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CORN : Correlation-driven Nonparametric
Learning Approach for Portfolio Selection

BIN LI
STEVEN C.H. HOI
VIVEKANAND GOPALKRISHNAN
School of Computer Engineering, Nanyang Technological University

Machine learning techniques have been adopted to select portfolios from financial markets in some
emerging intelligent business applications. In this paper, we propose a novel learning to trade
algorithm termed the CORrelation-driven Nonparametric learning strategy (CORN) for actively
trading stocks, which effectively exploits statistical relations between stock market windows via
a nonparametric learning approach. We evaluate the empirical performance of our algorithm
extensively on several large historical and latest real stock markets, in which the encouraging
results show that the proposed new algorithm can easily beat both the market index and the best
stock in the market substantially (without or with small transaction costs), and also surpasses a
variety of state-of-the-art techniques significantly.

Categories and Subject Descriptors: J.1 [Computer Applications]: Administrative Data Processing—Finan-
cial; J.1 [Computer Applications]: Social and Behavioral Sciences—Economics; I.2.6 [Artificial Intelligence ]:
Learning

General Terms: Design,Algorithms,Economics,Experimentation

Additional KeyWords and Phrases: Online Portfolio Selection,Nonparametric Learning,Correlation
Coefficient

1. INTRODUCTION

Recent years have witnessed machine learning being increasingly used in business appli-
cations. An active research topic in this domain is to study machine learning techniques
for selecting portfolios. In general, portfolio selection[Markowitz 1952] aims to maximize
some relevant performance measures, such as total wealth, economic utility or risk adjusted
return, with the wealth invested in some financial markets inthe long run. This problem has
been extensively studied in computational finance, statistics, and information theory, and
recently, it has also attracted increasing interests from the machine learning, data mining,
and artificial intelligence communities. In this paper, we investigate the portfolio selec-
tion problem by sequential investment (also termed online investment) strategies, which
exploits information collected from the historical marketand (actively) determines how a
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portfolio is to be distributed among a (fixed) set of assets.

Most of the extensive efforts from the finance domain towardsthis challenge can be
generally classified as fundamental analysis (FA) and technical analysis (TA). FA ap-
proaches [Graham and Dood 1996] aim to predict the expected return of a stock by mea-
suring itsintrinsic value based on related economic, financial, and other qualitative and
quantitative factors. Instead of measuring the intrinsic values, TA approaches [Edwards
et al. 2007] believe that the historical performance of stocks and markets are sufficient in-
dicators of their future performance, and often adopt charts, technical indicators, and other
tools to identify patterns that can help to predict future prices or suggest future activities.

In recent years, researchers in machine learning and data mining communities have at-
tacked the portfolio selection problem by optimizing investment strategies via computer
programs that are powered by intelligent learning algorithms. We refer to these approaches
as thelearning to tradetechniques. These techniques are close to those from the TA cate-
gory in finance domain in the sense that they also operate on historic price data. However,
different from the heuristic trading techniques by the TA approaches, thelearning to trade
techniques are often well formulated by machine learning methods and solved effectively
by optimization techniques. A variety of state-of-the-artlearning to trade algorithms have
recently been proposed in the literature [Cover 1991; Helmbold et al. 1998; Borodin et al.
2004; Agarwal et al. 2006; Györfi et al. 2006; Györfi et al. 2008].

In addition, researchers have also attempted to establish theoretical foundations for
the learning to trade approaches. A pioneering and widely studied work is the theoreti-
cal framework ofuniversalportfolio selection [Cover 1991; Cover and Ordentlich 1996;
Helmbold et al. 1998; Blum and Kalai 1999; Hazan 2006; Györfiet al. 2006; Györfi et al.
2008], which provides performance guarantees of theregretbased on information theory.
While many universal algorithms theoretically achieve a nice performance guarantee, in
practice they often perform no better than a simple heuristic investment strategy from pre-
vious empirical studies. An intriguing and practical question that remains unresolved is
“Can we develop a learning to trade algorithm that consistently surpasses the market and
even beats the best stock in the market?”

In this paper, we present a novel learning to trade strategy for the (sequential) portfolio
selection problem, termed theCORrelation-drivenNonparametric learning (CORN) al-
gorithm. In particular, CORN seeks to locate the market windows that are similar to the
latest market window, and makes a log-optimum portfolio according to the idea of the best
Constant Rebalanced Portfolio strategy [Cover and Gluss 1986]. CORN not only exploits
effective statistical correlations between market windows, but also benefits from the explo-
ration of powerful nonparametric machine learning techniques. Our empirical studies on
historical stock markets show that CORN easily beats the market as well as the best stock
in the market substantially (without or with reasonable transaction costs), and also consis-
tently surpasses a variety of state-of-the-art techniques. Even when faced with the recent
financial turmoil, the proposed CORN strategy still achieves an excellent performance,
which is considerably better than the performance of other existing approaches.

Besides, our promising empirical results also provide a strong evidence to rebut the well-
known Efficient Market Hypothesis (EMH) [Timmermann and Granger 2004] in finance
theory, which states that the markets are informatively efficient, i.e., prices of assets traded
on the markets reflect all known information. EMH asserts that no investors can consis-
tently beat the market using information that is already known. However, our empirical
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results on several large historical stock testbeds show that the proposed CORN algorithm
can outperform the market and even beat the best stock in the market, using only the his-
torical price information that is already known to all the market participants.

The rest of the paper is organized as follows. Section 2 formally formulates the portfolio
selection problem, and gives some preliminaries of the background. Section 3 reviews the
related work. Section 4 presents the proposed CORN algorithm for trading stocks actively.
Section 5 examines the efficacy of the proposed algorithm by conducting an extensive set of
empirical studies on several historical and up-to-date stock markets. Section 6 summarizes
the paper and provides directions for future work.

2. PRELIMINARIES: PORTFOLIO SELECTION

In this section, we formulate the portfolio selection problem by following previous stud-
ies [Cover 1991; Ordentlich and Cover 1996; Helmbold et al. 1998; Borodin et al. 2004;
Györfi et al. 2006].

2.1 Problem Formulation

Consider a market withm assets. Let us denote byxt = (x(t,1), . . . , x(t,m)) ∈ R
m
+ the

price relative vectorfor them assets in thetth trading day, where each elementx(t,i)

equals thetth closing price of asseti divided by the(t − 1)th closing price of asseti,

i.e.,x(t,i) =
P(t,i)

P(t−1,i)
. Given a window sizew, let us define themarket windowfor thetth

trading day asXt−1
t−w = (xt−w , . . . ,xt−1), which represents the latest market movement

before thetth trading day.
At the beginning oftth trading day, we specify aportfolio bt = (b(t,1), . . . , b(t,m)) ∈

R
m
+ to allocate our wealth amongm assets, each componentb(t,i) represents the proportion

of wealth invested in theith asset at the beginning oftth trading day. One obvious con-
straint for a portfolio is that it must be a simplex, denoted by bt ∈ △m, such thatb(t,i) ≥ 0
and

∑

i b(t,i) = 1, which means the portfolio is self-financed and no margin is allowed.
Theportfolio strategyfor the period ofT trading days isBT

1 = (b1, . . . ,bT ), which is the
output of thelearning to tradestrategy.

Thus, for thetth trading day, the portfolio achieves a daily return defined asbt · xt =
∑

i b(t,i)x(t,i). And the total wealth achieved at the end of theT th trading day is,

ST = S0

T
∏

t=1

(bt · xt), (1)

whereS0 is the initial wealth, which is set to1 for convenience in our study.
The goal of alearning to tradetask for portfolio selection is to learn a portfolio strategy

that is expressed as a sequence of functions,

bt : (R
m
+ )t−1 → △m, t = 1, 2, . . . ,

wherebt(X
t−1
1 ) represents theportfoliovector made by the investor at the beginning of the

tth trading day upon observing the past behavior of the market. As a sequential investment
strategy, the learning to trade strategy produces one portfolio vector every trading day. All
of these vectors form theportfolio strategyfor the entire trading period.

In the above, we make several general assumptions for the portfolio selection model:

(1) Transaction cost: no transaction cost exists in the above portfolio selection model;
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(2) Market liquidity: each asset is arbitrarily divisible,and we can buy and sell the
desired quantities at the last closing price of any given trading period;

(3) Impact cost: the market behavior is not affected by any decision made by thelearn-
ing to tradestrategy for portfolio selection.

2.2 Performance Criteria

For portfolio selection, an important issue is to define appropriate criteria for evaluating
the performance of the portfolio strategy. One natural and probably the most prominent
approach is to adopt some functions of the total wealth achieved by the strategy over the
trading period, i.e,U(ST ), whereU(·) is some standard economic utility function with re-
spect to the total wealthST . Besides, it is possible to adopt some other process-dependent
economic utility functions [Moody et al. 1998]. Below we discuss several performance
criteria widely used for portfolio selection.

One natural and common performance metric is thetotal wealth factorachieved during
some trading period by the learning to trade strategy. Thetotal wealth factorequals the
wealth achieved at the end of the trading period divided by the initial wealth. In our study,
we simply set the initial wealthS0 = 1, and use the same notationST to denote the total
wealth factor for convenience. Another equivalent metric is theannualized percentage
yield (APY) [Elton et al. 2003] that takes account of the compounding effect, i.e.,

APY = (ST )
1
y − 1, (2)

wherey is the number of years corresponding to theT trading periods.APYmeasures the
average wealth increment per year achieved by alearning to tradestrategy. Typically, the
higher the value oftotal wealth factoror APY, the more preferable the trading strategy.

