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Abstract

In this paper, we formulate and study the Multi-agent Orienteering Problem with Time-dependent

Capacity Constraints (MOPTCC). MOPTCC is similar to the classical orienteering problem at single-

agent level: given a limited time budget, an agent travels around the network and collects rewards by

visiting different nodes, with the objective of maximizing the sum of his collected rewards. The most

important feature we introduce in MOPTCC is the inclusion of multiple competing agents. All agents

in MOPTCC are assumed to be self-interested, and they interact with each other when arrive at certain

nodes simultaneously. As all nodes are capacitated, if a particular node receives more agents than its

capacity, all agents at that node will be made to wait and agents suffer as a result (in terms of extra time

needed for queueing). Due to the decentralized nature of the problem, MOPTCC cannot be solved in

a centralized manner, instead, we need to seek out equilibrium solutions, and if not possible, at least

approximated equilibrium solutions. The major contribution of this paper is the formulation of the

problem, and our first attempt in identifying an efficient and effective equilibrium-seeking procedure for

MOPTCC.
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1Corresponding Author: 80 Stamford Road, Singapore 178902. Phone: +65 6828-0526, Fax: +65 6828-0919.

1



1 Introduction

The orienteering problem is a generalization of the traveling salesman problem that can be used to model a

wide variety of real-world problems like tour planning, route planning for facility inspection and patrolling

of security forces in a network. A large number of variants and corresponding algorithms for solving them

have been introduced. The most common variants of the orienteering problems include: 1) The team orien-

teering problem, in which a group of centrally controlled agents are sent to collect rewards by visiting check

points [5, 2], 2) The orienteering problem with time windows, in which service time windows are specified

for each node [12], and 3) the combination of the above two variants (the team orienteering problem with

time windows) [18].

In this paper, we introduce a multi-agent version of the problem, which we believe to be the first of

its kind. The application domain that motivates our research is the crowd control problem for a collection

of interconnected service providers (real-world examples include the MICE2 industry, amusement parks,

and museums). Individual agents (visitors) in this environment aim to visit a sequence of selected service

providers with the objective of maximizing their utilities obtained by receiving services, while observing

their individual time budget limitations and service provider’s time-dependent capacity constraints.

For the operators of such facilities, one important task they need to perform on a daily basis is to provide

proper guidance to visitors, such that visitors can obtain as much values from selected service providers as

possible. Such guidance may be passive, which is delivered via signboards or staff on the ground. With

mobile devices becoming popular, we see the opportunity that such guidance can also be personalized

and dynamic, in which case individual visitors may be guided by following instructions delivered in real

time to their mobile devices. As the operator needs to watch closely how queues build up at different ser-

vice providers throughout the day, it needs to generate recommendations for individual visitors following

their respective preferences on one hand, while satisfying queue capacity constraints for different service

providers throughout the day on the other.

More precisely, we introduce the Multi-agent Orienteering Problem with Time-dependent Capacity Con-

straints (MOPTCC). Our contributions are as follows:

1. We introduce and formulate this new problem. Under our problem, the nodes are subject to time-

dependent capacity constraints and time-dependent rewards. The rewards allow us to model individual
2Meetings, incentives, conferences, and exhibitions.
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visitors’ preferences, while the capacity constraints enable the operator to manage and control crowds.

2. We solve the MOPTCC involving multiple self-interested agents. Since agents are maximizing their

respective utilities (and not the global objective function in a standard optimization problem), the chal-

lenge is to seek what is known as an equilibrium solution rather than a centralized optimal solution.

3. We propose two solution approaches: 1) a centralized approach with integer linear program (ILP)

that computes the exact global solution (which in most cases are not equilibrium solutions); and 2) a

variant of the sampled fictitious play algorithm [15] that can efficiently identify equilibrium solutions.

We focus on the second approach, and use a wide variety of computational experiments to demonstrate

its effectiveness.

This paper proceeds as follows. After literature review in section 2, an integer linear programming

model of the MOPTCC is presented in section 3. An efficient Nash equilibrium seeking algorithm based on

sampled fictitious play is then proposed in section 4. The experimental results are presented in section 5.

Finally, section 6 concludes the paper.

