

1 − yt
1

2

(
w�

1 x1,t + w�
2 x2,t

)]
+

(7)

Intuitively, the above updating method aims to make the updated ensemble classifier be able to classify the new observed 
example (xt , yt) correctly, and to force the two-view classifiers without deviating too much from the previous classifiers 
(w1,t, w2,t) via the first two regularization terms.

The above optimization enjoys a closed-form solution as shown in Proposition 2. To simplify our discussion, we introduce 
notations z1,t = ‖x1,t‖2 and z2,t = ‖x2,t‖2.

Proposition 2. For the optimization problem (6), its solution can be expressed as follows:

wi,t+1 = wi,t + τt

2γi
xi,t i = 1,2 (8)

where τt = min{C, 4γ1γ2�t
z1,tγ2+z2,tγ1

} and �t = �(w1,t, w2,t; t).

The proof of the proposition is given in Appendix A. By this proposition, we summarize the proposed “Heterogeneous 
Online Transfer Learning” (HetOTL) algorithm in Algorithm 3.

Algorithm 3 Heterogeneous Online Transfer Learning (HetOTL).
Input: the old classifier v ∈R

m and parameters γ1, γ2 and C
Initialize w1,1 = v and w2,1 = 0
for t = 1, 2, . . . , T do

receive instance: xt ∈ X
predict: ŷt = sign( 1

2 (w�
1,t x1,t + w�

2,t x2,t ))

receive correct label: yt ∈ {−1, +1}
suffer loss: �t = [1 − yt

1
2 (w�

1,t x1,t + w�
2,t x2,t )]+

if �t > 0 then
τt = min{C, 4γ1γ2�t

z1,tγ2+z2,t γ1
}

w1,t+1 = w1,t + τt
2γ1

yt x1,t , w2,t+1 = w2,t + τt
2γ2

yt x2,t

end if
end for

Before we prove the mistake bound for the HetOTL algorithm, we first introduce a lemma.

Lemma 1. Let (xt, yt), t = 1, . . . , T be a sequence of examples, where xt ∈ R
n and yt ∈ {−1, +1} for all t. After we split the instance 

xt into two views (x1,t, x2,t), for any w1 ∈ R
m and w2 ∈R

n−m, we have the following bound:

T∑
t=1

τt

(
�t − �(w1,w2; t) −

(
z1,t

8γ1
+ z2,t

8γ2

)
τt

)
≤ γ1

2
‖v − w1‖2 + γ2

2
‖w2‖2 (9)

where �(w1, w2; t) is given in Eqn. (7) and �t = �(w1,t, w2,t; t).

The proof of the lemma is given in Appendix A. Using Lemma 1, we can show the following theorem for the mistake 
bound of the proposed HetOTL algorithm.

Theorem 3. Let (xt, yt), t = 1, . . . , T be a sequence of examples, where xt ∈ R
n and yt ∈ {−1, +1} for all t. If we split the instance 

xt into two views (x1,t, x2,t), so that z1,t ≤ R1 and z2,t ≤ R2 t = 1, . . . , T . Then for any w1 ∈ R
m and w2 ∈ R

n−m, the number of 
mistakes M made by the proposed HetOTL algorithm is bounded from above as:

M ≤ 1

τ

(
γ1‖v − w1‖2 + γ2‖w2‖2 + 2C

T∑
t=1

�(w1,w2; t)

)
(10)

where τ = min{C, 4γ1γ2
R1γ2+R2γ1

}.

Proof. Firstly, τt = min{C, 4γ1γ2�t
z1,tγ2+z2,tγ1

} ≤ C implies τt�(w1, w2; t) ≤ C�(w1, w2; t). Combining with τt = min{C, 4γ1γ2�t
z1,tγ2+z2,tγ1

}
≤ 4γ1γ2�t

z1,tγ2+z2,tγ1
, we thus have
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T∑
t=1

τt

(
�t − �(w1,w2; t) −

(
z1,t

8γ1
+ z2,t

8γ2

)
τt

)

=
T∑

t=1

τt�t −
T∑

t=1

τt�(w1,w2; t) −
T∑

t=1

(
z1,t

8γ1
+ z2,t

8γ2

)
τ 2

t

≥
T∑

t=1

τt�t −
T∑

t=1

C�(w1,w2; t) −
T∑

t=1

(
z1,t

8γ1
+ z2,t

8γ2

)
τt

4γ1γ2�t

z1,tγ2 + z2,tγ1

=
T∑

t=1

τt�t − C
T∑

t=1

�(w1,w2; t) − 1

2

T∑
t=1

τt�t

= 1

2

T∑
t=1

τt�t − C
T∑

t=1

�(w1,w2; t) (11)

Combining the above inequality with the conclusion of Lemma 1, we have

1

2

T∑
t=1

τt�t ≤ γ1

2
‖v − w1‖2 + γ2

2
‖w2‖2 + C

T∑
t=1

�(w1,w2; t) (12)

Furthermore, when a mistake occurs, �t ≥ 1; thus, we have

τt�t = min

{
C,

4γ1γ2�t

z1,tγ2 + z2,tγ1

}
�t ≥ min

{
C,

4γ1γ2�t

z1,tγ2 + z2,tγ1

}
≥ min

{
C,

4γ1γ2

R1γ2 + R2γ1

}
= τ .

Combining the above observation with the inequality in Eq. (12), we have

1

2
M × τ ≤ γ1

2
‖v − w1‖2 + γ2

2
‖w2‖2 + C

T∑
t=1

�(w1,w2; t)

The theorem follows directly by multiplying 2/τ on both sides of the above inequality. �
Corollary 4. Under the assumption in Theorem 3, if we further assume R1 = R2 = 1 and γ1 = γ2 , we have the following bound for the 
HetOTL algorithm

M ≤ 1

min{C,1}

[
1

2
‖v − w1‖2 + 1

2
‖w2‖2 + 2C

T∑
t=1

�(w1,w2; t)

]

Proof. It is easy to verify that to minimize the left hand side of the inequality (10) is equivalent to (set R1 = R2 = 1)

min
γ1,γ2,C>0

[ γ1
γ1+γ1

‖v − w1‖2 + γ2
γ1+γ2

‖w2‖2 + 2C
γ1+γ2

∑T
t=1 �(w1,w2; t)]

min{ C
γ1+γ2

,
4γ1γ2/(γ+γ2)2

γ2
γ1+γ2

+ γ1
γ1+γ2

}

which further is equivalent to

min
γ1,γ2,C>0,γ1+γ2=1

1

min{C,4γ1γ2}

[
γ1‖v − w1‖2 + γ2‖w2‖2 + 2C

T∑
t=1

�(w1,w2; t)

]
.