For a process-dependent investor, an important concern is the evaluation ofrisk andrisk-
adjusted returnof the portfolios [Sharpe 1994]. A common way to achieve thisis to adopt
the annualized standard deviationof daily returns to measure the volatility risk, and the
annualized Sharpe Ratio(SR) [Elton et al. 2003] to evaluate the risk-adjusted return. For
the portfolio risk, we calculate the standard deviation of the daily returns, and multiply by√
252 (here252 is the average number of trading days per year) to obtain theannualized

standard deviation. For the risk-adjusted return, we calculateannualized Sharpe Ratio
according to the following formula,

SRT =
APY −Rf

σp

, (3)

whereRf is the risk-free return (typically the return of Treasury bills, set at4% in our
study), andσp is the annualized standard deviation of daily returns. Typically, the higher
theannualized Sharpe Ratio, the more preferable the trading strategy.

For portfolio management, another risk evaluation isdrawdown(DD) analysis [Magdon-
Ismail and Atiya 2004], which measures the decline from a historical peak of the total
wealth achieved by a trading strategy. Formally, letS(·) denote the process of the total
wealth achieved by a trading strategy, i.e.,{S1, . . . ,St, . . . ,ST }. Thedrawdownat any

time t, denoted asDD(t), is defined as:DD(t) = sup
[

0, supi∈(0,t) S(i)− S(t)
]

. The

maximum drawdown(MDD) till the end of the trading period is the maximum of thedraw-
downover the history of the total wealth achieved by alearning to tradestrategy.MDD is
a good way to measure the inherent risk of different trading strategies. More formally, the
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maximum drawdownfor a horizonT , denoted asMDD(T ), is defined as:

MDD(T ) = sup
τ∈(0,T )

[

sup
t∈(0,τ)

S(t)− S(τ)

]

. (4)

The smaller themaximum drawdownvalue, the more risk tolerable the trading strategy.

2.3 Some Practical issues in Portfolio Selection

In a real-world portfolio selection task, there are some practical issues that should often
be taken into consideration. Below we discuss two practicalissues, and relax our previous
formulation to address these issues properly.

In reality, an important and unavoidable issue istransaction cost. In our study, we adopt
theproportional transaction costmodel proposed in Blum and Kalai [1999] and Borodin
et al. [2004]. Specifically, consider a transaction cost rate γ ∈ (0, 1), an action of rebal-
ancing the portfolio has to incur transaction cost for both buy and sell operations. At the
beginning of thetth trading day, the portfolio manager rebalances the portfolio from the
previous closing price adjusted portfoliôbt−1 to a new portfoliobt. The transaction cost
will be charged according toγ2 ×∑

i

∣

∣b(t,i) − b̂(t−1,i)

∣

∣, where the initial portfolio is set to
(0, . . . , 0). Thus, with transaction cost rateγ, the total wealth achieved by the end of the
T th trading day, denoted asSc(γ)

T , is expressed as:

S
c(γ)
T = S0

T
∏

t=1

[

(bt · xt)×
(

1− γ

2
×
∑

i

∣

∣b(t,i) − b̂(t−1,i)

∣

∣

)

]

. (5)

Another practical issue ismargin buying, which allows portfolio managers to buy se-
curities with cash borrowed from security brokers. Margin buying magnifies the profit as
well as the loss invested in the securities. Following the previous studies [Cover 1991;
Helmbold et al. 1998; Agarwal et al. 2006], we include this constraint in our previous
model. In our study, the margin setting is assumed to be50% down and50% loan, and the
interest rate of the borrowed money isc, which is simply set toc = 0.000233 in our study,
or equivalently, an annual interest rate of6%. Thus, for each security in the asset pool, we
create a new asset named “Margin Component”. Following the down and loan percentage,
the price relative for the “Margin Component” of asseti would be2 ∗ x(t,i) − 1− c, where
x(t,i) is the price relative of theith asset for thetth trading day. By adding this “Margin
Component”, we magnify both the potential profit and loss of the trading strategy.

3. RELATED WORK

We now review a variety oflearning to tradetechniques for the portfolio selection problem.

3.1 Natural Baseline Strategies

One common baseline for portfolio selection is theBuy-And-Hold(BAH) strategy, i.e., one
invests the money among a set of assets according to the initial portfoliob1, and holds the
portfolio without any change during the entire trading period. TheBAH strategy with an
uniform portfolio, i.e.,b1 = ( 1

m
, . . . , 1

m
), is known as theuniform BAHstrategy. In our

study, we refer touniform BAHas theMarketstrategy that generates the market index.
Contrary to the static BAH strategy, active trading strategies often change portfolios

regularly during the trading periods. A classical strategyis Constant Rebalanced Portfolios

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, 10 2010.
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(CRP) [Cover and Gluss 1986], which adjusts the portfolio to keepa fixed fraction of the
investor’s total wealth in each of the underlying investments at every trading day. Formally,
given a predefined portfolio strategyb for CRP, the total wealth achieved by CRP at the end
of theT th trading day is,ST = S0

∏T
t=1 (b · xt). A special case of CRP is to uniformly

redistribute the total wealth to all investments, i.e.,b = ( 1
m
, . . . , 1

m
), which is known as

Uniform CRP(UCRP). The best possible CRP strategy is often calledBest CRP(BCRP),
whose total wealth can be represented asS

⋆
T = maxb∈△m

ST . Apparently, BCRP is only
a hindsight strategy, which is practically not applicable.

3.2 Follow-The-Leader Strategies

The follow-the-leader strategies often attempt to achievethe same wealth as some of-
fline best experts. Typically, the best expert is often basedon the Best Constant Rebal-
anced Portfolios (BCRP). Formally, the follow-the-leaderstrategies aim to minimize the
regret between the strategyA and the BCRP strategy at the horizonn: Regretn(A) =
∑n

t=1 log(b
∗ · xt) −

∑n

t=1 log(bt · xt). Example techniques in this category include
Cover’s Universal Portfolios [Cover 1991], the Exponential Gradient strategy [Helmbold
et al. 1998], and the Online Newton Step strategy [Agarwal etal. 2006].

Cover [1991] proposedUniversal Portfolio(UP) strategy, where the portfolio is the his-
torical performance weighted average of all constant rebalanced portfolio experts. The re-
gret achieved by Cover’s UP is O(m logT ), and its run time complexity is O(Tm), where
m denotes the number of stocks andT denotes the number of trading days. The implemen-
tations are exponential in the number of stocks which restricts the number of assets used
in experiments. Kalai and Vempala [2002] presented an time-efficient implementation of
Cover’s UP based on non-uniform random walks that are rapidly mixing, which requires
poly running time O(m7T 8). Following their works, Cover and Ordentlich [1996] devel-
oped universal procedures in the case where side information is taken into account as a
finite number of values. Belentepe [2005] presented a statistical view of Cover’s UP, show-
ing that it is approximately equivalent to a constrained sequential portfolio optimization,
which connects Cover’s UP with traditional mean-variance portfolio theory.

Another famous learning to trade approach isExponential Gradient(EG) strategy [Helm-
bold et al. 1998] for online portfolio selection problem using multiplicative updates. In
general, the EG strategy tries to maximize the expected logarithmic portfolio daily return
(approximated using the last price relative), and minimizethe deviation between the ex-
pected portfolio and last portfolio. The regret achieved byEG strategy is O(

√
T logm)

with O(Tm) running time. While its regret is not as tight as Cover’s UP,however, its linear
time complexity substantially surpasses the latter.

Recently convex optimization has been applied to resolve the PS problem [Agarwal
et al. 2006]. Examples include theOnline Newton Step(ONS) strategy [Agarwal et al.
2006], which aims to maximize the expected logarithmic cumulative wealth (approximated
using historical price relatives) and minimize the variation of the expected portfolio. ONS
exploits the second order information of the log wealth function and applies it to the online
scenario. It theoretically achieves the regret O(m logT ) that is the same as Cover’s UP,
and has running time complexity of O(Tm3). Following this work, Hazan and Seshadhri
[2009] very recently proposed a new adaptive-regret approach, which is essentially also an
ONS based strategy though they provide more descent theoretical results.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, 10 2010.
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3.3 Similarity-driven Strategies

The similarity-driven learning to trade strategies usually optimize the trading strategy by
mining potential similarity information from historical market sequences. Example tech-
niques in this category include the Anticor algorithm [Borodin et al. 2004], the Nonpara-
metric Kernel-based Moving Window learning strategy [Györfi et al. 2006], and the Non-
parametric Nearest Neighbor learning strategy [Györfi et al. 2008].

Borodin et al. [2004] proposed an algorithm namedAnticor, which seeks to explore the
statistical relations between all pairs of stocks in the market. It actually makes bets on
the consistency of positive lagged cross-correlation and negative autocorrelation. Unlike
previous approaches, this heuristic algorithm does not tryto pursue any target strategy. Al-
though it does not have theoretical guarantee,Anticoroutperforms all other existing strate-
gies in most cases. Our algorithm is partially inspired by the idea of statistical correlation
adopted in this work.