2 Literature Review

The orienteering problem (OP), originally defined by Tsiligirides [25], was motivated by scheduling a cross-

country sport in which participants get rewards from visiting a predefined set of checkpoints. As a gener-

alization of the Traveling Salesman problem, it is a notoriously challenging NP-hard problem that has long

been studied since 1980s. Tsiligirides [25] presented an early survey of heuristic methods for OP; this was

followed more recently by a survey of Vansteenwegen et al. [28] which provided formulations and solution

approaches for the OP and its related variants. Essentially, our problem is a variant of OP which can be

characterized as the team orienteering problem (TOP) with time windows (TOPTW). TOP is an extension

of OP where the goal is to plan a set of routes for all the members of the team that maximizes the total

rewards collected by the team within the time limit Tmax[5]. TOP is well-studied, and many researchers

have proposed either exact solution approach (e.g., Butt and Cavalier [4], Tang and Miller-Hooks [23], and

Boussier et al. [2]) or heuristic approach (e.g., Chao et al. [5] and Tang and Miller-Hooks [23]). Most re-

cent research efforts on TOP have been on the development of efficient and effective heuristics, such as

tabu-search-based heuristic by Archetti et al. [1], ant colony optimization approach by Ke et al. [13], guided
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local search approach by Vansteenwegen et al. [26], and greedy randomized adaptive search procedure by

Souffriau et al. [22]. Compared to TOP, TOPTW received much less attention, and majority of the research

efforts are solely on the development of heuristics, e.g., the ant colony optimization by Montemanni and

Gambardella [18], the iterated local search by Vansteenwegen et al. [27], and the hybridized evolutionary

local search algorithm by Labadie et al. [14].

In this paper, we depart from the classical setting of TOP and TOPTW, which is concerned with the

route planning for a team of agents in a centralized fashion. Instead we treat the problem as a multi-agent

planning problem where individual agents are self-interested and will scrutinize their given plans carefully.

Therefore, instead of seeking a globally optimal plan, we focus on identifying a Nash equilibrium where

individual agents cannot improve their current utilities by deviation.

Formally speaking, this multi-agent TOP is modeled as a game, where players are agents, player’s

strategy space is the set containing all possible routes, and the payoff function is the mapping from a joint

strategy (routes from all players) to a vector of payoff values for all players. If a particular joint strategy is

infeasible (e.g., if queue lengths at some service providers violate the capacity constraints), all players will

receive the value of −∞.

For any normal-form game, the existence of mixed strategy Nash equilibrium is guaranteed, but pure

strategy Nash equilibrium does not always exist (see for instance [19]). While the complexity of finding a

mixed Nash equilibrium in an n-player game is still unknown, computing a mixed Nash equilibrium in a 2-

player game is PPAD-complete [7]. For the case of pure strategy Nash equilibrium, determining its existence

in a graphical game (a special case of normal-form game) is NP-complete [10]. From the computational per-

spective, it has been shown that finding pure strategy Nash equilibrium is only possible in fairly small games

(e.g., even for 5-player, 5-strategy games, it may takes hours and sometimes days to solve). The classical

approach for finding Nash equilibrium in a 2-player game is the pivot-based Lemke-Howson algorithm [16].

More recently, a mixed integer programming formulation is also proposed for solving 2-player normal-form

games [21]. In cases where payoff matrix is large and complete characterization is computationally in-

tractable (e.g., each payoff value can only be estimated by running multiple time-consuming simulations),

the focus has been on computationally tractable approaches in approximately finding equilibria (e.g., see

Wellman et al. [29] and Jordan et al. [11]) without complete payoff matrix.

Finally, most previous works on OP are static in that the network parameters (such as travel times and

node delays) remain constant over time. This is another major feature that distinguishes our work from
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the literature. In the problem we are about to describe, we allow queueing times at service providers to

be dependent on the number of visitors showing up in the same time period. As such, the time required

to receive service from a particular provider would depend on not just this agent’s strategy, but also other

agents’ strategies as well.

3 Problem Formulation

3.1 A Motivating Example

To understand why a game-theoretic framework would be necessary for MOPTCC, let’s start with a simple

example to illustrate the inadequacy of global optimum in a multi-agent environment. Consider the follow-

ing two-agent, two-provider problem: Let n0 be the designated starting and ending nodes, and let n1 and

n2 represent two providers. We assume that both agents start their trips from n0 at time 1 and they have to

return to n0 again on or before time 5. The travel time between any two nodes is 1. For each provider, it can

only serve one agent at a time, and its service time is 1 time unit. If multiple agents request service from

the same provider simultaneously, we assume that agents are to be served one after another according to

their ID numbers. We further assume that the queueing policy is set to allow provider n2 to handle at most

one agent at a time (i.e., no queueing allowed) and no limit for provider n1. Finally, we assume that agents

collect their utilities when they finish their services at the provider.

