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A

Online Portfolio Selection: A Survey

BIN LI and STEVEN C. H. HOI, Nanyang Technological University, Singapore

Online portfolio selection is a fundamental problem in computational f nance, which has been extensively studied across
several research communities, including f nance, statistics, artif cial intelligence, machine learning, and data mining, etc.
This article aims to provide a comprehensive survey and a structural understanding of published online portfolio selection
techniques. From an online machine learning perspective, we f rst formulate online portfolio selection as a sequential decision
problem, and then survey a variety of state-of-the-art approaches, which are grouped into several major categories, including
benchmarks, “Follow-the-Winner” approaches, “Follow-the-Loser” approaches, “Pattern-Matching” based approaches, and
“Meta-Learning Algorithms”. In addition to the problem formulation and related algorithms, we also discuss the relationship
of these algorithms with the Capital Growth theory in order to better understand the similarities and differences of their
underlying trading ideas. This article aims to provide a timely and comprehensive survey for both machine learning and data
mining researchers in academia and quantitative portfolio managers in the f nancial industry to help them understand the
state-of-the-art and facilitate their research and practical applications. We also discuss some open issues and evaluate some
emerging new trends for future research directions.

Categories and Subject Descriptors: J.1 [Computer Applications]: Administrative Data Processing—Financial; J.4 [Com-
puter Applications]: Social and Behavioral Sciences—Economics; I.2.6 [Artificial Intelligence ]: Learning

General Terms: Design, Algorithms, Economics

Additional Key Words and Phrases: Machine Learning, Optimization, Portfolio Selection
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1. INTRODUCTION

Portfolio selection, aiming to optimize the allocation of wealth across a set of assets, is a fun-
damental research problem in computational f nance and a practical engineering task in f nancial
engineering. There are two major schools for investigating this problem, that is, the Mean Vari-
ance Theory [Markowitz 1952; Markowitz 1959; Markowitz et al. 2000] mainly from the f nance
community and Capital Growth Theory [Kelly 1956; Hakansson and Ziemba 1995] primarily orig-
inated from information theory. The Mean Variance Theory, widely known in asset management
industry, focuses on a single-period (batch) portfolio selection to trade off a portfolio’s expected
return (mean) and risk (variance), which typically determines the optimal portfolios subject to the
investor’s risk-return prof le. On the other hand, Capital Growth Theory focuses on multiple-period
or sequential portfolio selection, aiming to maximize the portfolio’s expected growth rate, or ex-
pected log return. While both theories solve the task of portfolio selection, the latter is f tted to the
“online” scenario, which naturally consists of multiple periods and is the focus of this article.
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A:2 Li and Hoi

Table I. General classification for the state-of-the-art online portfolio selection algorithms.

Classif cations Algorithms Representative References

Benchmarks
Buy And Hold
Best Stock
Constant Rebalanced Portfolios Kelly [1956]; Cover [1991]

Follow-the-Winner

Universal Portfolios Cover [1991]; Cover and Ordentlich [1996]
Exponential Gradient Helmbold et al.[1996; 1998]
Follow the Leader Gaivoronski and Stella [2000]
Follow the Regularized Leader Agarwal et al. [2006]
Aggregating-type Algorithms Vovk and Watkins [1998]

Follow-the-Loser

Anti Correlation Borodin et al.[2003; 2004]
Passive Aggressive Mean Reversion Li et al. [2012]
Conf dence Weighted Mean Reversion Li et al.[2011b; 2013]
Online Moving Average Reversion Li and Hoi [2012]
Robust Median Reversion Huang et al. [2013]

Pattern-Matching Approaches

Nonparametric Histogram Log-optimal Strategy Györf et al. [2006]
Nonparametric Kernel-based Log-optimal Strategy Györf et al. [2006]
Nonparametric Nearest Neighbor Log-optimal Strategy Györf et al. [2008]
Correlation-driven Nonparametric Learning Strategy Li et al. [2011a]
Nonparametric Kernel-based Semi-log-optimal Strategy Györf et al. [2007]
Nonparametric Kernel-based Markowitz-type Strategy Ottucsák and Vajda [2007]
Nonparametric Kernel-based GV-type Strategy Györf and Vajda [2008]

Meta-Learning Algorithms

Aggregating Algorithm Vovk [1990][1998]
Fast Universalization Algorithm Akcoglu et al.[2002; 2004]
Online Gradient Updates Das and Banerjee [2011]
Online Newton Updates Das and Banerjee [2011]
Follow the Leading History Hazan and Seshadhri [2009]

Online portfolio selection, which sequentially selects a portfolio over a set of assets in order to
achieve certain targets, is a natural and important task for asset portfolio management. Aiming to
maximize the cumulative wealth, several categories of algorithms have been proposed to solve this
task. One category of algorithms, termed “Follow-the-Winner”, tries to asymptotically achieve the
same growth rate (expected log return) as that of an optimal strategy, which is often based on the
Capital Growth Theory. The second category, named “Follow-the-Loser”, transfers the wealth from
winning assets to losers, which seems contradictory to the common sense but empirically often
achieves signif cantly better performance. Finally, the third category, termed “Pattern-Matching”
based approach, tries to predict the next market distribution based on a sample of historical data and
explicitly optimizes the portfolio based on the sampled distribution.While the above three categories
are focused on a single strategy (class), there are also some other strategies that focus on combining
multiple strategies (classes), termed as “Meta-Learning Algorithms”. As a brief summary, Table I
outlines the list of main algorithms and corresponding references.
This article provides a comprehensive survey of online portfolio selection algorithms belonging

to the above categories. To the best of our knowledge, this is the f rst survey that includes the above
three categories and the meta-learning algorithms as well. Moreover, we are the f rst to explicitly
discuss the connection between the online portfolio selection algorithms and Capital Growth The-
ory, and illustrate their underlying trading ideas. In the following sections, we also clarify the scope
of this article and discuss some related existing surveys in the literature.

1.1. Scope

In this survey, we focus on discussing the empirical motivating ideas of the online port-
folio selection algorithms, while only skimming theoretical aspects (such as competitive
analysis by El-Yaniv [1998] and Borodin et al. [2000] and asymptotical convergence analysis
by Györf et al. [2012]). Moreover, various other related issues and topics are excluded from this
survey, as discussed below.
First of all, it is important to mention that the “Portfolio Selection” task in our

survey differs from a great body of f nancial engineering studies [Kimoto et al. 1993;
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Online Portfolio Selection: A Survey A:3

Merhav and Feder 1998; Cao and Tay 2003; Lu et al. 2009; Dhar 2011; Huang et al. 2011], which
attempted to forecast f nancial time series by applying machine learning techniques and
conduct single stock trading [Katz and McCormick 2000; Koolen and Vovk 2012], such as re-
inforcement learning [Moody et al. 1998; Moody and Saffell 2001; O et al. 2002], neural net-
works [Kimoto et al. 1993; Dempster et al. 2001], genetic algorithms [Mahfoud and Mani 1996;
Allen and Karjalainen 1999; Madziuk and Jaruszewicz 2011], decision trees [Tsang et al. 2004],
and support vector machines [Tay and Cao 2002; Cao and Tay 2003; Lu et al. 2009], boost-
ing and expert weighting [Creamer 2007; Creamer and Freund 2007; Creamer and Freund 2010;
Creamer 2012], etc. The key difference between these existing works and subject area of this sur-
vey is that their learning goal is to make explicit predictions of future prices/trends and to trade on
a single asset [Borodin et al. 2000, Section 6], while our goal is to directly optimize the allocation
among a set of assets.
Second, this survey emphasizes the importance of “online” decision for portfolio se-

lection, meaning that related market information arrives sequentially and the allocation
decision must be made immediately. Due to the sequential (online) nature of this task,
we mainly focus on the survey of multi-period/sequential portfolio selection work, in
which the portfolio is rebalanced to a specif ed allocation at the end of each trading pe-
riod [Cover 1991], and the goal typically is to maximize the expectedlog return over a sequence
of trading periods. We note that these work can be connected to the Capital Growth The-
ory [Kelly 1956], stemmed from the seminal paper of Kelly [1956] and further developed
by Breiman[1960; 1961], Hakansson[1970; 1971], Thorp[1969; 1971], Bell and Cover [1980],
Finkelstein and Whitley [1981], Algoet and Cover [1988], Barron and Cover [1988],
MacLean et al. [1992], MacLean and Ziemba [1999], Ziemba and Ziemba [2007],
Maclean et al. [2010], etc. It has been successfully applied to gambling [Thorp 1962;
Thorp 1969; Thorp 1997], sports betting [Hausch et al. 1981; Ziemba and Hausch 1984;
Thorp 1997; Ziemba and Hausch 2008], and portfolio investment [Thorp and Kassouf 1967;
Rotando and Thorp 1992; Ziemba 2005]. We thus exclude the studies related to the Mean Variance
portfolio theory [Markowitz 1952; Markowitz 1959], which were typically developed for single-
period (batch) portfolio selection (except some extensions [Li and Ng 2000; Dai et al. 2010]).
Finally, this article focuses on surveying the algorithmic aspects and providing a structural un-

derstanding of the existing online portfolio selection strategies. To prevent loss of focus, we will
not dig into theoretical details. In the literature, there is a large body of related work for the the-
ory [MacLean et al. 2011]. Interested researchers can explore the details of the theory from two ex-
haustive surveys [Thorp 1997; Maclean and Ziemba 2008], and its history from Poundstone [2005]
and Györf et al. [2012, Chapter 1].

1.2. Related Surveys

There exist several related surveys in this area, but none of them is comprehensive and timely
enough for understanding the state-of-the-art of online portfolio selection research. For example,
El-Yaniv [1998, Section 5] and Borodin et al. [2000] surveyed the online portfolio selection prob-
lem in the framework of competitive analysis. Using our classif cation in Table I, Borodin et al.
mainly surveyed the benchmarks and two Follow-the-Winner algorithms, that is, Universal Port-
folios and Exponential Gradient (refer to the details in Section 3.2). Although the competitive
framework is important for the Follow-the-Winner category, both surveys are out-of-date in the
sense that they do not include a number of state-of-the-art algorithms afterward. A recent survey by
Györf et al. [2012, Chapter 2] mainly surveyed Pattern-Matching based approaches, i.e., the third
category as shown in Table I, which does not include the other categories in this area and is thus far
from complete.

1.3. Organization

The remainder of this article is organized as follows. Section 2 formulates the problem of online
portfolio selection formally and addresses several practical issues. Section 3 introduces the state-
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A:4 Li and Hoi

of-the-art algorithms, including Benchmarks in Section 3.1, the Follow-the-Winner approaches in
Section 3.2, Follow-the-Loser approaches in Section 3.3, Pattern-Matching based Approaches in
Section 3.4, and Meta-Learning Algorithms in Section 3.5, etc. Section 4 connects the existing
algorithms with the Capital Growth Theory and also illustrates the essentials of their underlying
trading ideas. Section 5 discusses several related open issues, and f nally Section 6 concludes this
survey and outlines some future directions.

2. PROBLEM SETTING

Consider a f nancial market with m assets, we invest our wealth over all the assets in the market
for a sequence of n trading periods. The market price change is represented by a m-dimensional
price relative vectorxt ∈ R

m
+ , t = 1, . . . , n, where the ith element of tth price relative vector, xt,i,

denotes the ratio of tth closing price to last closing price for the ith assets. Thus, an investment
in asset i on period t increases by a factor of xt,i. We also denote the market price changes from
period t1 to t2 (t2 > t1) by a market window, which consists of a sequence of price relative vectors
xt2
t1

= {xt1 , . . . ,xt2}, where t1 denotes the beginning period and t2 denotes the ending period. One
special market window starts from period 1 to n, that is, xn

1 = {x1, . . . ,xn}.
At the beginning of the tth period, an investment is specif ed by a portfolio vectorbt, t =

1, . . . , n. The ith element of tth portfolio, bt,i, represents the proportion of capital invested in the
ith asset. Typically, we assume a portfolio is self-f nanced and no margin/short is allowed. Thus, a
portfolio satisf es the constraint that each entry is non-negative and all entries sum up to one, that
is, bt ∈ ∆m, where ∆m =

{

b : b � 0,b⊤1 = 1
}

. Here, 1 is the m-dimensional vector of all 1s,
and b⊤1 denotes the inner product of b and 1. The investment procedure from period 1 to n is
represented by a portfolio strategy, which is a sequence of mappings as follows:

b1 =
1

m
1, bt : R

m(t−1)
+ → ∆m, t = 2, 3, . . . , n,

where bt = bt

(

xt−1
1

)

denotes the portfolio computed from the past market window xt−1
1 . Let us

denote the portfolio strategy for n periods as bn
1 = {b1, . . . ,bn}.