In addition, Györfi et al. [2006] recently introduced a framework of Nonparametric
Kernel-based Moving Window(BK) learning strategies for PS based on nonparametric
prediction techniques [Györfi and Schäfer 2003]. In theirapproach, the algorithm first
identifies a list of similar historical price relative sequences whose Euclidean distances with
the recent market windows are smaller than a threshold; it then optimizes the portfolio with
respect to the list of similar sequences. Under the same framework, Györfi et al. [2007]
proposed another variant calledNonparametric Kernel-based Semi-log-optimalstrategy,
which is actually an approximation of theBK strategy, mainly to improve the computa-
tional efficiency. Following the same framework as theB

K strategy, theNonparametric
Nearest Neighbor learning(BNN ) strategy proposed by Györfi et al. [2008] aims to search
for theℓ nearest neighbors in the historical price relative sequences rather than searching
price relatives within a specified Euclidean ball. This method has been empirically shown
to be a rather robust trading strategy for PS.

3.4 Time-Series Prediction based Strategies

In finance engineering, there are a number of well-studied time series prediction mod-
els [Tsay 2005]. These models may be adapted to the portfolioselection tasks, although
they were not proposed to optimize the portfolio selection problem. In general, there are
mainly two categories of models for time series prediction in finance, i.e., linear and non-
linear models.

For linear models,autoregressive moving average(ARMA) [Box et al. 1994] is one of
the most important models. Combining an autoregressive (AR) model with a moving av-
erage (MA) model, this model is often denoted as ARMA(p, q), wherep is the order of the
autoregressive part andq is the order of the moving average part. Other ARMA variants
includeautoregressive integrated moving average(ARIMA) models andautoregressive
fractionally integrated moving average(ARFIMA) models, etc. On the other hand, for
nonlinear models, there are also some well-studied models,such asautoregressive con-
ditional heteroskedasticity(ARCH) models [Engle 1982], which represent the changes of
variance along time. One of the most widely used representation of ARCH models isgen-
eralized autoregressive conditional heteroskedasticity(GARCH) [Bollerslev 1986], which
considers past variances for the future explanation of future variances, and thus is used to
model the serial dependence of volatility. It is often denoted as GARCH (p, q), wherep
denotes the order of the variance forecast, andq is the order of the white noise disturbance.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, 10 2010.
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trading days
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b b b

t− 3 t− 2 t− 1
b b b

n− 3 n− 2 n− 1
100

110

120

95
90
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B:(100, 96, 92.16)

C:(100, 120, 156)

trading days
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1.00

1.10

1.20
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Xn−1
n−2 :(1.10, 1.10)

b b

n− 2 n− 1
b b

t− 2 t− 1
. . .

A:(1.10, 1.05)

B:(0.96, 0.96)

C:(1.20, 1.30)

Fig. 1: A motivating example to illustrate the limitation ofthe Euclidean measure. The left diagram represents
the absolute price movements of market windows A, B, C, andXn−1

n−2 in the consecutive three days (here the
first price is only for the calculation of the price relatives). The starting prices of all of them are set to100.
The numbers in the parenthesis of A, B, and C show their three-day prices, and the latest price forXn−1

n−2 is

Xn−1
n−2 = (100, 110, 121). The right diagram shows the corresponding price relative movements of the four

market windows for the two trading days. The numbers in the parenthesis of A, B, C, andXn−1
n−2 are their price

relative vectors.

4. CORN: CORRELATION-DRIVEN NONPARAMETRIC LEARNING STRATEGY

In this section, we present a newlearning to tradestrategy termedCORrelation-driven
Nonparametric learning algorithm (CORN).

4.1 Motivation

The general idea for the similarity-driven learning to trade strategies is to optimize the
trading strategy by mining similar pattern/information from historical market sequences.
Among the existing similarity-driven learning strategies, Anticor [Borodin et al. 2004] at-
tempts to find statistical relations between pairs of stocks, while the nonparametric learning
strategies [Györfi et al. 2006; Györfi et al. 2008] attempt to discover the similar appear-
ances or market windows. Although Anticor is successful in mining the statistical relations
between pairs of stocks, they ignore the price movements of the whole market which are
crucial for portfolio selection. Besides, the portfolio strategy learned by Anticor is rather
heuristic, which could lead to suboptimal solutions.

On the other hand, the existing nonparametric learning strategies [Györfi et al. 2006;
Györfi et al. 2008] rely on Euclidean distance for similarity measure between the latest
market window and the historical market windows. However, the main limitation of Eu-
clidean measure is that it does not exploit the direction information of the market windows
movements. As a result, it may detect some similar appearances, but it often includes
some potentially useless or even harmful price relatives, and at the same time excludes
many beneficial price relatives.

To better understand the drawbacks of using Euclidean distance for measuring the simi-
larity between different market windows, we give an intuitive motivating example in Fig. 1.
Assume a market consists of only one asset, and the window size is fixed to2. Let the
latest market window for thenth trading dayXn−1

n−2 = (1.10, 1.10) and the radius of
Euclidean norm ballr = 0.2. Consider three possible market windows A:(1.10, 1.05),
B:(0.96, 0.96), and C:(1.2, 1.3) as shown in Fig. 1. In Fig. 1, the left figure shows the
virtual price movement trends adjusted with the same starting price$100 for all the market
windows, while the right figure shows the corresponding price relatives for all the market

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, 10 2010.
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windows. According to the principle of locating similar market windows that have the most
similar moving trends as the latest market window, we shouldlocate the market windows
A andC that have the similar upward moving trends, and avoid including windowB that
has the dissimilar downward moving trend as indicated in theleft figure. However, by the
Euclidean based approach, i.e.,‖Xt−1

t−w − X
n−1
n−w‖ ≤ 0.2 indicates that market windows

A andB are detected as most similar to the latest market windowX
n−1
n−2, while market

windowC is excluded from the similar set. As a consequence, the powerof subsequent
optimizing the trading strategy from the resulting set of market windows will considerably
suffer from irrelevant or even harmful market windows (suchas market windowB) and
the ignorance of beneficial market windows (such as market windowC). This motivates
us to overcome the limitation by exploring more effective approaches.

4.2 Basic Idea and Definition

CORN is mainly inspired by the idea of exploiting statistical correlations between market
windows in the historical stock market, and also driven by the consideration of exploring
the powerful nonparametric learning techniques to effectively optimize the portfolio. To
overcome the limitation of Euclidean measure in mining historical market windows and
the negligence of the whole market movement of the existing strategies, we propose to em-
ploy thePearson product-moment correlation coefficient[Rodgers and Nicewander 1988],
which is an effective tool for measuring statistical correlations. It is also worth noting that
the proposed CORN strategy measures the statistical correlations between market windows
of all stocks rather than the pairs of stocks as Anticor does.Since market windows of all
stocks represent market movements in the specific time frames, it could be more effective
to match the similar price relatives regarding the whole market.

We define acorrelation-similarsetCt(w, ρ) that contains the historical price relatives
whose previous market windows are statistically correlated to the latest market window. In
particular, thecorrelation-similarsetCt(w, ρ) is formally defined as follows:

Ct(w, ρ) =
{

w < i < t− 1

∣

∣

∣

∣

cov(Xi−1
i−w,X

t−1
t−w)

std(Xi−1
i−w)std(X

t−1
t−w)

≥ ρ

}

, (6)

wherew is the market window size and−1 ≤ ρ ≤ 1 is a parameter of correlation coeffi-
cient threshold,cov(A,B) denotes the covariance between market windowsA andB, and
std(A) denotes the standard deviation of market windowA. If either std term equals0,
i.e., the market is of zero volatility in the specific market window, we will then simply set
its correlation coefficient to0. It is worth noting that in the calculation of above formula,
both market windowsXi−1

i−w andXt−1
t−w are concatenated into am×w-dimensional vectors.

And we can obtain the univariate correlation coefficient between the two market windows.
The correlation coefficient distinguished the proposed CORN algorithm from the previ-

ous nonparametric learning series in the following aspects.
First, in this paper, all the methods equivalently use the price relatives, i.e., the changes

of the absolute prices. As shown in the motivating example, the drawback of existing
Euclidean based methods comes from that Euclidean only considers the strength of the
difference of the two price relatives, where no direction information is considered. To
overcome this drawback, we propose correlation coefficientto measure the difference of
the two price relatives. With such important direction information, we can better identify
the similar price relatives, which contribute to the excellent performance of the proposed
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strategy. Some readers may argue if we can use Euclidean to measure the direction in-
formation directly, for example, the slope of the centralized points (detail can be seen in
Section 4.4). However, by this way, it only measures the direction information but ignores
the strength information. Thus, the proposed correlation coefficient is advantageous in that
it not only considers the strength information but also the direction information of the price
relatives, which are balanced appropriately.

Second, it is worth noting that in the calculation of univariate correlation coefficients,
we will calculate the arithmetic mean return of all them × w-dimensional vectors. This
mean return is uniformly distributed amongm stocks, which is the same as the market
strategy; as a result, the mean return actually reflects the whole market movements during
the windows. The correlation coefficient measures the linear dependency between the two
market windows, during which the mean return of the two market windows represents
the whole market movements. This distinguishes the proposed CORN strategy from the
previous Anticor strategy and the nonparametric learning series, all of which ignore the
whole market information.

Third, the correlation coefficient not only concerns about the degree of linear depen-
dence or similarity, but also cares about the directions of the vectors indicated by the signs.
Although−ρ andρ (ρ > 0) intuitively correspond to equivalent strength of linear de-
pendence or similarity, they are in the opposite directions, i.e., either one is up-trend and
the other is down-trend with respect to the target market windows. We chooseρ as the
threshold, as in the stock market we are interested in the market windows with the similar
appearances in terms of both strength and directions. The direction information also distin-
guishes the proposed CORN algorithm from the previous nonparametric learning strategies
with Euclidean measure to locate the similar appearance, which ignore the direction infor-
mation.