Agent’s time-dependent utilities for receiving services from the two providers are listed in Table 1:

Based on the above setup, we can see that due to the time limit constraint, each agent can choose at most

Table 1: Agent’s time-dependent utilities at different providers.
Agent 1 Agent 2

t n1 n2 n1 n2
1 1 2 3 1
2 1 2 3 1
3 2 3 3 1
4 2 3 5 2
5 2 3 5 2

one provider before returning to n0. The outcomes resulting from agent’s joint decisions are summarized as

payoff matrix in Table 2. Note that for the joint decision (n1, n1), both agents would arrive at n1 in time 2,

with Agent 1 receiving service first, followed by Agent 2. Agent 1 would leave n1 in time 3 and receives
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Table 2: Payoff matrix for all joint decisions.
Agent 2

n1 n2

A
ge

nt
1 n1 2 , 5 2 , 1

n2 3 , 3 −∞ , −∞

the value of 2 (according to Table 1); for Agent 2, he begins his service in time 3, and leaves n1 in time

4, receiving the value of 5. For (n1, n2) and (n2, n1), since there are no conflict, the corresponding payoff

values can be directly found in row (t = 3) of Table 1. (n2, n2) is infeasible since provider n2 can handle at

most 1 agent (i.e., no queueing is allowed for n2).

From Table 2, we can see that the global optimum is (n1, n1), with combined value 7. However, this

solution is not stable, as Agent 1 would be better off by deviating from n1 to n2. In fact, the joint strategy

(n2, n1), with combined value 6, is a Nash equilibrium.

This is a classical demonstration where selfish agents would deviate from the globally optimal solution

and opt for Nash equilibria with lower combined payoff. In this instance, there are two major factors

contributing to such phenomenon: 1) agents have their respective time-dependent payoffs, and 2) providers

handle agents sequentially, and individual providers might be given different limits on queue lengths.

3.2 Centralized Formulation

Although global optimum is not very meaningful for MOPTCC, as argued earlier, we should still present

the centralized formulation first. This centralized formula can serve as the comparison baseline, and it is

also an important subproblem to be solved repetitively when we introduce the game-theoretic formulation.

The MOPTCC is derived from the classical single-agent orienteering problem, where n providers (nodes)

are assumed to be fully connected and can be represented as a complete graph with tij denoting travel time

from i to j. We assume that there are m independent agents, and let stik be the utility agent k receives when

visiting node i in time t. The service time at provider d is a constant vd, and the number of agents allowed to

simultaneously visit provider d is capped at Qmax
d . The horizon of the problem is set to be T time periods.

Without loss of generality, we assume that each agent k starts his trip at node 1 in time T k
1 and should end

his trip at node n before time T k
n (nodes 1 and n can either be real or dummy nodes).
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3.2.1 Integer Linear Programming Formulation

With these notations and assumptions, we can then formulate a centralized optimization problem as an

integer linear program.

Let xtijk be the binary decision variable which is set to 1 if agent k leaves node i at time t and goes to

node j, and 0 otherwise. Let Qt
d denotes number of agents visiting node d at time t. We first define the

objective function to maximize the combined utility received by all agents:

max
T∑
t=1

m∑
k=1

n∑
i=1

n∑
j=1

stik x
t
ijk . (1)

The first set of constraints ensure that for each agent k, he starts at node 1 and ends at node n:

T∑
t=1

n∑
j=1

xt1jk =

T∑
t=1

n∑
i=1

xtink = 1 , ∀k. (2)

(3) guarantees that flows are conserved at all nodes except the origin (node 1) and the destination (node n):

T∑
t=1

n∑
i=1

xtidk =

T∑
t=1

n∑
j=1

xtdjk , ∀k, d 6= 1 or n. (3)

As in all classical OP, we assume that for each agent k, each node d is visited at most once:

T∑
t=1

n∑
j=1

xtdjk ≤ 1 , (4)

(5) defines the queue length for each node d at time t. For simplicity, we assume that service rate is 1 at all

nodes. Thus Qt
d equals queue length from time t− 1 plus the inflow and minus the outflow of current time

t for this node. (6) ensures that the queue length Qt
d should not to not exceed its corresponding threshold

Qmax
d at all times. Both (5) and (6) are defined for all d and t.