For the tth period, a portfolio manager apportions its capital according to portfoliobt at the open-
ing time, and holds the portfolio until the closing time. Thus, the portfolio wealth will increase by a
factor of b⊤

t xt =
∑m

i=1 bt,ixt,i. Since this model uses price relatives and re-invests the capital, the
portfolio wealth will increase multiplicatively. From period 1 to n, a portfolio strategy bn

1 increases
the initial wealth S0 by a factor of

∏n
t=1 b

⊤
t xt, that is, the f nal cumulative wealthafter a sequence

of n periods is

Sn (b
n
1 ) = S0

n
∏

t=1

b⊤
t xt = S0

n
∏

t=1

m
∑

i=1

bt,ixt,i.

Since the model assumes multi-period investment, we def ne the exponential growth ratefor a strat-
egy bn

1 as,

Wn (bn
1 ) =

1

n
logSn (b

n
1 ) =

1

n

n
∑

t=1

logbt · xt.

Finally, let us combine all elements and formulate the online portfolio selection model. In a port-
folio selection task the decision maker is a portfolio manager, whose goal is to produce a portfolio
strategy bn

1 in order to achieve certain targets. Following the principle as the algorithms shown in
Table I, our target is to maximize the portfolio cumulative wealth Sn. The portfolio manager com-
putes the portfolio strategy in a sequential fashion. On the beginning of period t, based on previous
market window xt−1

1 , the portfolio manager learns a new portfolio vector bt for the coming price
relative vector xt, where the decision criterion varies among different managers/strategies. The port-
folio bt is scored using the portfolio period return bt · xt. This procedure is repeated until period

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: December YEAR.
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ALGORITHM 1: Online portfolio selection framework.
Input : xn

1 : Historical market sequence
Output : Sn: Final cumulative wealth
Initialize S0 = 1,b1 =

(

1

m
, . . . , 1

m

)

for t = 1, 2, . . . , n do
Portfolio manager computes a portfolio bt ;
Market reveals the market price relative xt ;
Portfolio incurs period return b⊤

t xt and updates cumulative return St = St−1 ×
(

b
⊤
t xt

)

;
Portfolio manager updates his/her online portfolio selection rules ;

end

n, and the strategy is f nally scored according to the portfolio cumulative wealth Sn. Algorithm 1
shows the framework of online portfolio selection, which serves as a general procedure to backtest
any online portfolio selection algorithm.
In general, some assumptions are made in the above widely adopted model:

(1) Transaction cost: we assume no transaction costs/taxes in the model;
(2) Market liquidity: we assume that one can buy and sell any quantity of any asset in its closing

prices;
(3) Impact cost: we assume market behavior is not affected by any portfolio selection strategy.

To better understand the notions and model above, let us illustrate with a classical example.

Example2.1 (Synthetic market by Cover and Gluss [1986]). Assume a two-asset market with
cash and one volatile asset with the price relative sequence xn

1 =
{

(1, 2) ,
(

1, 12
)

, (1, 2) , . . .
}

. The
1st price relative vector x1 = (1, 2) means that if we invest $1 in the f rst asset, you will get $1 at
the end of period; if we invest $1 in the second asset, we will get $2 after the period.
Let a f xed proportion portfolio strategy be bn

1 =
{(

1
2 ,

1
2

)

,
(

1
2 ,

1
2

)

, . . .
}

, which means everyday
the manager redistributes the capital equally among the two assets. For the 1st period, the portfolio
wealth increases by a factor of 1× 1

2+2× 1
2 = 3

2 . Initializing the capital with S0 = 1, then the capital
at the end of the 1st period equals S1 = S0 × 3

2 = 3
2 . Similarly, S2 = S1 ×

(

1× 1
2 + 1

2 × 1
2

)

=
3
2 × 3

4 = 9
8 . Thus, at the end of period n, the f nal cumulative wealth equals,

Sn (b
n
1 ) =

{

9
8

n
2 n is even

3
2 × 9

8

n−1

2 n is odd
,

and the exponential growth rate is,

Wn (b
n
1 ) =

{

1
2 log

9
8 n is even

n−1
2n log 9

8 + 1
n
log 3

2 n is odd
,

which approaches 1
2 log

9
8 > 0 if n is suff ciently large.

2.1. Transaction Cost

In reality, the most important and unavoidable issue is transaction costs. In this sec-
tion, we model the transaction costs into our formulation, which enables us to eval-
uate an online portfolio selection algorithms. However, we will not introduce strate-
gies [Davis and Norman 1990; Iyengar and Cover 2000; Akian et al. 2001; Schäfer 2002;
Györf and Vajda 2008; Ormos and Urbán 2011] that directly solve the transaction costs issues.
The widely adopted transaction costs model is the proportional transaction costs

model [Blum and Kalai 1999; Györf and Vajda 2008], in which the incurred transaction cost is pro-
portional to the wealth transferred during rebalancing. Let the brokers charge transaction costs on

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: December YEAR.



A:6 Li and Hoi

both buying and selling. At the beginning of the tth period, the portfolio manager intends to rebal-
ance the portfolio from closing price adjusted portfolio b̂t−1 to a new portfolio bt. Here b̂t−1 is
calculated as, b̂t−1,i =

bt−1,ixt−1,i

bt−1·xt−1

, i = 1, . . . ,m. Assuming two transaction cost rates γb ∈ (0, 1)

and γs ∈ (0, 1), where γb denotes the transaction costs rate incurred during buying and γs denotes
the transaction costs rate incurred during selling. After rebalancing, St−1 will be decomposed into
two parts, that is, the net wealth Nt−1 in the new portfolio bt and the transaction costs incurred
during the buying and selling. If the wealth on asset i before rebalancing is higher than that after
reblancing, that is, bt−1,ixt−1,i

bt−1·xt−1

St−1 ≥ bt,iNt−1, then there will be a selling rebalancing. Otherwise,
then a buying rebalancing is required. Formally,

St−1 = Nt−1+γs

m
∑

i=1

(

bt−1,ixt−1,i

bt−1 · xt−1
St−1 − bt,iNt−1

)+

+γb

m
∑

i=1

(

bt,iNt−1 −
bt−1,ixt−1,i

bt−1 · xt−1
St−1

)+

.

Let use denote transaction costs factor[Györf and Vajda 2008] as the ratio of net wealth after
rebalancing to wealth before rebalancing, that is, ct−1 = Nt−1

St−1

∈ (0, 1). Dividing above equation
by St−1, we can get,

1 = ct−1 + γs

m
∑

i=1

(

bt−1,ixt−1,i

bt−1 · xt−1
− bt,ict−1

)+

+ γb

m
∑

i=1

(

bt,ict−1 −
bt−1,ixt−1,i

bt−1 · xt−1

)+

. (1)

Clearly, givenbt−1, xt−1, and bt, there exists a unique transaction costs factor for each rebalancing.
Thus, we can denote ct−1 as a function, ct−1 = c (bt,bt−1,xt−1). Moreover, considering the
portfolio is in the simplex domain, then the factor ranges between 1−γs

1+γb
≤ ct−1 ≤ 1.

Finally, for each period t, the wealth grows by a factor as,

St = St−1 × ct−1 × (bt · xt) ,

and the f nal cumulative wealth after n periods equals,

Sn = S0

n
∏

t=1

ct−1 × (bt · xt) ,

where ct−1 is calculated as Eq. (1).

3. ONLINE PORTFOLIO SELECTION APPROACHES

In this section, we survey the area of online portfolio selection. Algorithms in this area formulate
the online portfolio selection task as in Section 2 and derive explicit portfolio update schemes for
each period. Basically, the routine is to implicitly assume various price relative predictions and learn
optimal portfolios.
In the subsequent sections, we mainly list the algorithms following Table I. In particular, we f rst

introduce several benchmark algorithms in Section 3.1. Then, we introduce the algorithms with ex-
plicit update schemes in the subsequent three sections. We classif es them based on the direction
of the weight transfer. The f rst approach, Follow-the-Winnerapproach, tries to increase the rela-
tive weights of more successful experts/stocks, often based on their historical performance. On the
contrary, the second approach, Follow-the-Loserapproach, tries to increase the relative weights of
less successful experts/stocks, or transfer the weights from winners to losers. The third approach,
Pattern-Matchingbased approach, tries to build a portfolio based on some sampled similar his-
torical patterns with no explicit weights transfer directions. After that, we survey Meta-Learning
Algorithms, which can be applied to higher level experts equipped with any existing algorithm.

3.1. Benchmarks

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: December YEAR.



Online Portfolio Selection: A Survey A:7

3.1.1. Buy And Hold Strategy. The most common baseline is Buy-And-Hold(BAH) strategy, that
is, one invests wealth among a pool of assets with an initial portfolio b1 and holds the portfolio until
the end. The manager only buys the assets at the beginning of the 1st period and does not rebalance
in the following periods, while the portfolio holdings are implicitly changed following the market
f uctuations. For example, at the end of the 1st period, the portfolio holding becomes b1

⊙
x1

b⊤

1
x1

, where
⊙

denotes element-wise product. In a summary, the f nal cumulative wealth achieved by a BAH
strategy is initial portfolio weighted average of individual stocks’ f nal wealth,

Sn (BAH (b1)) = b1 ·
(

n
⊙

t=1

xt

)

.

The BAH strategy with initial uniformportfolio b1 =
(

1
m
, . . . , 1

m

)

is referred to as uniform BAH
strategy, which is often adopted as a marketstrategy to produce a market index.

3.1.2. Best Stock Strategy. Another widely adopted benchmark is the Best Stock(Best) strategy,
which is a special BAH strategy that puts all capital on the stock with best performance in hindsight.
Clearly, its initial portfolio b◦ in hindsight can be calculated as,

b◦ = argmax
b∈∆m

b ·
(

n
⊙

t=1

xt

)

.

As a result, the f nal cumulative wealth achieved by the Best strategy can be calculated as,

Sn (Best) = max
b∈∆m

b ·
(

n
⊙

t=1

xt

)

= Sn (BAH (b◦)) .

3.1.3. Constant Rebalanced Portfolios. Another more challenging benchmark strategy is theCon-
stant Rebalanced Portfolio(CRP) strategy, which rebalances the portfolio to a f xed portfolio b ev-
ery period. In particular, the portfolio strategy can be represented as bn

1 = {b,b, . . . }. Thus, the
cumulative portfolio wealth achieved by a CRP strategy after n periods is def ned as,

Sn (CRP (b)) =

n
∏

t=1

b⊤xt.

One special CRP strategy that rebalances to uniform portfolio b =
(

1
m
, . . . , 1

m

)

each period is
named Uniform Constant Rebalanced Portfolios(UCRP). It is possible to calculate an optimal of-
f ine portfolio for the CRP strategy as,

b⋆ = argmax
bn∈∆m

logSn (CRP (b)) = argmax
b∈∆m

n
∑

t=1

log
(

b⊤xt

)

,

which is convex and can be eff ciently solved. The CRP strategy with b⋆ is denoted byBest Constant
Rebalanced Portfolio(BCRP). BCRP achieves a f nal cumulative portfolio wealth and correspond-
ing exponential growth rate def ned as follows,

Sn (BCRP ) = max
b∈∆m

Sn (CRP (b)) = Sn (CRP (b⋆)) ,

Wn (BCRP ) =
1

n
logSn (BCRP ) =

1

n
logSn (CRP (b⋆)) .

