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CORN : Correlation-driven Nonparametric
Learning Approach for Portfolio Selection

BIN LI

STEVEN C.H. HOI

VIVEKANAND GOPALKRISHNAN

School of Computer Engineering, Nanyang Technological University

Machine learning techniques have been adopted to select portfolios from financial markets in some
emerging intelligent business applications. In this paper, we propose a novel learning to trade
algorithm termed the CORrelation-driven Nonparametric learning strategy (CORN) for actively
trading stocks, which effectively exploits statistical relations between stock market windows via
a nonparametric learning approach. We evaluate the empirical performance of our algorithm
extensively on several large historical and latest real stock markets, in which the encouraging
results show that the proposed new algorithm can easily beat both the market index and the best
stock in the market substantially (without or with small transaction costs), and also surpasses a
variety of state-of-the-art techniques significantly.

Categories and Subject Descriptors: JXbinputer Applications]: Administrative Data ProcessingFinan-
cial; J.1 [Computer Applications]: Social and Behavioral Scienceseonomicsl.2.6 [Artificial Intelligence ]:
Learning

General Terms: Design,Algorithms,Economics,Experimentation
Additional Key Words and Phrases: Online Portfolio Selection,Nonparametric Learning,Correlation
Coefficient

1. INTRODUCTION

Recent years have witnessed machine learning being incgbasised in business appli-
cations. An active research topic in this domain is to stu@giine learning techniques
for selecting portfolios. In general, portfolio selectidharkowitz 1952] aims to maximize

some relevant performance measures, such as total weadtigmic utility or risk adjusted

return, with the wealth invested in some financial marketkélong run. This problem has
been extensively studied in computational finance, siegisand information theory, and
recently, it has also attracted increasing interests fleemtachine learning, data mining,
and artificial intelligence communities. In this paper, weeistigate the portfolio selec-
tion problem by sequential investment (also termed onlivestment) strategies, which
exploits information collected from the historical markeid (actively) determines how a
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portfolio is to be distributed among a (fixed) set of assets.

Most of the extensive efforts from the finance domain towdhils challenge can be
generally classified as fundamental analysis (FA) and ieahanalysis (TA). FA ap-
proaches [Graham and Dood 1996] aim to predict the expeetadrof a stock by mea-
suring itsintrinsic value based on related economic, financial, and other gtiaditand
guantitative factors. Instead of measuring the intrinsitugs, TA approaches [Edwards
et al. 2007] believe that the historical performance of lsscand markets are sufficient in-
dicators of their future performance, and often adopt eh&ethnical indicators, and other
tools to identify patterns that can help to predict futuriegs or suggest future activities.

In recent years, researchers in machine learning and datagriommunities have at-
tacked the portfolio selection problem by optimizing inveent strategies via computer
programs that are powered by intelligent learning algarghWe refer to these approaches
as thelearning to tradetechniques. These techniques are close to those from thaf€A c
gory in finance domain in the sense that they also operatestorici price data. However,
different from the heuristic trading techniques by the TA®yaches, thkearning to trade
techniques are often well formulated by machine learninthoas and solved effectively
by optimization techniques. A variety of state-of-thelagrning to trade algorithms have
recently been proposed in the literature [Cover 1991; Heldhbt al. 1998; Borodin et al.
2004; Agarwal et al. 2006; Gyorfi et al. 2006; Gyorfi et alOgD

In addition, researchers have also attempted to estaliisrdtical foundations for
the learning to trade approaches. A pioneering and widelgistl work is the theoreti-
cal framework ofuniversalportfolio selection [Cover 1991; Cover and Ordentlich 1996
Helmbold et al. 1998; Blum and Kalai 1999; Hazan 2006; Gyétrfil. 2006; Gyorfi et al.
2008], which provides performance guarantees ofi¢igeetbased on information theory.
While many universal algorithms theoretically achieve eerperformance guarantee, in
practice they often perform no better than a simple heuaristiestment strategy from pre-
vious empirical studies. An intriguing and practical gimsthat remains unresolved is
“Can we develop a learning to trade algorithm that consighgsurpasses the market and
even beats the best stock in the market?”

In this paper, we present a novel learning to trade strategthé (sequential) portfolio
selection problem, termed the@ORrelation-drivenNonparametric learning (CORN) al-
gorithm. In particular, CORN seeks to locate the market wimglthat are similar to the
latest market window, and makes a log-optimum portfolicading to the idea of the best
Constant Rebalanced Portfolio strategy [Cover and GIUBS[LZORN not only exploits
effective statistical correlations between market winddwut also benefits from the explo-
ration of powerful nonparametric machine learning techag Our empirical studies on
historical stock markets show that CORN easily beats th&etas well as the best stock
in the market substantially (without or with reasonabl@saction costs), and also consis-
tently surpasses a variety of state-of-the-art technigigsn when faced with the recent
financial turmoil, the proposed CORN strategy still achsea@ excellent performance,
which is considerably better than the performance of othistiag approaches.

Besides, our promising empirical results also provide@wgtevidence to rebut the well-
known Efficient Market Hypothesis (EMH) [Timmermann and @gar 2004] in finance
theory, which states that the markets are informativelgieffit, i.e., prices of assets traded
on the markets reflect all known information. EMH asserts timinvestors can consis-
tently beat the market using information that is alreadyvikmo However, our empirical
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results on several large historical stock testbeds shointtibgproposed CORN algorithm
can outperform the market and even beat the best stock in dhleet using only the his-
torical price information that is already known to all thenket participants.

The rest of the paper is organized as follows. Section 2 fiyrffa@mulates the portfolio
selection problem, and gives some preliminaries of the dpaknd. Section 3 reviews the
related work. Section 4 presents the proposed CORN algofithtrading stocks actively.
Section 5 examines the efficacy of the proposed algorithnobgacting an extensive set of
empirical studies on several historical and up-to-datekstoarkets. Section 6 summarizes
the paper and provides directions for future work.

2. PRELIMINARIES: PORTFOLIO SELECTION

In this section, we formulate the portfolio selection perhlby following previous stud-
ies [Cover 1991; Ordentlich and Cover 1996; Helmbold et 888 Borodin et al. 2004;
Gyorfi et al. 2006].

2.1 Problem Formulation

Consider a market withn assets. Let us denote By = (2(;1),...,%m)) € R} the
price relative vectorfor the m assets in thet" trading day, where each elemeny, ;)
equals thet*” closing price of asset divided by the(t — 1)** closing price of asset,

€., 2 = Pf:(fl“v) . Given a window sizev, let us define thenarket windowfor the ¢**
trading day a§(§:}u = (X¢—w,--.,X¢—1), Which represents the latest market movement

before thett” trading day.

At the beginning oft*" trading day, we specify portfolio b; = (bt,1)s -+ bt,m)) €
R’ to allocate our wealth among assets, each componeépt;) represents the proportion
of wealth invested in thé/” asset at the beginning ¢f* trading day. One obvious con-
straint for a portfolio is that it must be a simplex, denotgdh € A, such thab, ;) > 0
and)_, b,y = 1, which means the portfolio is self-financed and no margirled.
Theportfolio strategyfor the period ofl’ trading days i87 = (b4, ..., br), which is the
output of thelearning to tradestrategy.

Thus, for thet*” trading day, the portfolio achieves a daily return definetbasx; =
> i be.)%(1.5)- And the total wealth achieved at the end of ffé trading day is,

T
St = So [ [ (bt - x1), (1)
t=1
whereS is the initial wealth, which is set tb for convenience in our study.
The goal of dearning to tradetask for portfolio selection is to learn a portfolio strageg
that is expressed as a sequence of functions,

b, (R = A, t=1,2,...,

whereb; (X% ~!) represents theortfolio vector made by the investor at the beginning of the
t*" trading day upon observing the past behavior of the markea gequential investment
strategy, the learning to trade strategy produces onegbiortfector every trading day. All
of these vectors form theortfolio strategyfor the entire trading period.

In the above, we make several general assumptions for thilmselection model:

(1) Transaction cost: no transaction cost exists in the @lpovtfolio selection model;
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(2) Market liquidity: each asset is arbitrarily divisibland we can buy and sell the
desired quantities at the last closing price of any giveditgperiod,;

(3) Impact cost: the market behavior is not affected by arysiten made by théearn-
ing to tradestrategy for portfolio selection.

2.2 Performance Criteria

For portfolio selection, an important issue is to define appate criteria for evaluating
the performance of the portfolio strategy. One natural amdbg@bly the most prominent
approach is to adopt some functions of the total wealth aeliby the strategy over the
trading period, i.elJ(St), whereU(-) is some standard economic utility function with re-
spect to the total wealt;. Besides, it is possible to adopt some other process-depéend
economic utility functions [Moody et al. 1998]. Below we diss several performance
criteria widely used for portfolio selection.

One natural and common performance metric isttitel wealth factorachieved during
some trading period by the learning to trade strategy. tota wealth factorequals the
wealth achieved at the end of the trading period divided byirtftial wealth. In our study,
we simply set the initial wealt8, = 1, and use the same notatiSg to denote the total
wealth factor for convenience. Another equivalent metsi¢theannualized percentage
yield (APY) [Elton et al. 2003] that takes account of the compoundifeptfi.e.,

APY = (Sy)v — 1, ()

wherey is the number of years corresponding to Th&rading periodsAPY measures the
average wealth increment per year achieved ®aening to tradestrategy. Typically, the
higher the value ofotal wealth factoror APY, the more preferable the trading strategy.