Plugging γ1 = γ2 into the above inequality will result in the conclusion. �
4. Application of OTL for mining concept-drifting data streams

In this section, we apply the online transfer learning technique to attack the online learning task on concept-drifting 
data streams.
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4.1. Concept-Drifting Online Learning algorithm

Consider a binary classification task in concept drift setting where a learner is presented with a sequence of data with 
time stamps. At time step t , the algorithm is provided with instance xt ∈ R

d , and will predict its label as ŷt = sign(w�
t xt) ∈

{−1, +1}, where wt is the current prediction function. After prediction, the environment will disclose the real label yt , 
so that the learner will suffer a loss �((xt , yt); wt), which is the difference between its prediction and the true label. 
Specifically, we will still adopt hinge loss �((xt , yt); wt) = max(0, 1 − yt w�

t xt). After suffering from the loss, the leaner 
will update the prediction function using the current example with respect to some criterion. The overall objective of this 
learning process is to minimize the total mistake (or cumulative loss) over the entire sequence of examples. However, in 
the concept drifting setting, when the distribution changes frequently too much over time, traditional online algorithms will 
not work well.

Our main idea is that during the online learning process, we will divide the whole learning process into several periods. 
In each period, we will transfer the well learnt knowledge from the old classifier to a new one using the previous studied 
OTL technique. Specifically, the old classifier is the best one selected from the two classifiers in last period, and the new 
classifier is initialized as zero vector. As a result, if concept drift occurs, the newly learnt classifier may be adapted better 
than the older one; if no concept drift occurs, the old classifier will still perform well.

To formulate the above idea, we define a window size parameter Pi as the number of instances received in the i-th 
period. We maintain two classifiers: a source classifier vt and a target classifier wt , which are weighted by α1,t and α2,t , 
respectively. As a result, at the tth step, given an instance xt , we predict its class label by the following ensemble function:

ŷt = sign

(
α1,tΠ

(
v�

t xt
) + α2,tΠ

(
w�

t xt
) − 1

2

)
(13)

The key problem is how to effectively tune the weights. It is obvious that at the first period, source classifier is con-
stantly zero function, so the source function is weighted with 0; while target function is weighted with 1 throughout it. 
To dynamically adjust the weights for the remaining steps, we use the following performance-driven exponential weighted 
updating scheme: when mod(t, Pi) �= 0

α1,t+1 = α1,t st(vt)

α1,t st(vt) + α2,t st(wt)
, α2,t+1 = α2,t st(wt)

α1,t st(vt) + α2,t st(wt)
(14)

where st(u) = exp{−η�∗(Π(u�xt), Π(yt))}, ∀u ∈ R
m and �∗(z, y) = (z − y)2 in our approach. Finally, Algorithm 4 summa-

rizes the proposed Concept Drift Online Learning (CDOL) algorithm.

Algorithm 4 Concept Drift Online Learning (CDOL).
Initialize v1 = 0, w1 = 0, α1,1 = 0 and α2,1 = 1, and i = 1
for t = 1, 2, . . . , T do

receive instance: xt ∈ X
predict ŷt = sign(α1,tΠ(v�

t xt ) + α2,tΠ(w�
t xt ) − 1

2 )

receive true label: yt ∈ {−1, +1}
suffer loss: �t = max{0, 1 − yt w�

t xt }
if �t > 0 then

wt+1 = wt + τt yt xt , where τt = min{C, �t/‖xt‖2}
end if
vt+1 = vt

α1,t+1 = α1,t st(vt)

α1,t st(vt) + α2,t st(wt)
, α2,t+1 = 1 − α1,t+1

if mod(t, Pi) = 0 then

vt+1 =
{

vt+1 if α1,t+1 ≥ α2,t+1

wt+1 otherwise

wt+1 = 0 and α1,t+1 = α2,t+1 = 1
2 , and i = i + 1

end if
end for

4.2. Theoretical analysis

Next we analyze the mistake bound of the algorithm. By Proposition 1, we derive the mistake bound of the CDOL 
algorithm as follows.

Theorem 5. Assume the proposed CDOL algorithm is provided with a sequence of examples {(xt, yt) | t = 1, 2, . . . , T }, where ‖xt‖ ≤ R, 
yt ∈ {−1, +1} and T = ∑a

i=1 Pi (a is a positive integer). Let us denote by M the number of mistakes made by the CDOL algorithm, for 
any vector u, we then have M bounded from above by:
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M ≤ max

{
R2,

1

C

}[
‖u‖2 + 2C

P1∑
t=1

�
(
(xt, yt);u

)] + 4
a∑

i=2

min{Σv,i,Σw,i} + (8 ln 2)(a − 1) (15)

where Σv,i and Σw,i are the cumulative �∗ loss suffered by the source classifier and the target classifier, respectively during the i-th 
period.

Proof. Let us denote by Mi the number of mistakes made in period i, and M the total number of mistakes, which satisfies 
M = ∑a

i=1 Mi . For the first period, the algorithm runs the same with the PA-I algorithm. Thus, the mistake bound for this 
period is the same as that of PA-I, i.e.,

M1 ≤ max

{
R2,

1

C

}[
‖u‖2 + 2C

P1∑
t=1

�
(
(xt, yt);u

)]
. (16)

After the first period, notice that whenever there is a mistake at some t-th step, we should have (α1,tΠ(v�
t xt) +

α2,tΠ(w�
t xt) − Π(yt))

2 ≥ 1
4 . Thus, for i = 2, . . . , a, we have

∑i
j=1 P j∑

t=∑i−1
j=1 P j

�∗(α1,tΠ
(
v�

t xt
) + α2,tΠ

(
w�

t xt
)
,Π(yt)

)

=
∑i

j=1 P j∑
t=∑i−1

j=1 P j

(
α1,tΠ

(
v�

t xt
) + α2,tΠ

(
w�

t xt
) − Π(yt)

)2 ≥ 1

4
Mi .

Combining the above facts with Proposition 1, we have

a∑
i=2

Mi ≤ 4
a∑

i=2

min{Σv,i,Σw,i} + (a − 1) ∗ 8 ln 2 (17)

The final mistake bound can be proved by combining Eq. (16) and Eq. (17). �
To better understand the above theorem, we will show a corollary. To do so, we will need the following proposition.

Proposition 3. Denote �∗
t = (Π(w�

t xt) −Π(yt))
2 and �t = max{0, 1 − yt w�

t xt}, then the two losses satisfy the following inequality:

�∗
t ≤ min

{
�t

2
,
�2

t

4

}
(18)

The proof to the above proposition can be found in Appendix A. Combining this proposition with Theorem 5, we have 
the following corollary:

Corollary 6. Under the same assumption in Theorem 5, if further assume R ≤ 1 and C ≥ 2, we have the following bound for the 
proposed CDOL algorithm in Algorithm 4

M ≤
a∑

i=1

{
‖ui‖2 +

∑i
j=1 P j∑

t=∑i−1
j=1 P j

2C�
(
(xt, yt);ui

)} + (8 ln 2)(a − 1)

where M is the number of mistakes, and ui, i = 1, 2, . . . , a are any a vectors which may or may not be the same.