Qt
d = Qt−1

d +

m∑
k=1

 n∑
i=1

xt−tid
idk −

n∑
j=1

xtdjk

 , (5)

Qt
d ≤ Qmax

d . (6)

In (7), the arrival and departure times for agent k at node d are constrained by taking into account all potential
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delays such as service time, queue length at arrival, and travel time.

T∑
t=1

(
t+ vd +

n∑
i=1

(
Qt+tid

d + tid

)
xtidk

)
=

T∑
t=1

t

 n∑
j=1

xtdjk

 . (7)

Finally, (8) and (9) ensure that for each agent k, the schedule starts at T k
1 and ends before T k

n .

T∑
t=1

n∑
j=1

t · xt1jk = T k
1 , (8)

T∑
t=1

n∑
j=1

t · xtnjk ≤ T k
n . (9)

By expanding (5) recursively, it can be rewritten as (10). When substituting Qt
d in (7) with (10), there

are non-linear terms. To linearize these non-linear constraints, we introduce αst
ijdlk to represent xsjdl · xtidk

and βstijdlk to replace xsdjl · xtidk. After the transformation, (7) is replaced by (11) – (13).

Qt
d = Q1

d +
m∑
k=1

n∑
i=1

t−tid∑
s=2−tid

xsidk −
m∑
k=1

n∑
j=1

t∑
s=2

xsdjk,∀d, t, (10)

T∑
t=1

n∑
i=1

(t+ vd + tid)xtidk +

T∑
t=1

n∑
i=1

m∑
l=1

n∑
j=1

t∑
s=2−tid

αst
ijdlk

−
T∑
t=1

n∑
i=1

m∑
l=1

n∑
j=1

t+tid∑
s=2

βstijdlk =
T∑
t=1

n∑
j=1

t · xtdjk, ∀d, k, (11)

αst
ijdlk ≤ xsjdl , αst

ijdlk ≤ xtidk ,

αst
ijdlk ≥ xsjdl + xtidk − 1, ∀i, d, j, k, l, s, t, (12)

βstijdlk ≤ xsdjl , βstijdlk ≤ xtidk ,

βstijdlk ≥ xsdjl + xtidk − 1, ∀i, d, j, k, l, s, t. (13)

After linearization, the above mathematical programming model can then be solved by using standard in-

teger linear programming solver such as CPLEX. However, such formulation does not scale well and only

very small instance can be solved [6]. In this work, our focus is to solve MOPTCC as a game, and the
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above formulation can be revised to solve a single-agent version of the problem. Before introducing the

equilibrium-seeking algorithm, we will first model the problem using game-theoretic framework.

3.3 A Game-Theoretic Formulation for MOPTCC

The MOPTCC game is defined as the tuple Γ = 〈N ,S, u〉, where N = {1, . . . , n} is the set of all players

(agents), S = S1 × . . . × Sn is the joint strategy space, and u : S → Rn is the payoff function. When not

considering S−k, player k’s strategy space is defined as:

Sk ={(s1k, . . . , snk)|sik ∈ {1, . . . , n},∀i;

s1k = 1;∃ d, sdk = n,

for 1 < i < d, sik /∈ {s1k, . . . , si−1
k },

for d < i ≤ n, sik = 0}. (14)

In other words, a player’s strategy must always begin with node 1, end with node n, never repeat, and if the

visit sequence is shorter than n, all visits after node n must be no-op, which is denoted as 0.

Given any joint strategy profile s, we can straightforwardly compute the corresponding Qt
d for all pairs

of (t, d). We say that a joint strategy s ∈ S produces feasible joint orienteering plan if the resulting Qt
d

does not exceed Qmax
d for all pairs of (t, d). The utility function u is only defined for strategies that produce

feasible joint orienteering plans. If a joint strategy s produces infeasible plan, we defined uk(s) to be −∞

for all players.

As the MOPTCC game is defined as a normal-form game, all joint strategies can be played. However,

due to the feasibility condition defined above, only a small fraction of strategies should ever be considered.

As such, the next challenge we have to address would be to devise an algorithm that can effectively and

efficiently identify feasible equilibria of the MOPTCC game.

