
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1995

Object Interactions as First Class Objects: From Design to Object Interactions as First Class Objects: From Design to

Implementation Implementation

Mahesh DODANI

Benjamin Kok Siew GAN
Singapore Management University, benjamingan@smu.edu.sg

Lizette Velazquez

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
DODANI, Mahesh; GAN, Benjamin Kok Siew; and Velazquez, Lizette. Object Interactions as First Class
Objects: From Design to Implementation. (1995). Midwest Society for Programming Languages and
Systems. 13.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2244

This Conference Paper is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2244&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2244&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Object Interactions as First Class Objects: From Design
to Implementation

Mahesh H. Dodani, Kok Siew Gan and Lizette Velazquez
Department of Computer Science

The University of Iowa
Iowa City, Iowa 52242

email: {dodani, gan, velaz}@cs.uiowa.edu
Phone: (319) 353-5134

Fax: (319) 335-3624

Abstract

Collaborations between objects make up the dynamic behavior of OO software. These
collaborations among objects require careful design and implementation. Treating the interactions as
responsibilities that are integrated in the participating objects, results in tight coupling between objects.
Tight coupling increases complexity and reduces reusability. Object interactions need to be first class
objects from design to implementation. Our research provides a unified approach to model and
implement these interactions as first class objects. During analysis and design, they are modeled using
DynaSpecs. During implementation, they are coded with a new language construct called Compositions.
DynaSpecs and Compositions provide a consistent support for object interactions within each phase of
the OO lifecycle.

1 Introduction
Current OO methodologies [Boo94, Cole94, Jac92, Rum91] model the static structure and dynamic

behavioral aspects of OO systems. Static models use entity relationship diagrams to describe attributes in objects
and their structural relationships. There are two extremes of modeling relationships: explicit and implicit models.
Implicit models use attributes in the associated classes. Explicit models of relationships model them as first class
citizens [Tan95].

 The dynamic model aim to describe the complex interactions between objects at run time. Interactions
among collaborating objects are typically identified in the analysis phase through scenarios (use cases) that expose
the functionality of the system. Most methods use object interaction diagrams to model interactions during the
design phase. These diagrams capture the objects involved in the interaction and the corresponding flow of
message passing. The interactions among objects encompass the assumptions that each makes about other. To
understand objects interactions we need to know not just the associated message flow and the participating objects,
but also what the state changes and interaction behavior of each the participating objects.

In current methodologies all this information is distributed over the entire spectrum of models: object
models, operational models, interaction graphs and state machines. Furthermore, in the design of object classes,
the behavior of interactions is scattered across the collaborating classes. This distribution of information and
behavior across models increases the redundancy of information, complexity of the classes, and the coupling
among classes. This results in difficulties in establishing invariants and properties of the system, difficulty in
ensuring proper access to methods, and difficulty in ensuring consistent update of participating objects to reflect
dynamic changes.

The disadvantages of treating object interactions as integral behavior of the participating objects are as
follows:

• increase complexity when additional interaction responsibilities are placed on the participating objects,
• tight coupling between participating objects,

2

• reuse of interactions may include unnecessary tie to other interactions irrelevant to the reuse,
• difficulty in handling many to many relations (in which of the participating object should the interaction

responsibilities be placed), and
• abstracting the object interaction is difficult.

Object interactions should be supported as first class values in Object-Oriented software. They need to be
first class objects from design to implementation. Our research provides a unified approach to model and
implement these interactions as first class objects.

At analysis and design our research develops DynaSpecs. DynaSpecs supports the specification of objects
and interactions as first class objects. DynaSpecs model the object interactions using state transitions. The state
transitions represent events of message calls that mirror the dynamic behavior of object interactions. The formal
semantics of the model is based on the idea of a history which captures the sequence of operations within
interactions along with state changes undergone by the participating objects.

Current OO programming language allow programmers to implement object interactions as first class
objects by using classes with variable references to participating objects. However, this implementation have the
following disadvantages:

• the variable reference allows access to all public methods of the participating object, even methods
that are not relevant to the interaction,

• there are no clear separation between participants in the class encapsulation, the participants are
accessed through variables,

• in a statically typed language like C++, the participating objects must belong to the variable class
type. A suitable participant from a different class type cannot be a participant safely.