Proof. According to Lemma 1 in [9], we have the following inequalities:

∑i
j=1 P j∑

t=∑i−1
j=1 P j

τt
(
2�t − τt‖xt‖2 − 2�

(
(xt, yt);ui

)) ≤ ‖ui‖2, ∀i ∈ {2,3, . . . ,a}, (19)

where ui, i = 2, 3, . . . , a are any vectors which may or may not be the same. Because τt‖xt‖2 = min{C, �t/‖xt‖2}‖xt‖2 ≤ �t

and τt ≤ C , the inequality (19) implies
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∑i
j=1 P j∑

t=∑i−1
j=1 P j

τt�t ≤ ‖ui‖2 +
∑i

j=1 P j∑
t=∑i−1

j=1 P j

2C�
(
(xt, yt);ui

) ∀i ∈ {2,3, . . . ,a} (20)

Furthermore, because ‖xt‖ ≤ 1 and C ≥ 2, we have {2�t , �2
t } ≤ min{C�t , 

�2
t

‖xt‖2 }

4Σw,i = 4

∑i
j=1 P j∑

t=∑i−1
j=1 P j

�∗
t ≤ min

{
2�t, �

2
t

} ≤
∑i

j=1 P j∑
t=∑i−1

j=1 P j

min

{
C�t,

�2
t

‖xt‖2

}
=

∑i
j=1 P j∑

t=∑i−1
j=1 P j

τt�t, (21)

where i ∈ {2, 3, . . . , a}. Combining the above inequalities (20) and (21), we have

4
a∑

i=2

min{Σv,i,Σw,i} ≤
a∑

i=2

4Σw,i ≤
a∑

i=2

{
‖ui‖2 +

∑i
j=1 P j∑

t=∑i−1
j=1 P j

2C�
(
(xt, yt);ui

)}

Finally, combining the above inequality with Theorem 5 results in

M ≤
a∑

i=1

{
‖ui‖2 +

∑i
j=1 P j∑

t=∑i−1
j=1 P j

2C�
(
(xt, yt);ui

)} + (8 ln 2)(a − 1). �

Although the above theorem offers a nice theoretical guarantee of Algorithm 4, its empirical performance could be 
affected by the selection of the window size parameters Pi at different periods. One simple way is to fix all Pi values to 
a proper constant P , which ideally should match the concept drift cycle. Such an approach is practically infeasible because 
(i) finding a proper parameter P is hard since the optimal window size for concept drift can only be known in hindsight; and 
(ii) concept drift often occurs irregularly, which would make a single windows size parameter fail in practice. To overcome 
the challenge of parameter selection for Pi , in this paper, we propose an automated parameter selection technique, an 
Online Window Adjustment (OWA) algorithm as shown in Algorithm 5, which can automatically determine a proper value 
for window size parameter Pi during the online learning process. We note that this algorithm was inspired by the existing 
Window Adjustment algorithm [22] used for solving batch concept drift tasks.

Algorithm 5 Online Window Adjustment Algorithm (OWA).
Input small window size P and trade-off C
Initialize u j,1 = 0, M j = 0, where j = 1, 2 and P1 = P , i = 1
for t = 1, 2, . . . , T do

receive instance: xt ∈ X
predict ŷ j,t = sign(u�

j,t xt ), where j = 1, 2
receive true label: yt ∈ {−1, +1}
compute M j = M j + I( ŷ j,t �=yt )

, where ∀ j = 1, 2
suffer loss: � j,t = max{0, 1 − yt u�

j,t xt }, where j = 1, 2
u j,t+1 = u j,t + τ j,t yt xt , where τ j,t = min{C, � j,t/‖xt‖2}, j = 1, 2
if mod(t, P ) = 0 then

if M1 > M2 then
i = i + 1, Pi = P

else
Pi = Pi + P

end if
u1,t+1 = u2,t+1 u2,t+1 = 0, M j = 0, j = 1, 2

end if
end for

5. Experimental results

In this section, we evaluate the empirical performance of the proposed OTL technique for three sets of experiments: 
(i) homogeneous OTL for classification tasks, (ii) heterogeneous OTL for classification tasks, and (III) application of OTL 
for concept-drifting online learning tasks. The whole experimental testbed including all the datasets and source code are 
available at http://www.stevenhoi.org/OTL/.

http://www.stevenhoi.org/OTL/
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Table 1
Datasets used in the homogeneous OTL classification tasks.

Dataset # examples # features # source instances
books-dvd 4000 473,857 2000
dvd-books 4000 473,857 2000
electronics-kitchen 4000 473,857 2000
kitchen-electronics 4000 473,857 2000
landmine1 14,820 9 8535
landmine2 14,820 9 6285

5.1. Experiment I: homogeneous OTL for classification tasks

5.1.1. Experimental testbed and setup
Our first experiment is to evaluate the performance of HomOTL from homogeneous data. We compare our HomOTL 

technique against other popular online learning techniques, including the Passive–Aggressive algorithms (“PA”) [9] with-
out exploiting any knowledge from the source domain, and a variant of it, which is the PA method Initialized with the
Old classifier v, denoted as PAIO for short. For our HomOTL technique, in addition to Algorithms 1 and 2, we also imple-
ment another variant, which is implemented by fixing the ensemble weights of the HomOTL-I algorithm to 1/2, denoted 
“HomOTL(fixed)” for short. This helps examine the efficacy of the proposed weighting strategy. We evaluate the proposed 
algorithms on six benchmark datasets for transfer learning as listed in Table 1.

These datasets were created based on the “sentiment” and “landmine” datasets downloaded from the website,1 which are 
popularly used to benchmark transfer learning algorithms. The first four datasets are named in the form of “name1–name2”, 
which means data “name1”, one domain from “sentiment”, is used as training data in the source domain, and data “name2”, 
another domain from “sentiment”, is treated as test data for online learning in the target domain. The last two datasets were 
created from “landmine”, which consists of 19 tasks, where 1–10 were collected at foliated regions and 11–19 were collected 
at regions that are bare earth or desert. Thus, “landmine1” uses 1–10 as the source data and the rest as target data; while 
“landmine2” uses “11–19” as source data and the rest as target data.

Finally, we adopt the PA algorithm to run on the source dataset and adopt the average classifier as the source classifier, 
which generally enjoys better generalization ability [7]. Further, we draw 20 times of random permutation of the instances in 
the target domain in order to obtain stable results by averaging over the 20 trials. All the algorithms adopt the kernel-based 
implementation with the same Gaussian kernel function. For fair comparison and simplicity, we set the kernel parameter 
σ1 = 4 for the source domain and σ2 = 8 for the target domain for all the datasets and algorithms. In addition, we set 
the regularization parameter C = 5 for all algorithms, and parameter β = √

T /(
√

T + √
ln 2) for HomOTL-II. We will also 

conduct experiments to examine the parameter sensitivity in subsequent sections. For performance evaluation, we evaluate 
the predictive accuracy of online learning methods by measuring the standard mistake rate, the sparsity of the resulting 
classifiers by evaluating the number of support vectors, and time efficiency by calculating average time costs.