Note that BCRP strategy is a hindsight strategy, which can only be calculated with complete
market sequences. Cover [1991] proved the benef ts of BCRP as a target, that is, BCRP exceeds
the best stock, Value Line Index (geometric mean of component returns) and the Dow Jones Index
(arithmetic mean of component returns, or BAH). Moreover, BCRP is invariant under permutations
of the price relative sequences, i.e., it does not depend on the order in which x1,x2, . . . ,xn occur.
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Till now let us compare BAH and CRP strategy by continuing the Example 2.1.

Example3.1 (Synthetic market by Cover and Gluss [1986]). Assume a two-asset market with
cash and one volatile asset with the price relative sequence xn

1 =
{

(1, 2) ,
(

1, 12
)

, (1, 2) , . . .
}

. Let
us consider BAH with uniform initial portfolio b1 =

(

1
2 ,

1
2

)

and the CRP with uniform portfolio
b =

(

1
2 ,

1
2

)

. Clearly, since no asset grows in the long run, the f nal wealth of BAH equals the
uniform weighted summation of two assets, which roughly equals to 1 in the long run. On the other
hand, according to the analysis of Example 2.1, the f nal cumulative wealth of CRP is roughly 9

8

n
2 ,

which increases exponentially. Note that the BAH only rebalances on the 1st period, while the CRP
rebalances every period. On the same synthetic market, while market provides no return and CRP
can produce an exponentially increasing return. The underlying idea of CRP is to take advantage of
the underlying volatility, or so-called “volatility pumping” [Luenberger 1998, Chapter 15].

Since CRP rebalances a f xed portfolio each period, its frequent transactions will incur high trans-
action costs. Helmbold et al. [1996; 1998] proposed a Semi-Constant Rebalanced Portfolio(Semi-
CRP), which rebalances the portfolio on selected periods rather than every period.
One desired theoretical result for online portfolio selection is “universality” [Cover 1991].

An online portfolio selection algorithm Alg is universal if its average (external) re-
gret [Stoltz and Lugosi 2005; Blum and Mansour 2007] for n periods asymptotically approaches
0,

1

n
regretn (Alg) = Wn (BCRP )−Wn (Alg) −→ 0, as n → ∞. (2)

In other words, a universal portfolio selection algorithm asymptotically approaches the same expo-
nential growth rate as BCRP strategy for arbitrary sequences of price relatives.

3.2. Follow-the-Winner Approaches

The f rst approach, Follow-the-Winner, is characterized by increasing the relative weights of more
successful experts/stocks. Rather than targeting market and best stock, algorithms in this category
often aim to track the BCRP strategy, which can be shown to be the optimal strategy in an i.i.d.
market [Cover and Thomas 1991, Theorem 15.3.1]. On other words, such optimality motivates that
“universal portfolio selection” algorithms approach the performance of the hindsight BCRP for
arbitrary sequence of price relative vectors, called individual sequences.

3.2.1. Universal Portfolios. The basic idea of Universal Portfolio-type algorithms is to assign the
capital to a single class of base experts, let the experts run, and f nally pool their wealth. Strategies
in this type are analogous to the Buy And Hold(BAH) strategy. Their difference is that base BAH
expert is the strategy investing on a single stock and thus the number of experts is the same as that
of stocks. In other words, BAH strategy buys the individual stocks and lets the stocks go and f nally
pools their individual wealth. On the other hand, the base expert in the Follow-the-Winner category
can be any strategy class that invests in any set of stocks in the market. Besides, algorithms in this
category are also similar to the Meta-Learning Algorithms(MLA) further described in Section 3.5,
while MLA generally applies to experts of multiple classes.
Cover [1991] proposed the Universal Portfolio(UP) strategy and Cover and Ordentlich [1996]

further ref ned the algorithm as µ-Weighted Universal Portfolio, in which µ denotes a given dis-
tribution on the space of valid portfolio ∆m. Intuitively, Cover’s UP operates similar to a Fund of
Funds (FOF), and its main idea is to buy and hold parameterized CRP strategies over the whole
simplex domain. In particular, it initially invests a proportion of wealth dµ (b) to each portfolio
manager operating CRP strategy with b ∈ ∆m, and lets the CRP managers run. Then, at the end,
each manager will grow his wealth to Sn (b) dµ (b). Finally, Cover’s UP pools the individual ex-
perts’ wealth over the continuum of portfolio strategies.Note that Sn (b) = enWn(b), which means
that the portfolio grows at an exponential rate ofWn (b).
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Formally, its update scheme [Cover and Ordentlich 1996, Def nition 1] can be interpreted as a
historical performance weighed average of all valid constant rebalanced portfolios,

bt+1 =

∫

∆m
bSt (b)dµ (b)

∫

∆m
St (b)dµ (b)

.

Note that at the beginning of period t + 1, one CRP manager’s wealth (historical performance)
equals to St (b) dµ (b). Incorporating the initial wealth of S0 = 1, the f nal cumulative wealth is
weighted average of CRP managers’ wealth [Cover and Ordentlich 1996, Eq. (24)],

Sn (UP ) =

∫

∆m

Sn (b)dµ (b). (3)

One special case is that µ equals a uniform distribution, the portfolio update reduces to Cover’s
UP [Cover 1991, Eq. (1.3)]. Another special cases is Dirichlet

(

1
2 , . . . ,

1
2

)

weighted Universal Port-
folios [Cover and Ordentlich 1996], which is proved to be a more optimal allocation. Alternatively,
if a loss function is def ned as the negative logarithmic function of portfolio return, Cover’s UP is
actually an exponentially weighted average forecaster [Cesa-Bianchi and Lugosi 2006].
Cover [1991] showed that with suitable smoothness conditions, the average of exponentials grows

at the same exponential rate as the maximum, one can asymptotically approach BCRP’s expo-
nential growth rate. The regret achieved by Cover’s UP is O (m logn), and its time complex-
ity is O (nm), where m denotes the number of stocks and n refers to the number of periods.
Cover and Ordentlich [1996] proved that the

(

1
2 , . . . ,

1
2

)

weighted Universal Portfolios has the same
scale of regret bound, but a better constant term [Cover and Ordentlich 1996, Theorem 2].
As Cover’s UP is based on an ideal market model, one research topic with respect to Cover’s UP is

to extend the algorithm with various realistic assumptions. Cover and Ordentlich [1996] extended
the model to include side information, which can be instantiated experts’ opinions, fundamental
data, etc. Blum and Kalai [1999] took account of transaction costs for online portfolio selection and
proposed a universal portfolio algorithm to handle the costs.
Another research topic is to generalize Cover’s UP with different underlying base expert classes,

rather than the CRP strategy. Jamshidian [1992] generalized the algorithm for continuous time mar-
ket and derived the long-term performance of Cover’s UP in this setting. Vovk and Watkins [1998]
applied aggregating algorithm(AA) [Vovk 1990] to a f nite number of arbitrary investment strate-
gies. Cover’s UP becomes a specialized case of AA when applied to an inf nite number of CRPs. We
will further investigate AA in Section 3.2.5. Ordentlich and Cover [1998] derived the lower bound
of the f nal wealth achieved by any non-anticipating investment strategy to that of BCRP strategy.
Cross and Barron [2003] generalized Cover’s UP from CRP strategy class to any parameterized tar-
get class and proposed a universal strategy that costs a polynomial time. Akcoglu et al. [2002; 2004]
extended Cover’s UP from the parameterized CRP class to a wide class of investment strategies, in-
cluding trading strategies operating on a single stock and portfolio strategies operating on the whole
stock market. Kozat and Singer [2011] proposed a similar universal algorithm based on the class of
semi-constant rebalanced portfolios [Helmbold et al. 1996; Helmbold et al. 1998], which provides
good performance with transaction costs.
Rather than intuitive analysis, several work has also been proposed to discuss the connection be-

tween Cover’s UP with universal prediction [Feder et al. 1992], data compression [Rissanen 1983]
and Markowitz’s mean-variance theory [Markowitz 1952; Markowitz 1959]. Algoet [1992] dis-
cussed the universal schemes for prediction, gambling and portfolio selection. Cover [1996]
and Ordentlich [1996] discussed the connection of universal portfolio selection and data compres-
sion. Belentepe [2005] presented a statistical view of Cover’s UP strategy and connect it with tra-
ditional Markowitz’s mean-variance portfolio theory [Markowitz 1952]. The authors showed that
by allowing short selling and leverage, UP is approximately equivalent to sequential mean-variance
optimization; otherwise the strategy is approximately equivalent to constrained sequential optimiza-
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tion. Though its update scheme is distributional free, UP implicitly estimates the multivariate mean
and covariance matrix.
Although Cover’s UP has a good theoretical performance guarantee, its implementation costs

exponential time in the number of assets, which restricts its practical capability. To overcome this
computational bottleneck, Kalai and Vempala [2002] presented an eff cient implementation based
on non-uniform randomwalks that are rapidlymixing. Their implementation requires a poly running
time of O

(

m7n8
)

, which is a substantial improvement of the original bound of O (nm).

3.2.2. Exponential Gradient. The strategies in the Exponential Gradient-type generally focus on
the following optimization problem,

bt+1 = argmax
b∈∆m

η logb · xt −R (b,bt) , (4)

where R (b,bt) denotes a regularization term and η > 0 is the learning rate. One straightforward
interpretation of the optimization is to track the stock with the best performance in last period but
keep the new portfolio close to the previous portfolio. This is obtained using the regularization term
R (b,bt).
Helmbold et al.[1996; 1998] proposed the Exponential Gradient(EG) strategy, which is based

on the algorithm proposed for mixture estimation problem [Helmbold et al. 1997]. The EG strategy
employs the relative entropy as the regularization term in Eq. (4),

R (b,bt) =

m
∑

i=1

bi log
bi
bt,i

.

EG’s formulation is thus convex in b, however, it is hard to solve since log is nonlinear. Thus, the
authors adopted log’s f rst-order Taylor expansion at bt,

logb · xt ≈ log (bt · xt) +
xt

bt · xt

(b− bt) ,

with which the f rst term in Eq. (4) becomes linear and easy to solve. Solving the optimization, the
update rule [Helmbold et al. 1998, Eq. (3.3)] becomes,

bt+1,i = bt,i exp

(

η
xt,i

bt · xt

)

/Z, i = 1, . . . ,m,

where Z denotes the normalization term such that the portfolio sums to 1.
The optimization problem (4) can also be solved using theGradient Projection(GP) andExpecta-

tion Maximization(EM) method [Helmbold et al. 1997]. GP and EM adopt different regularization
terms. In particular, GP adopts L2-norm regularization, and EM adopts χ2 regularization,

R (b,bt) =

{

1
2

∑m
i=1 (bi − bt,i)

2 GP
1
2

∑m
i=1

(bi−bt,i)
2

bt,i
EM

.

The f nal update rule of GP [Helmbold et al. 1997, Eq. (5)] is,

bt+1,i = bt,i + η

(

xt,i

bt · xt

− 1

m

m
∑

i=1

xt,i

bt · xt

)

,

and the update rule of EM [Helmbold et al. 1997, Eq. (7)] is,

bt+1,i = bt,i

(

η

(

xt,i

bt · xt

− 1

)

+ 1

)

,

which can also be viewed as the f rst order approximation of EG’s update formula.
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The regret of the EG strategy can be bounded by O
(√

n logm
)

with O (m) running time per
period. The regret is not as tight as that of Cover’s UP, however, its linear running time substan-
tially surpasses that of Cover’s UP. Besides, the authors also proposed a variant, which has a regret
bound of O

(

m0.5(logm)0.25n0.75
)

. Though not proposed for online portfolio selection task, ac-
cording to Helmbold et al. [1997], GP can straightforwardly achieve a regret ofO (

√
mn), which is

signif cantly worse than that of EG.
One key parameter for EG is the learning rate η > 0. In order to achieve the desired regret bound

above, η has to be small. However, as η → 0, its update approaches uniform portfolio, and EG
reduces to UCRP.
Das and Banerjee [2011] extended the EG algorithm to the sense of meta-learning algorithm

named Online Gradient Updates(OGU), which will be introduced in Section 3.5.3. OGU com-
bines underlying experts such that the overall system can achieve the performance that is no worse
than any convex combination of base experts.