4.3 Algorithm

Next we present the proposedCORrelation-drivenNonparametric learning (CORN) algo-
rithm, which aims to exploit thecorrelation-similarset in optimizing the portfolios for
active trading. In general, CORN has two major steps. The first step is to define experts
whose tasks are to locate the similar historical price relatives and learn to find an optimal
portfolio based on the similar historical price relatives.The second step is to effectively
combine the portfolios produced by the experts to form the final portfolio.

We first start by defining a set of infinite experts, each expertindexed by(w, ρ), i.e.,
{E(w, ρ) : w ≥ 1,−1 ≤ ρ ≤ 1}. The expertE(w, ρ) is identified by its window size
w and correlation coefficient thresholdρ. Empirically, the infinite set of experts could be
fixed to a finite numberW × P , whereW represents the maximum window size andP
represents the number of correlation coefficient thresholds. In general, we can define an
expertE(w, ρ) asE(w, ρ) = b(w, ρ).

For each expertE(w, ρ), after calculating thecorrelation-similarsetCt(w, ρ) at the be-
ginning of tth trading day, we propose to learn the optimal portfolio by maximizing the
total wealth over the sequence of price relatives by following the similar idea of the BCRP
strategy [Cover and Gluss 1986], i.e.,

bt(w, ρ) = arg max
b∈∆m

∏

i∈Ct(w,ρ)

(b · xi), (7)

where△m represents a simplex withm components. It is possible thatCt(w, ρ) is empty
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for a largeρ value, for which we will simply adopt a uniform portfolio( 1
m
, . . . , 1

m
). The

general procedure for each expert is summarized in Algorithm 1 shown in Fig. 2. More-
over, thecorrelation-similarset usually consists of a large number of correlated price rela-
tives. Thus, if some price relative (whose correlation is within the threshold) has occurred
frequently in the history, it will also appear multiple times in thecorrelation-similarset. In
other words, Eq. (7) has somewhat considered the occurrence/confidence of the correlated
price relatives, which would avoid simply taking an extremecase in the history.

Algorithm 1 The CORN Expert Learning Procedure (E(w, ρ))

Input:
t: Index of current trading day,Xt−1

1 : Historical market windows,w: Window size
for the expert,ρ: Correlation coefficient threshold

Output:
bt: Expert’s portfolio for thetth trading day

Procedure

1: Initialize: Ct(w, ρ) = ∅
2: if t ≤ w + 1 then
3: returnbt = ( 1

m
, . . . , 1

m
)

4: end if
5: for i = w + 1 to t− 1 do
6: if corrcoef(Xi−1

i−w,X
t−1
t−w) ≥ ρ then

7: Ct(w, ρ) = Ct(w, ρ) ∪ {i}
8: end if
9: end for

10: if Ct(w, ρ) == ∅ then
11: returnbt = ( 1

m
, . . . , 1

m
)

12: else
13: Search for the optimal portfolio:

bt = arg max
b∈△m

∏

i∈Ct(w,ρ)

(b · xi)

14: end if

Fig. 2: The proposed CORN Expert Learning Procedure.

Further, we discuss the strategy for combining the outputs from the set of experts. We
combine them according to the historical performance of each expertst−1(w, ρ) and a
probability distribution functionq(w, ρ). Specifically, the final portfolio for thetth trading
day can be calculated as follows:

bt =

∑

w,ρ q(w, ρ)st−1(w, ρ)bt(w, ρ)
∑

w,ρ q(w, ρ)st−1(w, ρ)
, (8)

wherebt(w, ρ) represents the portfolio output by each individual expertE(w, ρ) andst−1(w, ρ)
represents its historical performance (in our study we use the total wealth it achieved). For
an individual expert, the higher the value of the returnst−1(w, ρ), the higher weight will
be assigned in the combination of the final portfolio. Once wecalculatebt by the above
equation, we will output it as the desired portfolio for thetth trading day, which will be
used by the portfolio manager for the portfolio selection task.
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Finally, the CORN strategy updates the total wealth achieved as follows:

St = St−1 × (bt · xt), (9)

whereSt−1 represents the total wealth achieved till the(t − 1)th trading day and initial
capitalS0 = 1. For each expert, CORN updates its performancest(w, ρ) after t trading
periods, which can be calculated as follows:

st(w, ρ) = st−1(w, ρ)× (bt(w, ρ) · xt), (10)

wherest−1(w, ρ) represents the total wealth achieved by the expertE(w, ρ) at the end of
(t− 1)th trading day and the initial capital is set to 1, i.e.,s0 = 1.

Therefore, it is not difficult to see that the total wealth achieved by the proposed CORN
strategy afterT trading periods is equivalent to the sum of the weighted return of all experts
based on the probability distributionq(w, ρ), i.e.,

ST =
∑

w,ρ

q(w, ρ)sT (w, ρ). (11)

It is clear that the final result is affected by all the experts, and the portion of contribution
made by each of the experts is determined by the choice of distribution q(w, ρ) and the
expert’s performance.

In terms of different expert combinations, we present two CORN variants, i.e., the
CORN Uniform combination algorithm (CORN-U) and the CORN Top-K combination
algorithm (CORN-K). The CORN-U algorithm simply considersq(w, ρ) as a uniform
distribution, i.e.,q(w, ρ) = 1

W
, whereW is the maximum number of windows, which

uniformly combines all the experts. In this algorithm, we assign all the experts the same
weights, although such weights can be adjusted if we could obtain more information on the
distribution of the experts. Moreover, CORN-U considersP = 1 and chooses a specific
value ofρ. The details of the CORN-U algorithm are shown in Fig. 3.

The above uniform combination algorithm may include some poor experts, leading to the
degradation of the overall performance. To overcome the limitation, the second algorithm,
CORN-K, combines only the topK best experts to form the final portfolio. In particular, it
chooses theK experts with best historical returns and uniformly combines them, i.e., the
strategy assigns the set of topK best experts a uniform distributionq(w, ρ) = 1

K
, while

the weights assigned on the other experts are simply set to0. Moreover, for the CORN-K
algorithm, we setP to be larger than1. For eachW , we assignP associated experts each
has a differentρ value. In our empirical study, theρ value of theith expert is set toi−1

P
.

The CORN-K algorithm is presented in Algorithm 3 as shown in Fig. 4.

4.4 Geometrical Interpretation

In this section, we analyze the principle of the CORN algorithm from an intuitive geomet-
rical perspective. The key step of the proposed CORN algorithm is to locate the similar
correlation coefficientset. For simplicity, we assume the market windows are given in a
2-dimensional space. Fig. 5 shows an intuitive example that corresponds the example used
in Section 4.1 from a geometrical view. In the figure, the origin point (µi, µt) denotes
the mean point of price relative vectors,X

t−1
t−w denotes the market window of currenttth

trading day,Xi−1
i−w denotes the market window of theith trading day on the historical price
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Algorithm 2 The proposed CORN Uniform Combination Algorithm (CORN-U)

Input:
X

T
1 = (x1, . . . ,xT ): Historical market windows,W : Maximum window size for

experts,ρ: Correlation coefficient threshold
Output:

(b1,b2, . . . ,bT ): Portfolio strategy
Procedure

1: InitializeS0 andW experts:S0 = 1, q(w, ρ) = 1
W

2: for t = 1 to T do
3: for w = 1 to W do
4: CORN Expert Learning (Algorithm 1) to find the portfolio:bt(w, ρ) = E(w, ρ)
5: end for
6: Combine the experts’ portfolios:

bt =

∑

w
q(w, ρ)st−1(w, ρ)bt(w, ρ)
∑

w
q(w, ρ)st−1(w, ρ)

7: Update the total wealth:St = St−1 × (bt · xt)
8: Update the experts:st(w, ρ) = st−1(w, ρ)× (bt(w, ρ) · xt)
9: end for

Fig. 3: The proposed CORN Uniform combination Algorithm (CORN-U).

relative sequence, and pointA, B andC represent another three market windows on the
historical price relative sequence.

From a geometrical view of point, we know that the correlation coefficient between two
market windowsXt−1

t−w andX
i−1
i−w is equivalent to thecosineof angleθ between these

two vectors [Rodgers and Nicewander 1988], i.e.,cos θ = corrcoef(Xi−1
i−w ,X

t−1
t−w). Thus,

given a correlation coefficient thresholdρ, the approach of searching for market windows
satisfyingcorrcoef(Xi−1

i−w ,X
t−1
t−w) ≥ ρ is equivalent to finding market windowsXi−1

i−w

with |θ| ≤ arccosρ. Whenρ is simply fixed to0, it reduces to looking for market window
vectorsXi−1

i−w which have angle|θ| ≤ 90◦ with respect toXt−1
t−w. In another words, the

CORN strategy locates all market windowsX that satisfya⊤X ≥ 0 or intuitively those
points on the righthand side of linea⊤X = 0, wherea is a unit vector that is perpendicular
to the vector from(µi, µt) toX

t−1
t−w.