5.1.2. Performance evaluation results
Table 2 summarizes the performance of the compared algorithms. Several observations can be drawn from the experi-

mental results. First of all, for most of the datasets, we found that the PA algorithm performs the worst, which implies the 
necessity of studying online transfer learning. Secondly, PAIO achieves better performance than PA on the first four datasets, 
while has no much improvement on the final two datasets, which demonstrates the importance of developing more so-
phisticated algorithms. In addition, the proposed HomOTL-I and HomOTL-II algorithms achieve the best performance among 
all datasets, which implies that the exploiting learnt knowledge from source domain is able to boost the performance of 
traditional online learning algorithms, and the two kinds of weight updating methods are generally comparable. Further-
more, we found that HomOTL-I outperforms HomOTL(fixed) on all the datasets, which shows that the proposed weight 
updating strategy can effectively transfer the knowledge. Finally, for the time efficiency evaluation, the proposed two OTL 
strategies are generally comparable to PAIO, and PA is the most efficient because it does not exploit data in the target 
domain.

Fig. 1 also shows the details of average mistake rates varying over the learning processes on the six data sets, respectively. 
Similar observations show that the two OTL algorithms achieve the best performance after receiving a small number of 
examples (e.g., less than 100 examples), which implies these two strategies can efficiently transfer the well-learnt knowledge 
from the source task to the target task. This again verifies the high learning efficacy of the proposed methodology.

5.1.3. Sensitivity evaluation of parameter C for homogeneous OTL
Fig. 2 evaluates the online prediction performance of the compared algorithms with varied C values across all the ho-

mogeneous learning tasks. Several observations can be drawn from the results. First of all, it is clear that the proposed

1 http://www.cse.ust.hk/TL/index.html.

http://www.cse.ust.hk/TL/index.html
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Table 2
Results on the datasets of homogeneous domain for classification.

Algorithm books-dvd

Mistake (%) Support vectors (#) Time (s)

PA 44.1475 ± 0.7696 1626.5500 ± 20.9271 0.0519 ± 0.0018
PAIO 28.7625 ± 0.6825 3446.2500 ± 9.6729 0.1386 ± 0.0021
HomOTL(fixed) 36.4750 ± 0.6294 3384.5500 ± 20.9271 0.1318 ± 0.0011
HomOTL-I 25.2325 ± 0.1029 3384.5500 ± 20.9271 0.1417 ± 0.0009
HomOTL-II 25.1200 ± 0.0377 3384.5500 ± 20.9271 0.1366 ± 0.0011

Algorithm dvd-books

Mistake (%) Support vectors (#) Time (s)

PA 45.2050 ± 0.8041 1633.1000 ± 15.1446 0.0522 ± 0.0008
PAIO 30.3525 ± 0.7192 3470.8500 ± 14.7444 0.1391 ± 0.0012
HomOTL(fixed) 38.6975 ± 0.8973 3400.1000 ± 15.1446 0.1339 ± 0.0012
HomOTL-I 25.4400 ± 0.1165 3400.1000 ± 15.1446 0.1434 ± 0.0014
HomOTL-II 25.3350 ± 0.0432 3400.1000 ± 15.1446 0.1379 ± 0.0014

Algorithm electronics-kitchen

Mistake (%) Support vectors (#) Time (s)

PA 40.4200 ± 0.8904 1552.9000 ± 17.4865 0.0505 ± 0.0007
PAIO 22.8950 ± 0.6770 3106.4000 ± 13.2005 0.1232 ± 0.0015
HomOTL(fixed) 30.6200 ± 0.9379 3173.9000 ± 17.4865 0.1261 ± 0.0016
HomOTL-I 17.8350 ± 0.0860 3173.9000 ± 17.4865 0.1369 ± 0.0024
HomOTL-II 17.7600 ± 0.0205 3173.9000 ± 17.4865 0.1313 ± 0.0012

Algorithm kitchen-electronics

Mistake (%) Support vectors (#) Time (s)

PA 42.2100 ± 1.1458 1564.9000 ± 21.3810 0.0520 ± 0.0023
PAIO 25.1750 ± 1.0392 3123.8500 ± 20.8561 0.1297 ± 0.0074
HomOTL(fixed) 32.1075 ± 1.0058 3187.9000 ± 21.3810 0.1308 ± 0.0041
HomOTL-I 21.2025 ± 0.0980 3187.9000 ± 21.3810 0.1409 ± 0.0048
HomOTL-II 21.1175 ± 0.0467 3187.9000 ± 21.3810 0.1362 ± 0.0074

Algorithm landmine1

Mistake (%) Support vectors (#) Time (s)

PA 13.3166 ± 0.2064 1676.5500 ± 31.9003 0.1620 ± 0.0067
PAIO 12.8767 ± 0.2171 3396.6500 ± 28.9233 0.4695 ± 0.0680
HomOTL(fixed) 9.2912 ± 0.1329 3356.5500 ± 31.9003 0.4344 ± 0.0138
HomOTL-I 7.2888 ± 0.0049 3356.5500 ± 31.9003 0.4686 ± 0.0144
HomOTL-II 7.2880 ± 0.0036 3356.5500 ± 31.9003 0.4524 ± 0.0108

Algorithm landmine2

Mistake (%) Support vectors (#) Time (s)

PA 9.4599 ± 0.1709 1713.0000 ± 32.1395 0.2321 ± 0.0094
PAIO 9.4206 ± 0.1684 3378.8000 ± 30.0063 0.6755 ± 0.0942
HomOTL(fixed) 6.6837 ± 0.1350 3420.0000 ± 32.1395 0.6187 ± 0.0140
HomOTL-I 5.2296 ± 0.0069 3420.0000 ± 32.1395 0.6667 ± 0.0154
HomOTL-II 5.2267 ± 0.0036 3420.0000 ± 32.1395 0.6476 ± 0.0222

two online transfer learning algorithms are significantly more effective than the other algorithms for most cases. Second, 
among all the compared algorithms, we observe that the proposed HomOTL-I and HomOTL-II algorithms always achieve 
the best performance when C is sufficiently large (e.g. C > 4), which indicates a large learning rate can efficiently im-
prove the transfer learning efficiency. Third, we observe that HomOTL-I and HomOTL-II are significantly more accurate 
than the other two transfer learning strategies: HomOTL(fixed) and PAIO under varied C values, which indicates the pro-
posed algorithms are more effective for online transfer learning. Fourth, while the insensitivity of HomOTL methods to 
the value of C on landmine datasets indicates that the dynamic weighting strategies are very effective for these datasets, 
HomOTL methods improve performance on these datasets only if a suboptimal value of C is chosen. Finally, the PA algo-
rithm performs the worst on all the datasets for varied C values as it does not exploit the knowledge from the source 
domain.

5.1.4. Sensitivity evaluation of parameter β for the HomOTL-II algorithm
In the previous experiments, we fix the value of parameter β to 

√
T /(

√
T +√

ln 2) for the proposed HomOTL-II algorithm. 
One concern is whether if this algorithm is sensitive to the value of parameter β . Table 3 evaluates the online prediction
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Fig. 1. Evaluation of online mistake rates on homogeneous OTL classification tasks.

mistake rates of the HomOTL-II algorithm with varied values of β on six different homogeneous OTL tasks. From the results, 
we observe that the performance of the HomOTL-II algorithm is in general insensitive to the parameter β where HomOTL-II
always outperforms PAIO consistently for all settings, validating the advantage of the proposed algorithm.
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Fig. 2. Evaluation on homogeneous OTL classification tasks with varied C values.
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Table 3
Evaluation of the HomOTL-II algorithm under varied values of parameter β .