For a process-dependentinvestor, an important concera e/aluation ofisk andrisk-
adjusted returrof the portfolios [Sharpe 1994]. A common way to achieve ithi® adopt
the annualized standard deviatiaof daily returns to measure the volatility risk, and the
annualized Sharpe Rat(&R) [Elton et al. 2003] to evaluate the risk-adjusted meturor
the portfolio risk, we calculate the standard deviationhef daily returns, and multiply by
V252 (here252 is the average number of trading days per year) to obtaianiealized
standard deviation For the risk-adjusted return, we calculaenualized Sharpe Ratio
according to the following formula,

APY — R;

Op

SRt = 3)

where Ry is the risk-free return (typically the return of Treasurjidiset at4% in our

study), andr,, is the annualized standard deviation of daily returns. daiby, the higher
theannualized Sharpe Ratithe more preferable the trading strategy.

For portfolio management, another risk evaluatiostrssvdown(DD) analysis [Magdon-
Ismail and Atiya 2004], which measures the decline from aohisal peak of the total
wealth achieved by a trading strategy. Formally,S¢t) denote the process of the total
wealth achieved by a trading strategy, i£5;,...,S¢,...,Sr}. Thedrawdownat any

time ¢, denoted a®D(t), is defined asDD(t) = sup [0, SUD;e(0,4) S(7) — S(t)}. The
maximum drawdow(MDD) till the end of the trading period is the maximum of traw-

downover the history of the total wealth achieved bigarning to tradestrategyMDD is
a good way to measure the inherent risk of different tradiregeagies. More formally, the
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maximum drawdowfor a horizonT, denoted adIDD(T), is defined as:

MDD(T) = sup sup S(t) —S(7)] . (4)
7€(0,T) |te(0,7)

The smaller thenaximum drawdowsalue, the more risk tolerable the trading strategy.

2.3 Some Practical issues in Portfolio Selection

In a real-world portfolio selection task, there are somecfical issues that should often
be taken into consideration. Below we discuss two pracissaies, and relax our previous
formulation to address these issues properly.

In reality, an important and unavoidable issu&r@nsaction costin our study, we adopt
the proportional transaction cosnodel proposed in Blum and Kalai [1999] and Borodin
et al. [2004]. Specifically, consider a transaction cos fat (0, 1), an action of rebal-
ancing the portfolio has to incur transaction cost for batk bnd sell operations. At the
beginning of thett” trading day, the portfolio manager rebalances the poatfiotim the
previous closing price adjusted portfolig_; to a new portfoliob,. The transaction cost
will be charged according t§ x 3, \b(m—) — B(t,u)\, where the initial portfolio is set to
(0,...,0). Thus, with transaction cost raie the total wealth achieved by the end of the
T*" trading day, denoted &"r(”), is expressed as:

T
ScT(v) =S H [(bt - Xt) X (1 — % X Z |b(t,i) - B(tl,i)D]- (5)
t=1 i

Another practical issue imargin buying which allows portfolio managers to buy se-
curities with cash borrowed from security brokers. Margitying magnifies the profit as
well as the loss invested in the securities. Following thevimus studies [Cover 1991,
Helmbold et al. 1998; Agarwal et al. 2006], we include thisigtaint in our previous
model. In our study, the margin setting is assumed t6d%¢ down and0% loan, and the
interest rate of the borrowed moneyisvhich is simply set te@ = 0.000233 in our study,
or equivalently, an annual interest rate6&f. Thus, for each security in the asset pool, we
create a new asset named “Margin Component”. Following tlvencand loan percentage,
the price relative for the “Margin Component” of assetould be2 x z, ;) — 1 — ¢, where
x5 is the price relative of thé" asset for the'” trading day. By adding this “Margin
Component”, we magnify both the potential profit and lossheftrading strategy.

3. RELATED WORK
We now review a variety dearning to tradegechniques for the portfolio selection problem.

3.1 Natural Baseline Strategies

One common baseline for portfolio selection is Bigy-And-Hold BAH) strategy, i.e., one
invests the money among a set of assets according to thed pititfolioby, and holds the
portfolio without any change during the entire trading pdri TheBAH strategy with an
uniform portfolio, i.e..by = (%,..., -), is known as theiniform BAHSstrategy. In our
study, we refer tauniform BAHas theMarketstrategy that generates the market index.
Contrary to the static BAH strategy, active trading straegften change portfolios

regularly during the trading periods. A classical stratsgyonstant Rebalanced Portfolios
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(CRP [Cover and Gluss 1986], which adjusts the portfolio to kadjxed fraction of the
investor’s total wealth in each of the underlying investtsext every trading day. Formally,
given a predefined portfolio stratefyfor CRP, the total wealth achieved by CRP at the end
of the T*" trading day isS+ = Sg Hthl (b - x;). A special case of CRP is to uniformly
redistribute the total wealth to all investments, ile.= (..., =), which is known as
Uniform CRP(UCRP). The best possible CRP strategy is often caBedt CRRBCRB,
whose total wealth can be represente@fs= maxpecna,, S7. Apparently, BCRP is only

a hindsight strategy, which is practically not applicable.

3.2 Follow-The-Leader Strategies

The follow-the-leader strategies often attempt to achidnesame wealth as some of-
fline best experts. Typically, the best expert is often basethe Best Constant Rebal-
anced Portfolios (BCRP). Formally, the follow-the-lead&ategies aim to minimize the
regret between the strategi and the BCRP strategy at the horizan Regref,(A) =

v log(b* - x¢) — >, log(b; - x¢). Example techniques in this category include
Cover's Universal Portfolios [Cover 1991], the ExponehBaadient strategy [Helmbold
et al. 1998], and the Online Newton Step strategy [Agarwal.e2006].

Cover [1991] proposedniversal Portfolio(UP) strategy, where the portfolio is the his-
torical performance weighted average of all constant eetzadd portfolio experts. The re-
gret achieved by Cover’s UP is @(log T), and its run time complexity is @), where
m denotes the number of stocks dfidienotes the number of trading days. The implemen-
tations are exponential in the number of stocks which m@stthe number of assets used
in experiments. Kalai and Vempala [2002] presented an 8ffieient implementation of
Cover’s UP based on non-uniform random walks that are rgpidking, which requires
poly running time Of:”7%). Following their works, Cover and Ordentlich [1996] devel
oped universal procedures in the case where side informatitaken into account as a
finite number of values. Belentepe [2005] presented a stafisview of Cover’s UP, show-
ing that it is approximately equivalent to a constrainedusedjal portfolio optimization,
which connects Cover’s UP with traditional mean-varianagfplio theory.

Another famous learning to trade approacBxponential GradienfEG) strategy [Helm-
bold et al. 1998] for online portfolio selection problemngsimultiplicative updates. In
general, the EG strategy tries to maximize the expectedithgac portfolio daily return
(approximated using the last price relative), and minintiee deviation between the ex-
pected portfolio and last portfolio. The regret achievedHfy strategy is OfT logm)
with O(T'm) running time. While its regret is not as tight as Cover’s biiRyever, its linear
time complexity substantially surpasses the latter.

Recently convex optimization has been applied to resoleeRS problem [Agarwal
et al. 2006]. Examples include ti@nline Newton StefONS) strategy [Agarwal et al.
2006], which aims to maximize the expected logarithmic clative wealth (approximated
using historical price relatives) and minimize the vadatof the expected portfolio. ONS
exploits the second order information of the log wealth fiorcand applies it to the online
scenario. It theoretically achieves the regretrQ¢g T') that is the same as Cover’s UP,
and has running time complexity of Of?). Following this work, Hazan and Seshadhri
[2009] very recently proposed a new adaptive-regret approghich is essentially also an
ONS based strategy though they provide more descent thedretsults.
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3.3 Similarity-driven Strategies

The similarity-driven learning to trade strategies usuafptimize the trading strategy by
mining potential similarity information from historical anket sequences. Example tech-
nigues in this category include the Anticor algorithm [Bdiroet al. 2004], the Nonpara-
metric Kernel-based Moving Window learning strategy [@yét al. 2006], and the Non-
parametric Nearest Neighbor learning strategy [Gyorfl.2@08].

Borodin et al. [2004] proposed an algorithm namdedicor, which seeks to explore the
statistical relations between all pairs of stocks in thekagr It actually makes bets on
the consistency of positive lagged cross-correlation aghtive autocorrelation. Unlike
previous approaches, this heuristic algorithm does ndbtpursue any target strategy. Al-
though it does not have theoretical guarantegijcor outperforms all other existing strate-
gies in most cases. Our algorithm is partially inspired lgyittea of statistical correlation
adopted in this work.

In addition, Gyorfi et al. [2006] recently introduced a frawork of Nonparametric
Kernel-based Moving Windo@B*) learning strategies for PS based on nonparametric
prediction techniques [Gyorfi and Schafer 2003]. In tregproach, the algorithm first
identifies a list of similar historical price relative seqaees whose Euclidean distances with
the recent market windows are smaller than a thresholcgiit tiptimizes the portfolio with
respect to the list of similar sequences. Under the sameeframk, Gyorfi et al. [2007]
proposed another variant callébnparametric Kernel-based Semi-log-optirstriategy,
which is actually an approximation of tH@* strategy, mainly to improve the computa-
tional efficiency. Following the same framework as IR€ strategy, theNonparametric
Nearest Neighbor learnin@B " V) strategy proposed by Gyorfi et al. [2008] aims to search
for the ¢ nearest neighbors in the historical price relative segeenather than searching
price relatives within a specified Euclidean ball. This neethas been empirically shown
to be a rather robust trading strategy for PS.