We provide a new construct called Composition to implement object interactions. Compositions, as well
as DynaSpecs allow programmers and systems designers to

• clearly define each participant in the interaction,
• focus on functionality of the interactions by defining the behavior and responsibility of each

participant,
• provide an explicit dynamic lifetime of an object interaction,
• restrict visibility to only methods of participants relevant to the interaction,
• facilitate reuse of interactions by allowing parameterized interactions, and inheriting Compositions,
• provide the necessary context to clearly separate responsibilities of participants, an encapsulation of

the entire interaction, encapsulation of each participant and limited access to participating objects,
and

• allow the selection of suitable participating objects based on the methods they implement, not the
class hierarchy they belong to.

The semantics of DynaSpecs and Compositions have been precisely defined using denotational semantics.
They have been tested with prototype executable of the constructs written in ML. These constructs can be added to
any existing OO system known to us. We have successfully implemented the constructs and incorporated them in
an Object-Oriented development environment. In this paper, we will explain how to use our constructs to model
and implement object interactions. We have modeled the MVC framework using DynaSpecs and implemented the
new MVC design using our prototype language. The paper will present our results.

The rest of this paper is organized as follow. Section 2 explains and motivates the need for DynaSpecs and
Composition through a case study. It begins by explaining the interactions in the MVC framework. It then models
and implements them using DynaSpecs and Compositions. Section 3 concludes the paper.

2 Case Study
One of the most well known framework is a Graphical User Interface framework called Model, View and

Controller [Kras88, Mod88]. We will identify the object interactions in a MVC framework, and model and
implement them using DynaSpecs and Compositions. The new MVC design will be used to implement a
calculator. Throughout this case study, we explain how to use interactors in modeling and implementing the
calculator with MVC.

3

2.1 Model, View and Controller Framework
There exist three major object interactions in applications developed using (MVC) framework:

• Views register themselves as dependents of their model and keep themselves consistent with the state of
their model (ie. with the internal state of the application).

• Controllers and models interact to translate user input to invoke system functionality.
• View-Controller interaction is needed to determine the controller in charge of user interaction.

Current approaches to model the MVC interactions, make the model, view and controller classes tightly
coupled. For example the view class includes behavior that deals with updating itself to keep consistency with the
model, behavior to interact with the controller and behavior to traverse the view hierarchy. The associated methods
access the state of the model or interpret the state of the model, translates controller inputs, and finds a view that
has the cursor. Understanding and reusing the MVC framework require dissecting each of the classes to pinpoint
the behavior involved in each object interaction.

Our constructs allow explicit definition of each MVC object interaction. This provides a clear separation
of each object’s basic behavior and separation of interactions and their participants. The interactions described
above, can be modeled by the following interactors.

• Consistence interactor to keep dependents consistent with the state of an object.
• Translate interactor to translate controller inputs into operations for performers.
• Control interactor to determine which controller gets control.

These interactors perform the functionality of the MVC framework. Control interactors within an
application represent a tree structure responsible for invoking the correct controller to get user input. In particular,
a top control interactor determines which of its sub-control wants control. Once this is determined, it sends
“controlActivity” to the sub-control. In “controlActivity”, it asks each of its translate interactor to translate any
user input. The translate interactor asks its performers to perform the input operation. The performers make their
dependents consistent using the consistence interactor. The figure bellow illustrates our explanation.

4 makeConsistent

4 makeConsistent

4 makeConsistent

4 makeConsistent

3 translate

3 translate

1 startUp

2 controlActivity

Translate1

performers

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

controller
Control

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

controller

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

view

Consistence1m

Consistencenk

Consistencen1

Consistence11

Translaten

performers

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

controller

Figure 1: MVC interactors

Control interactor usually have only one corresponding translate interactor. Each translate interactor usually has
one performer. Each performer participant of a translate interactor has exactly one consistence interactor.

The interactors described here can be documented using design patterns. Design patterns describe design
decisions using a consistent format to help provide a common vocabulary, to help to understand and reuse the
design. The format includes discussion of implementation issues and provides sample code. This format aids
implementation of the design. Interactors provide a construct to implement some structural and behavioral design
patterns [Gam95]. The close resemblance of the interactor code to design patterns illustrates the ease in capturing
the design using interactors.

The consistence interactor keeps dependents consistent with the state of an object. According to [Gam95],
the consistence interactor is similar to an observer design pattern. After a model changes its state, the view will
receive an “update” message to invalidate its view. The following figure illustrates how consistence is achieved in

4

MVC. The figure shows the message flow between the participants in the interaction. Note that the sequence of
messages is ordered as shown by the numbering.