Dataset PAIO HomOTL-II

β = 0.125 β = 0.25 β = 0.5 β = 0.75 β = 0.875

books-dvd 28.7625 25.1200 25.1200 25.1200 25.1225 25.1150
dvd-books 30.3525 25.3425 25.3425 25.3425 25.3375 25.3325
electronics-kitchen 22.8950 17.7700 17.7700 17.7700 17.7700 17.7700
kitchen-electronics 25.1750 21.1200 21.1200 21.1200 21.1200 21.1200
landmine1 12.8767 7.2880 7.2880 7.2880 7.2880 7.2880
landmine2 9.4206 5.2267 5.2267 5.2267 5.2267 5.2267

Table 4
Summary of data sets used for heterogeneous OTL classification tasks.

Datasets Source/old domain Target/new domain

Number Dimension Number Dimension

books-dvd 2000 236,928 2000 473,857
dvd-books 2000 236,928 2000 473,857
electronics-kitchen 2000 236,928 2000 473,857
kitchen-electronics 2000 236,928 2000 473,857
landmine1 8535 5 6285 9
landmine2 6285 5 8535 9

5.2. Experiment II: heterogeneous OTL for classification tasks

5.2.1. Experimental testbed and setup
We now evaluate the empirical performance of the proposed HetOTL algorithm for heterogeneous OTL on classification 

tasks. We compare HetOTL with the PA algorithm, which does not exploit knowledge from the source domain. Similarly, 
we implement a variant of PA algorithm that uses only the first view of the data and is initialized with v from the source 
domain, denoted as “PAIO”. We also implement a variant of HetOTL, whose first-view classifier is initialized with a zero 
function, denoted as “HetOTL0”. This method enables us to examine the importance of engaging the v function learnt 
from the source domain. Finally, we implement another baseline algorithm that simply use HomOTL, where the source 
classifier only consider the first view, denoted as “Ensemble” for short. We evaluate all the algorithms extensively on several 
benchmark datasets, as shown in Table 4.

These datasets are the same as those used in previous homogeneous classification tasks. However, to meet the assump-
tion and setup of heterogeneous OTL tasks, the source-domain data associate with only half of the feature space while the 
target-domain data include the whole feature space.

All the algorithms adopt the same Gaussian kernel. For fair comparison and simplicity, for all the datasets and algorithms, 
we set the regularization parameter γ1 = γ2 = 1 and kernel parameter σ1 = σ2 = 4 for the two views and σ = 8 for the 
whole feature. In addition, the regularization parameter C is set to 5 for all the algorithms on all the datasets. We conducted 
20 runs of random permutations for each dataset and measured the average results of these 20 runs. In particular, we 
evaluate the performance of online learning methods by calculating the mistake rates, and evaluate the number of SVs and 
the time cost of the compared algorithms for efficiency evaluation.

5.2.2. Performance evaluation results
Table 5 summarizes the evaluation results of heterogeneous OTL tasks.
Several observations can be drawn from the above results. First of all, we found that among all the algorithms, the PA 

algorithm without exploiting knowledge from source domain achieved very high mistake rate in most cases. This shows 
that it is important for studying knowledge transfer in an OTL task. Second, for all the datasets, we found that the HetOTL 
algorithm has the smallest mistake rate. This validates the proposed OTL technique is effective for knowledge transfer in 
the online learning tasks. By examining the running time cost, we found that the HetOTL techniques usually consumes 
comparable time with the other baselines except the PA algorithm, which is actually resulted in by the number of SVs 
stored by each algorithm. This clearly demonstrates the efficiency of the proposed HetOTL technique. Finally, Fig. 3 shows 
the details of the HetOTL processes. Firstly, the standard deviations are high for most of the algorithms, which reduces the 
significance of the improvement of the proposed algorithm. Secondly, similar observations on the average mistakes from the 
results, in a way, verify the proposed HetOTL method is effective for the challenging heterogeneous OTL tasks.

5.2.3. Sensitivity evaluation of parameter C for heterogeneous OTL
Fig. 4 evaluates the online prediction performance of different algorithms with varied values of parameter C across all 

the heterogeneous learning tasks. Several observations can be drawn from the results. First of all, it is clear to observe that 
the proposed HetOTL algorithm is significantly more effective than the other algorithms for most cases. Second, among all 
the compared algorithms, we observe that the proposed HetOTL algorithm always achieves the best performance (or at least 
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Table 5
Results on the datasets of heterogeneous domain for classification.

Algorithm books-dvd

Mistake (%) Support vectors (#) Time (s)

PA 44.1475 ± 0.7696 1626.5500 ± 20.9271 0.0524 ± 0.0008
PAIO 37.2975 ± 0.5961 3318.2500 ± 20.5782 0.1356 ± 0.0064
HetOTL0 38.6775 ± 0.6463 3372.5000 ± 30.5795 0.1037 ± 0.0022
Ensemble 37.3800 ± 0.5921 4944.8000 ± 37.1251 0.2037 ± 0.0026
HetOTL 36.6250 ± 0.6142 5003.0000 ± 31.7788 0.1936 ± 0.0017

Algorithm dvd-books

Mistake (%) Support vectors (#) Time (s)

PA 45.2050 ± 0.8041 1633.1000 ± 15.1446 0.0539 ± 0.0011
PAIO 39.4525 ± 0.6862 3395.0500 ± 14.8234 0.1346 ± 0.0028
HetOTL0 40.1425 ± 0.8027 3398.9000 ± 26.6476 0.1057 ± 0.0033
Ensemble 39.5500 ± 0.6827 5028.1500 ± 26.7685 0.2139 ± 0.0305
HetOTL 38.3400 ± 0.8879 5075.3000 ± 30.8496 0.1951 ± 0.0051

Algorithm electronics-kitchen

Mistake (%) Support vectors (#) Time (s)

PA 40.4200 ± 0.8904 1552.9000 ± 17.4865 0.0525 ± 0.0022
PAIO 33.4925 ± 1.0033 3062.9000 ± 15.7577 0.1213 ± 0.0030
HetOTL0 34.2825 ± 0.8917 3141.7000 ± 27.5855 0.0994 ± 0.0015
Ensemble 33.5750 ± 1.0213 4615.8000 ± 29.6197 0.1892 ± 0.0025
HetOTL 31.7775 ± 0.9496 4612.2000 ± 27.6702 0.1824 ± 0.0189

Algorithm kitchen-electronics

Mistake (%) Support vectors (#) Time (s)

PA 42.2100 ± 1.1458 1564.9000 ± 21.3810 0.0519 ± 0.0018
PAIO 35.1925 ± 1.0015 3150.2000 ± 32.0700 0.1250 ± 0.0039
HetOTL0 36.1275 ± 0.9450 3165.7000 ± 32.8459 0.1006 ± 0.0020
Ensemble 35.2625 ± 1.0089 4715.1000 ± 49.3813 0.1946 ± 0.0058
HetOTL 33.6325 ± 0.9501 4689.0000 ± 39.1677 0.1819 ± 0.0028