3.4 Time-Series Prediction based Strategies

In finance engineering, there are a number of well-studie tseries prediction mod-
els [Tsay 2005]. These models may be adapted to the portfelexrtion tasks, although
they were not proposed to optimize the portfolio selectiombfem. In general, there are
mainly two categories of models for time series predictiofinance, i.e., linear and non-
linear models.

For linear modelsautoregressive moving avera@RMA) [Box et al. 1994] is one of
the most important models. Combining an autoregressive (Addel with a moving av-
erage (MA) model, this model is often denoted as ARMAY), wherep is the order of the
autoregressive part argis the order of the moving average part. Other ARMA variants
include autoregressive integrated moving averg@dRIMA) models andautoregressive
fractionally integrated moving averagdRFIMA) models, etc. On the other hand, for
nonlinear models, there are also some well-studied modetd) asautoregressive con-
ditional heteroskedasticit¢ARCH) models [Engle 1982], which represent the changes of
variance along time. One of the most widely used repredentaft ARCH models iggen-
eralized autoregressive conditional heteroskedast{@#RCH) [Bollerslev 1986], which
considers past variances for the future explanation ofénariances, and thus is used to
model the serial dependence of volatility. It is often dexloas GARCH g, g), wherep
denotes the order of the variance forecast,@isdthe order of the white noise disturbance.

ACM Transactions on Intelligent Systems and Technology, 3aNo. 1, 10 2010.
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absolute price C:(100, 120, 156) relative price

_ Xl C:(1.20, 1,30)
120 A:(100, 110, 115.5) 2 1.20 — X7~1:(1.10, 1.10)
110 . 1.10 A:(1.10,1.05 _—
trading days (\ ) trading days

100+ 1.00——eo——9o— oo — >
4 —2 t—1""-3 n—-2 n—1 t—2 t—1"n—2 n—1
95 0.95
90 B:(100, 96, 92.16 0.90 —_—
(100,96, ) B:(0.96, 0.96)

Fig. 1: A motivating example to illustrate the limitation tife Euclidean measure. The left diagram represents
the absolute price movements of market windows A, B, C, le{dj% in the consecutive three days (here the
first price is only for the calculation of the price relatiyesThe starting prices of all of them are set100.

The numbers in the parenthesis of A, B, and C show their thegeprices, and the latest price fﬁrrg:% is

X;‘:zl = (100,110, 121). The right diagram shows the corresponding price relatiewements of the four

market windows for the two trading days. The numbers in thermtaesis of A, B, C, and(ﬁ:z1 are their price
relative vectors.

4. CORN: CORRELATION-DRIVEN NONPARAMETRIC LEARNING STRATEGY

In this section, we present a ndearning to tradestrategy terme@ORrelation-driven
Nonparametric learning algorithm (CORN).

4.1 Motivation

The general idea for the similarity-driven learning to &astrategies is to optimize the
trading strategy by mining similar pattern/informatioorr historical market sequences.
Among the existing similarity-driven learning strategi@sticor [Borodin et al. 2004] at-
tempts to find statistical relations between pairs of stpekdle the nonparametric learning
strategies [Gyorfi et al. 2006; Gyorfi et al. 2008] attengptiscover the similar appear-
ances or market windows. Although Anticor is successful ining the statistical relations
between pairs of stocks, they ignore the price movementseoivhole market which are
crucial for portfolio selection. Besides, the portfolioategy learned by Anticor is rather
heuristic, which could lead to suboptimal solutions.

On the other hand, the existing nonparametric learnindegfies [Gyorfi et al. 2006;
Gyorfi et al. 2008] rely on Euclidean distance for simikanbeasure between the latest
market window and the historical market windows. HoweMeg, tmain limitation of Eu-
clidean measure is that it does not exploit the directioarimfation of the market windows
movements. As a result, it may detect some similar appeasart it often includes
some potentially useless or even harmful price relatived, & the same time excludes
many beneficial price relatives.

To better understand the drawbacks of using Euclideanrdistior measuring the simi-
larity between different market windows, we give an inttgtimotivating example in Fig. 1.
Assume a market consists of only one asset, and the windenisitixed to2. Let the
latest market window for the!” trading dayX”~3 = (1.10,1.10) and the radius of
Euclidean norm ball = 0.2. Consider three possible market windowg1A10, 1.05),
B:(0.96,0.96), and C(1.2,1.3) as shown in Fig. 1. In Fig. 1, the left figure shows the
virtual price movement trends adjusted with the same staprice$100 for all the market
windows, while the right figure shows the correspondingerilatives for all the market
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windows. According to the principle of locating similar rkat windows that have the most
similar moving trends as the latest market window, we shéddte the market windows
A andC that have the similar upward moving trends, and avoid inolgisdvindow B that
has the dissimilar downward moving trend as indicated ifdfidigure. However, by the
Euclidean based approach, i.gX!~. — X”~!|| < 0.2 indicates that market windows
A and B are detected as most similar to the latest market win&giv ,, while market
window C' is excluded from the similar set. As a consequence, the poivaubsequent
optimizing the trading strategy from the resulting set ofkedwindows will considerably
suffer from irrelevant or even harmful market windows (sashmarket windowB) and
the ignorance of beneficial market windows (such as marketlevi C'). This motivates
us to overcome the limitation by exploring more effectivpagaches.

4.2 Basic ldea and Definition

CORN is mainly inspired by the idea of exploiting statisticarrelations between market
windows in the historical stock market, and also driven by d¢bnsideration of exploring
the powerful nonparametric learning techniques to effettioptimize the portfolio. To
overcome the limitation of Euclidean measure in miningdrisal market windows and
the negligence of the whole market movement of the existirsgegjies, we propose to em-
ploy thePearson product-moment correlation coefficifdddgers and Nicewander 1988],
which is an effective tool for measuring statistical coatins. It is also worth noting that
the proposed CORN strategy measures the statistical atoret between market windows
of all stocks rather than the pairs of stocks as Anticor d&ksce market windows of all
stocks represent market movements in the specific time Baitneould be more effective
to match the similar price relatives regarding the wholekagr

We define acorrelation-similarsetC,(w, p) that contains the historical price relatives
whose previous market windows are statistically correl&ehe latest market window. In
particular, thecorrelation-similarsetC; (w, p) is formally defined as follows:

i—1 t—1
COV(X'L'—H)? Xt—w) >
) = P>

(6)

Ci(w.p) {w <i<tol std (X1~ 1 )std(XI—L
wherew is the market window size andl < p < 1 is a parameter of correlation coeffi-
cient thresholdeov(A, B) denotes the covariance between market winddves\d B, and
std(A) denotes the standard deviation of market windéwlf either std term equald,
i.e., the market is of zero volatility in the specific markehdow, we will then simply set
its correlation coefficient t. It is worth noting that in the calculation of above formula,
both market windowX !~} andX!~! are concatenated intarax w-dimensional vectors.
And we can obtain the univariate correlation coefficientaen the two market windows.

The correlation coefficient distinguished the proposed Si@Ryorithm from the previ-
ous nonparametric learning series in the following aspects

First, in this paper, all the methods equivalently use theepelatives, i.e., the changes
of the absolute prices. As shown in the motivating examie,drawback of existing
Euclidean based methods comes from that Euclidean onlyiderssthe strength of the
difference of the two price relatives, where no directiofoimation is considered. To
overcome this drawback, we propose correlation coefficemeasure the difference of
the two price relatives. With such important direction imf@tion, we can better identify
the similar price relatives, which contribute to the exesllperformance of the proposed
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strategy. Some readers may argue if we can use Euclideanasungethe direction in-
formation directly, for example, the slope of the centrdizpoints (detail can be seen in
Section 4.4). However, by this way, it only measures thectiive information but ignores
the strength information. Thus, the proposed correlatgmificient is advantageous in that
it not only considers the strength information but also tineadion information of the price
relatives, which are balanced appropriately.

Second, it is worth noting that in the calculation of uniadei correlation coefficients,
we will calculate the arithmetic mean return of all thex w-dimensional vectors. This
mean return is uniformly distributed amomg stocks, which is the same as the market
strategy; as a result, the mean return actually reflects Hueamarket movements during
the windows. The correlation coefficient measures the tidependency between the two
market windows, during which the mean return of the two mavki@dows represents
the whole market movements. This distinguishes the prapG&RN strategy from the
previous Anticor strategy and the nonparametric learneries, all of which ignore the
whole market information.

Third, the correlation coefficient not only concerns abdw tlegree of linear depen-
dence or similarity, but also cares about the directionk@tectors indicated by the signs.
Although —p andp (p > 0) intuitively correspond to equivalent strength of linea-d
pendence or similarity, they are in the opposite directiars, either one is up-trend and
the other is down-trend with respect to the target marketlaivs. We choose as the
threshold, as in the stock market we are interested in theehatindows with the similar
appearances in terms of both strength and directions. Taetiin information also distin-
guishes the proposed CORN algorithm from the previous rnrampetric learning strategies
with Euclidean measure to locate the similar appearanciefvignore the direction infor-
mation.