On the other hand, the nonparametric learning strategyB
K aims to locate market win-

dowsXi−1
i−w within a Euclidean ball centered atXi−1

i−w with radiusrk,l, i.e., ‖Xi−1
i−w −

X
t−1
t−w‖ ≤ rk,l. In contrast to the correlation coefficient approach used bythe CORN ap-

proach, the major limitations of the Euclidean based approach are twofold. First, from
the geometrical view, it is clear that it neglects the directional information. As a result,
it may include some irrelevant or negative market windows. For example, according Eu-
clidean measurement, point B:(0.96, 0.96) is within the Euclidean norm ball and hence is
regarded as the similar case, which however is a harmful window as the moving trend is
completely different from the latest market windowXt−1

t−w. Moreover, it may also exclude
some informative and beneficial market windows. For example, point C:(1.20, 1.30) that
is excluded by the Euclidean approach is considered as an important market window that is
highly positive correlated withXt−1

t−w. Second, the Euclidean based approach clearly does
not consider the market information, which is represented by point (µi, µt) in the figure.
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Algorithm 3 The proposed CORN TOP-K combination Algorithm (CORN-K)

Input:
X

T
1 = (x1, . . . ,xT ): historical market windows,W : maximum window size for

experts,P : maximum number of correlation coefficient thresholds,K: the value of
K for the TOP-K experts

Output:
(b1,b2, . . . ,bT ): the output portfolio strategy

Procedure

1: InitializeS0 andW × P experts:S0 = 1,P =

{

0, 1
P
, . . . , P−1

P

}

, q(w, ρ) = 1
W×P

2: for t = 1 to T do
3: for w = 1 to W do
4: for ρ ∈ P do
5: CORN Expert Learning (Algorithm 1) to find the portfolio:

bt(w, ρ) = E(w, ρ)
6: end for
7: end for
8: Combine the TOP-K experts’ portfolios:

bt =

∑

w,ρ
q(w, ρ)st−1(w, ρ)bt(w, ρ)

∑

w,ρ
q(w, ρ)st−1(w, ρ)

9: Update the total wealth:St = St−1 × (bt · xt)
10: Update the experts:st(w, ρ) = st−1(w, ρ)× (bt(w, ρ) · xt)
11: TOP-K and expert weight updates:

Select top K experts{E(w, ρ)} w.r.t. st−1(w, ρ)
Set weights for the top K experts:q(w, ρ) = 1

K

Set weights for other experts:q(w, ρ) = 0
12: end for

Fig. 4: The proposed CORN TOP-K combination Algorithm (CORN-K).

Note that the above analysis could be easily extended to multidimensional vectors in
general scenarios, i.e.,w×m dimensions wherew is the window size, andm is the number
of stocks. The above geometrical analysis again validates the importance and efficacy of
the CORN algorithm.

4.5 Analysis of Parameters

In the CORN expert learning procedure, there are two key parameters: the correlation
coefficient thresholdρ and the window sizew. Below we analyze how they affect the
algorithms.

As shown in the motivating example in Section 4.1, the correlation coefficient threshold
ρ is critical to thecorrelation-similarset. Ifρ is negative, thecorrelation similarset would
contain may negatively related price relative vectors or irrelevant price relative vectors. On
the other hand, ifρ is too large, for example,ρ ≥ 0.5, thecorrelation similarset would
neglect some positively correlated price relative vectors. Since thecorrelation similarset is
crucial for the selection of the optimal portfolios, it would harm the learning performance if
it either contains negatively related price relative vectors/irrelevant price relative vectors or
discards positively correlated price relative vectors. Empirically, we found that the optimal
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b

b

b

b

b

(µi, µt)

A:(1.10, 1.05)

B:(0.96,0.96)

C:(1.20,1.30)

‖Xi−1
i−w −X

t−1
t−w‖ ≤ rk,l (B

K)

a
⊤
X > 0 (CORN)

rk,l

X
t−1
t−w

X
i−1
i−w

θ

Fig. 5: Geometrical interpretation of the proposed CORN strategy in comparison to the Nonparametric Kernel-
based Moving Window (BK) learning strategy.

ρ value is dataset dependent, but often close to0. Numerical verification will be provided
in Section 5.9.

Moreover, we note that CORN would reduce to some special casewhen settingρ →
1. In particular, when the correlation coefficient thresholdρ → 1, the CORN algorithm
reduces to the Uniform CRP (UCRP) strategy. It is straightforward to verify this by noting
that whenρ → 1, fewer market windows are highly positive correlated to thelatest window
vector; in the extreme case ofρ = 1, Ct(w, ρ) becomes almost empty, which thus reduces
to the Uniform CRP strategy. Numerical verification will be shown in Section 5.9.

Another key parameter for the CORN expert learning process is the window size. Since
the calculation of correlation coefficient treats the market windows as a vector, the window
size does not have a significant effect to the final portfolio.In the situation when certain
experts give very bad predictions, the final result tends to be relatively stable since the
proposed combination methods, i.e., CORN-U and CORN-K, will reduce the impact of
the bad predictions, and thus provide a stable final result. We will numerically analyze the
effect of the maximum window size in Section 5.9, which showsthat there is only a trivial
effect of maximum window size.

Remarks. Although the proposed algorithms for portfolio selection are simple and ef-
fective, readers may still want to figure out whether it is reasonable to make portfolio using
only the market price information, and what are the basic assumptions and reasons for this
method to achieve excellent performance based on the historical prices. Below gives some
justifications to answer the question. First of all, it is often a debate whether it is reasonable
to make a portfolio selection decision based on only the historical market price information
as some may believe that the market price is only a sign of economic behaviors. In fact,
this is related to the long-standing combat between fundamental analysis and technical
analysis in finance. Our goal is not to completely resolve such a great challenging debate,
but instead we provide some empirical evidences to endorse the effectiveness of technical
analysis methods. Second, as a method belonging to the category of technical analysis, the
success of our method thus depends on three basic assumptions that are common for most
technical analysis methods, including (1) market action discounts everything, i.e., techni-
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cal analysis assumes stock price at any given time reflects everything that has/could affect
the company including fundamental factors; (2) price move in trends, and (3) history tends
to repeat itself. With these assumptions, it is not difficultto understand the principles of the
proposed CORN strategy, which considers only the market prices, adopts the correlation
coefficient to find trend information in the historical information, and attempts to locate
the repeated patterns from the correlation similar set.

5. EXPERIMENTS

5.1 Experimental Testbed on Real Data

In our experiments, we perform numerical evaluations on four real datasets1 by comparing
the proposed CORN algorithm with a number of competinglearning to tradealgorithms.
The information of the four datasets is summarized in Table I.

The first dataset is the NYSE dataset, which has been widely used in many previous
studies [Cover 1991; Helmbold et al. 1998; Borodin et al. 2004; Agarwal et al. 2006;
Györfi et al. 2006; Györfi et al. 2008]. It contains5651 daily price relatives of36 stocks in
the New York Stock Exchange (NYSE) for a22-year period from July3rd 1962 to Dec31st

1984. In our experiments, we refer it to as “NYSE (O)”. For consistency, we also collected
another latest dataset in the New York Stock Exchange (NYSE)2 market from Jan1st 1985
to June30th 2009, which contains6179 trading days. We refer to this dataset as “NYSE
(N)”. It is worth noting that this dataset consists of23 stocks rather than the previous36
stocks owing to the amalgamation and bankruptcy of some of the previous36 stocks. All
price relatives are adjusted for splits and dividends, which is consistent with the previous
NYSE (O) dataset. The third dataset is the SP500 dataset thatwas used in Borodin et al.
[2004]. It consists of25 stocks from S&P500 which have the largest market capitals. This
dataset contains price relatives of1276 trading days, ranging from Jan2nd 1998 to Jan31st

2003. The fourth dataset is a collection of global equity indicescollected from MSCI3. It
contains three indices which represent the equity markets of Pacific, North America, and
Europe, ranging from Sept9th 2005 to Sept7th 2009 with a total of1042 trading days.

Dataset Market Region Time frame # Trading days # Assets
NYSE (O) Stock US July3rd 1962 - Dec31st 1984 5651 36
NYSE (N) Stock US Jan1st 1985 - Jun30th 2009 6179 23
SP500 Stock US Jan2nd 1998 - Jan31st 2003 1276 25
MSCI Index Global Sept9th 2005 - Sept7th 2009 1042 3

Table I: Summary of four real datasets.

The diverse datasets in our testbed have witnessed several cycles of the stock markets,
especially during the dot-com bubble from1995 to 2000 and the subprime mortgage crisis
from 2007 to 2009. The first three datasets are used to test the capability of the CORN
on stock markets while the fourth dataset is used to test the capability of the CORN on
global indices which may be potentially applicable for “Fund on Fund” (FOF). Note that
although the CORN algorithm is numerically tested on stock markets, it could be applied
on any kind of financial markets.

1All datasets can be downloaded from http://www.cais.ntu.edu.sg/∼libin/portfolios.
2We collected the data from Yahoo finance. http://finance.yahoo.com.
3We collected the data from MSCI Barra. http://www.mscibarra.com.
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5.2 Experimental Setup and Metrics

One salient merit of the proposed CORN algorithm is its nonparametric nature, i.e., it is
almost parameter-free. However, in reality, there are two possible parameters that affect
the performance, i.e., the correlation coefficient threshold ρ and the maximum window
sizeW . In our experiment, we simply fixρ = 0.1 for the CORN-U algorithm without any
tuning, which is not the best parameter as shown in our subsequent evaluations. For the
CORN-K algorithm, in theory,W , P , andK in principle can be determined from the data.
In practice, due to computational concerns, we simply fixW = 5, P = 10, andK = 5 in
all experiments. We will examine the influence of these parameters in Section 5.9.