Algorithm landmine1

Mistake (%) Support vectors (#) Time (s)

PA 13.3166 ± 0.2064 1676.5500 ± 31.9003 0.1659 ± 0.0076
PAIO 12.9737 ± 0.1896 3431.0000 ± 28.3382 0.4856 ± 0.0680
HetOTL0 12.9626 ± 0.1733 3402.8000 ± 63.2535 0.3205 ± 0.0151
Ensemble 12.9881 ± 0.1902 5107.5500 ± 55.1032 0.7076 ± 0.0522
HetOTL 12.8361 ± 0.1897 5150.8000 ± 59.3079 0.6689 ± 0.0518

Algorithm landmine2

Mistake (%) Support vectors (#) Time (s)

PA 9.4599 ± 0.1709 1713.0000 ± 32.1395 0.2242 ± 0.0078
PAIO 9.5636 ± 0.2040 3422.9000 ± 31.6625 0.6121 ± 0.0446
HetOTL0 9.3538 ± 0.1840 3355.0000 ± 57.1996 0.4205 ± 0.0149
Ensemble 9.4487 ± 0.2118 5135.9000 ± 59.5950 0.9200 ± 0.0593
HetOTL 9.3146 ± 0.1813 5032.0000 ± 62.4112 0.8312 ± 0.0191

very close to the best performance, e.g., “landmine1” and “landmine2”) when C is sufficiently large (e.g., C > 4). This shows 
that setting a large learning rate can improve the transfer learning efficacy. Third, we observe that HetOTL is significantly 
more accurate than the other transfer learning strategies under varied C values, which again validates the efficacy of the 
proposed OTL strategy. Fourth, HomOTL improves performance on the landmine datasets only if a suboptimal value of C is 
chosen. Finally, the PA algorithm performs the worst on all the datasets under varied C values.

5.3. Experiment III: OTL for learning with concept-drifting data streams

5.3.1. Experimental testbed and setup
We now evaluate the empirical performance of the proposed technique for online learning tasks with concept-drifting 

data streams. We compare our CDOL algorithm with the standard Perceptron (denoted as “PE”) and PA algorithms. In 
addition, we also compare with two popular algorithms for concept-drifting online learning, i.e., the Modified Perceptron 
algorithm (denoted as “ModiPE” for short) [10], and the shifting Perceptron algorithm (denoted as “ShiftPE” for short) [6]. 
In addition, we also implement a variant of the CDOL which will set Pi = P ∀i, and term it as CDOL(fixed).
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Fig. 3. Evaluation of online mistake rates on heterogeneous OTL classification tasks.

We evaluate the performance of all the algorithms on six benchmark datasets, as shown in Table 6, where the datasets 
“emaildata”, “usenet1” and “usenet2”, are downloaded from Concept Drift Datasets website,2 while the “MITface”, “news-

2 http://mlkd.csd.auth.gr/concept_drift.html.

http://mlkd.csd.auth.gr/concept_drift.html
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Fig. 4. Evaluation on heterogeneous OTL classification tasks with varied C values.
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Table 6
Datasets used in the concept drift tasks.

Dataset emaildata MITface newsgroup4 usenet1 usenet2 usps

# examples 1500 6977 1600 1500 1500 2930
# features 913 361 62,061 99 99 256

Table 7
The class distribution of dataset MITface.

Example id 1–1500 1501–3000 3001–4500 4501–6000 6000–6977

face + − + − +
non-face − + − + −

Table 8
The class distribution of dataset newsgroup4.

Example id 0–400 401–800 801–1200 1201–1600

comp.windows.x + − − +
rec.sport.hockey + + − −
sci.space − + + −
talk.politics.mideast − − + +

Table 9
The class distribution of dataset usps.

Original \ changed label 1–400 401–1200 1201–2400 2401–2930

1 + − + −
2, 3 − + − +

group4” and “usps” are created by ourself by using the datasets downloaded from MIT website3 and the LIBSVM website, 
respectively. The details of “MITface”, “newsgroup4” and “usps” are shown in Tables 7, 8 and 9, respectively.

All the algorithms employ the same Gaussian kernel, where the kernel width is set as σ = 8. Similarly, for fair compari-
son, we set the parameter C to 5 for all the algorithms on all the datasets. In addition, parameter λ is set to 1 for the Shift 
Perceptron algorithm, and parameter P = 30 is used for CDOL(fixed) and OWA, which is used to determine Pi for CDOL 
automatically. We conducted 20 different runs of random permutations (the examples will be permutated within every pe-
riod) to obtain the average results. We evaluate the accuracy of online learning algorithms by measuring the mistake rate, 
their model sparsity by measuring the number of SVs, and their efficiency by measuring time cost.

5.3.2. Performance evaluation results
Table 10 summarizes the results for concept-drift online learning.
Several observations can be drawn from the results. First of all, we found that for the first two algorithms without 

considering concept drift, the PA algorithm achieved better performance for most cases. This shows that PA can learn new 
knowledge more effectively than the passive PE algorithm. Second, among all the algorithms, the ModiPE and ShiftPE algo-
rithms designed for learning with concept drift seldom outperform the simple PA algorithm, which indicates that concept 
drift learning is in general hard to solve and the existing techniques are still not effective enough. In addition, CDOL almost 
always outperforms CDOL(fixed), which implies that the proposed OWA algorithm could find proper Pi s effectively. Fourth, 
among all the evaluated algorithms, we found that the proposed CDOL algorithm achieved the smallest mistake rates for 
most of the datasets. This validates CDOL is effective for knowledge transfer in the concept-drift learning tasks. Of course, 
there is some cost for performing knowledge transfer for the gain achieved by the proposed CDOL method. By examining 
the running time cost, we found that CDOL usually took more time cost than the other algorithms, since it need take time 
to find the best Pi s. Finally, Fig. 5 shows the details of the concept-drift online learning processes. Similar observations 
can be found from the results, which again verify the proposed OTL technique is effective and promising for resolving the 
challenging tasks of online learning with concept drift.

5.3.3. Sensitivity evaluation of parameter C for concept-drifting learning
Fig. 6 examines the online prediction performance of different algorithms with varied values of C for concept drifting 

online learning tasks. Several observations can be drawn from the results. First of all, it is clear to see that the proposed 
CDOL algorithm is considerably more effective than the other algorithms for most cases. Second, among all the compared 
algorithms, we observe that the proposed CDOL algorithm often achieves the best performance when C is sufficiently large 

3 http://cbcl.mit.edu/software-datasets/FaceData2.html.

http://cbcl.mit.edu/software-datasets/FaceData2.html
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Table 10
Evaluation results of online learning with concept-drifting datasets.