4.3 Algorithm

Next we present the propos€®Rrelation-driverNonparametric learning (CORN) algo-
rithm, which aims to exploit theorrelation-similar set in optimizing the portfolios for

active trading. In general, CORN has two major steps. Thediep is to define experts
whose tasks are to locate the similar historical price ikedatand learn to find an optimal
portfolio based on the similar historical price relativGhe second step is to effectively
combine the portfolios produced by the experts to form tha faortfolio.

We first start by defining a set of infinite experts, each exjpeltxed by(w, p), i.e.,
{E(w,p) : w > 1,—-1 < p < 1}. The exper€(w, p) is identified by its window size
w and correlation coefficient threshold Empirically, the infinite set of experts could be
fixed to a finite numbell x P, whereWW represents the maximum window size aRd
represents the number of correlation coefficient threshold general, we can define an
experte(w, p) asé(w, p) = b(w, p).

For each exped (w, p), after calculating theorrelation-similarsetC;(w, p) at the be-
ginning of t*" trading day, we propose to learn the optimal portfolio by mazing the
total wealth over the sequence of price relatives by follaythe similar idea of the BCRP
strategy [Cover and Gluss 1986], i.e.,

bu(w,p) =arg max [T (b-xy), (7)
1€Ct(w,p)
whereA\,, represents a simplex witlh components. It is possible thét(w, p) is empty
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for a largep value, for which we will simply adopt a uniform portfoli(o};, ceey #). The
general procedure for each expert is summarized in Algorithshown in Fig. 2. More-
over, thecorrelation-similarset usually consists of a large number of correlated priee re
tives. Thus, if some price relative (whose correlation ithwi the threshold) has occurred
frequently in the history, it will also appear multiple tisig thecorrelation-similarset. In
other words, Eq. (7) has somewhat considered the occurcamdelence of the correlated
price relatives, which would avoid simply taking an extrerase in the history.

Algorithm 1 The CORN Expert Learning Procedu&({v, p))
Input:
t: Index of current trading dayX:~!: Historical market windowsw: Window size
for the expertp: Correlation coefficient threshold
Output:
b;: Expert’s portfolio for thet'” trading day
Procedure
1: Initialize: Ci(w, p) = 0
2: if t <w+ 1then
3 returnb; = (&,...,2)
4: end if
5:fori=w+1tot—1do
6:
7
8
9

if corrcoef(X'Z1 X!=1Yy > pthen

i—w)

Ct(w7 p) = Ce(w,p) U {l}

. endif

. end for
10: if C¢(w, p) == D then
11:  returnb, = (L1,..., 1)
12: else

13:  Search for the optimal portfolio:
b; =arg max [] (b-x;)
bElm 1€Ct(w,p)
14: end if

Fig. 2: The proposed CORN Expert Learning Procedure.

Further, we discuss the strategy for combining the outpots the set of experts. We
combine them according to the historical performance oheamerts;_;(w, p) and a
probability distribution functiom(w, p). Specifically, the final portfolio for thé" trading
day can be calculated as follows:

Zw,p q(wa p)st—l(w7 p)bt (’LU, p)
Zw,p q(wa p)st—l ('LU, p)

whereb; (w, p) represents the portfolio output by each individual exgétt, p) ands; 1 (w, p)
represents its historical performance (in our study we lisédtal wealth it achieved). For
an individual expert, the higher the value of the retsn; (w, p), the higher weight will
be assigned in the combination of the final portfolio. Oncecaieulateb,; by the above
equation, we will output it as the desired portfolio for tie trading day, which will be
used by the portfolio manager for the portfolio selectiskta

b; =

; (8)
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Finally, the CORN strategy updates the total wealth achi@sgfollows:
St =8Si1x (bs - x¢), 9)

whereS;_; represents the total wealth achieved till {ite- 1)** trading day and initial
capitalSy = 1. For each expert, CORN updates its performan¢e, p) after¢ trading
periods, which can be calculated as follows:

St(va) = St—l(va) x (bt(va) 'Xt)a (10)

wheres;_1 (w, p) represents the total wealth achieved by the exgert p) at the end of
(t — 1) trading day and the initial capital is setto 1, i.@,,= 1.

Therefore, it is not difficult to see that the total wealthiaekd by the proposed CORN
strategy afteff” trading periods is equivalent to the sum of the weighted natfiall experts
based on the probability distributieriw, p), i.e.,

St = Zq(va)ST(wap)' (11)

w,p

Itis clear that the final result is affected by all the expeaited the portion of contribution
made by each of the experts is determined by the choice ofldison ¢(w, p) and the
expert's performance.

In terms of different expert combinations, we present twoRBDvariants, i.e., the
CORN Uniform combination algorithm (CORN-U) and the CORNpi§ combination
algorithm (CORN-K). The CORN-U algorithm simply conside&v, p) as a uniform
distribution, i.e.,q(w,p) = 7, whereW is the maximum number of windows, which
uniformly combines all the experts. In this algorithm, weiga all the experts the same
weights, although such weights can be adjusted if we coulsiminore information on the
distribution of the experts. Moreover, CORN-U considérs= 1 and chooses a specific
value ofp. The details of the CORN-U algorithm are shown in Fig. 3.

The above uniform combination algorithm may include somer paperts, leading to the
degradation of the overall performance. To overcome thitditon, the second algorithm,
CORN-K, combines only the tofi’ best experts to form the final portfolio. In particular, it
chooses thé( experts with best historical returns and uniformly combitteem, i.e., the
strategy assigns the set of tép best experts a uniform distributieffw, p) = % while
the weights assigned on the other experts are simply $etNoreover, for the CORN-K
algorithm, we sef to be larger than. For eachi’/, we assignP associated experts each
has a differenp value. In our empirical study, thevalue of thei’” expert is set td%.
The CORN-K algorithm is presented in Algorithm 3 as shownim B.

4.4 Geometrical Interpretation

In this section, we analyze the principle of the CORN aldonifrom an intuitive geomet-
rical perspective. The key step of the proposed CORN algurits to locate the similar
correlation coefficienset. For simplicity, we assume the market windows are givem i
2-dimensional space. Fig. 5 shows an intuitive example thaesponds the example used
in Section 4.1 from a geometrical view. In the figure, the iorigoint (u;, 1) denotes
the mean point of price relative vectoB. ! denotes the market window of curretit
trading day X!~ denotes the market window of tii& trading day on the historical price
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Algorithm 2 The proposed CORN Uniform Combination Algorithm (CORN-U)

Input:
XT = (x1,...,xr): Historical market windows}¥: Maximum window size for
expertsp: Correlation coefficient threshold

Output:
(b1, ba,...,by): Portfolio strategy

Procedure

1: Initialize So andW experts:So = 1, q(w, p) = &
2: for t=1toT do
3:  forw=1toW do
CORN Expert Learning (Algorithm 1) to find the portfolib: (w, p) = £(w, p)
end for
Combine the experts’ portfolios:

ARSI

_ 2w 4w, p)si—1(w, p)bi(w, p)
> 4w, p)si—1(w, p)

7. Update the total wealtt8, = S¢_1 x (b - x¢)

8. Update the expertsi;(w, p) = si—1(w, p) X (be(w, p) - x¢)

9: end for

by

Fig. 3: The proposed CORN Uniform combination Algorithm (RI9-U).

relative sequence, and poiAf B andC represent another three market windows on the
historical price relative sequence.

From a geometrical view of point, we know that the correlatoefficient between two
market windowsX!~! and X!~! is equivalent to theosineof angled between these
two vectors [Rodgers and Nicewander 1988], ices,d = corrcoef(X:~L X!~1). Thus,
given a correlation coefficient threshagidthe approach of searching for market windows
satisfyingcorrcoef(X:~! /X!~y > pis equivalent to finding market windowX!~ !
with |8] < arccos p. Whenp is simply fixed to0, it reduces to looking for market window
vectorsX!~! which have angléd| < 90° with respect taX!~ . In another words, the
CORN strategy locates all market windosthat satisfya™ X > 0 or intuitively those
points on the righthand side of lir€ X = 0, wherea is a unit vector that is perpendicular
to the vector from(p;, u) to Xi~1 .

On the other hand, the nonparametric learning straRgyaims to locate market win-
dows X! within a Euclidean ball centered &~ with radiusry,, i.e., |[X!"] —
X!=L1l < k. In contrast to the correlation coefficient approach usethByCORN ap-
proach, the major limitations of the Euclidean based apgraae twofold. First, from
the geometrical view, it is clear that it neglects the dimwl information. As a result,
it may include some irrelevant or negative market windowst éxample, according Eu-
clidean measurement, point(B:96, 0.96) is within the Euclidean norm ball and hence is
regarded as the similar case, which however is a harmfulavinas the moving trend is
completely different from the latest market wind®—. . Moreover, it may also exclude
some informative and beneficial market windows. For exammént C(1.20, 1.30) that
is excluded by the Euclidean approach is considered as asriam market window that is
highly positive correlated witiX!~! . Second, the Euclidean based approach clearly does

not consider the market information, which is representeddint (1;, u1¢) in the figure.
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Algorithm 3 The proposed CORN TOP-K combination Algorithm (CORN-K)

Input:
XT = (x1,...,xr): historical market windows|¥: maximum window size for
experts,P: maximum number of correlation coefficient thresholds, the value of
K for the TOP-K experts

Output:
(b1, ba, ..., by): the output portfolio strategy

Procedure

1: Initialize So andW x P experts:So = 1,P = {0, I E},q(w,p) =1

P WxP
2:fort=1toT do
3:  forw=1toW do
4: for p € P do
5: CORN Expert Learning (Algorithm 1) to find the portfolio:
bi(w,p) = E(w, p)

end for
end for
8:  Combine the TOP-K experts’ portfolios:

Zw,p q(w, p)si—1(w, p)be(w, p)
Ew,p q(w, p)si—1(w, p)

9:  Update the total wealtt8; = S;—1 x (by - x¢)
10:  Update the expertsi:(w, p) = si—1(w, p) X (be(w, p) - x¢)
11: TOP-K and expert weight updates:
Select top K expert§€ (w, p) } w.r.t. s;_1(w, p)
Set weights for the top K expertg(w, p) =
Set weights for other expertg{w, p) = 0
12: end for

N o

b =

) P
1
K

Fig. 4: The proposed CORN TOP-K combination Algorithm (CORN

Note that the above analysis could be easily extended tadiménsional vectors in
general scenarios, i.ev,x m dimensions where is the window size, anth is the number
of stocks. The above geometrical analysis again validageftportance and efficacy of
the CORN algorithm.