View ViewModel

2 changed

3 update

4 update:3 update

1 perform

4 update:

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

view

6 display:

6 display:

5 update: 5 update:

Figure 2 : Consistency in MVC

The consistence composition consists of an object participant and a list of dependent participants. It
handles consistency by sending the message “makeConsistent” to the consistence composition object. The
consistence object gets the object participant’s value, maps it for each dependent, and passes the value to the
dependents, so they may update themselves if necessary. The following diagram illustrates the message flow.

Consistence

dependent participants

Model
1 makeConsistent

2 getObjectValue

3 mapObjectValue

5 updateParticipant

4 setValue
6 update

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

4 setValue
6 update

Viewn

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

object participant

View1

Figure 3: Consistence composition

To emphasize how the responsibilities for each object interaction are decoupled from the model and
dependents, the patterns in the figure stress where they are placed. In the MVC, the Model class includes View
responsibilities, the Controller includes Model and View responsibilities, and the View class includes View
hierarchy responsibilities. The interactor liberates basic objects from having interaction responsibilities as part of
their behavior by placing them in the corresponding interactor. Interactors act as an abstraction of the object
interactions and provide communication between the collaborating objects.

2.2 Calculator Application
To reuse the MVC framework architecture, we will apply the interactors to design and implement a

simple calculator. Each of the interactors described earlier will be inherited with extensions relevant to the
calculator. The calculator consists of a control hierarchy which is captured through the control interactor. This
hierarchy replaces the traditional view hierarchy used in current designs and implementations. Each view has a
translator which translates the input received by its associated controller. When the calculator model changes, the
display view must be updated. This is captured in calculator consistence interactor. Conversely, when the display
view changes the number of display digits, the calculator model needs to take that into account. If the calculated
result is larger than the number of display digits, the calculator model will be in an error state. This is captured in
view consistence interactor. Each of the composition described will be inherited with extensions relevant to the
calculator. The basic classes are inherited to CalculatorModel, DigitView, KeypadView, ButtonView,
DigitController, KeypadController and ButtonController. They perform operations specific to their responsibilities
with no operations related to any object interactions. Figure 4 shows the calculator along with its basic objects.

5

DigitView

KeypadView

ButtonViewn

ButtonView1

DigitController

ButtonController1

ButtonControllern

KeypadController

Figure 4: Calculator and its views

The interactors in the calculator application are:
• CalculatorConsistence and ViewConsistence are consistence interactors.
• DigitTranslator, KeypadTranslator and ButtonTranslator are translate interactors.
• StandardControl, DigitControl, KeypadControl and ButtonControl are control interactors.

The following figure provides an object diagram for the calculator. Note that basic MVC objects have no
references to other objects, they are responsible for their own basic behavior. Only interactor objects are involved in
coupling objects specific to the interaction.

StandardSystemControllerScheduledWindow

DigitController DigitView

Calculator

KeypadController

ButtonView

ButtonController

Legend
Variable reference

StandardControl

subControl1
subControl2

view

controller
DigitControl

translator

view

controller

KeypadControl

translator
subControl1

...

view

controller

DigitTranslator

consistence

controller

performers

ViewConsistence

object

dependents

CalculatorConsistence

object

dependents

KeypadTranslator

consistence

controller

performers

ButtonTranslator

consistence

controller

performers

ButtonControl

translator

view

controller

KeypadView
Implicit reference
to participant

Figure 5: Calculator compositions

Note that once the implicit reference (dotted arrow lines) are linked in the interactors, the responsibilities and
access to the basic objects are clearly defined. Each interactor will access only methods that they need, unlike the
MVC implementation without interactors.

2.3 DynaSpecs
This research develops DynaSpecs, a specification method for describing the dynamic behavior of object

interactions. The models of interactors are parameterized machine classes. An interactor defines the interaction

6

between two or more entities. We call these entities participants. The formal generic parameters are binded to
object and/or interactor classes to create concrete interactor machine classes. The classes given as arguments
constitute the participant classes.

Apart from its own attributes and methods, an interactor may require the participants to define some
attributes and/or methods. These requirements are specified in the interactor's definition and conform the
contractual aspects of the specification. The contractual aspects determine the minimum requirements for classes to
be able to participate in an interactor. It is a contractual responsibility of the participant's classes to define their
corresponding deferred attributes and methods. The methods and attributes that conform the contractual
obligations are used to define the interactor's behavior.