3.2.3. Follow the Leader. Strategies in the Follow the Leader(FTL) approach try to track the Best
Constant Rebalanced Portfolio (BCRP) until time t, that is,

bt+1 = b∗
t = argmax

b∈∆m

t
∑

j=1

log (b · xj) . (5)

Clearly, this category follows the BCRP leader, and the ultimate leader is the BCRP over all periods.
Ordentlich [1996, Chapter 4.4] brief y mentioned a strategy to obtain portfolios by mixing the

BCRP up to time t and uniform portfolio,

bt+1 =
t

t+ 1
b∗
t +

1

t+ 1

1

m
1.

He also showed its worst case bound, which is slightly worse than that of Cover’s UP.
Gaivoronski and Stella [2000] proposed Successive Constant Rebalanced Portfolios(SCRP) and

Weighted Successive Constant Rebalanced Portfolios(WSCRP) for stationary markets. For each
period, SCRP directly adopts the BCRP portfolio until now, that is,

bt+1 = b∗
t .

The authors further solved the optimal portfolio b∗
t via stochastic op-

timization [Birge and Louveaux 1997], resulting in the detail updates of
SCRP [Gaivoronski and Stella 2000, Algorithm 1]. On the other hand, WSCRP outputs a
convex combination of SCRP portfolio and last portfolio,

bt+1 = (1− γ)b∗
t + γbt,

where γ ∈ [0, 1] represents the trade-off parameter.
The regret bounds achieved by SCRP [Gaivoronski and Stella 2000, Theorem 1] and

WSCRP [Gaivoronski and Stella 2000, Theorem 4] are both O
(

K2 logn
)

, where K is a uniform
upper bound of the gradient of logb⊤x with respect to b. It is straightforward to see that given the
same assumption of upper/lower bound of price relatives as Cover’s UP [Cover 1991, Theorem 6.1],
the regret bound is on the same scale of Cover’s UP, although the constant term is slightly worse.
Rather than assuming that historical market is stationary, some algorithms assume that the histori-

cal market is non-stationary. Gaivoronski and Stella [2000] propose Variable Rebalanced Portfolios
(VRP), which calculates the BCRP portfolio based on a latest sliding window. To be more specif c,
VRP updates its portfolio as follows,

bt+1 = argmax
b∈∆m

t
∑

j=t−W+1

log (b · xj) ,
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where W denotes a specif ed window size. Following their algorithms for Constant Rebalanced
Portfolios (CRP), they further proposed Successive Variable Rebalanced Portfolios(SVRP) and
Weighted Successive Variable Rebalanced Portfolios(WSVRP). No theoretical results were given
on the two algorithms.
Gaivoronski and Stella [2003] further generalized Gaivoronski and Stella [2000] and proposed

Adaptive Portfolio Selection(APS) for online portfolio selection task. By changing the objective
part, APS can handle three types of portfolio selection task, that is, adaptive Markowitz portfolio,
log-optimal constant rebalanced portfolio, and index tracking. To handle the transaction cost is-
sue, they proposed Threshold Portfolio Selection(TPS), which only rebalances the portfolio if the
expected return of new portfolio exceeds that of previous portfolio for more than a threshold.

3.2.4. Follow the Regularized Leader. Another category of approaches follows the similar idea
as FTL, while adding a regularization term, thus actually becomes Follow the Regularized Leader
(FTRL) approach. In generally, FTRL approaches can be formulated as follows,

bt+1 = argmax
b∈∆m

t
∑

τ=1

log (b · xτ )−
β

2
R (b) , (6)

where β denotes the trade-off parameter and R (b) is a regularization term on b. Note that here all
historical information is captured in the f rst term, thus the regularization term only concerns the
next portfolio, which is different from the EG algorithm. One typical regularization is a L2-norm,
that is, R (b) = ‖b‖2.
Agarwal et al. [2006] proposed theOnline Newton Step(ONS), by solving the optimization prob-

lem (6) with L2-norm regularization via online convex optimization technique [Zinkevich 2003;
Hazan et al. 2006; Hazan 2006; Hazan et al. 2007]. Similar to Newton method for off ine optimiza-
tion, the basic idea is to replace the log term via its second-order Taylor expansion at bt, and then
solve the problem for closed-form update scheme. Finally, ONS’ update rule [Agarwal et al. 2006,
Lemma 2] is,

b1 =

(

1

m
, . . . ,

1

m

)

, bt+1 = ΠAt

∆m

(

δA−1
t pt

)

,

with

At =

t
∑

τ=1

(

xτx
⊤
τ

(bτ · xτ )
2

)

+ Im, pt =

(

1 +
1

β

) t
∑

τ=1

xτ

bτ · xτ

,

where β is the trade-off parameter, δ is a scale term, and ΠAt

∆m
(·) is an exact projection to the

simplex domain.
ONS iteratively updates the f rst and second order information and the portfolio with a time cost

of O
(

m3
)

, which is irrelevant to the number of historical instances t. The authors also proved
ONS’s regret bound [Agarwal et al. 2006, Theorem 1] of O

(

m1.5 log(mn)
)

, which is worse than
Cover’s UP and Dirichlet(1/2) weighted UP.
While FTRL or even the Follow-the-Winner category mainly focuses on the worst-case in-

vesting, Hazan and Kale[2009; 2012] linked the worst-case model with practically widely used
average-case investing, that is, the Geometric Brownian Motion (GBM) model [Bachelier 1900;
Osborne 1959; Cootner 1964], which is a probabilistic model of stock returns. The authors also de-
signed an investment strategy that is universal in the worst-case and is capable of exploiting the
GBM model. Their algorithm, or so-called Exp-Concave-FTL, follows a slightly different form of
optimization problem (6) with L2-norm regularization,

bt+1 = argmax
b∈∆m

t
∑

τ=1

log (b · xτ )−
1

2
‖b‖2 .
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Similar to ONS, the optimization problem can be eff ciently solved via online convex optimization
technique. The authors further analyzed its regret bound and linked it with the GBM model. Link-
ing the GBM model, the regret round [Hazan and Kale 2012, Theorem 1.1 and Corollary 1.2] is
O (m log (Q+m)), whereQ denotes the quadratic variability, calculated as n−1 times the sample
variance of the sequence of price relative vectors. Since Q is typically much smaller than n, the
regret bound signif cantly improves the O (m logn) bound.
Besides the improved regret bound, the authors also discussed the relationship of their algorithm’s

performance to trading frequency. The authors asserted that increasing the trading frequency would
decrease the variance of the minimum variance CRP, that is, the more frequently they trade, the
more likely the payoff will be close to the expected value. On the other hand, the regret stays the
same even if they trade more. Consequently, it is expected to see improved performance of such
algorithm as the trading frequency increases [Agarwal et al. 2006].
Das and Banerjee [2011] further extended the FTRL approach to a generalized meta-learning

algorithm, i.e., Online Newton Update(ONU), which guarantees that the overall performance is no
worse than any convex combination of its underlying experts.

3.2.5. Aggregating-type Algorithms. Though BCRP is the optimal strategy for an i.i.d. market, the
i.i.d. assumption is controversial in real markets, so the optimal portfolio may not belong to CRP
or f xed fraction portfolio. Some algorithms have been designed to track a different set of experts.
The algorithms in this category share similar idea to the Meta-Learning Algorithms in Section 3.5.
However, here the base experts are of a special class, that is, individual expert that invests fully on a
single stock, while in general Meta-Learning Algorithms often apply to more complex experts from
multiple classes.
Vovk and Watkins [1998] applied the Aggregating Algorithm(AA) [Vovk 1990; Vovk 1997;

Vovk 1999; Vovk 2001] to the online portfolio selection task, of which Cover’s UP is a special case.
The general setting for AA is to def ne a countable or f nite set of base experts and sequentially
allocate the resource among multiple base experts in order to achieve a good performance that is no
worse than any f xed combination of underlying experts. While its general form is shown in Sec-
tion 3.5.1, its portfolio update formula [Vovk and Watkins 1998, Algorithm 1] for online portfolio
selection is

bt+1 =

∫

∆m
b
∏t−1

i=1 (b · xt)
η
P0 (db)

∫

∆m

∏t−1
i=1 (b · xt)

η
P0 (db)

,

where P0 (db) denotes the prior weights of the experts. As a special case, Cover’s Universal Port-
folios corresponds to AA with uniform prior distribution and η = 1.
Singer [1997] proposedSwitching Portfolios(SP) to track a changingmarket, in which the stock’s

behaviors may change frequently. Rather than the CRP class, SP decides a set of basic strategies,
for example, the pure strategy that invests all wealth in one asset, and chooses a prior distribution
over the set of strategies. Based on the actual return of each strategy and the prior distribution, SP is
able to select a portfolio for each period. Upon this procedure, the author proposed two algorithms,
both of which assumes that the duration of using a basic strategy follows Geometric distribution
with a parameter of γ, which can be f xed or varied in time. With f xed γ, the f rst version of SP has
explicit update formula [Singer 1997, Eq. (6)],

bt+1 =

(

1− γ − γ

m− 1

)

bt +
γ

m− 1
.

With a varying γ, SP has no explicit update. The author also adopted the algorithm for transaction
costs. Theoretically, the author further gave the lower bound of SP’s logarithmic wealth with respect
to any underlying switching regime in hindsight [Singer 1997, Theorem 2]. Empirical evaluation on
Cover’s 2-stock pairs shows that SP can outperform UP, EG, and BCRP, in most cases.
Levina and Shafer [2008] proposed the Gaussian Random Walk(GRW) strategy, which switches

among the base experts according to Gaussian distribution. Kozat and Singer [2007] extended
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SP to piecewisef xed fraction strategies, which partitions the periods into different segments
and transits among these segments. The authors proofed the piecewise universality of their
algorithm, which can achieve the performance of the optimal piecewise f xed fraction strat-
egy. Kozat and Singer [2008] extended Kozat and Singer [2007] to the cases of transaction costs.
Kozat and Singer[2009; 2010] further generalized Kozat and Singer [2007] to sequential decision
problem. Kozat et al. [2008] proposed another piece wise universal portfolio selection strategy via
context trees and Kozat et al. [2011] generalized to sequential decision problem via tree weighting.
The most interesting thing is that switching portfolios adopts the notion of regime switch-

ing [Hamilton 1994; Hamilton 2008], which is different from the underlying assumption of
universal portfolio selection methods and seems to be more plausible than an i.i.d. market.
The regime switching is also applied to some state-of-the-art trading strategies [Hardy 2001;
Mlnařĺk et al. 2009]. However, this approach suffers from its distribution assumption, because Geo-
metric and Gaussian distributions do not seem to f t the market well [Mandelbrot 1963; Cont 2001].
This leads to other potential distributions that can better model the markets.

3.3. Follow-the-Loser Approaches

The underlying assumption for the optimality of BCRP strategy is that market is i.i.d.,
which however does not always hold for the real-world data and thus often results in in-
ferior empirical performance, as observed in various previous literatures. Instead of tracking
the winners, the Follow-the-Loserapproach is often characterized by transferring the wealth
from winners to losers. The underlying assumption underlying this approach is mean rever-
sion [Bondt and Thaler 1985; Poterba and Summers 1988; Lo and MacKinlay 1990], which means
that the good (poor)-performing assets will perform poor (good) in the following periods.
To better understand the mean reversion principle, let us further analyze the behaviors of CRP in

the Example 3.1 [Li et al. 2012].