4 A Fictitious Play-based Algorithm for Finding Pure Nash Equilibria

As reviewed in Section 2, even for very simple game that contains only two players, it can be very com-

putationally challenging to compute equilibrium solution. As number of players and size of strategy space

increase, the complexity of the equilibrium-seeking would increase quickly. In the MOPTCC game, the
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critical challenge is the size of the strategy space. In fact, as in the usual orienteering problem, the size of

the strategy space grows exponentially as number of destinations increases (e.g., for problem with n destina-

tions, the size of the strategy space is in the order of n!). Because of this, most traditional enumeration-based

equilibrium seeking techniques (e.g., the well-known Lemke-Howson [16] algorithm) will not be effective,

and we have to find alternatives.

One computational approach that shows promise in dealing with the strategy space explosion is the

fictitious play algorithm, which is originally proposed by Brown [3] and later adopted by researchers in

operations research and computer science in dealing with either centralized or decentralized planning prob-

lems. Without going into technical details, we can view fictitious play algorithm as a way for players to

learn about how to anticipate other player’s responses, so that proper strategy can be selected. The strength

of the fictitious play is its simplicity, and it’s known that if potential function can be defined for the game

in interest, the fictitious play algorithm will converge [17]. Important classes of games that possess such

property include games with identical interests (the team game) and a wide variety of congestion games.

Unfortunately, the original fictitious play algorithm has a number of undesirable properties, both theo-

retically and computationally. First, the equilibrium that the fictitious play algorithm could converge to (if

the convergence is possible) is in mixed form, since the convergence results are all established on the belief

distribution (which is probabilistic in nature). Second, in each iteration of the fictitious play algorithm, all

players need to compute their best responses against the current belief distribution, which potentially may

contain a big chunk of the original joint strategy space. This implies that the evaluation of best responses

(which is based on expected) might be exponential as well.

To address the second issue, Lambert III et al. [15] have introduced the idea of sampling to the evaluation

of best responses: instead of evaluating against all possible combinations from the history in the belief

distribution, a small number (in most cases, only one sample is needed) of joint strategies will be sampled,

and the best response will be computed against these samples. Lambert III et al. [15] proved that this

sampled fictitious play (SFP) will converge in belief to equilibrium for games of identical interests. They

then use this result to solve large-scale unconstrained discrete optimization problems as games using SFP.

We will adopt the similar sampling idea in our first attempt to solve the MOPTCC game. However,

as we are looking to generate recommendations for agents with heterogeneous preferences (represented in

the form of payoff function), we will focus on finding pure strategy equilibria instead. As the existence

of pure strategy equilibrium is not guaranteed in general, and we cannot prove it analytically due to the
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complexity of the formulation, we will use a wide variety of computational experiments to explore whether

this is something that is achievable for the MOPTCC game.

4.1 Sampled Fictitious Play Algorithm

In Algorithm 1, we define a variant of the SFP algorithm used in solving MOPTCC games. The major new

features we implement are: 1) the handling of infeasible samples, which based on our earlier definition refer

to joint strategies that would result in over-capacitated destination; and 2) focus on identifying pure strategy

equilibrium when executing the SFP algorithm.

Algorithm 1 Sampled fictitious play algorithm for MOPTCC games.
1: Input: (Γ, kmax)
2: Output: BNE
3: B← INITIALSOLUTIONS()
4: H← UPDATEHISTORY({},B)
5: k ← 1
6: while k <= kmax do
7: D← SAMPLE(H, k)
8: for each agent i do
9: Q−i ← AGGREGATEQUEUES(D−i)

10: (Bi, δi)← BESTRESPONSE(Γ,Q−i)
11: end for
12: H← UPDATEHISTORY(H,B)
13: if maxi δi = 0 then
14: BNE ← APPEND(BNE,B)
15: k ← k + 1
16: end if
17: end while
18: Return: BNE