4.5 Analysis of Parameters

In the CORN expert learning procedure, there are two keyrpaters: the correlation
coefficient thresholgh and the window sizev. Below we analyze how they affect the
algorithms.

As shown in the motivating example in Section 4.1, the catieh coefficient threshold
p is critical to thecorrelation-similarset. Ifp is negative, theorrelation similarset would
contain may negatively related price relative vectorsrelévant price relative vectors. On
the other hand, ip is too large, for examples > 0.5, thecorrelation similarset would
neglect some positively correlated price relative vectSimce thecorrelation similarset is
crucial for the selection of the optimal portfolios, it woliarm the learning performance if
it either contains negatively related price relative vesficrelevant price relative vectors or
discards positively correlated price relative vectors piioally, we found that the optimal
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B:(0.96,0.96

a'X > 0(CORN)

Fig. 5: Geometrical interpretation of the proposed CORIdtsgy in comparison to the Nonparametric Kernel-
based Moving WindowBBX) learning strategy.

p value is dataset dependent, but often clos@ tNumerical verification will be provided
in Section 5.9.

Moreover, we note that CORN would reduce to some special wasa settingp —

1. In particular, when the correlation coefficient threshpld> 1, the CORN algorithm
reduces to the Uniform CRP (UCRP) strategy. It is straigitéod to verify this by noting
that wherp — 1, fewer market windows are highly positive correlated tol&test window
vector; in the extreme case pf= 1, C;(w, p) becomes almost empty, which thus reduces
to the Uniform CRP strategy. Numerical verification will Beosvn in Section 5.9.

Another key parameter for the CORN expert learning processe window size. Since
the calculation of correlation coefficient treats the mavkiedows as a vector, the window
size does not have a significant effect to the final portfdliothe situation when certain
experts give very bad predictions, the final result tendsetadbatively stable since the
proposed combination methods, i.e., CORN-U and CORN-K], nieduce the impact of
the bad predictions, and thus provide a stable final resigtwiW numerically analyze the
effect of the maximum window size in Section 5.9, which shtiveg there is only a trivial
effect of maximum window size.

Remarks. Although the proposed algorithms for portfolio selectioa aimple and ef-
fective, readers may still want to figure out whether it issar@able to make portfolio using
only the market price information, and what are the basiaragsions and reasons for this
method to achieve excellent performance based on theictprices. Below gives some
justifications to answer the question. First of all, it issofia debate whether it is reasonable
to make a portfolio selection decision based on only thehitsdl market price information
as some may believe that the market price is only a sign ofeoanbehaviors. In fact,
this is related to the long-standing combat between fund#hanalysis and technical
analysis in finance. Our goal is not to completely resolvénsugreat challenging debate,
but instead we provide some empirical evidences to endbeseftectiveness of technical
analysis methods. Second, as a method belonging to theocateigechnical analysis, the
success of our method thus depends on three basic assusipi@iare common for most
technical analysis methods, including (1) market actictalints everything, i.e., techni-
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cal analysis assumes stock price at any given time refleetyting that has/could affect
the company including fundamental factors; (2) price moMeends, and (3) history tends
to repeat itself. With these assumptions, it is not diffitalinderstand the principles of the
proposed CORN strategy, which considers only the markeepriadopts the correlation
coefficient to find trend information in the historical infoation, and attempts to locate
the repeated patterns from the correlation similar set.

5. EXPERIMENTS
5.1 Experimental Testbed on Real Data

In our experiments, we perform numerical evaluations om feal datasetsby comparing
the proposed CORN algorithm with a number of competeagning to tradealgorithms.
The information of the four datasets is summarized in Table |

The first dataset is the NYSE dataset, which has been widelg ismany previous
studies [Cover 1991; Helmbold et al. 1998; Borodin et al. £08garwal et al. 2006;
Gyorfi et al. 2006; Gyorfi et al. 2008]. It contaifé51 daily price relatives 086 stocks in
the New York Stock Exchange (NYSE) foa-year period from Julg™? 1962 to Dec31°*
1984. In our experiments, we refer it to as “NYSE (O)”. For consigty, we also collected
another latest dataset in the New York Stock Exchange (N¥8&yket from Jari** 1985
to June30*” 2009, which containg179 trading days. We refer to this dataset as “NYSE
(N)". It is worth noting that this dataset consists23f stocks rather than the previoBé
stocks owing to the amalgamation and bankruptcy of someeopthvious36 stocks. All
price relatives are adjusted for splits and dividends, tvidcconsistent with the previous
NYSE (O) dataset. The third dataset is the SP500 datasew#isatised in Borodin et al.
[2004]. It consists 0f5 stocks from S P500 which have the largest market capitals. This
dataset contains price relativesl@f’6 trading days, ranging from Jart? 1998 to Jan31°*
2003. The fourth dataset is a collection of global equity indiceiected from MSCH. It
contains three indices which represent the equity markd®aoific, North America, and
Europe, ranging from Sept" 2005 to Sept7*” 2009 with a total of1042 trading days.

Dataset Market | Region Time frame # Trading days| # Assets
NYSE (O) | Stock US | July3"? 1962 - Dec31°t 1984 5651 36
NYSE (N) | Stock us Jan1t 1985 - Jun30t" 2009 6179 23
SP500 Stock us Jan2™? 1998 - Jan315t 2003 1276 25
MSCI Index | Global | Sept9t" 2005 - Sept7t" 2009 1042 3

Table I: Summary of four real datasets.

The diverse datasets in our testbed have witnessed seyelas of the stock markets,
especially during the dot-com bubble fra®95 to 2000 and the subprime mortgage crisis
from 2007 to 2009. The first three datasets are used to test the capabilityeo€®RN
on stock markets while the fourth dataset is used to testapalility of the CORN on
global indices which may be potentially applicable for “Eumn Fund” (FOF). Note that
although the CORN algorithm is numerically tested on stoekkats, it could be applied
on any kind of financial markets.

LAll datasets can be downloaded from http://www.cais.nhu.gg/libin/portfolios.
2We collected the data from Yahoo finance. http://financeagatom.
3We collected the data from MSCI Barra. http://www.mscibarom.
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5.2 Experimental Setup and Metrics

One salient merit of the proposed CORN algorithm is its noaeetric nature, i.e., it is
almost parameter-free. However, in reality, there are tessible parameters that affect
the performance, i.e., the correlation coefficient thré$lpoand the maximum window
sizeW. In our experiment, we simply fix = 0.1 for the CORN-U algorithm without any
tuning, which is not the best parameter as shown in our suiesgcvaluations. For the
CORN-K algorithm, in theoryV, P, andK in principle can be determined from the data.
In practice, due to computational concerns, we simplyffix= 5, P = 10, andK = 5in

all experiments. We will examine the influence of these patans in Section 5.9.

To compare the performances of different learning to trégierahms, we adopt thital
wealth the Annualized Percentage Yiel@aPYs), and theannualized Sharpe Ratioln
general, the higher the values of these measures, the tietteerformance of the learning
to trading algorithm. In addition, we also adopt teximum drawdowr{MDD) for the
drawdown analysis of the learning to trading strategy. Talker the MDD value, the
more preferable the trading algorithm concerning downsgle

5.3 Approaches compared

We implemented two variants of the proposed CORN strategyetisas a variety of exist-
ing strategies described in Section 3and listed b&low

(1) Market: the Market strategy (the uniform BAH approach);

(2) Best-Stock: the best stock in the market that is a hifndsiyategy;

(3) BCRP: the Best Constant Rebalanced Portfolios strateliyndsight;

(4) UP: Cover's Universal Portfolios implemented as Kalad a/empala [2002], its
parameters are setég = 0.004, 5 = 0.005, m = 100, .S = 500;

(5) EG: Exponential Gradient (E@)) algorithm with the best parametefixed t00.05
as suggested by the authors [Helmbold et al. 1998];

(6) ONS: Online Newton Step (ON£(3, v)) with the best parameters set as the same
suggested by the authors in Agarwal et al. [2006], e 0,3 = 1,y = 1/8;

(7) Anticor: BAHj3o(Anticor) as a variant of Anticor to smooth the volatilityhweh is
a better solution proposed by the authors [Borodin et al4200

(8) B: Nonparametric kernel-based moving windd@®{((c)) strategy with the param-
eter setting = 5, L. = 10,c¢ = 1.0 that has the best empirical performance according
to Gyorfi et al. [2006];

(9) BVYN: Nonparametric nearest neighbor based strategy with peeail = 5, L =
10,p; = 0.02 + 0.5% as the authors suggested [Gyorfi et al. 2008];

