
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1994

A Semantic Framework for Understanding the Behavior of A Semantic Framework for Understanding the Behavior of

Modules and Classes in Programming Languages Modules and Classes in Programming Languages

Mahesh DODANI

Benjamin Kok Siew GAN
Singapore Management University, benjamingan@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
DODANI, Mahesh and GAN, Benjamin Kok Siew. A Semantic Framework for Understanding the Behavior of
Modules and Classes in Programming Languages. (1994). Joint Modular Languages Conference. 12.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2242

This Conference Paper is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2242&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

A Semantic Framework for Understanding the Behavior of
Modules and Classes in Programming Languages

Mahesh H. Dodania and Kok Siew Gana

a Department of Computer Science, University of Iowa, Iowa City, IA 52242, USA

Abstract
Recent trends in programming language design and implementation are aimed at integrating the
two most important constructs to combat complexity: modules and classes. Both constructs
provide encapsulation, a cornerstone of reliable programming. These constructs differ in their
approach to building hierarchies: modules define visibility of components while classes define
visibility of functionality.

How can modules and classes be effectively integrated within a simple programming language?
This question captures the essence of developing semantics of these constructs to ensure that
they interact in a meaningful way.

This paper develops a formal denotational semantic framework for understanding the interaction
between classes and modules within programming languages. This semantic framework is
developed incrementally; beginning with a base object oriented language with support for
classes, objects, message passing and inheritance; and followed by extensions that support
modules. These extensions consider both conventional static compile-time as well as dynamic
run-time module constructs.

Keyword Codes: D.3.1; F.3.1; F.3.2; F.4.3

Keywords: Programming Languages, Formal Definitions and Theory; Theory of Computation,
Specifying and Verifying and Reasoning about Programs; Semantics of Programming
Languages; Formal Languages

1. Introduction
Constructs supporting encapsulation and hierarchical composition are essential to modern
programming languages. The two most popular choices for such constructs are modules and
classes. Modules comprise definitions of related programming items (including variables,
functions/procedures, and types). The scope (or visibility) of an item is restricted to the module
where it is defined. This scope can be extended into another module by defining an import
relationship. Classes comprise the definition of a set of objects. Classes define the items
(including variables, methods, and types) that implement the behavior of each object. Objects are
run-time instantiation of classes. A class can inherit items from another defined class. This
inheritance relationship allows reuse of class definitions.

In the 90s, several languages have attempted to integrate modules and classes. Are both
constructs necessary in a programming language? This question is answered in a recent paper
[Szy92] which argues for, and provides examples of, the need for both constructs. If a
programming language supports both constructs then an important issue is whether modules
interact with classes, objects, or both. This issue has major repercussions on the behavior of the
constructs. On one extreme, modules are static compile-time constructs for encapsulating and
organizing groups of classes. On the other extreme, modules are dynamic run-time constructs for
encapsulating and organizing the behavior of objects. Examples of both extremes exist: Modular
Smalltalk [Wir88], Modula-3 [Car88, Dona89, Nel91], and Ada9X [Ros92, Taft92] supports
static modules, while Contracts [Helm90, Hol92] represent a dynamic module construct. These
extremes of module behavior allow us to explore a range of interactions between modules and
classes.

A precise understanding of the behavior of modules and classes within programming languages
necessitates a semantic framework. This paper develops a denotational semantic framework to
explore the two extreme behaviors of modules described above, and their interactions with
classes in a programming language. The presentation is organized as follows: Section 2 develops
the denotational semantics of a base Object-Oriented (OO) programming language that supports
classes, objects, message passing, and inheritance. Section 3 extends the denotational semantics
with support for static, compile-time module constructs. Section 4 extends the denotational
semantics with support for dynamic, run-time module constructs which:

(1) provide encapsulation and define scope for objects as opposed to classes, and
(2) are instantiated and exist at run time.

The final section summarizes the presentation, analyzes the results, and presents future directions
for research.

2. Denotational Semantics for Object-Oriented Language
This section develops denotational semantics for a typical object oriented language with support
for classes, objects, message passing, and inheritance. The presentation is based on [Doda92,
Kam88, Red88, Tsai92]. The following is a skeleton denotation of two basic expression
statements:

Syntax - Abstract Production Rules
 stmts ≡ �⏐stmt⏐stmt; stmts
 stmt ≡ expr:= expr⏐expr
 expr ≡ id
 � = empty syntax

Semantic Domain
 loc ≡ {1, 2, 3, …, ⊥, T}
 val ≡ basicval + loc + … + ⊥
 env ≡ id→val
 state ≡ loc→val

Semantic Functions
 do_stmts: stmts →env→state→(val × state)
 do_stmt: stmt →env→state→(val × state)
 do_expr: expr →env→state→(val × state)

Semantic Equations
 do_stmts[�]env state ⇒ 〈⊥, state〉
 do_stmts[stmt; stmts]env state ⇒ let 〈val, state'〉 = do_stmt[stmt]env state
 in do_stmts[stmts]env state'
 do_stmt[expr1:= expr2]env state
 ⇒ let 〈val1, state1〉 = do_expr[expr1]env state
 〈val2, state2〉 = do_expr[expr2]env state1
 in (val1∈loc)?(〈val2, state2[val1→val2]〉⏐T)
 do_stmt[expr]env state ⇒ do_expr[expr]env state
 do_expr[id]env state ⇒ 〈env id, state〉

Listing 1: Denotational semantic for expression.