Example3.2 (Synthetic market by Cover and Gluss [1986]). As illustrated in Example 3.1, uni-
form CRP grows exponentially on the synthetic market. Now we analyze its portfolio update behav-
iors, which follows mean reversion, as shown in Table II.
Suppose the initial CRP portfolio is

(

1
2 ,

1
2

)

and at the end of the 1st period, the closing price
adjusted portfolio holding becomes

(

1
3 ,

2
3

)

and corresponding cumulative wealth increases by a
factor of 3

2 . At the beginning of the 2nd period, CRP manager rebalances the portfolio to initial
uniform portfolio by transferring the wealth from good-performing stock (B) to poor-performing
stock (A), which actually follows the mean reversion principle. Then its cumulative wealth changes
by a factor of 3

4 and the portfolio holding at the end of the 2nd period becomes
(

2
3 ,

1
3

)

. At the
beginning of the 3rd period, the wealth transfer with the mean reversion idea continues.
In a word, CRP implicitly assumes that if one stock performs poor (good), it tends to perform

good (poor) in the subsequent period, and thus transfers the weights from good-performing stocks
to poor-performing stocks.

Table II. Example to illustrate the mean reversion trading idea.

# Period Price Relative (A,B) CRP CRP Return Portfolio Holdings Notes
1 (1, 2)

(

1
2
, 1
2

)

3
2

(

1
3
, 2
3

)

B −→ A

2
(

1, 1

2

) (

1

2
, 1

2

)

3

4

(

2

3
, 1

3

)

A −→ B

3 (1, 2)
(

1
2
, 1
2

)

3
2

(

1
3
, 2
3

)

B −→ A
...

...
...

...
...

...

3.3.1. Anti Correlation. Borodin et al.[2003; 2004] proposed a Follow-the-Loser portfolio strat-
egy named Anti Correlation (Anticor) strategy. Rather than no distributional assumption like
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Cover’s UP, Anticor strategy assumes that market follows the mean reversion principle. To ex-
ploit the mean reversion property, it statistically makes bet on the consistency of positive lagged
cross-correlation and negative auto-correlation.
To obtain a portfolio for the t+1st period, Anticor adopts logarithmic price relatives [Hull 2008]

in two specif c market windows, that is, y1 = log
(

xt−w
t−2w+1

)

and y2 = log
(

xt
t−w+1

)

. It then
calculates the cross-correlation matrix between y1 and y2,

Mcov (i, j) =
1

w − 1
(y1,i − ȳ1)

⊤ (y2,j − ȳ2)

Mcor (i, j) =

{

Mcov(i,j)
σ1(i)∗σ2(j)

σ1 (i) , σ2 (j) 6= 0

0 otherwise

Then according to the cross-correlation matrix, Anticor algorithm transfers the wealth according to
the mean reversion trading idea, that is, moves the proportions from the stocks increased more to the
stocks increased less, and the corresponding amounts are adjusted according to the cross-correlation
matrix. In particular, if asset i increases more than asset j and their sequences in the window are
positively correlated, Anticor claims a transfer from asset i to j with the amount equals the cross
correlation value (Mcor (i, j)) minus their negative auto correlation values (min {0,Mcor (i, i)}
and min {0,Mcor (j, j)}). These transfer claims are f nally normalized to keep the portfolio in the
simplex domain.
Since its mean reversion nature, it is diff cult to obtain a useful bound such as the universal regret

bound. Although heuristic and has no theoretical guarantee, Anticor empirically outperforms all
other strategies at the time. On the other hand, though Anticor algorithm obtains good performance
outperforming all algorithms at the time, its heuristic nature can not fully exploit the mean reversion
property. Thus, exploiting the property using systematic learning algorithms is highly desired.

3.3.2. Passive Aggressive Mean Reversion. Li et al. [2012] proposed Passive Aggressive Mean
Reversion(PAMR) strategy, which exploits the mean reversion property with the Passive Aggressive
(PA) online learning [Shalev-Shwartz et al. 2003; Crammer et al. 2006].
Themain idea of PAMR is to design a loss function in order to ref ect the mean reversion property,

that is, if the expected return based on last price relative is larger than a threshold, the loss will
linearly increase; otherwise, the loss is zero. In particular, the authors def ned the ǫ-insensitive loss
function for the tth period as,

ℓǫ (b;xt) =

{

0 b · xt ≤ ǫ

b · xt − ǫ otherwise
,

where 0 ≤ ǫ ≤ 1 is a sensitivity parameter to control the mean reversion threshold. Based on the loss
function, PAMR passively maintains last portfolio if the loss is zero, otherwise it aggressively ap-
proaches a new portfolio that can force the loss zero. In summary, PAMR obtains the next portfolio
via the following optimization problem,

bt+1 = argmin
b∈∆m

1

2
‖b− bt‖2 s.t. ℓǫ (b;xt) = 0. (7)

Solving the optimization problem (7), PAMR has a clean closed form update scheme [Li et al. 2012,
Proposition 1],

bt+1 = bt − τt (xt − x̄t1) , τt = max

{

0,
bt · xt − ǫ

‖xt − x̄t1‖2

}

.

Since the authors ignored the non-negativity constraint of the portfolio in the derivation, they also
added a simplex projection step [Duchi et al. 2008]. The closed form update scheme clearly ref ects
the mean reversion trading idea by transferring the wealth from the good performing stocks to the
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poor performing stocks. It also coincides with the general form [Lo and MacKinlay 1990, Eq. (1)] of
return-based contrarian strategies [Conrad and Kaul 1998; Lo 2008], except an adaptive multiplier
τt. Besides the optimization problem (7), the authors also proposed two variants to avoid noise
price relatives, by introducing some non-negative slack variables into optimization, which is similar
to soft margin support vector machines.
Similar to Anticor algorithm, due to PAMR’s mean reversion nature, it is hard to obtain a mean-

ingful theoretical regret bound. Nevertheless, PAMR achieves signif cant performance beating all
algorithms at the time and shows its robustness along with the parameters. It also enjoys linear up-
date time and runs extremely fast in the back tests, which show its practicability to large scale real
world application.
The underlying idea is to exploit the single period mean reversion, which is empirically veri-

f ed by its evaluations on several real market datasets. However, PAMR suffers from drawbacks in
risk management since it suffers signif cant performance degradation if the underlying single pe-
riod mean reversion fails to exist. Such drawback is clearly indicated by its performance in DJIA
dataset [Borodin et al. 2003; Borodin et al. 2004; Li et al. 2012].

3.3.3. Confidence Weighted Mean Reversion. Li et al. [2011b] proposed Confidence Weighted
Mean Reversion(CWMR) algorithm to further exploit the second order portfolio information,
which refers to the variance of portfolio weights (not price or price relative), following the
mean reversion trading idea via Conf dence Weighted (CW) online learning [Dredze et al. 2008;
Crammer et al. 2008; Crammer et al. 2009; Dredze et al. 2010].
The basic idea of CWMR is to model the portfolio vector as a multivariate Gaussian distribution

with mean µ ∈ R
m and the diagonal covariance matrix Σ ∈ R

m×m, which has nonzero diago-
nal elements σ2 and zero for off-diagonal elements. While the mean represents the knowledge for
the portfolio, the diagonal covariance matrix term stands for the conf dence we have in the corre-
sponding portfolio mean. Then CWMR sequentially updates the mean and covariance matrix of the
Gaussian distribution and draws portfolios from the distribution at the beginning of a period. In par-
ticular, the authors def ne bt ∈ N (µt,Σt) and update the distribution parameters according to the
similar idea of PA learning, that is, CWMR keeps the next distribution close to the last distribution
in terms of Kullback-Leibler divergence if the probability of a portfolio return lower than ǫ is higher
than a specif ed threshold. In summary, the optimization problem to be solved is,

(µt+1,Σt+1) = argmin
µ∈∆m,Σ

DKL (N (µ,Σ) ‖N (µt,Σt))

s.t. Pr [µ · xt ≤ ǫ] ≥ θ.

To solve the optimization, Li et al. [2013] transformed the optimization problem using two tech-
niques. One transformed optimization problem [Li et al. 2013, Eq. (3)] is,

(µt+1,Σt+1) = argmin
1

2

(

log

(

detΣt

detΣ

)

+ Tr
(

Σ−1
t Σ

)

+ (µt − µ)
⊤
Σ−1

t (µt − µ)

)

s. t. ǫ − µ⊤xt ≥ φx⊤
t Σxt

µ⊤1 = 1, µ � 0.

Solving the above optimization, one can obtain the closed form update scheme [Li et al. 2013,
Proposition 4.1] as,

µt+1 = µt − λt+1Σt (xt − x̄t1) , Σ−1
t+1 = Σ−1

t + 2λt+1φxtx
⊤
t ,

where λt+1 corresponds to the Lagrangian multiplier calculated by Eq. (11) in Li et al. [2013] and
x̄t = 1

⊤
Σtxt

1⊤Σt1
denotes the conf dence weighted price relative average. Clearly, the update scheme

ref ects the mean reversion trading idea and can exploit both the f rst and second order information
of a portfolio vector.
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Similar to Anticor and PAMR, CWMR’s mean reversion nature makes it hard to obtain a mean-
ingful theoretical regret bound for the algorithm. Empirical performance show that the algorithm
can outperform the state-of-the-art, including PAMR, which only exploits the f rst order informa-
tion of a portfolio vector. However, CWMR also exploits the single period mean reversion, which
suffers the same drawback as PAMR.

3.3.4. Online Moving Average Reversion. Observing that PAMR and CWMR implicitly assume
single-periodmean reversion, which causes one failure case on real dataset [Li et al. 2012, DJIA
dataset], Li and Hoi [2012] def ned a multiple-periodmean reversion named Moving Average Re-
version, and proposed OnLine Moving Average Reversion(OLMAR) to exploit the multiple-period
mean reversion.
The basic intuition of OLMAR is the observation that PAMR and CWMR implicitly predicts

next prices as last price, that is, p̂t+1 = pt−1, where p denotes the price vector corresponding the
related x. Such extreme single period prediction may cause some drawbacks that caused the failure
of certain cases in [Li et al. 2012]. Instead, the authors proposed a multiple period mean reversion,
which explicitly predicts the next price vector as the moving average within a window. They adopted
simple moving average, which is calculated as MAt =

1
w

∑t
i=t−w+1 pi. Then, the corresponding

next price relative [Li and Hoi 2012, Eq. (1)] equals,

x̂t+1 (w) =
MAt (w)

pt

=
1

w

(

1 +
1

xt

+ · · ·+ 1
⊙w−2

i=0 xt−i

)

, (8)

where w is the window size and
⊙

denotes element-wise product.
Then, they adopted Passive Aggressive online learning [Crammer et al. 2006] to learn a portfolio,

which is similar to PAMR.

bt+1 = argmin
b∈∆m

1

2
‖b− bt‖2 s.t. b · x̂t+1 ≥ ǫ.

Different from PAMR, its formulation follows the basic intuitive of investment, that is, to achieve
a good performance based on the prediction. Solving the algorithm is similar to PAMR, and
we ignore its solution. At the time, OLMAR achieves the best results among all existing algo-
rithms [Li and Hoi 2012], especially on certain datasets that failed PAMR and CWMR.

3.3.5. Robust Median Reversion. As existing mean reversion algorithms do not consider
noises and outliers in the data, they often suffer from estimation errors, which lead to non-
optimal portfolios and subsequent poor performance in practice. To handle the noises and out-
liers, Huang et al. [2013] proposed to exploit mean reversion via robust L1-median estimator, and
designed a novel portfolio selection strategy called Robust Median Reversion(RMR).
The basic idea of RMR is to explicitly estimate next price vector via robust L1-median estimator

at the end of tth period, that is, p̂t+1 = L1medt+1 (w) = µt+1, where w is a window size, and µ is
calculated by solving a optimization [Weber 1929, Fermat-Weber problem],

µt+1 = argmin
µ

w−1
∑

i=0

‖pt−i − µ‖ .