The required attributes and methods defined by the participant classes do not need to have the names used
by the interactor. In such cases a table of mapping must be provided. This table allows the mapping of names of
required attributes and methods as specified by the interactor class to the corresponding attributes and methods on
the participant classes, and vice versa. It is basically a translation table used by the interactors to talk to its
participant entities in the language they understand.

Actual interaction behavior is defined in terms of a finite state machine. We will use StateCharts
[Harel87] as the state machines. Each machine has a default transition

{post-condition} → State.
This transition expresses the expected initial values of the attributes within in its post-condition. Other transitions
have the following format

Statei {pre-condition} message[/action] {post-condition} → Statej.

Pre-conditions specify the conditions that must hold for a transition to fire. Post-conditions specify the changes to
attributes as a result of firing the transition. There could be transitions with no specified pre-condition. This simply
indicates that the transition can be fired when the message is received. Underlined attributes refer to the value of
the attributes before execution of the method on the transition. An action can be optionally specified on a
transition. An action refers to a message to be sent if the transition is fired.

A transition of the form
Statei TR(condition) → Statej

is a transition that is processed every time a transition is fired. If the condition on the TR transition is true then the
corresponding TR transition is fired.

In this section we concentrate in the modeling of the consistence interactor, and the basic object classes
DigitView and Calculator using DynaSpecs.

2.3.1 Modeling Consistence Interactor with DynaSpecs
DynaSpecs allows interactors to be explicitly modeled. Figure 6 shows the parameterized DynaSpecs

specification for ConsistenceInteractor. It requires Model to provide the information to be displayed. It also
requires the participant View to know how to update itself using the provided information to display. The
consistence interactor requires View to be updated. As a result, View redisplays itself according to the Model's
information provided by the interactor. This knowledge is kept and managed by the corresponding interactor,
ConsistenceInteractor. Now we have an encapsulated interactor that explicitly describes the interaction between
objects. All behavior and aspects of the collaboration are explicitly stated within the interactor. The effects of the
collaboration upon the participating objects as well as their contributions can be found within the interactor. It is
not scattered among the collaborating objects. This DynaSpec can be instantiated by providing the actual
collaborating classes: Calculator and DigitView.

CONSISTENCEINTERACTOR[MODEL, VIEW]
METHODS [MakeConsistent;]
ATTRIBUTES [information;]

MODEL METHODS [GetValue;]
VIEW METHODS [Update;]

7

Ready Inconsistent

ConsistenceInteractor[Model, View]

MakeConsistent/GetValue: ↑ aValue

Update(information)

GetValue: ↑ aValue/Update(information)

Transitions:
1. {information = NIL} → Ready
2. Ready {} MakeConsistent/GetValue: ↑ aValue {} → Inconsistent
3. Inconsistent {} GetValue: ↑aValue/Update(information) {information = aValue} → Inconsistent
4. Inconsistent {information ≠ NIL} Update(information) {} → Ready

Figure 6: Specification of ConsistenceInteractor

2.3.5 Modeling the Calculator Application
The specification of the class View is as shown on Figure 7.

DIGITVIEW ATTRIBUTES [displayedInfo;]
METHODS [Display; Update; ClearDisplay;]

DIGITVIEW

Invalid
Valid

Display

Update(displayedInfo)/ ClearDisplay

Update(displayedInfo)/ClearDisplay
ClearDisplay/Display

Transitions:
1. {} → Invalid
2. Invalid {} Update(displayedInfo)/ ClearDisplay {} → Invalid
3. Invalid {} ClearDisplay/Display {} → Invalid
4. Invalid {} Display {} → Valid
5. Valid {} Update(displayedInfo)/ ClearDisplay {} → Invalid

Figure 7: Specification of Object Class View

The object class Calculator is the actual model of the application. Figure 8 defines its behavior. Calculator
accepts expressions entered in infix notation. It accepts one digit or operator at a time. Calculator provides methods
that respond to each of the keys on its keypad (e.g. digits: one, two, three,... and operators: add, multiply,...). In the
Calculator state machine digit ∈ {zero ... nine} and op ∈ {add, multiply, ...}.