Algorithm emaildata

Mistake (%) Support vectors (#) Time (s)

PE: 36.9533 ± 1.1080 554.3000 ± 16.6199 0.0162 ± 0.0005
PA-I: 35.5333 ± 0.7849 1216.6000 ± 12.4495 0.0284 ± 0.0005
ShiftPE: 37.8567 ± 1.0473 567.8500 ± 15.7088 0.0173 ± 0.0005
ModiPE: 39.4367 ± 1.1184 591.5500 ± 16.7755 0.0176 ± 0.0011
CDOL(fixed): 35.4333 ± 1.0551 28.9500 ± 0.8870 0.0298 ± 0.0009
CDOL: 31.4533 ± 1.6738 338.9000 ± 132.1458 0.0701 ± 0.0019

Algorithm MITface

Mistake (%) Support vectors (#) Time (s)

PE: 12.3979 ± 0.2360 865.0000 ± 16.4637 0.0921 ± 0.0024
PA-I: 9.8603 ± 0.1413 2023.6500 ± 29.0612 0.1931 ± 0.0042
ShiftPE: 14.9226 ± 0.3977 1041.1500 ± 27.7475 0.1158 ± 0.0030
ModiPE: 11.5021 ± 0.3681 802.5000 ± 25.6812 0.0874 ± 0.0023
CDOL(fixed): 17.4129 ± 1.7939 40.0000 ± 2.2942 0.1336 ± 0.0009
CDOL: 7.6251 ± 0.2854 714.2000 ± 196.6963 0.3656 ± 0.0168

Algorithm newsgroup4

Mistake (%) Support vectors (#) Time (s)

PE: 36.9062 ± 1.1317 590.5000 ± 18.1064 0.0182 ± 0.0005
PA-I: 39.3875 ± 1.0398 1513.4500 ± 8.7748 0.0350 ± 0.0006
ShiftPE: 39.5562 ± 0.8385 632.9000 ± 13.4160 0.0205 ± 0.0008
ModiPE: 43.6781 ± 1.5975 698.8500 ± 25.5596 0.0206 ± 0.0009
CDOL(fixed): 44.5156 ± 1.2001 39.8000 ± 0.5231 0.0326 ± 0.0013
CDOL: 35.7906 ± 1.5934 432.4000 ± 211.6244 0.0809 ± 0.0025

Algorithm usenet1

Mistake (%) Support vectors (#) Time (s)

PE: 38.7200 ± 1.3958 580.8000 ± 20.9375 0.0164 ± 0.0004
PA-I: 40.8833 ± 0.7807 958.8000 ± 19.3462 0.0240 ± 0.0005
ShiftPE: 44.0600 ± 1.1075 660.9000 ± 16.6129 0.0187 ± 0.0004
ModiPE: 37.5333 ± 0.8463 563.0000 ± 12.6948 0.0166 ± 0.0003
CDOL(fixed): 37.6967 ± 1.0132 22.3500 ± 2.9069 0.0281 ± 0.0002
CDOL: 39.6533 ± 1.6469 177.7500 ± 103.2941 0.0646 ± 0.0018

Algorithm usenet2

Mistake (%) Support vectors (#) Time (s)

PE: 38.0467 ± 0.9167 570.7000 ± 13.7500 0.0172 ± 0.0025
PA-I: 40.8467 ± 0.8414 960.0000 ± 14.2349 0.0251 ± 0.0033
ShiftPE: 44.4367 ± 0.9498 666.5500 ± 14.2477 0.0197 ± 0.0024
ModiPE: 37.9833 ± 1.1255 569.7500 ± 16.8831 0.0171 ± 0.0003
CDOL(fixed): 36.9333 ± 1.6990 22.0500 ± 3.3321 0.0286 ± 0.0003
CDOL: 35.2100 ± 1.3295 193.7000 ± 100.1757 0.0646 ± 0.0017

Algorithm usps

Mistake (%) Support vectors (#) Time (s)

PE: 4.7218 ± 0.2176 138.3500 ± 6.3766 0.0188 ± 0.0003
PA-I: 3.4266 ± 0.2289 443.3000 ± 9.4874 0.0295 ± 0.0005
ShiftPE: 5.9164 ± 0.3227 173.3500 ± 9.4550 0.0202 ± 0.0003
ModiPE: 5.0529 ± 0.3978 148.0500 ± 11.6550 0.0192 ± 0.0004
CDOL(fixed): 4.6143 ± 0.4057 34.0500 ± 3.3635 0.0530 ± 0.0002
CDOL: 2.8208 ± 0.2188 258.8500 ± 52.3584 0.1152 ± 0.0008

(e.g. C > 4) (except “usenet1”), which indicates a large learning rate can efficiently improve the transfer learning efficacy. 
Third, we observe that CDOL is significantly more accurate than the other two concept drift learning strategies: ModiPE and 
ShiftPE, under varied values of C , which again indicates the CDOL algorithm is more effective for concept drifting online 
learning tasks.

6. Conclusion

This paper presented a novel framework of Online Transfer Learning (OTL), which aims to attack an online learning task 
on a target domain by transferring knowledge from a source domain. We addressed two OTL tasks in classification setting 
and presented two OTL algorithms for different tasks. We offered theoretical analysis of the proposed OTL algorithms, and 
conducted an extensive set of experiments, in which encouraging results were obtained. Furthermore, we explored the OTL 
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Fig. 5. Evaluation of online mistake rates on the concept drift learning tasks.

technique as a natural extension to tackle the challenging task of learning over concept-drifting data streams, and proposed 
an effective algorithm which was validated by the promising empirical results. Through this work, we hope to encourage 
further research on in-depth investigations of OTL to address other hard problems, e.g., how to perform heterogeneous OTL
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Fig. 6. Evaluation on the concept drift learning tasks with varied C values.
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from complex data of completely diverse feature representations, how to derive better theoretical bounds of the proposed 
OTL algorithms, and how to develop new applications of OTL techniques to tackle other various challenges in AI commu-
nity.
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Appendix A

A.1. Proof of Proposition 1

Proof. To facilitate the analysis, we denote pt = α1,tΠ(v�xt) + α2,tΠ(w�
t xt), p1,t = Π(v�xt), and p2,t = Π(w�

t xt).
It is straightforward to show that F (z) = exp(− 1

2 �∗(z, y)) is concave with respect to z for all y. Then according to 
Jensen’s inequality

exp

(
−1

2
�∗(pt,Π(yt)

)) ≥
∑2

i=1 αi,t exp(− 1
2 �∗(pi,t,Π(yt)))∑2

i=1 αi,t

.

Denoting ri,t = �∗(pt , Π(yt)) − �∗(pi,t , Π(yt)) and rearranging the above inequality result in:

2∑
i=1

αi,t exp

(
1

2
ri,t

)
≤

2∑
i=1

αi,t .

Combining the equality (2) with the above inequality, we have

2∑
i=1

exp

(
−1

2

t−1∑
j=1

�∗(pi, j,Π(y j)
))

exp

(
1

2
ri,t

)
≤

2∑
i=1

exp

(
−1

2

t−1∑
j=1

�∗(pi, j,Π(y j)
))

.

Multiplying the two sides of the above inequality with exp( 1
2

∑t−1
j=1 �∗(p j, Π(y j))) results in

2∑
i=1

exp

(
1

2

t∑
j=1

ri, j

)
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2∑
i=1

exp

(
1

2

t−1∑
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ri, j
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,

which further implies

2∑
i=1

exp

(
1
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T∑
j=1

ri, j

)
≤

2∑
i=1

exp

(
1
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T −1∑
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ri, j

)
≤ . . .