5.4 Experiment 1: Evaluation of Total Wealth

The first experiment evaluates the total wealth achievedifbgreint learning to trade al-
gorithms without considering transaction cost, which Ww#l investigated in Section 5.12.
For each algorithm, we invest an initial asSgt= $1 over all the stocks in the market.
Table Il summarizes the total wealth achieved by variousrilyms on the four datasets.
Several observations can be drawn from the results. Firali,ofve find that alllearning
to tradealgorithms can beat the market index, i.e., the uniform BAtdtegy, on all the

4We can adjust the parameters of comparators for betterrpsafece, but that is beyond the scope of this paper.
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Strategies | NYSE (O) NYSE (N) | SP500| MSCI
Market 14.50 14.84 1.34 0.92
Best-stock 54.14 63.47 3.78 0.97
BCRP 250.60 93.25 4.07 0.99
UP 27.41 24.76 1.64 0.97
EG 27.09 24.14 1.63 0.97
ONS 109.19 23.65 3.34 1.09
Anticor 1.71E+07 7.37E+04 5.55 2.45
BK 1.08E+09 9.5E+02 2.26 1.27
BVN 3.35E+11 5.59E+04 3.09 | 37.43
CORN-U | 1.48E+13 | 3.32E+05 | 6.35 | 31.54
CORN-K | 6.29E+13 | 4.38E+05 | 856 | 48.72

Table II: Total wealth achieved by various strategies om feal datasets. The numbers in boldface represent the
top two achievements on each dataset.

datasets. This shows that it is promising to investigatenleg to trade algorithms for
portfolio selection. Second, except Anticor, most exigtirading algorithms do not al-
ways outperform the best stock in the market on the four degaexcept Anticor. Third,
we observe that the regular follow-the-leader approacb®s EG, ONS) often perform
substantially worse than the other state-of-the-art aggres. Finally, among all com-
pared algorithms, the proposed CORN-U and CORN-K algostiatways achieved the
best total wealth on all datasets, and are substantialtgibttan the market index and
the best stock in the market. For example, on the NYSE (O)sdatter trading for 22
years, the total wealth achieved by the CORN-U strategy hRedCORN-K strategy im-
pressively increases froffl to almost$14.5-trillion and $63-trillion, respectively, which
are much higher than the state-of-the" algorithm that achieve&335-billion and the
BX algorithm that achieve$1.16-billion. On the NYSE (N) datasets that consists of up-
to-date data, both the CORN-U and CORN-K strategies alsieeeth over$332-thousand
and$438-thousand, respectively, while the existing state-ofdhestrategy achieved about
$73.7-thousand by the Anticor strategy afigls.9-thousand by th@BNY strategy. On the
SP500 and MSCI datasets, due to the tough market conditioasnarket index of MSCI
dataset actually decreases) and relatively shorter wgoimiod, we found that the total
wealth achieved by the learning to trade strategies isfagnitly smaller than that of the
two NYSE datasets. But, we also observe that both CORN-U &RIGK still achieved
considerably better results than the market index, thedtesk in the market, as well as all
the state-of-the-art strategies. It is also interestingdie that, although the market drops
sharply due to the financial downturn3n08, the proposed CORN algorithms are still able
to achieve encouraging returns, which is especially mopraéssive in the later part of the
MSCI dataset.

Besides the above results, we are also interested in exagnitaw the total wealth
achieved by various strategies change over differentnigageriods. Fig. 6 shows the
changes of total wealth achieved by the various strategidh@four datasets. From the
figure, we first observe that the two CORN algorithms constiteoutperform the other
algorithms over most trading periods. Further, we find thieémwmore trading days are
engaged, the growth rate of the wealth achieved by CORN tendsrease, which is par-
ticularly obvious on the NYSE (O) and NYSE (N) datasets whbeegrowth rate after
2500 trading days is much higher than the previous trading psridslich phenomenon
establishes that when more historical data are availablthélearning to trade task, the
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Fig. 6: Total wealth achieved by various trading strategiesr different trading days.

CORN algorithms are able to perform more effective tradipgploiting statistical cor-
relation with the powerful nonparametric learning appfoagll these impressive results
reiterate the efficacy and robustness of the proposed reptoitrade algorithm.

5.5 Experiment 2: Evaluation of APY, Risk and Sharpe Ratio

In this experiment, we evaluate the performance of APYsk®Riand annualized Sharpe
Ratios of the compared strategies. Table Ill summarizesethidts of APYs, the Risks and
annualized Sharpe Ratios for all the strategies. For edtimdbke table, the two numbers
of the first row represent APY and Risk (volatility risk), pestively, and the number of the
second row represents the annualized Shape Ratio. For é&xdimpthe Market strategy
on NYSE (O) dataset, the APY of the Market strategyi 8%, its Risk or annualized
standard deviation of daily return i$%, and its annualized Sharpe Ratid6i$%. From
Table Ill, we observe that on the NYSE (O), NYSE (N) and SP5askts, both the CORN
algorithms achieved the highest APY and annualized Shagtie Bmong all learning to
trade strategies. On the MSCI dataset, the CORN-K stratelgig\ged the highest APY
value and the highest annualized Sharpe Ratio while the GORMategy is also excellent
as the other state-of-the-art strategies. Similar to thenaon fact of no pain no gain in
financial markets, i.e., a higher return is often associatitd a higher risk, the risk of
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Strategies NYSE (O) NYSE (N) SP500 MSCI
Market 13% + 15% 12% £ 18% | 6% & 24% —2% + 20%
60% 43% 8% —31%
Best-stock | 20% =+ 24% 18% +29% | 30% +£51% | —1% £ 25%
65% 50% 52% —19%
BCRP 29% + 31% 20% +24% | 32% + 42% 0% + 22%
80% 69% 67% —20%
uP 16% + 14% 13% £ 19% | 10% + 22% 0% + 20%
91% 51% 28% —24%
EG 16% + 13% 14% +19% | 11% +22% | —1% £ 20%
91% 52% 30% —24%
ONS 24% + 18% 14% + 34% | 27% + 24% 2% +20%
110% 29% 98% —8%
Anticor 113% £ 29% | 58% £33% | 41% £38% | 25% +£21%
378% 163% 97% 100%
BE 158% +36% | 32% +25% | 17% + 33% 6% + 20%
422% 113% 40% 10%
BNN 234% + 40% | 56% £ 27% | 25% +£39% | 147% + 25%
571% 189% 55% 580%
CORN-U | 297% +49% | 68% +33% | 45% +41% | 137% + 25%
600% 194% 97% 533%
CORN-K | 324% +52% | 70% +32% | 54% + 40% | 164% + 27%
619% 204% 123% 602%

Table lll: APYs, Risks and Sharpe Ratios for various stiategn the four datasets. The upper row of each cell
shows APt Risk and the second row shows Sharpe Ratio. The top two m@ti@ach dataset are highlighted.

our CORN algorithm is also higher than other strategiesesthe return of the proposed
algorithms are much higher than the others. Nonethelesgmgressive annualized Sharpe
Ratios achieved by CORN strongly support the advantagéegiioposed trading strategy.

5.6 Experiment 3: Evaluation of Quarterly or Monthly Returns

We are also interested in whether the proposed CORN stestegtperform the benchmark
quarterly or monthly. Empirically, Fig. 7 shows the qualteeturn distribution of the
CORN-U strategy on NYSE (O) and NYSE (N) datasets and mom#tlyrn distribution
of the CORN-U strategy on SP500 and MSCI datasets. For casgpathe corresponding
market return distribution is shown in the figure as the bematk. In the Fig. 7a and
Fig. 7b, most of the quarterly returns with the CORN-U sgsten NYSE (O) and NYSE
(N) dataset are higher than the quarterly return of marldsgxn More specifically, during
the 72 quarters out of tota#6 quarters §5%) for NYSE (O) dataset;6 out of 94 quarters
(81%)for NYSE (N) dataset, the returns acquired with the CORN#ldtegy outperform
the market returns. In the third Fig. 7c, duridg months out of58 months (4%), the
returns accumulated with the CORN-U strategy outperformmtiarket returns. In the last
Fig. 7d, duringt6 out of 48 months 06%), the CORN-U strategy outperforms the market
index. As a summary, for most of the time slices, the CORN+dtsgy could outperform
the Market strategy, which again verifies the proposed CORMhod is stable and robust.

5.7 Statistical Evaluation of Performance

Besides the above results, we also interested in evalutiBm@ORN strategy statisti-
cally [Katz and McCormick 2000]. Since our datasets are §ashples for the entirely
stock markets population, we try to validate the strategyfditure. We conduct &tu-
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dent t-testo determine the likelihood that the observed profitabiltgue to chance alone
(under the assumption that the system was not profitableeiptipulation from which
our datasets were drawn). Since the sample profitabilithefroposed CORN is being
compared with no profitability, zero is subtracted from tlenple mean profit/loss. It
is worth noting that daily profit/loss equals daily returnnog 1. The standard error of
the mean is calculated as the standard deviation dividetidogquare root of the number
of trading days. The-statistic is the sample profit mean divided by the sample-sta
dard error to obtain the value of thestatistic. The equation to calculate thetatistic is

i~ Sample Profit Meamo . - . .
t-statistic = Sample Standard ErrorF'na”y the probability of getting theé-statistic by

chance alone is calculated with the degree of freedom, whiitte number of trading days
minus1. It is worth noting that the assumption of Student T-testhiat the underlying
distribution of the data is normal. According to the Centiahit Theorem, as the number
of cases in the sample increases, the distribution of thepleamean approaches normal.
Concerning that each of our dataset contains such a largeerushtrading samples, we
could regard the distribution of the profit/loss as normathsthat the statistical analysis
regarding the mean is meaningful.
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Table IV summarizes the statistical analysis for the resuthean profit/loss achieved
by the CORN-U algorithm. Since our strategy dynamicallyraes the portfolio every
trading day, we analyze it on the daily basis. And the pro&glis in the sense of absolute
value, i.e., the return for the trading day is compared witl). From the table, we can see
that thet-statistics for the four datasets are so large that thefggnice for the four datasets
approach zero. The results fantastically show that it ioatnimpossible to contribute the
success of the CORN-U strategy to chance along.