CALCULATOR ATTRIBUTES [accumulator; operand; operator;]
METHODS [Multiply; Add; Equal; Clear; One; Two; Three; ...]

8

Clear

Equal
opdigit

digit

digit

op

ProcessEquation

CALCULATOR

AcceptDigit
OperatorAccepted

EqualAccepted

Transitions:
1. {accumulator = 0 AND operand = 0 AND operator = NIL} → AcceptDigit
2. ProcessEquation {} C lear {operator = NIL AND accumulator = 0 AND operand = 0) →

ProcessEquation
3. AcceptDigit {} digit {operand = 10 * operand + digit} → AcceptDigit
4. AcceptDigit {} op {(operator ≠ NIL ⇒ operand = solve(accumulator, operator, operand)) AND

operator = op} → OperatorAccepted
5. OperatorAccepted {} digit {accumulator = operand AND operand = digit} → AcceptDigit
6. AcceptDigit {operator ≠ NIL} Equal {operand = solve(accumulator, operator, operand) AND

operator = NIL} → EqualAccepted
7. EqualAccepted {} digit {accumulator = operand AND operand = digit} → AcceptDigit
8. EqualAccepted {} op{operator = op} → OperatorAccepted

Figure 8: Specification of Object Class Calculator

Note that neither DigitView or Calculator has knowledge of their mutual existence or collaborations. They
have no knowledge of the way they interact. This facilitates the reusability of these models in other applications.
Similarly, the encapsulation and abstraction of interactions modeled as parameterized interactors in DynaSpecs
facilitates reusability and extendibility of interactions.

A concrete interactor machine is obtained from a parameterized interactor machine by binding the
parameter list with actual machine classes. A concrete interactor machine class is defined by its class name and
the class names of its participant classes, the list of contractual attributes, mapping tables, and the state machines.

Let ConsistenceInteractorMachine be the parameterized interactor machine class defined previously. The
object classes DigitView and Calculator are defined as follows:

DigitViewMachine = (DIGITVIEW, [displayedInfo], [Update, ClearDisplay, Display], StateMachine).
CalculatorMachine = (CALCULATOR, [operand, operator, accumulator],

[One, Two, Three, Add, Multiply, Equal, Clear, ...], StateMachine)

The binding of ConsistenceInteractor to Calculator and DigitView as actual parameters defines the
concrete interactor CalculatorConsistence class

CalculatorConsistenceClass = BindParameterizedInteractor [ConsistenceInteractorMachine]
 [Calculator,DigitView]

= ((ConsistenceInteractor, [Calculator, View]),
(([information]), [([makeConsistent],[GetValue], [Update]),
StateMachine)

9

The CalculatorConsistenceClass definition specifies that Calculator and View are actual participant
classes. The semantics of DynaSpecs does not restrict the participant classes to be object classes only. They can be
interactor classes as well. The only restriction is that the proposed participant classes have to conform to the
contractual obligations specified by the parameterized DynaSpec.

An instance of an object class is a 4-tuple defined by a unique identifier, its class name, its memory, and
its current state. A memory keeps the attributes along with their corresponding values. The state of an instance
refers to its current state with respect to the state machine that defines its behavior.

A new object is created by providing the object machine class and a unique identifier. Lets create an
instance of Calculator called calculator.

calculator = NewObject[calculator] CalculatorMachine
= (calculator, Calculator, MEMORY, STATE)

where MEMORY = (calculator, [(operand, ⊥), (operator, ⊥), (accumulator, ⊥)] and
STATE = NIL)

The initial state of each machine component is NIL (i.e. no transition has been fired); and the initial
values of the attributes in the object’s memory are undefined (i.e. no values have been assigned to the attributes).

To create an interactor instance, a unique identifier for the new interactor, the interactor class that defines
its behavior and the list of participants’ ids must be provided. An instance interactor has a composed class name. It
is formed by the interactor class name and the participants' classes. Since the Id of each participant is part of
interactor instances, every interactor knows exactly who its actual participants are. An interactor cannot be created
unless the actual participant entities exist. The actual consistency interactor, calculatorConsistence, is defined as
follows:

consistency = NewInteractor[calculatorConsistence] CalculatorConsistenceMachine
[calculator, digitView]

= ((calculatorConsistence, [calculator, digitView]), (CalculatorConsistence,
[Calculator, DigitView]), MEMORY, STATE)
where MEMORY = [(information, ⊥)], and STATE = NIL

A history is generated from a given test list [Jac92] according to the state of the entities in the
environment. A test list is a list of test cases. A test case is a message sent to a particular entity within the
environment. If the message has formal parameters, then actual parameters must be provided in the test case.