Algorithm 1 is a simplified skeleton that hides most implementation complexity. To start the algorithm,

we first randomly generate joint strategy that is feasible by calling INITIALSOLUTIONS() in line 3. This

initial solution is then used to initiate the history (i.e., the belief distribution). The iteration then begins,

in which a feasible joint strategy is to be sampled at the beginning of the iteration in line 7. The tighter

the capacity constraint, the more difficult it is in sampling a feasible joint strategy. However, as the initial

joint strategy is feasible, we can always find such sample. With a feasible sample joint strategy, we then

solve each agent’s best response problem as a mathematical program, which is to be defined later. Note that

when the best response is computed in line 10, congestions at all destinations (Q−i) are determined by other

player’s joint strategy (D−i) in line 9. When computing the best response, another information we get is the
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individual deviation δi, which refers to the improvement made by choosing the best response. If δi is 0, it

implies that player i cannot benefit from unilaterally deviating from the sampled strategy. If maxi δi is 0,

no player can benefit from their deviations, and D is a pure strategy equilibrium. Whenever we find such

solution, we will store it in the output set (note that in practice we will store all relevant information such as

utility and congestion besides just the equilibrium strategy).

In the next two subsections, we will explain how we generate random initial solution, how do we com-

pute best responses using mathematical programming approach.

4.2 Generating Feasible Initial Solution

The initial solution is generated using a simple greedy approach in INITIALSOLUTIONS(). We detail the

used greedy approach as follows:

1. Initialize the congestion {Qt
d} to be 0 for all (t, d) pairs.

2. Choose any player k who doesn’t have an itinerary yet.

3. For this agent, randomly choose one destination at a time, assuming that the current congestion is

{Qt
d}. We use rejection-base sampling: choosing all unvisited destinations with equal chance, and if

the chosen destination d is at its capacity at the estimated arrival time t, another sample will be drawn.

4. For each agent, we would artificially reduce its time budget by 50%. This is to approximately factor

in potential impact of this agent’s decision on other agent’s increased wait time. Based on our compu-

tational experience, this damping factor can significantly improve the likelihood of us getting feasible

decisions. Depending on the number of players and the problem parameters, different damping factors

might be appropriate. Our computational study on 5-agent instances is summarized in Figure 5 in the

Appendix.

5. After we have exhausted player k’s time budget, we fix player k’s itinerary and update {Qt
d}.

6. If the set of free players is not empty, go to Step 2 and repeat.

We first generate initial solutions without artificially reducing player’s time budget, but we soon find out

that for problems with tight capacity constraints, initial solutions generated with all players spending most

of their time budgets will result in joint solutions that are almost impossible to improve upon. In these cases,
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time budget reduction in Step 4 is shown to be very effective in improving the efficiency of the algorithm

(intuitively speaking, Step 4 allows us to reserve buffer time in the schedule generated).

4.3 Computing Best Responses

An agent’s best response in the MOPTCC game can be computed using an ILP model very similar to the

one introduced in Section 3.2, (1)–(9). There are two major differences:

• The k index which represents different agent identities can be dropped. E.g., the decision variable

will become only xtij .

• All other agents’ chosen strategies, which is taken from the sampled joint strategy, will collectively

decide the background queue length. We define Qinput
dt to be the background queue length built up by

other agents at node d in time t.

Most constraints will stay the same except (5) and (7). These two sets of constraints will be rewritten as:

Qt
d = Q

input
dt +

n∑
i=1

xt−tid
id , ∀d, t, (15)

T∑
t=1

(
t+ vd +

n∑
i=1

(
tid +Q

input
d,t+tid

)
xtid

)
=

T∑
t=1

t

n∑
j=1

xtdj , ∀d. (16)

Since Qinput
dt is provided as problem data, the constraint is already linear and requires no linearization. To-

gether with the fact that index k is dropped, the problem becomes much more tractable, and can be solved

reasonably fast in our computational study.

5 Computational Experiments

In this section, we evaluate how effective our SFP variant is in finding pure strategy equilibrium. All the

instances used in this section are generated randomly using our MOPTCC instance generator. The run times

reported below are measured on machines running 3.16GHz Intel Xeon CPU X5460 with 16GB RAM.
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5.1 Data Generation

Numerical instances in our computational study are characterized by the tuple: (m, n, T , type), where m, n,

T denote number of agents, number of nodes, and number of time periods respectively. The final parameter,

type, refer to the tightness of the instance, which can be either loose or tight. The tightness of the instance

affects how node capacities (Qmax
d ) are drawn. For loose instances, capacities are drawn from discrete

uniform distribution between (p ·m) and m; for tight instances, capacities are drawn from discrete uniform

distribution between 1 and (p · m). In both instances, p is set to a constant between 0 and 1. In all our

experiments, p is set to 0.5.