In other words, L1-median is the point with minimal sum of Euclidean distance to the k given price
vectors. The solution to the optimization problem is unique [Weiszfeld 1937] if the data points are
not collinear. Therefore, the expected price relative with L1-median estimator becomes,

x̂t+1 (w) =
L1medt+1 (w)

pt

=
µt+1

pt

. (9)

Then RMR follows the similar portfolio optimizationmethod as OLMAR [Li and Hoi 2012] to learn
an optimal portfolio. Empirically, RMR outperforms the state-of-the-art on most datasets.
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3.4. Pattern-Matching based Approaches

Besides the two categories of Follow-the-Winner/Loser, another type of strategies may utilize both
winners and losers, which is based on pattern matching. This category mainly covers nonparamet-
ric sequential investment strategies, which guarantee universal consistency, i.e., the corresponding
trading rules are of growth optimal for any stationary and ergodic market process. Note that dif-
ferent from the optimality of BCRP for the i.i.d. market, which motivates the Follow-The-Winner
approaches, Pattern-Matching based approaches consider the non i.i.d. market and maximize the
conditional expectation of log-return given past observations (cf. Algoet and Cover [1988]). For non
i.i.d. market there is a big difference between the optimal growth rate and the growth rate of BCRP.
For example, for NYSE data sets during 1962-2006 the Average Annual Yield (AAY) of BCRP is
about 20%, while the strategies in this category have AAY more than 30% (cf. Györf et al. [2012,
Chapter 2]). Grounded on nonparametric prediction [Györf and Schäfer 2003], this category con-
sists of several pattern-matching based investment strategies [Györf et al. 2006; Györf et al. 2007;
Györf et al. 2008; Li et al. 2011a]. Moreover, some techniques are also applied to the sequential
prediction problem [Biau et al. 2010].
Now let us describe the main idea of the Pattern-Matching based approaches [Györf et al. 2006],

which consists of two steps, that is, the Sample Selection step and Portfolio Optimization step 1.
The f rst step, Sample Selection step, selects an index set C of similar historical price relatives,
whose corresponding price relatives will be used to predict the next price relative. After locating
the similarity set, each sample price relative xi, i ∈ C is assigned with a probability Pi, i ∈ C.
Existing methods often set the probabilities to uniform probability Pi = 1

|C| , where |·| denotes
the cardinality of a set. Besides uniform probability, it is possible to design a different probability
setting. The second step, Portfolio Optimization step, is to learn an optimal portfolio based on the
similarity set obtained in the f rst step, that is,

bt+1 = argmax
b∈∆m

U (b;C) ,

where U (b;C) is a specif ed utility function of b based on C. One particular utility function is the
log utility, i.e., U (b;C) =

∑

i∈C logb⊤xi, which is usually the default utility. In case of empty
similarity set, a uniform portfolio is adopted as the optimal portfolio.
In the following sections, we concretize the Sample Selection step in Section 3.4.1 and the Port-

folio Optimization step in Section 3.4.2. We further combine the two steps in order to formulate
specif c online portfolio selection algorithms, in Section 3.4.3.

3.4.1. Sample Selection Techniques. The general idea in this step is to select similar samples
from historical price relatives by comparing the preceding market windows of two price relatives.
Suppose we are going to locate the price relatives that are similar to next price relative xt+1. The
basic routine is to iterate all historic price relative vectorsxi, i = w+1, . . . , t and countxi as similar
one, if the preceding market window xi−1

i−w is similar to the latest market window xt
t−w+1. The set C

is maintained to contain the indexes of similar price relatives. Note that market window is a w×m-
matrix and the similarity between two market windows is often calculated on the concatenated
w ×m-vector. The Sample Selection procedure (C (xt

1, w)) is further illustrated in Algorithm 2.
Nonparametric histogram-basedsample selection [Györf and Schäfer 2003] pre-def nes a set of

discretized partitions, and partitions both latest market window xt
t−w+1 and historical market win-

dow xi−1
i−w , i = w + 1, . . . , t, and f nally chooses price relative vectors whose xi−1

i−w is in the same
partition as xt

t−w+1. In particular, given a partition Pℓ = Aj,ℓ, j = 1, 2, . . . , dℓ of Rm
+ into dℓ dis-

joint sets and a corresponding discretization function Gℓ (x) = j, if x ∈ Aℓ,j , we can def ne the

1Here we only introduce the key idea. All algorithms in this category consist of an additional aggregation step, which is a
special case of Meta-Learning Algorithms in Section 3.5.
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ALGORITHM 2: Sample selection framework (C
(

x
t
1, w

)

).

Input : xt
1: Historical market sequence; w: window size;

Output :C: Index set of similar price relatives.
Initialize C = ∅;
if t ≤ w + 1 then

return;
end
for i = w + 1, w + 2, . . . , t do

if xi−1
i−w

is similar toxt
t−w+1 then

C = C ∪ {i};
end

end

similarity set as,

CH

(

xt
1, w

)

=
{

w < i < t+ 1 : Gℓ

(

xt
t−w+1

)

= Gℓ

(

xi−1
i−w

)}

.

Note that ℓ is adopted to aggregate multiple experts.
Nonparametric kernel-basedsample selection [Györf et al. 2006] identif es the similarity set by

comparing two market windows via Euclidean distance,

CK

(

xt
1, w

)

=
{

w < i < t+ 1 :
∥

∥xt
t−w+1 − xi−1

i−w

∥

∥ ≤ c

ℓ

}

,

where c and ℓ are the thresholds used to control the number of similar samples. Note that the authors
adopted two threshold parameters for theoretical analysis.
Nonparametric nearest neighbor-basedsample selection [Györf et al. 2008] searches the price

relativeswhose precedingmarket windows are within the ℓ nearest neighbor of latest market window
in terms of Euclidean distance,

CN

(

xt
1, w

)

=
{

w < i < t+ 1 : xi−1
i−w is among the ℓ NNs of xt

t−w+1

}

,

where ℓ is a threshold parameter.
Correlation-drivennonparametric sample selection [Li et al. 2011a] identif es the linear similar-

ity among two market windows via correlation coeff cient,

CC

(

xt
1, w

)

=

{

w < i < t+ 1 :
cov

(

xi−1
i−w,x

t
t−w+1

)

std
(

xi−1
i−w

)

std
(

xt
t−w+1

) ≥ ρ

}

,

where ρ is a pre-def ned correlation coeff cient threshold.

3.4.2. Portfolio Optimization Techniques. The second step of the Pattern-Matching based Ap-
proaches is to construct an optimal portfolio based on the similar set C. Two main approaches
are the Kelly’s capital growth theory and Markowitz’s mean variance theory. In the following we
illustrate several techniques adopted in this approaches.
Györf et al. [2006] proposed to f gure out a log-optimal(Kelly) portfolio based on similar price

relatives located in the f rst step, which is clearly following the Capital Growth Theory. Given a
similarity set, the log-optimal utility function is def ned as,

UL

(

b;C
(

xt
1

))

= E

{

logb · x
∣

∣

∣
xi, i ∈ C

(

xt
1

)

}

=
∑

i∈C(xt
1)

Pi logb · xi,

where Pi denotes the probability assigned to a similar price relative xi, i ∈ C (xt
1).

Györf et al. [2006] assume a uniform probability among the similar samples, thus it is equivalent

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: December YEAR.



A:20 Li and Hoi

to the following utility function,

UL

(

b;C
(

xt
1

))

=
∑

i∈C(xt
1)

logb · xi.

Györf et al. [2007] introduced semi-log-optimalstrategy, which approximates log in the log-
optimal utility function aiming to release the computational issue, and Vajda [2006] presented theo-
retical analysis and proved its universal consistency. The semi-log-optimal utility function is def ned
as,

US

(

b;C
(

xt
1

))

= E

{

f (b · x)
∣

∣

∣
xi, i ∈ C

(

xt
1

)

}

=
∑

i∈C(xt
1)

Pif (b · xi) ,

where f (·) is def ned as the second order Taylor expansion of log z with respect to z = 1, that is,

f (z) = z − 1− 1

2
(z − 1)

2
.

Györf et al. [2007] assume a uniform probability among the similar samples, thus, equivalently,

US

(

b;C
(

xt
1

))

=
∑

i∈C(xt
1)

f (b · xi) .

Ottucsák and Vajda [2007] proposed nonparametric Markowitz-typestrategy, which is a further
generalization of the semi-log-optimal strategy. The basic idea of the Markowitz-type strategy is to
represent portfolio return using Markowitz’s idea to trade off between portfolio mean and variance.
To be specif c, the Markowitz-type utility function is def ned as,

UM

(

b;C
(

xt
1

))

=E

{

b · x
∣

∣

∣
xi, i ∈ C

(

xt
1

)

}

− λVar
{

b · x
∣

∣

∣
xi, i ∈ C

(

xt
1

)

}

=E

{

b · x
∣

∣

∣
xi, i ∈ C

(

xt
1

)

}

− λE
{

(b · x)2
∣

∣

∣
xi, i ∈ C

(

xt
1

)

}

+λ
(

E

{

b · x
∣

∣

∣
xi, i ∈ C

(

xt
1

)

})2

,

where λ is a trade-off parameter. In particular, a simple numerical transformation shows that semi-
log-optimal portfolio is an instance of the log-optimalutility function with a specif ed λ.
To solve the problem with transaction costs, Györf and Vajda [2008] propose a GV-typeutility

function (Algorithm 2 in Györf and Vajda [2008], their Algorithm 1 follows the same procedure as
log-optimal utility) by incorporating the transaction costs, as follows,

UT

(

b;C
(

xt
1

))

= E {logb · x+ log c (bt,b,xt)} ,

where c (·) ∈ (0, 1) is the transaction cost factor in Eq. (1), which represents the remaining propor-
tion after transaction costs imposed by the market. The details of the calculation of the factor are
illustrated in Section 2.1. According to a uniform probability assumption of the similarity set, it is
equivalent to calculate,

UT

(

b;C
(

xt
1

))

=
∑

i∈C(xt
1)

(logb · x+ log c (bt,b,xt)) .

In any of the above procedures, if the similarity set is non-empty,we can gain an optimal portfolio
based on the similar price relatives and their probability. In case of empty set, we can choose either
uniform portfolio or previous portfolio.
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Table III. Pattern-Matching based approaches: sample selection and portfolio optimization.

Sample Selection Techniques
Portfolio Optimization Histogram Kernel Nearest Neighbor Correlation
Log-optimal BH: CH + UL BK: CK + UL BNN: CN + UL CORN: CC + UL

Semi log-optimal — BS: CK + US — —
Markowitz-type — BM: CK + UM — —
GV-type — BGV: CK + UR — —

3.4.3. Combinations. In this section, let us combine the f rst step and the second step and describe
the detail algorithms in the Pattern-Matching based approaches. Table III shows existing combina-
tions, where “—” means that no algorithm is proposed to exploit the combination.
One default utility function is the log-optimal function.Györf and Schäfer [2003] introduced

the nonparametric histogram-based log-optimalinvestment strategy (BH), which combines the
histogram-based sample selection and log-optimal utility function and proved its universal con-
sistency. Györf et al. [2006] presented nonparametric kernel-based log-optimalinvestment strategy
(BK), which combines the kernel-based sample selection and log-optimal utility function and proved
its universal consistency. Györf et al. [2008] proposed nonparametric nearest neighbor log-optimal
investment strategy (BNN), which combines the nearest neighbor sample selection and log-optimal
utility function and proofed its universal consistency. Li et al. [2011a] created correlation-driven
nonparametriclearning approach (CORN) by combining the correlation driven sample selection
and log-optimal utility function and showed its superior empirical performance over previous three
combinations. Besides the log-optimal utility function, several algorithms using different utility
functions have been proposed. Györf et al. [2007] proposed nonparametric kernel-based semi-log-
optimal investment strategy (BS) by combining the kernel-based sample selection and semi-log-
optimal utility function to ease the computation of (BK). Ottucsák and Vajda [2007] proposed non-
parametric kernel-based Markowitz-typeinvestment strategy (BM) by combining the kernel-based
sample selection and Markowitz-type utility function to make trade-offs between the return (mean)
and risk (variance) of expected portfolio return. Györf and Vajda [2008] proposed nonparametric
kernel-based GV-typeinvestment strategy (BGV) by combining the kernel-based sample selection
and GV-type utility function to construct portfolios in case of transaction costs. If the sequence of
relative price vectors is a f rst order Markov chain with known distributions then their strategies are
growth optimal. For unknown distributions, Györf and Walk [2012] introduced empirical growth
optimal algorithms. Ormos and Urbán [2011] empirically analyzed the performance of log-optimal
portfolio strategies with transaction costs.
Note that this section only introduces the key steps (or individual expert) in the Pattern-Matching

based approaches, while all the above algorithms also consist an additional aggregation step. With
different parameters (w, ℓ, or ρ), one can get a family of portfolios, which are then aggregated
into a f nal portfolio using exponential weighting [Györf et al. 2006]. Such rule is actually a meta
algorithms, which we will introduce in the following section.