The semantic domain val (value) denotes a basicval (basic value), a loc (location), or an ⊥
(undefined value). Later, new values will be added to val to represent structures like procedures,
objects, classes, and dynamic modules. The basicval may be values in the following domains:
integers, reals, characters, or boolean. Location loc represents an address in the underlying
abstract machine. The domain env (environment) denotes the visibility scope for variables, and
the domain state represents the memory of the abstract machine. The state takes a loc and maps
it to its current val. T (top) represents an error, and ⊥ (bottom) represents undefined values. A
conditional expression is represented by (condition)?(true expression⏐false expression). The
semantics for the assignment statement (expr1:= expr2), evaluates the expressions expr1 and
expr2, checks the result of expr1, and binds the value of expr2 (val2) to the location of expr1
(val1). Note that an error occurs when val1 is not a location. The expression id retrieves its value
from the current environment.

The next step adds the syntax and semantics specific to OO concepts. These include support for
defining a class, inheriting from a class by subclassing, sending a message to an object, and
instantiating an object from a class.

Syntax - Abstract Production Rules
 class ≡ CLASS id (variabledecls) classprocs END⏐
 SUBCLASS id = typenamesuper (variabledecls) classprocs END
 variabledecls ≡ �⏐variabledecl⏐variabledecl; variabledecls
 variabledecl ≡ idlist: typename⏐idlist:= expr⏐idlist: typename:= expr
 classprocs ≡ �⏐classproc⏐classproc classprocs
 classproc ≡ concreteproc⏐abstractproc
 concreteproc ≡ PROCEDURE id (formals):typename = BEGIN stmts END
 abstractproc ≡ ABSTRACT id (formals):typename
 formals ≡ �⏐formal⏐formal; formals
 formal ≡ idlist: typename
 expr ≡ idobject.idmesg(exprs)⏐NEW (typename)
 typename ≡ id
 idlist ≡ id⏐id, idlist

Semantic Domain
 val ≡ basicval + loc + procval + classval + objval + ⊥
 procval ≡ (state→(val→)*((val × state) + ⊥))
 penv ≡ id→procval
 clsdef ≡ state→(env × state)
 clspenv ≡ env→penv
 classval ≡ clsdef × clspenv
 cenv ≡ id→classval
 objval ≡ penv

Semantic Functions
 do_class: class →env→cenv
 do_variabledecls: variabledecls →(env × state)→(env × state)
 do_variabledecl: variabledecl →(env × state)→(env × state)
 do_classprocs: classprocs →env→penv
 do_classproc: classproc →env→penv
 do_concreteproc: concreteproc →env→penv
 do_abstractproc: abstractproc →env→penv
 do_formals: formals →idlist
 do_formal: formal →idlist
 do_expr: expr →env→state→(val × state)
 do_typename: typename →env→val

Listing 2: Denotational semantics specific to OO concepts.

The semantic domains objval and penv define an object as a mapping from id (procedure
identifier) to procval (procedure value). Thus, procedure identifiers denote messages. Procedures
are defined as functions that map a state and a list of finite actual arguments val* into a new val
and state. Note that an abstract procedure will result in ⊥ when called. The semantic domain
classval (class value) is denoted by clsdef (class definition) and clspenv (class procedure
environment). The clsdef takes a state and returns the env for local variables defined in the class,

along with a new state from the local declarations. The clspenv takes an env (the local
declaration) and returns the procedure environment penv. Splitting classval into clsdef and
clspenv enables the environments used by clspenv and clsdef to be defined at run time. This
delay facilitates dynamic instantiation and late binding.

The semantic equations describing behavior of classes, inheritance and message passing are
presented below. The semantics of a class definition is shown below:

do_class[CLASS id (variabledecls) classprocs END]env
⇒ let clsdef = λstate.do_variabledecls[variabledecls]〈env, state〉
 clspenv = λenv1.do_classprocs[classprocs](env;env1)
 classval = 〈clsdef, clspenv〉
 in [id→classval]

Listing 3: Semantic equation for CLASS.

The new classval contains clsdef and clspenv. The clsdef defines variables which are allocated
space in the run time state. The clspenv defines class procedures which uses the environment
(env1) determined at run time. The environment (env1) is retrieved from clsdef.

The semantics of inheritance is defined by the subclass construct shown below:

do_class[SUBCLASS id = typenamesuper (variabledecls) classprocs END]env
⇒ let 〈clsdefs, clspenvs〉 = do_typename[typenamesuper]env
 clsdef = λstate. let 〈envs, states〉 = clsdefs state
 〈env1, state1〉 =
 do_variabledecls[variabledecls]〈env;envs, states〉
 in 〈envs;env1, state1〉
 clspenv = λenv2. let env3 = env;env2
 penvs = clspenvs env3
 penv = do_classprocs[classprocs]env3
 in penvs;penv
 classval = 〈clsdef, clspenv〉
 in [id→classval]

Listing 4: Semantic equation for SUBCLASS.