Statistical Attributes | NYSE (O) | NYSE (N) SP500 MSCI
Size 5651 6179 1276 1042
Mean 0.0062 0.0023 0.0020 0.0039
SD 0.0325 0.0204 0.0255 0.0168
SE of the mean 4.32E-04 | 2.59E-04 | 7.13E-04 | 5.20E-04
t-Statistic /L > 0) 14.3395 8.8730 2.8046 7.5031
P-value (Significance) 0 0 0.0026 0

Table IV: Statistical analysis of mean profit/loss for CORNstrategy. The statistical analysis is on daily basis
to test whether the success of CORN is due to chance.

5.8 Experiment 4: Evaluation of Drawdown

In finance, drawdown analysis is to measure of the declima &distorical peak in the total
wealth achieved. The background knowledge is describe@d@tich 2.2. This section is
to show that the drawdown for the proposed CORN strategydismable.

Fig. 8 shows the drawdown analysis on the four datasets.dfoparison, the maximum
drawdown for Market strategy, Best-stock strategy andsiéthe-artBN Y strategy are
also presented. From the table, we can conclude that thenmaxidrawdowns for the
proposed CORN strategies, especially the CORN-K stra@gyquite impressive. The
CORN-K strategy almost achieves the lower maximum drawdosmthe four datasets.
It is worth noting that even with the financial crisis fra007 to 2009, there is a huge
drawdown on the MSCI dataset, i.e., the MDD for market sgyis 59.17%. However,
the CORN strategies still perform much better than the ntathe MDDs for the CORN
strategies ar@8.77% and 14.91%, respectively. Since drawdown is an important mea-
sure for the downside risk, this drawdown analysis strouaiginonstrates that the risk on
the proposed CORN strategies is acceptable even we deggirtiiegy with the utility
function of total wealth.

5.9 Experiment 5: Evaluation of Parameters

Following the intuitive analysis in Section 4.5, in this 8en, we experimentally evaluated
the effects of the two parameters, correlation coefficiem@sholdo and maximum window
sizeW.

To evaluate the effect of correlation coefficient threshgldie analyze the performance
of CORN algorithm by varying parametgrfrom —1.0 to +1.0 with fixed W = 5. Fig. 9
shows the effects of varied threshold values for the CORNgOrihm on the four datasets.
Several observations can be drawn from the empirical iegRiltst of all, the results verify
the statement that CORN reduces to UCRP whapproaches tdé. Further, the empiri-
cally optimal value op is 0.3 for datasets NYSE (N), while results on other datasets show
the optimal values of is betweer to 0.5. Finally, we found that CORN performs consid-
erably poor whem is too large (excluding many informative cases) or too sfiratiuding
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of bar figure.

too much irrelevant cases), which is consistent with theiratibn of the proposed CORN
strategy.

Another important parameter is the maximum window size,We notice that different
W's may affect the performance of the proposed CORN algoriffiris experiment aims to
examine the effect of varield’s with fixedp = 0.1. Fig. 10 shows the evaluation results of
variedW ranging from2 to 15 on the four datasets with the CORN-U algorithm. We have
several observations from the empirical results. Firstlpfxe found that the window size
does affect the performances of the proposed algorithmorggave however do not see
any consistent trend from the figure, which is consistent Wit analysis in Section 4.5.
Finally, we found that on all cases of variolés (from2 to 15), the proposed algorithm
always outperforms the best stock and market.

As both CORN-U and CORN-K algorithms combine the expertsjrtfinal perfor-
mances are affected by their individual performances. Welaot experiments to further
examine the proportion of contribution made by these expevhich are based on Al-
gorithm 1 with a maximum window siz8” = 10. We then rank the performances of the
experts, and show their corresponding proportions. Figldstrates the results on the four
datasets. Itis clear that the proportions of contributiadmby the experts are different.
But their performances generally fall in the normal range, the majority of contribution
ranges fromb% to 30%, which shows that the predictions of all these experts atera
robust. In reality, it is possible that some experts may gesy bad predictions, leading to
very small contributions. Our proposed combination meshimolvever would reduce the
impact of such bad predictions. Finally, as the distributidd CORN-U is uniform over
all the experts while the distribution of CORN-K is uniformey the best experts, the
final result of CORN-K would be consistently better than tiaEORN-U under the same
parameters, as observed in Table II.

5.10 Experiment 6: Evaluation of Portfolio with Margin Buying

Following the studies in Cover [1991] and Helmbold et al.9&p we also tested our port-
folio selection method on the cases where we are allowed yestocks on margin. We
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Fig. 9: Effect of correlation coefficient threshold on théatavealth achieved. With window size fixed o the
correlation coefficient threshold ranges from -1 to 1 witteial fixed t00.1.

use the margin model described in Section 2.3. Table V shbevpérformances of the
proposed CORN strategies without and with margin buying.tke sake of comparison,
the performances of Market strategy, BCRP and state-e&thanticor strategy aniBV v
strategy are listed. It is shown that with the benefit of margimost all the strategies, espe-
cially the CORN strategies, gain a rapid profit growth onladl datasets. For example, on
the NYSE (O) dataset, the total wealth of the CORN-U strategseases from.48 £+ 12
to 1.05E + 22, which is0.81 F' + 10 times the return of the CORN strategy without margin.
On the recently NYSE(N) dataset, the total wealth of the CA@Rstrategy increases from
3.32E+ 0510 9.39F 4 08, which is abouR.82 E' + 03 times the return without margin. On
the SP500 dataset, the total wealth achieved by the CORM¢giea grow huge compared
with other strategies, fro®.56 to 38.51, which is about.50 times the return without mar-
gin. For the MSCI dataset, the total wealth achieved by CORMrategy increases from
48.72 t0 3585.82. The same as Experiment 5.4, the CORN strategies gain thedtitptal
return on all the datasets with or without margin.

The experiment again indicates that the CORN strategiesffaetive and practical al-
gorithms for the portfolio selection problem. It can take #dvantages of margin and gain
a explicit profit growth.

ACM Transactions on Intelligent Systems and Technology, ¥oNo. 1, 10 2010.



Total wealth achieved

ACM TIST, vol. 1, no. 1, 2010 : 25

1E+14 T T T T T T 1E+06 T T T T T T
T —wa5 o o —5—8—a— Aaiiiﬂiiia"”a”*ﬁ—ﬁfﬂf—a
1E+12} e 1405 —F s
3 —=—CORN
18410 o CORN 1 3 1404l |~ — — Best-stock |
- - —Best-stoc G Market
1E+08 Market 1 P
E 1Es03f E
1E+06 4 g
E 1E+02 1
1E+04F E P
1Es02F i 1E+01| q
1 . . . . . . i . . . . . .
2 4 6 8 10 12 14 2 4 6 8 10 12 14
Maximal window size Maximal window size
(a) NYSE (O) dataset (b) NYSE (N) dataset
7 . . . . . . 50, . . . . . .
/>
6r / \E\affg\ ]
o / e < 401 1
% / B 5+ %
% 5t [ / 1 '(E) e
] I\ / S 300 - i
£ / u £ B— 5
O ] S |[-=CcornN e
B = 20l - - - Best-stocl ]
S 4 / I}
£ 3t 2 Market
= =
/ L i
2f 10
1 . . . . . . e
2 4 6 8 10 12 14 2 4 6 8 10 12 14
Maximal window size Maximal window size
(c) SP500 dataset (d) MSCI dataset

Fig. 10: Effect of window size on the total wealth achievediti/¢orrelation coefficient threshold fixed o1,
the maximal window size ranges frarto 15 consecutively.

30—

25 A ]

N
o
T

I

Proportion (%)
g
]

101
51 i
0
NYSE (0) NYSE (N) SP500 MSCI
Datasets
Fig. 11: Proportion of contribution to the final performammade by a set of0 experts.

ACM Transactions on Intelligent Systems and Technology, 3aNo. 1, 10 2010.



26 . Li, Hoi, Gopalkrishan
Dataset Market [ BCRP Anticor BNN CORN-U CORN-K
NYSE (O) | 14.50 | 250.59 | 1.71E+07 | 3.35E+11| 1.48E +13 | 6.29E + 13
15.7 | 3755.09| 5.76E+12| 3.17E+20| 1.05E+22 | 1.83E + 25
NYSE (N) | 14.84 | 93.25 | 7.37E+04| 5.59E+04 | 3.32E + 05 | 4.38E + 05
14.10 | 662.53 | 1.05E+07 | 3.94E+07 | 9.39E + 08 | 2.29E + 09

SP500 1.34 4.06 5.55 3.09 6.35 8.56
1.03 6.48 10.57 3.43 14.59 38.51

MSCI 0.92 0.99 2.45 37.43 31.54 48.72
0.71 0.99 3.10 1286.58 1068.99 3585.82

Table V: Total wealth achieved by various strategies withemd with margin. The number in the upper row
shows the total wealth without margin, while the number mltwer row shows the total wealth with margin.