[(calculatorConsistence, MakeConsistent] is a test list composed of one test case. The message
MakeConsistent is sent to calculatorConsistence.

Let us assume that the calculator operand value is 1, and that digitView is the Invalid state. The following
is the history generated for the test list

 [(calculatorConsistence, MakeConsistent, Inconsistent),
(calculatorConsistence, GetValue, Inconsistent),
(calculator, GetValue, ProcessEquation),
(calculatorConsistence, Update(1), Inconsistent),
(digitView, Update(1), Invalid),
(digitView, ClearDisplay, Invalid),
(digitView, Display, Valid)].

2.4 Compositions
This section explains the Composition language construct to implement interactors. Following the

example above we will concentrate on the consistence interactor.

2.4.1 Consistence Composition
Before diving into the code, a few words about the syntax is in order. To define a composition, the

programmer declares shared variables, defines the interfaces to access participating objects, and defines
composition procedures and initialization statements.

10

Each participant definition in the composition is a class definition. The optional word “PARTS” is used
when defining a list of participants of the same participant type. For example, the consistence composition may
have multiple dependents which can be defined as “PARTS” participant. The composition procedures
(Procedures) are visible to all participants. The responsibility of each participant may be defined in the participant
class or defined as abstract procedures. The abstract procedures will be replaced by procedures belonging to actual
objects attached to the participants. The actual objects are bound to the participants using the RELATE clause
(explain later). Therefore, only objects that define the abstract procedures can fulfill the obligation as the
participant in the composition.

Now, the consistency composition code.

COMPOSE Consistence ()
CLASS ModelParticipant ()

ABSTRACT getValue ():INTEGER;
END;

PARTS CLASS DependentParticipants ()
ABSTRACT setValue (newValue: ModelParticipant);
ABSTRACT update ();
PROCEDURE setDependentValue (newValue: ModelParticipant) =

BEGIN SELF.setValue (newValue.getValue()) END;
END;

PROCEDURE makeConsistent (changeContext: INTEGER):INTEGER =
VAR dependentValue: ModelParticipant;

dependents: LIST DependentParticipants;
dependent: DependentParticipants;

BEGIN
dependents:= CSELF.DependentParticipants ();
WHILE LENGTH (dependents) > 0 DO

dependentValue:= CSELF.ModelParticipant_getValue ());
dependent:= HEAD (dependents);
dependent.setDependentValue (dependentValue);
dependent.update ();
dependents:= TAIL (dependents);

END;
END;

BEGIN END;

Figure 10: Consistence composition code

The abstract procedure “getValue” in ModelParticipant, “update” and “setValue” in
DependentParticipants will be replaced when the Consistence is instantiated. Each participant may be referred to
itself as “SELF” which is done in the “setDependentValue” method. The composition may be referred to itself as
“CSELF” which is done in the composition procedure “makeConsistent”. To refer to a specific participant
procedure, it must be qualified with the participant name. For example, ModelParticipant_getValue(). The entire

COMPOSE Idcompose (VariableDeclarations)
[PARTS] CLASS Idparticipant1 { …}
…
[PARTS] CLASS Idparticipantn { …}
Procedures

BEGIN Statements END

Figure 9: COMPOSE syntax

11

list of objects for each “PARTS” participant is returned when the participant name is called. For example, calling
CSELF.DependentParticipants() return the list of all dependent objects. As illustrated in figure 3, the Consistence
composition object receives the “makeConsistent” message. This message will make all the calculator dependents
consistent. To make them consistent, it must first get the model state by sending the “getValue” message to its
model. It then send the “update” message to all its dependents.

We instantiate and relate objects using the RELATE clause. Objects are related by passing actual object as
arguments. The syntax for the RELATE clause is

Idcompose object = RELATE Typenamecompose (object1,…, objectn)

Figure 11: RELATE syntax.