2∑
i=1

exp

(
1

2

0∑
j=1

ri, j

)
= 2 ln(2).

Finally,

T∑
t=1

�∗(pt,Π(yt)
) − min

i=1,2

T∑
t=1

�∗(pi,t,Π(yt)
) = max

i=1,2

T∑
t=1

ri,t ≤ 2 ln

(
2∑

i=1

exp

(
1

2

T∑
t=1

ri,t

))
≤ 2 ln(2).

Plugging pt = α1,tΠ(v�xt) + α2,tΠ(w�
t xt), p1,t = Π(v�xt), and p2,t = Π(w�

t xt) into the above inequality concludes the 
claim. �
A.2. Proof of Proposition 2

Proof. It is not difficult to show the optimization in (6) is equivalent

min
w1w2

γ1

2
‖w1 − w1,t‖2 + γ2

2
‖w2 − w2,t‖2 + Cξ

s.t. 1 − yt
1

2

(
w�

1 x1,t + w�
2 x2,t

) ≤ ξ and ξ ≥ 0

The Lagrangian of the above optimization problem is expressed as
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L(w1,w2, ξ, τt , λ)

= γ1

2
‖w1 − w1,t‖2 + γ2

2
‖w2 − w2,t‖2 + ξ(C − τt − λ) + τt

(
1 − yt

1

2

(
w�

1 x1,t + w�
2 x2,t

))
(1)

where τt ≥ 0 and λ ≥ 0 are Lagrange multipliers. We now find the minimum of the Lagrangian w.r.t. w1, w2 and ξ by setting 
their partial derivatives to zeros. We get wi = wi,t + τt

2γi
yt xi,t for i = 1, 2 and C − τt − λ = 0. And since λ ≥ 0, we conclude 

C ≥ τt . We thus have τt ∈ [0, C]. Plugging the three equations wi = wi,t + τt
2γi

yt xi,t (where i = 1, 2) and C − τt − λ = 0 into 
Eq. (1), we have

L(τt) = −τ 2
t

(
z1,t

8γ1
+ z2,t

8γ2

)
+ τt�t, where �t = �(w1,t,w2,t; t).

Setting the derivative of the above to zero leads to:

τt = �t/

(
z1,t

4γ1
+ z2,t

4γ2

)
= 4γ1γ2�t

z1,tγ2 + z2,tγ1
.

Finally, combining the fact τt ∈ [0, C], we thus have the final solution:

τt = min

{
C,

4γ1γ2�t

z1,tγ2 + z2,tγ1

}
. �

A.3. Proof of Lemma 1

Proof. Let us introduce the following notation:

Δt = γ1

2

(‖w1,t − w1‖2 − ‖w1,t+1 − w1‖2) + γ2

2

(‖w2,t − w2‖2 − ‖w2,t+1 − w2‖2).
We then have

T∑
t=1

Δt =
T∑

t=1

{
γ1

2

(‖w1,t − w1‖2 − ‖w1,t+1 − w1‖2) + γ2

2

(‖w2,t − w2‖2 − ‖w2,t+1 − w2‖2)}

= γ1

2

(‖v − w1‖2 − ‖w1,T +1 − w1‖2) + γ2

2

(‖w2,1 − w2‖2 − ‖w2,T +1 − w2‖2)
≤ γ1

2

(‖v − w1‖2) + γ2

2

(‖w2‖2)
Second, when �t = 0, wi,t+1 = wi,t for i = 1, 2, it is clear Δt = 0; when �t > 0, wi,t+1 = wi,t + τt

2γi
yt xi,t , we compute Δt as:

Δt = γ1

2

(‖w1,t − w1‖2 − ‖w1,t+1 − w1‖2) + γ2

2

(‖w2,t − w2‖2 − ‖w2,t+1 − w2‖2)
= τt

{
− yt

2

(
w�

1,tx1,t + w�
2,tx2,t

) + yt

2

(
w�

1 x1,t + w�
2 x2,t

) −
(

z1,t

8γ1
+ z2,t

8γ2

)
τt

}
(2)

We also have �t = 1 − yt(
1
2 (w�

1,t x1,t + w�
2,tx2,t)) as �t > 0, which is equivalent to:

yt

2

(
w�

1,tx1,t + w�
2,tx2,t

) = 1 − �t .

In addition,

�(w1,w2; t) =
[

1 − yt
1

2

(
w�

1 x1,t + w�
2 x2,t

)]
+

≥ 1 − yt
1

2

(
w�

1 x1,t + w�
2 x2,t

)
,

we thus have

yt

2

(
w�

1 x1,t + w�
2 x2,t

) ≥ 1 − �(w1,w2; t).

Combining these two facts and inequality (2), we thus have the following:

Δt ≥ τt

(
−(1 − �t) + 1 − �(w1,w2; t) −

(
z1,t

8γ1
+ z2,t

8γ2

)
τt

)

= τt

(
�t − �(w1,w2; t) −

(
z1,t

8γ1
+ z2,t

8γ2

)
τt

)
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Hence, we have the following conclusion:

T∑
t=1

τt

(
�t − �(w1,w2; t) −

(
z1,t

8γ1
+ z2,t

8γ2

)
τt

)
≤ γ1

2
‖v − w1‖2 + γ2

2
‖w2‖2. �

A.4. Proof of Proposition 3

Proof. First of all, we note that Π(yt) = yt+1
2 since yt ∈ {−1, +1}.

Case 1. If yt w�
t xt ∈ (−∞, −1], then �t ≥ 2.

1.1. If yt = −1, then w�
t xt ≥ +1 and Π(w�

t xt) = 1 and Π(yt) = 0;
1.2. If yt = +1, then w�

t xt ≤ −1 and Π(w�
t xt) = 0 and Π(yt) = 1;

Accordingly, we have �∗
t = (Π(w�

t xt) − Π(yt))
2 = 1 ≤ �2

t
4 (or ≤ �t

2 ).

Case 2. If yt w�
t xt ∈ (−1, +1), since yt ∈ {−1, +1}, then w�

t xt ∈ (−1, +1), and Π(w�
t xt) = w�

t xt+1
2 ∈ (0, +1), as a result:

�∗
t = (

Π
(
w�

t xt
) − Π(yt)

)2 =
(

w�
t xt + 1

2
− yt + 1

2

)2

=
(

1 − ytw�
t xt

2

)2

= �2
t

4
≤ �t

2
.

Case 3. If yt w�
t xt ∈ [+1, +∞), �t = 0.

3.1. If yt = −1, then w�
t xt ≤ −1 and Π(w�

t xt) = 0 = Π(yt);
3.2. If yt = +1, then w�

t xt ≥ +1 and Π(w�
t xt) = 1 = Π(yt);

Accordingly, we have �∗
t = (Π(w�

t xt) − Π(yt))
2 = 0 = �t .

In summary, we have �∗
t ≤ min{�t/2, �2

t /4}. �
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