To compare the performances of different learning to trade algorithms, we adopt thetotal
wealth, the Annualized Percentage Yields(APYs), and theannualized Sharpe Ratio. In
general, the higher the values of these measures, the betterthe performance of the learning
to trading algorithm. In addition, we also adopt theMaximum drawdown(MDD) for the
drawdown analysis of the learning to trading strategy. The smaller the MDD value, the
more preferable the trading algorithm concerning downsiderisk.

5.3 Approaches compared

We implemented two variants of the proposed CORN strategy aswell as a variety of exist-
ing strategies described in Section 3and listed below4:

(1) Market: the Market strategy (the uniform BAH approach);
(2) Best-Stock: the best stock in the market that is a hindsight strategy;
(3) BCRP: the Best Constant Rebalanced Portfolios strategyin hindsight;
(4) UP: Cover’s Universal Portfolios implemented as Kalai and Vempala [2002], its

parameters are set toδ0 = 0.004, δ = 0.005,m = 100, S = 500;
(5) EG: Exponential Gradient (EG(η)) algorithm with the best parameterη fixed to0.05

as suggested by the authors [Helmbold et al. 1998];
(6) ONS: Online Newton Step (ONS(η, β, γ)) with the best parameters set as the same

suggested by the authors in Agarwal et al. [2006], i.e.,η = 0, β = 1, γ = 1/8;
(7) Anticor: BAH30(Anticor) as a variant of Anticor to smooth the volatility, which is

a better solution proposed by the authors [Borodin et al. 2004];
(8) B

K : Nonparametric kernel-based moving window (BK(c)) strategy with the param-
eter settingW = 5, L = 10, c = 1.0 that has the best empirical performance according
to Györfi et al. [2006];

(9) B
NN : Nonparametric nearest neighbor based strategy with parameterW = 5, L =

10, pℓ = 0.02 + 0.5 ℓ−1
L−1 as the authors suggested [Györfi et al. 2008];

5.4 Experiment 1: Evaluation of Total Wealth

The first experiment evaluates the total wealth achieved by different learning to trade al-
gorithms without considering transaction cost, which willbe investigated in Section 5.12.
For each algorithm, we invest an initial assetS0 = $1 over all the stocks in the market.

Table II summarizes the total wealth achieved by various algorithms on the four datasets.
Several observations can be drawn from the results. First ofall, we find that alllearning
to tradealgorithms can beat the market index, i.e., the uniform BAH strategy, on all the

4We can adjust the parameters of comparators for better performance, but that is beyond the scope of this paper.
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Strategies NYSE (O) NYSE (N) SP500 MSCI
Market 14.50 14.84 1.34 0.92
Best-stock 54.14 63.47 3.78 0.97
BCRP 250.60 93.25 4.07 0.99
UP 27.41 24.76 1.64 0.97
EG 27.09 24.14 1.63 0.97
ONS 109.19 23.65 3.34 1.09
Anticor 1.71E+07 7.37E+04 5.55 2.45
BK 1.08E+09 9.5E+02 2.26 1.27
BNN 3.35E+11 5.59E+04 3.09 37.43

CORN-U 1.48E+ 13 3.32E+ 05 6.35 31.54
CORN-K 6.29E+ 13 4.38E+ 05 8.56 48.72

Table II: Total wealth achieved by various strategies on four real datasets. The numbers in boldface represent the
top two achievements on each dataset.

datasets. This shows that it is promising to investigate learning to trade algorithms for
portfolio selection. Second, except Anticor, most existing trading algorithms do not al-
ways outperform the best stock in the market on the four datasets, except Anticor. Third,
we observe that the regular follow-the-leader approaches (UP, EG, ONS) often perform
substantially worse than the other state-of-the-art approaches. Finally, among all com-
pared algorithms, the proposed CORN-U and CORN-K algorithms always achieved the
best total wealth on all datasets, and are substantially better than the market index and
the best stock in the market. For example, on the NYSE (O) dataset after trading for 22
years, the total wealth achieved by the CORN-U strategy and the CORN-K strategy im-
pressively increases from$1 to almost$14.5-trillion and $63-trillion, respectively, which
are much higher than the state-of-the-artB

NN algorithm that achieves$335-billion and the
B

K algorithm that achieves$1.16-billion. On the NYSE (N) datasets that consists of up-
to-date data, both the CORN-U and CORN-K strategies also achieved over$332-thousand
and$438-thousand, respectively, while the existing state-of-the-art strategy achieved about
$73.7-thousand by the Anticor strategy and$55.9-thousand by theBNN strategy. On the
SP500 and MSCI datasets, due to the tough market conditions (the market index of MSCI
dataset actually decreases) and relatively shorter trading period, we found that the total
wealth achieved by the learning to trade strategies is significantly smaller than that of the
two NYSE datasets. But, we also observe that both CORN-U and CORN-K still achieved
considerably better results than the market index, the beststock in the market, as well as all
the state-of-the-art strategies. It is also interesting tonote that, although the market drops
sharply due to the financial downturn in2008, the proposed CORN algorithms are still able
to achieve encouraging returns, which is especially more impressive in the later part of the
MSCI dataset.

Besides the above results, we are also interested in examining how the total wealth
achieved by various strategies change over different trading periods. Fig. 6 shows the
changes of total wealth achieved by the various strategies on the four datasets. From the
figure, we first observe that the two CORN algorithms consistently outperform the other
algorithms over most trading periods. Further, we find that when more trading days are
engaged, the growth rate of the wealth achieved by CORN tendsto increase, which is par-
ticularly obvious on the NYSE (O) and NYSE (N) datasets wherethe growth rate after
2500 trading days is much higher than the previous trading periods. Such phenomenon
establishes that when more historical data are available for the learning to trade task, the
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(b) SP500 dataset
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(c) NYSE (N) dataset
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(d) MSCI dataset

Fig. 6: Total wealth achieved by various trading strategiesover different trading days.

CORN algorithms are able to perform more effective trading by exploiting statistical cor-
relation with the powerful nonparametric learning approach. All these impressive results
reiterate the efficacy and robustness of the proposed learning to trade algorithm.

5.5 Experiment 2: Evaluation of APY, Risk and Sharpe Ratio

In this experiment, we evaluate the performance of APYs, Risks, and annualized Sharpe
Ratios of the compared strategies. Table III summarizes theresults of APYs, the Risks and
annualized Sharpe Ratios for all the strategies. For each cell in the table, the two numbers
of the first row represent APY and Risk (volatility risk), respectively, and the number of the
second row represents the annualized Shape Ratio. For example, for the Market strategy
on NYSE (O) dataset, the APY of the Market strategy is13%, its Risk or annualized
standard deviation of daily return is15%, and its annualized Sharpe Ratio is60%. From
Table III, we observe that on the NYSE (O), NYSE (N) and SP500 datasets, both the CORN
algorithms achieved the highest APY and annualized Sharpe Ratio among all learning to
trade strategies. On the MSCI dataset, the CORN-K strategy achieved the highest APY
value and the highest annualized Sharpe Ratio while the CORN-U strategy is also excellent
as the other state-of-the-art strategies. Similar to the common fact of no pain no gain in
financial markets, i.e., a higher return is often associatedwith a higher risk, the risk of
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Strategies NYSE (O) NYSE (N) SP500 MSCI
Market 13%± 15% 12%± 18% 6%± 24% −2%± 20%

60% 43% 8% −31%

Best-stock 20%± 24% 18%± 29% 30%± 51% −1%± 25%
65% 50% 52% −19%

BCRP 29%± 31% 20%± 24% 32%± 42% 0%± 22%
80% 69% 67% −20%

UP 16%± 14% 13%± 19% 10%± 22% 0%± 20%
91% 51% 28% −24%

EG 16%± 13% 14%± 19% 11%± 22% −1%± 20%
91% 52% 30% −24%

ONS 24%± 18% 14%± 34% 27%± 24% 2%± 20%
110% 29% 98% −8%

Anticor 113%± 29% 58%± 33% 41%± 38% 25%± 21%
378% 163% 97% 100%

B
K 158%± 36% 32%± 25% 17%± 33% 6%± 20%

422% 113% 40% 10%

BNN 234%± 40% 56%± 27% 25%± 39% 147%± 25%
571% 189% 55% 580%

CORN-U 297%± 49% 68%± 33% 45%± 41% 137%± 25%
600% 194% 97% 533%

CORN-K 324%± 52% 70%± 32% 54%± 40% 164%± 27%
619% 204% 123% 602%

Table III: APYs, Risks and Sharpe Ratios for various strategies on the four datasets. The upper row of each cell
shows APY± Risk and the second row shows Sharpe Ratio. The top two ratioson each dataset are highlighted.

our CORN algorithm is also higher than other strategies since the return of the proposed
algorithms are much higher than the others. Nonetheless, the impressive annualized Sharpe
Ratios achieved by CORN strongly support the advantages of the proposed trading strategy.

5.6 Experiment 3: Evaluation of Quarterly or Monthly Returns

We are also interested in whether the proposed CORN strategies outperform the benchmark
quarterly or monthly. Empirically, Fig. 7 shows the quarterly return distribution of the
CORN-U strategy on NYSE (O) and NYSE (N) datasets and monthlyreturn distribution
of the CORN-U strategy on SP500 and MSCI datasets. For comparison, the corresponding
market return distribution is shown in the figure as the benchmark. In the Fig. 7a and
Fig. 7b, most of the quarterly returns with the CORN-U strategy on NYSE (O) and NYSE
(N) dataset are higher than the quarterly return of market index. More specifically, during
the72 quarters out of total86 quarters (85%) for NYSE (O) dataset,76 out of94 quarters
(81%)for NYSE (N) dataset, the returns acquired with the CORN-U strategy outperform
the market returns. In the third Fig. 7c, during37 months out of58 months (64%), the
returns accumulated with the CORN-U strategy outperform the market returns. In the last
Fig. 7d, during46 out of48 months (96%), the CORN-U strategy outperforms the market
index. As a summary, for most of the time slices, the CORN-U strategy could outperform
the Market strategy, which again verifies the proposed CORN method is stable and robust.