The object arguments may be a list of objects if they are bind to “PARTS” participants. The following
code instantiate a calculator’s Consistence composition and relate its model and dependents to specific participant
objects.

digitView:= NEW (DigitView);
calculator:= NEW (Calculator);
calculatorConsistence:= RELATE CalculatorConsistence (calculator, [digitView]);

Figure 12: Instantiating calculator consistence composition

CalculatorConsistence is a subCompose of Consistence composition. It includes code specific to
maintaining the consistency between a display view of the calculator call digitView and its model, the calculator.
Calculator is the model and digitView is the dependent of calculatorConsistence. The model, calculator
implements and replaces the abstract procedure “getValue”. The dependent, digitView implements and replaces
the abstract procedures “update” and “setValue”. Since the DependentParticipants is a “PARTS” declaration, there
may be more than one dependents. The binding of dependents with one element in a list, the digitView, instantiate
only one “PARTS” participant.

2.4.2 Calculator Compositions
The translate and control compositions are implemented similar to the consistence compositions. They

define the abstract design pattern for the interaction. Each composition is then subComposed to include application
specific code to implement the calculator. They are the CalculatorConsistence and ViewConsistence as
subCompose of the consistence composition, DigitTranslator, KeypadTranslator and ButtonTranslator as
subCompose of the translate compositions, and StandardControl, DigitControl, KeypadControl and ButtonControl
as subCompose of the control composition.

The following code instantiates and relates all objects in a calculator.

keypadView:= NEW (View);
keypadController:= NEW (KeypadController);
digitView:= NEW (DigitView);
digitController:= NEW (Controller);

calculator:= NEW (Calculator);
calculatorConsistence:= RELATE CalculatorConsistence (calculator, [digitView]);
viewConsistence:= RELATE ViewConsistence (digitView, [calculator]);

digitTranslator:= RELATE DigitTranslator ([digitView], digitController);
digitTranslator.PerformerParticipants ().initializeConsistence (viewConsistence);
digitControl:= RELATE ControlInteractor (digitController, digitView);
digitControl.ControllerParticipant_initializeTranslators ([digitTranslator]);

keypadTranslator:= RELATE KeypadTranslator ([calculator], keypadController);

12

keypadTranslator.PerformerParticipants ().initializeConsistence (calculatorConsistence);
keypadControl:= RELATE KeypadControl (keypadController, keypadView);
keypadControl.ControllerParticipant_initializeTranslators ([keypadTranslator]);
keypadControl.buildButtons ([calculator], [calculatorConsistence]);

calculatorView:= NEW (View);
calculatorController:= NEW (Controller);
calculatorControl:= RELATE ControlInteractor (calculatorController, calculatorView);
calculatorControl.appendSubCInteractors (digitControl);
calculatorControl.appendSubCInteractors (keypadControl);
calculatorControl.startUp ();

Figure 13: Instantiating calculator compositions

To reduce the code, we omitted the instantiation and relation of each Button. They are done in the
procedure buildButtons ([calculator], [calculatorConsistence]). Note the similarity of instantiating and relating
digit and keypad. One difference is the performer for their translator. The performer for digitTranslator is a
digitView while the performer for keypadTranslator is a calculator. Another difference is the consistence. The
consistence for digitTranslator is viewConsistence while the consistence for keypadTranslator is
calculatorConsistence. Note that control passes its translator to its controller and translate passes its consistence to
its performer. The calculatorControl sets up the view hierarchy using “appendSubCInteractors” and start up using
“startUp”.

3 Conclusion
This paper presents a unified approach to model and implement interactions as first class objects. During

analysis and design, they are modeled using DynaSpecs. During implementation, they are coded with a new
language construct called Compositions. Both DynaSpecs and Compositions provide a consistent support for object
interactions within each phase of the OO lifecycle.

Making interactions first class citizens within OO systems requires support during all phases of software
development. Our research has already developed a rich support environment for such interactions from analysis to
implementation. Interactions are specified explicitly using DynaSpecs, a formal method for describing the dynamic
model of object interactions. DynaSpecs model the object interactions using state transitions. The state transitions
represent events of message calls that mirror the dynamic behavior of object interactions. The formal semantics of
the model is based on the idea of a history which captures the sequence of operations within interactions along with
state changes undergone by the participating objects. A major attraction of this model is that it is effective not only
in the variable degree of abstraction of interactions among entities but also in the accurate representation of the
application environments. This research defines the formal semantics for one and only one interaction
environment. Allowing an application to have more than one interaction environments is appealing. Objects could
move from one interaction environment to another within the same application. Each environment defining a
context of interaction allows objects to have completely different sets of interactions in different environments
within the same application.