3.5. Meta-Learning Algorithms

Another category of research in the area of online portfolio selection is the Meta-
Learning Algorithm(MLA) [Das and Banerjee 2011], which is closely related to expert learn-
ing [Cesa-Bianchi and Lugosi 2006] in the machine learning community. This is directly applicable
to a “Fund of funds”, which delegates its portfolio assets to other funds. In general, MLA assumes
several base experts, either from same strategy class or different classes. Each expert outputs a port-
folio vector for the coming period, and MLA combines these portfolios to form a f nal portfolio,
which is used for the next rebalancing. MA algorithms are similar to algorithms in “Follow-the-
Winner” approaches, however, they are proposed to handle a broader class of experts, which CRP
can serve as one special case. On the one hand, MLA system can be used to smooth the f nal perfor-
mance with respect to all underlying experts, especially when base experts are sensitive to certain
environments/parameters. On the other hand, combining a universal strategy and a heuristic algo-
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rithm, where it is not easy to obtain a theoretical bound, such as Anticor, etc., can provide the uni-
versal property to the whole MLA system. Finally, MLA is able to combine all existing algorithms,
thus providing a much broader area of application.

3.5.1. Aggregating Algorithms. Besides the algorithms discussed in Section 3.2.5, the Aggregat-
ing Algorithm(AA) [Vovk 1990; Vovk and Watkins 1998] can also be generalized to include more
sophisticated base experts. Given a learning rate η > 0, a measurable set of experts A, and a prior
distribution P0 that assigns the initial weights to the experts, AA def nes a loss function as ℓ (x, γ)
and γt (θ) as the action chosen by expert θ at time t. At the beginning of each period t = 1, 2, . . . ,
AA updates the experts’ weights as,

Pt+1 (A) =

∫

A

βℓ(xt,γt(θ))Pt (dθ) ,

where β = e−η and Pt denotes the weights to the experts at time t.
3.5.2. Fast Universalization. Akcoglu et al.[2002; 2004] proposed Fast Universalization(FU),

which extends Cover’s Universal Portfolios [Cover 1991] from parameterized CRP class to a wide
class of investment strategies, including trading strategies operating on a single stock and portfolio
strategies allocating wealth among whole stock market. FU’s basic idea is to evenly split the wealth
among a set of base experts, let these experts operate on their own, and f nally pool their wealth.
FU’s update is similar to that of Cover’s UP, and it also asymptotically achieves the wealth equal
to an optimal f xed convex combination of base experts. In cases that all experts are CRPs, FU is
reduced to Cover’s UP.
Besides the universalization in the continuous parameter space, various discrete buy and hold

combinations have been adopted by various existing algorithms. Rewritten in discrete form, its
update can be straightforwardly obtained. For example, Borodin et al.[2003; 2004] adopted BAH
strategy to combine Anticor experts with a f nite number of window sizes. Li et al. [2012] combined
PAMR experts with a f nite number of mean reversion thresholds. Moreover, all Pattern-Matching
based approaches in Section 3.4 used BAH to combine their underlying experts, also with a f nite
number of window sizes.

3.5.3. Online Gradient & Newton Updates. Das and Banerjee [2011] proposed two meta opti-
mization algorithms, named Online Gradient Update(OGU) and Online Newton Update(ONU),
which are natural extensions of Exponential Gradient(EG) andOnline Newton Step(ONS), respec-
tively. Since their updates and proofs are similar to their precedents, here we ignore their updates.
Theoretically, OGU and ONU can achieve the growth rate as the optimal convex combination of
the underlying experts. Particularly, if any base expert is universal, the f nal meta system enjoys
the universal property. Such a property is useful since a Meta-Learning Algorithm can incorporate
a heuristic algorithm and a universal algorithm, whereby the f nal system enjoys the performance
while keeping the universal property.

3.5.4. Follow the Leading History. Hazan and Seshadhri [2009] proposed a Follow the Leading
History (FLH) algorithm for changing environments. FLH can incorporate various universal base
experts, such as the ONS algorithm. Its basic idea is to maintain a working set of f nite experts,
which are dynamically f owed in and dropped out according to their performance, and allocate
the weights among the active working experts with a meta-learning algorithm, for example, the
Herbster-Warmuth algorithm [Herbster and Warmuth 1998]. Different from other meta-learning al-
gorithms where experts operate from the same beginning, FLH adopts experts starting from differ-
ent periods. Theoretically, the FLH algorithm with universal methods is universal. Empirically, FLH
equipped with ONS can signif cantly outperform ONS.

4. CONNECTION WITH CAPITAL GROWTH THEORY

Most online portfolio selection algorithms introduced above can be interestingly connected to the
Capital Growth Theory. In this section, we f rst introduce the Capital Growth Theory for portfolio
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Table IV. Online portfolio selection and the Capital Growth Theory.

Algorithms x̂t+1 Prob. Capital growth forms
BCRP∗ xi, i = 1, . . . , n 1/n bt+1 = argmaxb∈∆m

1

n

∑

n

i=1 logb · xi

EG xt 100% bt+1 = argmaxb∈∆m
logb · xt − λR (b,bt)

PAMR 1
xt

100% bt+1 = argminb∈∆m
b · xt + λR (b,bt)

CWMR 1
xt

100% bt+1 = argminb∈∆m
P (b · xt) + λR (b,bt)

OLMAR/RMR Eq. (8)/Eq. (9) 100% bt+1 = argmaxb∈∆m
b · x̂t+1 − λR (b,bt)

BH/BK/BNN/CORN xi, i ∈ Ct 1/ |Ct| bt+1 = argmaxb∈∆m

1
|Ct|

∑

i∈Ct
logb · xi

BGV
xi, i ∈ Ct 1/ |Ct| bt+1 = argmaxb∈∆m

1

|Ct|

∑

i∈Ct
(logb · xi + log c (·))

FTL xi, i = 1, . . . , t 1/t bt+1 = argmaxb∈∆m

1
t

∑

t

i=1 logb · xi

FTRL xi, i = 1, . . . , t 1/t bt+1 = argmaxb∈∆m

1
t

∑

t

i=1 logb · xi − λR (b)

selection, and then connect the previous algorithms to the Capital Growth Theory in order to reveal
their underlying trading principles.

4.1. Capital Growth Theory for Portfolio Selection

Originally introduced in the context of gambling, Capital Growth Theory
(CGT)[Hakansson and Ziemba 1995] (also termed Kelly investment [Kelly 1956] or Growth
Optimal Portfolio (GOP) [Györf et al. 2012]) can generally be adopted for online portfolio
selection. Breiman [1961] generalized Kelly criterion to multiple investment opportunities.
Thorp [1971] and Hakansson [1971] focused on the theory of Kelly criterion or logarithmic
utility for the portfolio selection problem. Now let us brief y introduce the theory for portfolio
selection [Thorp 1971].
The basic procedure of CGT for portfolio selection is to maximize the expected log return

for each period. It involves two related steps, that is, prediction and portfolio optimization. For
prediction step, CGT receives the predicted distribution of price relative combinations x̂t+1 =
(x̂t+1,1, . . . , x̂t+1,m), which can be obtained as follows. For each investment i, one can predict
a f nite number of distinct values and corresponding probabilities. Let the range of x̂t+1,i be
{ri,1; . . . ; ri,Ni

} , i = 1, . . . ,m, and corresponding probability for each possible value ri,j be pi,j .
Based on these predictions, one can estimate their joint vectors and corresponding joint probabili-
ties. In this way, there are in total

∏m
i=1 Ni possible prediction combinations, each of which is in the

form of x̂(k1,k2,...,km)
t+1 = [x̂t+1,1 = r1,k1

and x̂t+1,2 = r2,k2
and . . . and x̂t+1,m = rm,km

] with a
probability of p(k1,k2,...,km) =

∏m
j=1 pj,kj

. Given these predictions, CGT tries to obtain an optimal
portfolio that maximizes the expected log return,

E logS =
∑

p(k1,k2,...,km) log
(

b · x̂(k1,k2,...,km)
t+1

)

=
∑

[

p(k1,k2,...,km) log (b1r1,k1
+ · · ·+ bmrm,km

)
]

,

where the summation is over all
∏m

i=1 Ni price relative combinations. Obviously, maximizing
the above equation is concave in b and thus can be eff ciently solved via convex optimiza-
tion [Boyd and Vandenberghe 2004].

4.2. Online Portfolio Selection and Capital Growth Theory

Most existing online portfolio selection algorithms have close connection with the Capital Growth
Theory (or Kelly criterion). While the theory provides a theoretically guaranteed framework for as-
set allocation, online portfolio selection algorithms mainly connect to the theory from two different
aspects.
The f rst connection is established between CGT and the universal portfolio selection scheme,

which mainly includes several Follow-the-Winner approaches. Kelly criterion aims to maximize the
exponential growth rate of an investment scheme, while universal portfolio selection scheme tries
to maximize the exponential growth rate relative to the rate of BCRP. Although they have differ-
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ent objectives, they are somehow connected as the target of universal portfolio selection scheme is
one special case of Kelly criterion. Cover and Thomas [1991, Theorem 15.3.1] showed that if the
market sequence (price relative vectors) is i.i.d. and then the maximum performance is achieved by
an optimal constant rebalanced portfolios in hindsight, or the Best Constant Rebalanced Portfolio
(BCRP). We further rewrite the BCRP strategy in the form of Kelly criterion, as shown in the f rst
row of Table IV. Thereafter, Cover [1991] set BCRP as a target, and proposed the universal port-
folio selection scheme. Note that as introduced in Section 3.1.3, the gap between their cumulative
exponential grow rates is termed regret. Such connection also coincides with competitive analysis
in Borodin et al. [2000].
In particular, the f rst four algorithms in the Follow-the-Winner category, i.e., Universal Portfo-

lios, Exponential Gradient, Follow the Leader, and Follow the Regularized Leader, all release regret
bounds whose daily average asymptotically approaches zero as trading period goes to inf nity. In
other words, these algorithms can achieve the same exponential growth rate as BCRP, which is
CGT optimal in an i.i.d. market. While the Aggregating-type Algorithms extend online portfolio
selection from the CRP class to other strategy classes, which may not be optimal relative to BCRP.
The second connection explicitly adopts the idea of Capital Growth Theory for online portfo-

lio selection, as shown in Section 4.1. For each period, one algorithm requires the predicted price
relative combinations and their corresponding probabilities. Without loss of generality, let us make
portfolio decision for the t + 1st period. Table IV summarizes their rewritten formulations. Note
that some algorithms in the f rst connection (such as EG, ONS, etc.) can also be rewritten to this
form, although their objectives are different from CGT. We present their implicit market distribu-
tions, denoted by their values (x̂t+1) and probabilities (Prob.), in the second and third columns,
respectively. We then rewrite all algorithms following the Capital Growth Theory, that is, to maxi-
mize the expected log return for the t + 1st period, in the fourth column. The regularization terms
are denoted as R (b,bt), which preserves the information of last portfolio vector (bt), and R (b),
which constrains the variability of a portfolio vector. Based on the number of predictions, we can
categorize most existing algorithms into three categories.
The f rst category, including EG/PAMR/CWMR/OLMAR/RMR, implicitly or explicitly predicts