The utility value for agent k to visit node i in time t, stik, is assumed to be uniformly distributed between

1 to 5. The only exceptions are the start and end nodes, st1k and stnk, whose values are both set to be

5. Finally, all travel times (tij between nodes i and j) and service times (vd for node d) are set to 1 for

simplicity.

For our computational experiments presented in this section, we generate six categories of instances,

with parameters m ∈ {2, 5, 8}, n = 10, T = 10, and type ∈ {loose, tight}. 25 random instances are

generated for each category. To avoid being trapped in unpromising joint strategy subspace and increase

the likelihood of finding pure strategy equilibrium, each instance is independently solved for 20 times, each

time with a randomly generated initial solution (following steps introduced in Section 4.2).

5.2 Numerical Results

For smaller instances (2-agent and 5-agent cases), each instance is solved by executing SFP algorithm for 20

iterations. For larger instances (8-agent), we execute SFP algorithm for 50 iterations so that better solution

might be found. The performance of our SFP variant in finding pure strategy equilibria is summarized

in Table 3. As we can see from Table 3, SFP can identify large amount of high-quality pure strategy

equilibria for smaller instances (2-agent and 5-agent cases) very quickly. When the problem expands to have

8 agents, we can see that it’s drastically more difficult to find pure strategy equilibria (measured by both the

computational time and the number of pure strategy equilibria found). Another interesting finding is that

loose instances are much more difficult to solve than tight instances for all numbers of agents, probably

because of greater degree of freedom we have (number of feasible joint strategies would be much larger

when the capacity constraint is loose, and agents would have a more difficult time in producing coordinated

14



Table 3: Results for equilibria found on per-instance bases. For smaller instances (2-agent and 5-agent
cases), each instance is solved by executing SFP algorithm for 20 iterations. For larger instances (8-agent),
we execute SFP algorithm for 50 iterations. Note that all mentions of equilibria refer to pure strategy
equilibria.

(m,n, T ) (2, 10, 10) (2, 10, 10) (5, 10, 10) (5, 10, 10) (8, 10, 10) (8, 10, 10)

Instance Type tight loose tight loose tight loose
Total instances 25 25 25 25 25 25
Success rate of
finding equilibria

100% 100% 100% 100% 100% 100%

Avg. # of equilibria
found

267.88 256.08 79.12 66.92 44.96 20.35

Avg. # of distinct
equilibria found

17.88 17.76 61.4 52.64 31.68 14.00

Best equilibrium /
Best feasible

100% 100% 99.94% 99.97% 98.71% 98.98%

Avg. computa-
tional time(s)

114.24 172.43 337.08 439.14 3466.80 9913.22

actions as a result). We also compute the ratio between the best pure strategy equilibrium and the best

feasible solution found for each instance. We can see that the ratio is reasonably high for all instances. This

is an encouraging computational result, as it’s well known that the adhering to Nash equilibria might cause

significant drop in social welfare (e.g., see Roughgarden and Tardos [20]’s work on quantifying the price

of anarchy in the routing domain, i.e., the sacrifice one needs to endure for implementing Nash equilibrium

solution).

Another interesting way to visualize the growing of computational complexity in finding pure strategy

equilibrium is to plot the histogram of agent’s maximal deviations in all iterations. Intuitively speaking, if

we have lots of cases with 0 deviation, it implies that it’s easy to identify pure strategy equilibrium (when

the maximal deviation is 0 among all players in any iteration, it implies that a pure strategy equilibrium

has been found, since no agent can benefit from deviating unilaterally). Not surprisingly, with number of

agents increasing, the performance of the algorithm takes a hit and the frequency of zero deviation should

decrease. The plots in Figure 1 confirm our speculation. Besides steady decrease in zero-deviation cases, the

distribution of deviations also gradually shifts to the right hand side, indicating greater difficulty in reaching

coordinated outcome. The instances with loose capacity constraints also consistently have fatter tails to the

right, indicating that it’s more difficult to identify equilibrium in general for loose instances.