5.7 Statistical Evaluation of Performance

Besides the above results, we also interested in evaluatingthe CORN strategy statisti-
cally [Katz and McCormick 2000]. Since our datasets are justsamples for the entirely
stock markets population, we try to validate the strategy for future. We conduct astu-
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Fig. 7: Quarterly return on NYSE (O) & NYSE (N) and monthly return on SP500 & MSCI. CORN-U beats
the market in85%, 81%, 64% and 96% periods on the NYSE (O), NYSE (N), SP500 and MSCI datasets
respectively.

dent t-testto determine the likelihood that the observed profitabilityis due to chance alone
(under the assumption that the system was not profitable in the population from which
our datasets were drawn). Since the sample profitability of the proposed CORN is being
compared with no profitability, zero is subtracted from the sample mean profit/loss. It
is worth noting that daily profit/loss equals daily return minus1. The standard error of
the mean is calculated as the standard deviation divided by the square root of the number
of trading days. Thet-statistic is the sample profit mean divided by the sample stan-
dard error to obtain the value of thet-statistic. The equation to calculate thet-statistic is

t-statistic= Sample Profit Mean−0

Sample Standard Error. Finally the probability of getting thet-statistic by

chance alone is calculated with the degree of freedom, whichis the number of trading days
minus1. It is worth noting that the assumption of Student T-test is that the underlying
distribution of the data is normal. According to the CentralLimit Theorem, as the number
of cases in the sample increases, the distribution of the sample mean approaches normal.
Concerning that each of our dataset contains such a large number of trading samples, we
could regard the distribution of the profit/loss as normal, such that the statistical analysis
regarding the mean is meaningful.
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Table IV summarizes the statistical analysis for the resultof mean profit/loss achieved
by the CORN-U algorithm. Since our strategy dynamically changes the portfolio every
trading day, we analyze it on the daily basis. And the profit/loss is in the sense of absolute
value, i.e., the return for the trading day is compared with1.00. From the table, we can see
that thet-statistics for the four datasets are so large that the significance for the four datasets
approach zero. The results fantastically show that it is almost impossible to contribute the
success of the CORN-U strategy to chance along.

Statistical Attributes NYSE (O) NYSE (N) SP500 MSCI
Size 5651 6179 1276 1042
Mean 0.0062 0.0023 0.0020 0.0039
SD 0.0325 0.0204 0.0255 0.0168
SE of the mean 4.32E-04 2.59E-04 7.13E-04 5.20E-04
t-Statistic (P/L > 0) 14.3395 8.8730 2.8046 7.5031
P-value (Significance) 0 0 0.0026 0

Table IV: Statistical analysis of mean profit/loss for CORN-U strategy. The statistical analysis is on daily basis
to test whether the success of CORN is due to chance.

5.8 Experiment 4: Evaluation of Drawdown

In finance, drawdown analysis is to measure of the decline from a historical peak in the total
wealth achieved. The background knowledge is described in Section 2.2. This section is
to show that the drawdown for the proposed CORN strategy is acceptable.

Fig. 8 shows the drawdown analysis on the four datasets. For comparison, the maximum
drawdown for Market strategy, Best-stock strategy and state-of-the-artBNN strategy are
also presented. From the table, we can conclude that the maximum drawdowns for the
proposed CORN strategies, especially the CORN-K strategy,are quite impressive. The
CORN-K strategy almost achieves the lower maximum drawdowns on the four datasets.
It is worth noting that even with the financial crisis from2007 to 2009, there is a huge
drawdown on the MSCI dataset, i.e., the MDD for market strategy is 59.17%. However,
the CORN strategies still perform much better than the market, the MDDs for the CORN
strategies are18.77% and14.91%, respectively. Since drawdown is an important mea-
sure for the downside risk, this drawdown analysis stronglydemonstrates that the risk on
the proposed CORN strategies is acceptable even we design the strategy with the utility
function of total wealth.

5.9 Experiment 5: Evaluation of Parameters

Following the intuitive analysis in Section 4.5, in this section, we experimentally evaluated
the effects of the two parameters, correlation coefficient thresholdρ and maximum window
sizeW .

To evaluate the effect of correlation coefficient thresholdρ, we analyze the performance
of CORN algorithm by varying parameterρ from−1.0 to +1.0 with fixedW = 5. Fig. 9
shows the effects of varied threshold values for the CORN-U algorithm on the four datasets.
Several observations can be drawn from the empirical results. First of all, the results verify
the statement that CORN reduces to UCRP whenρ approaches to1. Further, the empiri-
cally optimal value ofρ is 0.3 for datasets NYSE (N), while results on other datasets show
the optimal values ofρ is between0 to 0.5. Finally, we found that CORN performs consid-
erably poor whenρ is too large (excluding many informative cases) or too small(including
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Fig. 8: Drawdown analysis of varied strategies on the four datasets. For comparison, the corresponding ratios for
Market, best-stock andBNN strategies are also provided. CORN-U and CORN-K are plottedon the rightmost
of bar figure.

too much irrelevant cases), which is consistent with the motivation of the proposed CORN
strategy.

Another important parameter is the maximum window size,W . We notice that different
Ws may affect the performance of the proposed CORN algorithm.This experiment aims to
examine the effect of variedWs with fixedρ = 0.1. Fig. 10 shows the evaluation results of
variedW ranging from2 to 15 on the four datasets with the CORN-U algorithm. We have
several observations from the empirical results. First of all, we found that the window size
does affect the performances of the proposed algorithm. Second, we however do not see
any consistent trend from the figure, which is consistent with the analysis in Section 4.5.
Finally, we found that on all cases of variousWs (from2 to 15), the proposed algorithm
always outperforms the best stock and market.

As both CORN-U and CORN-K algorithms combine the experts, their final perfor-
mances are affected by their individual performances. We conduct experiments to further
examine the proportion of contribution made by these experts, which are based on Al-
gorithm 1 with a maximum window sizeW = 10. We then rank the performances of the
experts, and show their corresponding proportions. Fig. 11illustrates the results on the four
datasets. It is clear that the proportions of contribution made by the experts are different.
But their performances generally fall in the normal range, i.e., the majority of contribution
ranges from5% to 30%, which shows that the predictions of all these experts are rather
robust. In reality, it is possible that some experts may givevery bad predictions, leading to
very small contributions. Our proposed combination methods however would reduce the
impact of such bad predictions. Finally, as the distribution of CORN-U is uniform over
all the experts while the distribution of CORN-K is uniform over the bestK experts, the
final result of CORN-K would be consistently better than thatof CORN-U under the same
parameters, as observed in Table II.

5.10 Experiment 6: Evaluation of Portfolio with Margin Buying

Following the studies in Cover [1991] and Helmbold et al. [1998], we also tested our port-
folio selection method on the cases where we are allowed to buy stocks on margin. We
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Fig. 9: Effect of correlation coefficient threshold on the total wealth achieved. With window size fixed to5, the
correlation coefficient threshold ranges from -1 to 1 with interval fixed to0.1.

use the margin model described in Section 2.3. Table V shows the performances of the
proposed CORN strategies without and with margin buying. For the sake of comparison,
the performances of Market strategy, BCRP and state-of-the-art Anticor strategy andBNN

strategy are listed. It is shown that with the benefit of margin, almost all the strategies, espe-
cially the CORN strategies, gain a rapid profit growth on all the datasets. For example, on
the NYSE (O) dataset, the total wealth of the CORN-U strategyincreases from1.48E+12
to 1.05E+22, which is0.81E+10 times the return of the CORN strategy without margin.
On the recently NYSE(N) dataset, the total wealth of the CORN-U strategy increases from
3.32E+05 to 9.39E+08, which is about2.82E+03 times the return without margin. On
the SP500 dataset, the total wealth achieved by the CORN strategies grow huge compared
with other strategies, from8.56 to 38.51, which is about4.50 times the return without mar-
gin. For the MSCI dataset, the total wealth achieved by CORN-K strategy increases from
48.72 to 3585.82. The same as Experiment 5.4, the CORN strategies gain the highest total
return on all the datasets with or without margin.

The experiment again indicates that the CORN strategies areeffective and practical al-
gorithms for the portfolio selection problem. It can take the advantages of margin and gain
a explicit profit growth.
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Fig. 10: Effect of window size on the total wealth achieved. With correlation coefficient threshold fixed to0.1,
the maximal window size ranges from2 to 15 consecutively.
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Fig. 11: Proportion of contribution to the final performancemade by a set of10 experts.
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Dataset Market BCRP Anticor B

NN CORN-U CORN-K
NYSE (O) 14.50 250.59 1.71E+07 3.35E+11 1.48E+ 13 6.29E+ 13

15.7 3755.09 5.76E+12 3.17E+20 1.05E+ 22 1.83E+ 25

NYSE (N) 14.84 93.25 7.37E+04 5.59E+04 3.32E+ 05 4.38E+ 05

14.10 662.53 1.05E+07 3.94E+07 9.39E+ 08 2.29E+ 09

SP500 1.34 4.06 5.55 3.09 6.35 8.56
1.03 6.48 10.57 3.43 14.59 38.51

MSCI 0.92 0.99 2.45 37.43 31.54 48.72
0.71 0.99 3.10 1286.58 1068.99 3585.82

Table V: Total wealth achieved by various strategies without and with margin. The number in the upper row
shows the total wealth without margin, while the number in the lower row shows the total wealth with margin.