The Composition construct clearly defines object interactions as first class values. Being first class values,
interactors, through the composition construct and DynaSpecs, reduces complexity, loosens coupling, improves
reusability of object interactions, and allows better abstraction of interactions. The main properties by interactors
are

• definition of participants and their responsibilities,
• defining proper objects suitable to be participants through abstract procedures,
• restricted visibility to participant objects to only methods relevant to the interaction,
• reuse of interactions by plugging participants or inheriting compositions,
• providing a dynamic lifetime of an object interaction, and
• providing the necessary context to define the interactions.

The case study demonstrate how to capture object interactions using DynaSpecs and Compositions. The
calculator provides an example of reusing the compositions. Prototype executable of both construct have been

13

implemented. The semantics of the prototypes are defined in denotational semantic. They depict the precise
behavior of the construct and all its relevant context and scope. The one-to-one relationship between DynaSpecs
developed during analysis/design and Compositions in the implementation provide a consistent approach. Thus,
changes to the system can be made to DynaSpecs and translated to Compositions. This approach makes it easier to
establish consistency between the analysis/design phase and the corresponding implementation and simplify
reasoning and validating the modeled Object-Oriented software.

References

[Boo94] Booch Grady. Object-Oriented Analysis and Design with Applications, Second Edition. The
Benjamin/Cummings Publishing Company, Inc. 1994.

[Cole94] D. Coleman et al. Object-Oriented Development: The Fusion Method. Prentice Hall, 1994.

[Doda94] Dodani Mahesh and Gan Kok Siew. A Semantic Framework for Understanding the Behavior of
Modules and Classes in Programming Languages. Proceedings of the Joint Modular Language
Conference, University of Ulm, Germany, ISBN 3-89559-220-X, pages 79-92, 28-30 September,
1994.

[Gam95] Gamma Erich, Helm Richard, Johnson Ralph and Vlissides John. Design Patterns: Elements of
Object-Oriented Software Architecture. Addison-Wesley Publishing Company, 1995.

[Jac92] Jacobson Ivar, Christerson Magnus, Jonsson Patrik and Overgaard Gunnar. Object-Orietnted
Software Engineering: A Use Case Driven approach. ACM press, Addison-Wesley Publishing
Company, 1992.

[Harel87] D. Harel et at. On the Formal Semantics of StateCharts. Symposium on Logic in Computer Science.
Ithaca, N.Y. June 22-25, 1985, pp. 54-64.

[Kam88] Kamin Samuel. Inheritance in Smalltalk-80: A Denotational Definition. Proceedings of 15th Annual
ACM Symposium on Principles of Programming Languages, pages 80-87, Jan 13-15, 1988.

[Kras88] Krasner Glenn E and Pope Stephen T. A Cookbook for Using the Model-View-Controller User
Interface Paradigm in Smalltalk-80. Journal of Object-Oriented Programming, Volume 1, Number 3,
pages 26-49, 1988.

[Mod88] Model Mitchell. The Model-View-Controller (MVC) paradigm for user interfaces. Tutorial 6A of
OOPSLA, September 25-30, 1988.

[Parc92] ParcPlace Systems. VisualWorks - ObjectWorks Smalltalk User's Guide, Release 4.1. ParcPlace
Systems, Inc. 1992

[Red88] Reddy Uday S. Object as closures: Abstract Semantics of Object Oriented Languages. Proceedings of
ACM Conference on Lisp and Functional Programming, pages 1-19, July 1988.

[Rum91] J, Rumbaugh et al. Object-Oriented Modeling and Design. Prentice Hall, 1991

[Tan95] Tanzer Christian. Remarks on Object-Oriented modeling of associations. Journal of Object-Oriented
Programming, pages 43-46, February, 1995

[Tsai92] Tsai Chung-Shin. ACTS: A formal model for reliable object-oriented programming based on abstract
and concrete classes. Ph.D. thesis, University of Iowa, May 1992.

[Whi94] White Iseult. Rational Rose Essentials, using the Booch Method. Benjamin/Cummings Publishing
Company, Inc, 1994.

[Xav93] Xaviar Leroy. The Caml Light system, release 0.6. Documentation and user’s manual. ftp.inria.fr
(128.93.1.26), September, 1993.

	Object Interactions as First Class Objects: From Design to Implementation
	Citation

	Microsoft Word - PAPER.SIN