5.11 Experiment 7: Portfolio with Random Periods

To better show the robustness of the CORN strategy, andraisthe impact from specific
entry dates and time frames, i.e., to make the samples mpresentative, we randomly
choose the entry dates and the running periods for the CORMNatkgy on the NYSE (O)
dataset simply due to its relatively long trading periodsolr experiment, we randomly
choosel00 samples from the NYSE (O) dataset. Among the randomly chtrseling
periods, CORN-U outperforms the market index and the beskswith a probability of
94% and76%, respectively. By observing the entry dates and samplehsnge can find
that the lengths for the losing cases are relatively shdre Statistics for all the samples
also verify our suspect. The sample length mean ofifiierandom samples i5464. For
the losing cases, the sample length mean is relative sit#t,and the best stock losing
sample length mean i32. At the same time, the sample length mean for the winning
cases is relatively lond 513, and the best stock winning sample length mearv&9). The
results are consistent with the learning process of CORAtiegjies, i.e., the more historical
price relatives for learning, the more effective the pragub€ ORN strategies.

5.12 Experiment 8: Evaluation of Transaction Cost

Another important and unavoidable issue in portfolio sidecis transaction cost. In the
experiments, we adopt the proportional transaction costeinstated in Section 2.3. We
conduct the experiments on both situations with and withramisaction cost. In particular,
we evaluate the performances of the proposed CORN algofithwarying transaction
costy from 0% to 1.0% on the four datasets. It would be interesting if CORN can stil
outperform the two comparator, i.e., the market and the &tesk, in the market when
there is a nontrivial transaction cost. Fig. 12 shows oureexmental results based on
the CORN-U strategy. As we can observe, when the transactishincreases, the total
wealth achieved by CORN-U drops considerably. However, sumd that on the four
datasets, even with a rather high transaction cost, the GORiitategy still performs
quite convincing. The proposed CORN strategy is rathersbbn the datasets except the
SP500 dataset. The break-even commission rate of the tetdtiwachieved between the
CORN and the two comparators for NYSE (O), NYSE (N) and MSQasgets ranges from
0.2% to 0.6%, which is significantly impressive. On the other hand, onSR&00 dataset,
the break-even rate between CORN and the best stock is alogdt, and the break-even
rate between CORN and the market is ab@uB%. Event not as impressive as on the
other three datasets, such break-even rate is still addeptapractice. The reason for the
results is because the best stock on SP500 is simply toogsstarh that it actually beats
almost all the existing methods as shown in Table Il.
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Fig. 12: Total wealth achieved by CORN-U on the four datageits proportional commission rate varies from
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datasets are log-scaled for proper display. The break-evemission rate with the market index is ab6ut%,
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5.13 Experiment 9: Evaluation of Computation Time

The following experimentis to evaluate the time efficientihe proposed CORN strategy.
In general, CORN strategy is quite computationally inte@siTo be specific, the major
computation time costs are twofold: 1). the time cost forstflection otorrelation similar
set; 2). the time cost required for performing the optimaaprocess. We run all of our
experiments on a desktop PC equipped with Intel Core 2 atGHz3at MATLAB. On
the NYSE (O) dataset, CORN-U and CORN-K strategies took abtwours and25 hour
respectively for all the trading periods, which is bettearttthe two other nonparametric
learning algorithm®BX and BNN that took26 hours andl4 hours on the same dataset,
respectively. On the MSCI dataset consisting3adquity indices in1042 trading days,
CORN-U and CORN-K took about minutes and0 minutes respectively whilBX and
BN took 20 minutes and@’5 minutes, respectively. These results show that our method i
computationally comparable with the previous two stat¢hefart algorithms.
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5.14 Experiment 10: Comparison to Well-known Time Series Methods

As there are some well-studied time series prediction nusthid would be interesting to
compare CORN against these methods. As stated before dphegad CORN strategy can
be easily extended to make sequential time series predidiothis section, we compare
CORN against the well-known ARMA & GARCH methods for timeissrpredictions on
the stock datasets. Note that we do not develop the entilingyaystem based on these
two methods, since they were not proposed for portfoliocdigle tasks, and there are var-
ious components for designing such an entire trading systéus, we sequentially make
predictions for each stock for the next trading day and $ehex stock with the highest
prediction, i.e., putting all the money in the best stockedoben the prediction results.
We choose parameters for ARMA(p, q) according to the pres/igork proposed by Biau
et al. [2010], i.e., setting (p, 9)=(1, 1). Similarly, we gErameters for GARCH(p, q)
to the default values, i.e., (p,q)=(1,1). Unlike the prexi@xperiments, since our goal is
to evaluate the prediction performance, traditional p@nnce measures cannot be used.
Thus, we should consider some different measures in thiergrpnt. In practice, as we
typically care about thprofitability of the daily return with respect to the market strategy,
we compare its daily performance with that of the marketestya This produces two cri-
terion for performance measures. The first one represeséturacyof the profitability:
percentage of the days for which the strategy surpasses dhnkeirstrategy The second
criteria denotes thstrengthof the profitability:average ratio of the daily wealth gained by
the strategy over that achieved by the market stratégpractice, the first criteria denotes
the chance how likely the prediction based strategy is abpedduce profit better than the
market strategy, and the second criteria denotes the ratieelen the profit produced by
the prediction strategy over that of the market. The highewgalues of these criterion, the
better performance the algorithm achieves on the sequénimseries prediction tasks.
Dataset ARMA | GARCH | CORN-U [ CORN-K
NYSE (O) | 47.67% | 46.82% | 53.78% | 54.04%
1.0002 | 1.0002 | 1.0053 | 1.0056
NYSE (N) | 48.71% | 49.44% | 52.82% | 53.52%
0.9999 | 1.0000 | 1.0018 | 1.0019
SP500 47.65% | 49.69% | 52.90% | 52.82%
0.9992 | 1.0001 | 1.0014 | 1.0016

MSCI 49.81% | 51.73% 64.01% 63.63%
0.9997 1.0001 1.0034 1.0039

Table VI: Comparison of the proposed CORN strategy agawsttime series prediction methods (ARMA &
GARCH). For each dataset, the first row denotes the accumadythe second row is the strength of profitability.

Table VI shows the results, which clearly indicate CORN #igantly beats the well-
known time series prediction algorithms, i.e., ARMA & GARCFbr the first criteria, the
prediction accuracy of CORN significantly surpasses thdsheoARMA & GARCH. In
particular, all accuracies produced by ARMA are belds, and those produced by the
GARCH strategy are fluctuating aroufti%, while all accuracies obtained by CORN are
over50%. This clearly shows that CORN performs significantly betiemn the traditional
widely used ARMA & GARCH time series prediction techniquEsr the second criteria,
the strengths of the probability are always belbfor ARMA, and those of GARCH are
always floating around, which is consistent with the previous result where the saxas
are belows0%. On the other hand, the results of CORN are always abpsignificantly
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surpassing the ARMA & GARCH strategies. This experimenidaks the applicability
and capability of CORN to the sequential time series préaigiroblem.

5.15 Discussion

From the extensive experiments above, CORN has been eallyificoved as an effective
tool for portfolio selection, which exploits the statisgticorrelation information in the fi-
nancial markets by a nonparametric learning approach. titeess of the CORN strategy
may be explained that the market has some hidden informatiich has not yet been ex-
plored by market traders. While at the same time, our metisotyistatistical correlation
can exploit such hidden information, leading to the amapedormance. Although we
cannot provide what are the exact hidden information, ticeess of our method does pro-
vide certain useful knowledge to enhance our understarafipgrtfolio selection and the
stock market in fiance engineering. In particular, one usaétis that our promising result
provides strong evidence to show that the market is inefficighich has been explained
in Section 1. Another useful knowledge is that the price dufé=n move in trends and
the price relative patterns could reappear in practiceh&aowledge provides evidences
to endorse the advantages of technical analysis in thedtangding debate, and indicates
that it may be possible to exploit such knowledge and hiddemination to build effective
portfolio in real-world finance applications.

6. CONCLUSION

This paper proposed a nowveDRrelation-drivenNonparametric learning (CORN) strat-
egy for portfolio selection, which effectively exploitstistatistical correlation information
hidden in the underlying stock market movements, and beniedim the exploration of
powerful nonparametric learning techniques. The prop@@RN algorithm is simple in
nature, easy to implement, and has practically very fewmatars which are easy to set.
Our empirical studies show that the CORN algorithm can suttstlly beat the market and
the best stock in the market, and also consistently surpassariety of state-of-the-art
algorithms. Moreover, previous research and our rese&imhsthat the proposed method
can be easily extended to solve sequential time seriesgbi@dproblem.

Although high return strategies are often associated wigh hisk, it would be more
attractive to develop a strategy that can manage the rigkeplsowithout slashing the re-
turn too much. As an extension to this work, we’re currendy@oping such risk-limiting
strategies for CORN. Moreover, we're also looking at exjogi transaction volume infor-
mation, which could be a potentially beneficial to improwaing performance. In future,
we plan to investigate theoretical insights of the alganitland examine the extensions of
our algorithm to improve the performance with high trangarccosts.
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