In terms of utility value improvement, the SFP algorithm progresses very quickly. In Figure 2 we can

observe that the average progress of the SFP algorithm over the iteration, with error bars at +1 and -1 stan-
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Figure 1: Max deviations of 2-agent, 5-agent, and 8-agent instances.

dard deviation. As illustrated in Figure 2, we can see that most of the progresses are made at early iterations,

after which the algorithm settles down quickly, with stable values and very low standard deviations. This

execution pattern is also consistent with prior research in using SFP algorithm for large-scale discrete op-

timization (e.g., see [9]). Do note that Figure 2 is relative; when we have larger number of agents, it’s

expected that more iterations would be necessary, however, the pattern improvement would resemble what

is illustrated here.
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Figure 2: The average progress of SFP algorithm over iterations for a sample instance with random restarts
(the error bar is one standard deviation over all random restarts of this instance).
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Figure 3: Maximal equilibrium utility value for 5-agent instances: 25 tight instances (left) and 25 loose
instances (right). X-axis denotes individual instances. Y-axis represents the maximum utility value of the
equilibrium solutions discovered for that instance.

5.3 Comparison Against Baseline Algorithm: Coordinate Descent

To understand whether the SFP algorithm we use for MOPTCC indeed has its merits, we compare it against

a popular baseline algorithm called the Coordinate Descent (CD) algorithm (similar CD algorithm has also

been compared to the SFP algorithm in other domains, such as the coordinated traffic signal control [8]).

The CD algorithm is a simple yet effective algorithm for solving large-scale discrete optimization (despite

its simplicity, it’s shown to work well in practice and in theory [24]). In the MOPTCC domain, it executes

as follows: the CD algorithm would starts from any player, for whom a best response against the current

solution is computed and this best response will then be used to replace this player’s current strategy. The

CD algorithm then move on to the next player and repeat the above procedures. The CD algorithm would
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terminate either after no further improvement can be made after we have iterated through all agents or the

computational time is up.

The comparison between the CD algorithm and the SFP algorithm is conducted for our 5-agent instances,

with results plotted in 3. From the figure we can see that the SFP algorithm is at least as good as the CD

algorithm, and for some instances the SFP algorithm managed to greatly outperform the CD algorithm.

Finally, we extend our experiments to 8-agent and 10-agent instances, running 50 iterations of SFP

algorithm. As shown in Figure 4, the number of iterations needed to find a equilibrium increases with the

number of agents. In the 2-agent and 5-agent cases, SFP is able to find equilibrium within 20 iterations.

For the 8-agent and 10 agent cases, equilibrium is seldom reached within the first 20 iterations and most

equilibria are found by the second half of 50 iterations.
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Figure 4: Maximal deviations for selected 8-agent (left) and 10-agent (right) instances with random restarts.
Each line represents a different random restart. X-axis denotes iterations, Y-axis denotes the maximal devi-
ation maxi δi. A deviation δi for player i can be viewed as the utility improvement made by choosing the
best response. If maxi δi is 0, a pure strategy equilibrium is found, i.e., no player can benefit from unilateral
deviation. Setting: (m,n,T) = (m,10,10).

6 Conclusions and Future Work

In this paper, we introduce a new variant of the OP, referred as the Multi-agent Orienteering Problem with

Time-Dependent Capacity Constraints (MOPTCC). It can be used as the starting point for modeling many

combinatorial optimization problems which involve time-dependent capacity constraints; e.g., it can be

applied to crowd management in leisure settings, where controlling queue lengths for various attractions is

of vital concern to the operator.
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To this end, we first propose a centralized model using integer linear programming formulation. Due to

the distributed nature of the problem, we reformulate it in the game-theoretic framework, and we propose to

use the sampled fictitious play algorithm (SFP) which is shown to be computational efficient in identifying

pure strategy equilibrium. By introducing rejection sampling in the fictitious play iteration, we are able

to deal with computational intractability and also the feasibility requirement we impose on the MOPTCC

game, which is to require all capacity constraints be observed at all times.

Our initial computational experiments show great promises, as we are able to find pure strategy equilib-

rium in all the randomly generated instances for 2-agent, 5-agent, and 8-agent MOPTCC games. Our im-

mediate next step is in trying to theoretically prove the existence of pure strategy equilibrium for MOPTCC

games. We are also interested in further improving the computational approach so that it can scale to even

larger instances.
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Figure 5: Comparison for different time budget discount ratios for 5-agent instances: (m,n,T) = (5,10,10).

The impact of using different time budget discount ratios is illustrated in Figure 5. We can clearly see

that more aggressive time budget reduction directly leads to fewer number of re-samplings. The best utility

value from discovered equilibrium solutions also improves a bit with higher time budget discount ratios.
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