a single scenario with certainty, and tries to select an optimal portfolio. Note that the capital growth
forms of PAMR and CWMR are rewritten from their original forms, while keeping their essential
ideas. Moreover, PAMR, CWMR, and OLMAR all ignore the log utility function, as adding log
utility function follows the same idea but causes the convexity issue. Though such single prediction
is risky, all these algorithms adopt regularization terms, such as R (b,bt) = ‖b− bt‖2, to ensure
that next portfolio is not far from current one, which in deed reduces the risk.
The second category, including Pattern-Matching based approaches, predicts multiple scenarios

that are deemed similar to next price relative vector. In particular, it expects next price relative to be
xi, i ∈ C with a uniform probability of 1

|C| , where C denotes the similarity set. Then, algorithms in
this category try to maximize its expected log return in terms of the similarity set, which is consistent
with the Capital Growth Theory and results in an optimal f xed fraction portfolio. Note that several
algorithms in the Pattern-Matching based approaches, including BS, BM, and BGV, adopt different
portfolio optimization approaches, which we do not count in here.
The third category, including FTL and FTRL, implicitly predicts next scenario as all historical

price relatives. In particular, it predicts that the next price relative vector equals xi, i = 1, . . . , twith
a uniform probability of 1

t
. Based on such prediction, strategies in this category aim to maximize

the expected log return, and subtract a regularization term for FTRL. Note that different from the
regularization terms in the f rst category, regularization term in this category, such asR (b) = ‖b‖2,
only controls the deviation of next portfolio. This is due to the fact that the predictions already
contain all available information.
Note that the two connections are not exclusive. For example, some universal portfolio selection

algorithms (EG, ONS, etc.) show both connections. On the one hand, their formulations can be
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Table V. Online portfolio selection and their underlying trading principles.

Principles Algorithms x̂t+1 Prob. E {x̂t+1}

Momentum EG xt 100% xt

FTL/FTRL xi, i = 1, . . . , t 1/t 1

t

∑

t

i=1 xi

Mean reversion

CRP/UP/AA n/a n/a n/a
Anticor n/a n/a n/a
PAMR/CWMR 1

xt
100% 1

xt

OLMAR Eq. (8) 100% Eq. (8)
RMR Eq. (9) 100% Eq. (9)

Mixed BH/BK/BNN/BGV/CORN xi, i ∈ Ct 1/ |Ct|
1

|Ct|

∑

i∈Ct
xi

explicitly rewritten to Kelly’s form. On the other hand, their motivations follow the f rst connection,
which is validated by their theoretical results.

4.3. Underlying Trading Principles

Besides the aspect of the Capital Growth Theory, most existing algorithms also follow certain trad-
ing ideas to implicitly or explicitly predict their next price relatives. Table V summarizes their
underlying trading ideas via three trading principles, that is, momentum, mean reversion, and others
(for example, nonparametric prediction).
Momentum strategy [Chan et al. 1996; Rouwenhorst 1998; Moskowitz and Grinblatt 1999;

Lee and Swaminathan 2000; George and Hwang 2004; Cooper et al. 2004] assumes winners
(losers) will still be winners (losers) in the following period. By observing algorithms’ underlying
prediction schemes, we can classify EG/FTL/FTRL as this category. While EG assumes that next
price relative vector will be the same as last one, FTL and FTRL assume that next price relative is
expected to be the average of all historical price relative vectors.
In contrary, mean reversion strategy [Bondt and Thaler 1985; Bondt and Thaler 1987;

Poterba and Summers 1988; Jegadeesh 1991; Chaudhuri and Wu 2003] assumes that winners
(losers) will be losers (winners) in the following period. Clearly, CRP and UP, Anticor, and
PAMR/CWMR belong to this category. Here, note that UP is an expert combination of the CRP
strategies, and we classify it by its implicit assumption on the underlying stocks. If we observe
from the perspective of experts, UP transfers wealth from CRP losers to CRP winners, which is
actually momentum. Moreover, PAMR and CWMR’s expected price relative vector is implicitly
the inverse of last vector, which is in the opposite of EG.
Other trading ideas, including the Pattern-Matching based approach, cannot be classif ed as the

above two categories. For example, for the Pattern-Matching approaches, their average of the price
relatives in a similarity set may be regarded as either momentum or mean reversion. Besides, the
classif cation of AA depends on the type of underlying experts. From experts’ perspective, AA
always transfers the wealth from loser experts to winner experts, which is momentum strategy.
From stocks’ perspective, which is the assumption in Table V, the classif cation of AA coincides
with that of its underlying experts. That is, if the underlying experts are single stock strategy, which
is momentum, then we view AA’s trading idea as momentum. On the other hand, if the underlying
experts are CRP strategy, which follows the mean reversion principle, we regard AA’s trading idea
as mean reversion.

5. CHALLENGES AND FUTURE DIRECTIONS

Online portfolio selection task is a special and important case of asset management. Though existing
algorithms perform well theoretically or empirically in back tests, researchers have encountered
several challenges in designing the algorithms. In this section, we focus on the two consecutive
steps in the online portfolio selection, that is, prediction and portfolio optimization. In particular,
we illustrate open challenges in the prediction step in Section 5.1, and list several other challenges
in the portfolio optimization step in Section 5.2. There are a lot of opportunities in this area and and
it worths further exploring.
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5.1. Accurate Prediction by Advanced Techniques

As we analyzed in Section 4.2, existing algorithms implicitly assume various prediction schemes.
While current assumptions can result in good performance, they are far from perfect. Thus, the
challenges for the prediction step are often related to the design of more subtle prediction schemes
in order to produce more accurate predictions of the price relative distribution.
— Searching patterns. In the Pattern-Matching based approach, in spite of many sample selection

techniques introduced, eff ciently recognizing patterns in the f nancial markets is often challenging.
Moreover, existing algorithms always assume uniform probability on the similar samples, while it
is an challenge to assign appropriate probability, hoping to predict more accurately. Finally, exist-
ing algorithms only consider the similarity between two market windows with the same length
and same interval, however, locating patterns with varying timing [Rabiner and Levinson 1981;
Sakoe and Chiba 1990; Keogh 2002] is also attractive.
— Utilizing stylized facts in returns. In econometrics, there exist a lot stylized facts,

which refer to consistent empirical f ndings that are accepted as truth. One stylized
fact is related to autocorrelations in various assets’ returns2 . It is often observed
that some stocks/indices show positive daily/weekly/monthly autocorrelations [Fama 1970;
Lo and MacKinlay 1999; Llorente et al. 2002], while some others have negative daily autocorre-
lations [Lo and MacKinlay 1988; Lo and MacKinlay 1990; Jegadeesh 1990]. An open challenge is
to predict future price relatives utilizing their autocorrelations.
— Utilizing stylized facts in absolute/square returns. Another stylized fact [Taylor 2005] is that

the autocorrelations in absolute and squared returns are much higher than those in simple returns.
Such fact indicates that there may be consistent nonlinear relationship within the time series, which
various machine learning techniques may be used to boost the prediction accuracy. However, in the
current prediction step, such information is rarely exploited, thus constituting a challenge.
— Utilizing calendar effects. It is well known that there exist some calendar effects, such as

January effect or turn-of-the-year effect [Rozeff and Jr. 1976; Haugen and Lakonishok 1987;
Moller and Zilca 2008], holiday effect [Fields 1934; Brockman and Michayluk 1998;
Dzhabarov and Ziemba 2010], etc. No existing algorithm exploits such information, which
can potentially provide better predictions. Thus, another open challenge is to take advantage of
these calendar effects in the prediction step.
— Exploiting additional information. Although most existing prediction schemes focus solely

on the price relative (or price), there exists other useful side information, such as volume, funda-
mental, and experts’ opinions, etc. Cover and Ordentlich [1996] presented a preliminary model to
incorporate the information, which is however far from applicability. Thus, it is an open challenge to
incorporate other sources of information in order to facilitate the prediction of next price relatives.

5.2. Open Issues of Portfolio Optimization

Portfolio optimization is the subsequent step for online portfolio selection.While the Capital Growth
Theory is effective in maximizing f nal cumulative wealth, which is the aim of our task, it often
incurs high risk [Thorp 1997], which is sometimes unacceptable for an investor. Incorporating the
risk concern to online portfolio selection is another open issue, which is not taken into account in
current target.
— Incorporating risk. Mean Variance theory [Markowitz 1952] adopts variance as a proxy to

risk. However, simply adding variance may not eff ciently trade off between return and risk. Thus,
one challenge is to exploit an effective proxy to risk and eff ciently trade off between them in the
scenario of online portfolio selection.
— Utilizing “optimal f ”. One recent advancement in money management is “optimal

f ” [Vince 1990; Vince 1992; Vince 1995; Vince 2007; Vince 2009], which is proposed to handle
the drawbacks of Kelly’s theory. Optimal f can reduce the risk of Kelly’s approach, however, it

2Econometrics community often adopts simple net return, which equals price relative minus one.
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requires an additional estimation on drawdown [Magdon-Ismail and Atiya 2004], which is also dif-
f cult. Thus, this poses one challenge to explore the power of optimal f and eff ciently incorporate
it to the area of online portfolio selection.
— Loosening portfolio constraints. Current portfolios are generally constrained in a simplex do-

main, which means the portfolio is self-f nanced and no margin/shorting. Besides current long-only
portfolio, there also exist long/short portfolios [Jacobs and Levy 1993], which allow short selling
and margin. Cover [1991] proposed a proxy to evaluate an algorithm when margin is allowed,
by adding additional margin components for all assets. Moreover, the empirical results on NYSE
data [Györf et al. 2012, Chapter 4] show that for online portfolio selection and for short selling
there is no gain, however, for leverage the increase of the growth rate is spectacular. However, cur-
rent methods are still in their infancy, and far from application. Thus, the challenge is to develop
effective algorithms when margin and shorting are allowed.
— Extending transaction costs. To make an algorithm practical, one has to consider some prac-

tical issues, such as transaction costs, etc. Though several online portfolio selection models with
transaction costs [Blum and Kalai 1999; Iyengar 2005; Györf and Vajda 2008] have been proposed,
they can not be explicitly conveyed in an algorithmic perspective, which are hard to understand. One
challenge is to extend current algorithms to the cases when transaction costs are taken into account.
— Extending market liquidity. Although all published algorithms claim that in the back tests

they choose blue chip stocks, which have the highest liquidity, it can not solve the concern of
market liquidity. Completely solving this problem may involve paper trading or real trading, which
is diff cult for the community. Besides, no algorithm has ever considered this issue in its algorithm
formulation. The challenge here is to accurately model the market liquidity, and then design eff cient
algorithms.

6. CONCLUSIONS

This article conducted a survey on the online portfolio selection problem, an interdisciplinary topic
of machine learning and f nance. With the focus on algorithmic aspects, we began by formulating
the task as a sequential decision learning problem, and further categorized the existing algorithms
into f ve major groups: Benchmarks, Follow-the-Winner, Follow-the-Loser, Pattern-Matching based
approaches, and Meta-Learning algorithms. After presenting the surveys of individual algorithms,
we further connected them to the Capital Growth Theory in order to better understand the essence of
their underlying trading ideas. Finally, we outlined some open challenges for further investigations.
We note that, although quite a few algorithms have been proposed in literature, many open research
problems remain unsolved and deserve further exploration. We wish this survey article could facil-
itate researchers to understand the state-of-the-art in this area and potentially inspire their further
study.
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BARRON, A. R. AND COVER, T. M. 1988. A bound on the f nancial value of information. IEEE Transactions on Information

Theory 34,5, 1097–1100.
BELENTEPE, C. Y. 2005. A statistical view of universal portfolios. Ph.D. thesis, University of Pennsylvania.
BELL, R. M. AND COVER, T. M. 1980. Competitive optimality of logarithmic investment. Mathematics of Operations

Research 5,2, 161–162.
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