5.11 Experiment 7: Portfolio with Random Periods

To better show the robustness of the CORN strategy, and eliminate the impact from specific
entry dates and time frames, i.e., to make the samples more representative, we randomly
choose the entry dates and the running periods for the CORN-Ustrategy on the NYSE (O)
dataset simply due to its relatively long trading periods. In our experiment, we randomly
choose100 samples from the NYSE (O) dataset. Among the randomly chosentrading
periods, CORN-U outperforms the market index and the best stock with a probability of
94% and76%, respectively. By observing the entry dates and sample lengths, we can find
that the lengths for the losing cases are relatively short. The statistics for all the samples
also verify our suspect. The sample length mean of the100 random samples is1464. For
the losing cases, the sample length mean is relative short,678, and the best stock losing
sample length mean is432. At the same time, the sample length mean for the winning
cases is relatively long,1513, and the best stock winning sample length mean is1789. The
results are consistent with the learning process of CORN strategies, i.e., the more historical
price relatives for learning, the more effective the proposed CORN strategies.

5.12 Experiment 8: Evaluation of Transaction Cost

Another important and unavoidable issue in portfolio selection is transaction cost. In the
experiments, we adopt the proportional transaction cost model stated in Section 2.3. We
conduct the experiments on both situations with and withouttransaction cost. In particular,
we evaluate the performances of the proposed CORN algorithmby varying transaction
costγ from 0% to 1.0% on the four datasets. It would be interesting if CORN can still
outperform the two comparator, i.e., the market and the beststock, in the market when
there is a nontrivial transaction cost. Fig. 12 shows our experimental results based on
the CORN-U strategy. As we can observe, when the transactioncost increases, the total
wealth achieved by CORN-U drops considerably. However, we found that on the four
datasets, even with a rather high transaction cost, the CORN-U strategy still performs
quite convincing. The proposed CORN strategy is rather robust on the datasets except the
SP500 dataset. The break-even commission rate of the total wealth achieved between the
CORN and the two comparators for NYSE (O), NYSE (N) and MSCI datasets ranges from
0.2% to 0.6%, which is significantly impressive. On the other hand, on theSP500 dataset,
the break-even rate between CORN and the best stock is about0.08%, and the break-even
rate between CORN and the market is about0.18%. Event not as impressive as on the
other three datasets, such break-even rate is still acceptable in practice. The reason for the
results is because the best stock on SP500 is simply too strong such that it actually beats
almost all the existing methods as shown in Table II.
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Fig. 12: Total wealth achieved by CORN-U on the four datasetswith proportional commission rateγ varies from
0%, 0.1%, . . . , 1.0%. Among the four dataset, the effect of transaction cost on NYSE (O), NYSE (N) and MSCI
datasets are log-scaled for proper display. The break-evencommission rate with the market index is about0.6%,
0.3%, 0.2% and0.5% for NYSE (O), NYSE (N), SP500 and MSCI datasets respectively.

5.13 Experiment 9: Evaluation of Computation Time

The following experiment is to evaluate the time efficiency of the proposed CORN strategy.
In general, CORN strategy is quite computationally intensive. To be specific, the major
computation time costs are twofold: 1). the time cost for theselection ofcorrelation similar
set; 2). the time cost required for performing the optimization process. We run all of our
experiments on a desktop PC equipped with Intel Core 2 at 2.33GHz at MATLAB. On
the NYSE (O) dataset, CORN-U and CORN-K strategies took about 4 hours and25 hour
respectively for all the trading periods, which is better than the two other nonparametric
learning algorithmsBK andBNN that took26 hours and14 hours on the same dataset,
respectively. On the MSCI dataset consisting of3 equity indices in1042 trading days,
CORN-U and CORN-K took about15 minutes and50 minutes respectively whileBK and
B

NN took20 minutes and75 minutes, respectively. These results show that our method is
computationally comparable with the previous two state-of-the-art algorithms.
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5.14 Experiment 10: Comparison to Well-known Time Series Methods

As there are some well-studied time series prediction methods, it would be interesting to
compare CORN against these methods. As stated before, the proposed CORN strategy can
be easily extended to make sequential time series prediction. In this section, we compare
CORN against the well-known ARMA & GARCH methods for time series predictions on
the stock datasets. Note that we do not develop the entire trading system based on these
two methods, since they were not proposed for portfolio selection tasks, and there are var-
ious components for designing such an entire trading system. Thus, we sequentially make
predictions for each stock for the next trading day and select the stock with the highest
prediction, i.e., putting all the money in the best stock based on the prediction results.
We choose parameters for ARMA(p, q) according to the previous work proposed by Biau
et al. [2010], i.e., setting (p, q)=(1, 1). Similarly, we setparameters for GARCH(p, q)
to the default values, i.e., (p,q)=(1,1). Unlike the previous experiments, since our goal is
to evaluate the prediction performance, traditional performance measures cannot be used.
Thus, we should consider some different measures in this experiment. In practice, as we
typically care about theprofitability of the daily return with respect to the market strategy,
we compare its daily performance with that of the market strategy. This produces two cri-
terion for performance measures. The first one represents theaccuracyof the profitability:
percentage of the days for which the strategy surpasses the market strategy. The second
criteria denotes thestrengthof the profitability:average ratio of the daily wealth gained by
the strategy over that achieved by the market strategy. In practice, the first criteria denotes
the chance how likely the prediction based strategy is able to produce profit better than the
market strategy, and the second criteria denotes the ratio between the profit produced by
the prediction strategy over that of the market. The higher the values of these criterion, the
better performance the algorithm achieves on the sequential time series prediction tasks.

Dataset ARMA GARCH CORN-U CORN-K
NYSE (O) 47.67% 46.82% 53.78% 54.04%

1.0002 1.0002 1.0053 1.0056
NYSE (N) 48.71% 49.44% 52.82% 53.52%

0.9999 1.0000 1.0018 1.0019
SP500 47.65% 49.69% 52.90% 52.82%

0.9992 1.0001 1.0014 1.0016
MSCI 49.81% 51.73% 64.01% 63.63%

0.9997 1.0001 1.0034 1.0039

Table VI: Comparison of the proposed CORN strategy against two time series prediction methods (ARMA &
GARCH). For each dataset, the first row denotes the accuracy,and the second row is the strength of profitability.

Table VI shows the results, which clearly indicate CORN significantly beats the well-
known time series prediction algorithms, i.e., ARMA & GARCH. For the first criteria, the
prediction accuracy of CORN significantly surpasses those of the ARMA & GARCH. In
particular, all accuracies produced by ARMA are below50%, and those produced by the
GARCH strategy are fluctuating around50%, while all accuracies obtained by CORN are
over50%. This clearly shows that CORN performs significantly betterthan the traditional
widely used ARMA & GARCH time series prediction techniques.For the second criteria,
the strengths of the probability are always below1 for ARMA, and those of GARCH are
always floating around1, which is consistent with the previous result where the accuracies
are below50%. On the other hand, the results of CORN are always above1, significantly
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surpassing the ARMA & GARCH strategies. This experiment validates the applicability
and capability of CORN to the sequential time series prediction problem.

5.15 Discussion

From the extensive experiments above, CORN has been empirically proved as an effective
tool for portfolio selection, which exploits the statistical correlation information in the fi-
nancial markets by a nonparametric learning approach. The success of the CORN strategy
may be explained that the market has some hidden informationwhich has not yet been ex-
plored by market traders. While at the same time, our method using statistical correlation
can exploit such hidden information, leading to the amazingperformance. Although we
cannot provide what are the exact hidden information, the success of our method does pro-
vide certain useful knowledge to enhance our understandingof portfolio selection and the
stock market in fiance engineering. In particular, one useful fact is that our promising result
provides strong evidence to show that the market is inefficient, which has been explained
in Section 1. Another useful knowledge is that the price doesoften move in trends and
the price relative patterns could reappear in practice. Such knowledge provides evidences
to endorse the advantages of technical analysis in the long-standing debate, and indicates
that it may be possible to exploit such knowledge and hidden information to build effective
portfolio in real-world finance applications.

6. CONCLUSION

This paper proposed a novelCORrelation-drivenNonparametric learning (CORN) strat-
egy for portfolio selection, which effectively exploits the statistical correlation information
hidden in the underlying stock market movements, and benefits from the exploration of
powerful nonparametric learning techniques. The proposedCORN algorithm is simple in
nature, easy to implement, and has practically very few parameters which are easy to set.
Our empirical studies show that the CORN algorithm can substantially beat the market and
the best stock in the market, and also consistently surpasses a variety of state-of-the-art
algorithms. Moreover, previous research and our research shows that the proposed method
can be easily extended to solve sequential time series prediction problem.

Although high return strategies are often associated with high risk, it would be more
attractive to develop a strategy that can manage the risk properly without slashing the re-
turn too much. As an extension to this work, we’re currently developing such risk-limiting
strategies for CORN. Moreover, we’re also looking at exploiting transaction volume infor-
mation, which could be a potentially beneficial to improve trading performance. In future,
we plan to investigate theoretical insights of the algorithm, and examine the extensions of
our algorithm to improve the performance with high transaction costs.
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