This equation extends SUBCLASS with the superclass definition. First, the superclass
(typenamesuper) is retrieved from the environment. Second, clsdef appends the superclass
environment (envs) to its variable environment. Note that ";" represents the append operator.
Third, clspenv includes the superclass procedure environment (penvs). The environment (env2)
passed to clspenv denotes the variable environment defined in both the superclass and subclass.

Message passing semantics is defined as follows:

do_expr[idobject.idmesg(exprs)]env state
⇒ let 〈objval, state'〉 = do_expr[idobject]env state
 expr1,…,exprn = exprs
 ∀i, 1≤i≤n, (〈vali, statei〉 = do_expr[expri]env((i≈1)?(state'⏐statei-1)))
 penv = objval
 in (penv idmesg)staten val1…valn

Listing 5: Semantic equation for message passing.

The identifier idobject is an objval from which a procedure environment (penv) is extracted. The
procedure identifier idmesg is used to identify the appropriate procedure procval in penv. Each
expri is evaluated and passed as arguments (val1…valn) to the procval. Note that the state
resulting from expri-1 is used by expri.

The clause NEW instantiates an object from a class. The semantics for object creation is defined
as follows:

do_expr[NEW (typename)]env state
⇒ let classval = do_typename[typename]env
 〈clsdef, clspenv〉 = classval
 〈env1, state1〉 = clsdef state
 penvwithself = λpenv.clspenv(env1[SELF→penv])
 in 〈fix penvwithself, state1〉

Listing 6: Semantic equation for NEW.

The semantics for fix point is defined as follows:

fix: penv→penv ⇒ penv
fix penvwithself ⇒ let penv id = penvwithself penv id
 in penv

Listing 7: Semantic equation for fix point.

The NEW clause dynamically instantiates an objval from a classval using the run time state. The
instantiation produces an environment (env1) from clsdef and a procedure environment (penv)
from clspenv. SELF is recursively bound through the environment provided to clspenv, resulting
in a penv→penv function (penvwithself). Taking the fix point of penvwithself results in an objval
where all SELF references (including superclass definitions) are bound to the object. This late
binding results from associating clspenv with (env1[SELF→penv]) at runtime instead of at
compile time when the CLASS is declared.

The semantic equations for do_variabledecl, do_classproc, do_concreteproc,
do_abstractproc, do_formal, and do_typename have been omitted for brevity. Complete
denotational specifications can be found in [Gan94].

3. Static Modules
This section, extends the denotational semantics of the OO language of section 2 with a static,
compile time module construct. The module construct encapsulates a group of classes, thereby
facilitating a local scope. Furthermore, the local scope allows definition of invariants among the
classes in the module. Explicit import and export clauses facilitate a precise definition of
visibility for the classes within the system.

The extension to the abstract syntax for static compile time modules is shown below:

 compilations ≡ �⏐compilation compilations
 compilation ≡ interface⏐module
 interface ≡ INTERFACE id; import decls END.
 module ≡ MODULE id exports; import decls END.
 exports ≡ �⏐EXPORT idlist
 import ≡ �⏐IMPORT idlist;
 decls ≡ �⏐decl decls
 decl ≡ class;⏐concreteproc;

Listing 8: Syntax - Abstract Production Rules for static modules.

The program comprises a set of compilations, which in turn are made up of module and/or
interface. Each module has a set of decls. The environment used in decls are defined in the
IMPORTed interface. These interface definitions are replaced with EXPORTed definitions from
the corresponding module definition.

The semantic domains for static compile time modules are the same as the semantic domains for
OO languages as described in section 2. The semantic functions associated with static compile
time modules are shown below:

execute_compilations: compilations →(val→)*(val × state)
do_compilations: compilations →(env × state)→(env × state)
do_compilation: compilation →(env × state)→(env × state)
do_interface: interface →(env × state)→(env × state)
do_module: module →(env × state)→(env × state)
do_exports: exports →env→env→env
do_import: import →env→env
do_decls: decls →(env × state)→(env × state)
do_decl: decl →(env × state)→(env × state)

Listing 9: Semantic functions for static modules.

The semantics of executing a program is defined by execute_compilations which identifies the
main procedure defined in the environment produced by do_compilation. This main procedure
is executed with actual parameters val1…valn, resulting in a return value and new state. Note
that the semantics ensure definition of variables before use.

execute_compilations[compilations] val1…valn
⇒ let 〈env, state〉 = do_compilations[compilations]〈emptyenv, emptystate〉
 procval = env idmain
 in procval state val1…valn

Listing 10: Semantic equation for compilation units.

The semantics of handling computation units is defined by individual interface or module
components. The semantics of an interface is shown below:

do_interface[INTERFACE id; import decls END.]〈env, state〉
⇒ let 〈env1, state1〉 = do_decls[decls]〈do_import[import]env, state〉
 in 〈env[id→env1], state1〉

Listing 11: Semantic equation for INTERFACE.

Each interface consist of a name, imported environment and a declaration.

The semantics of modules is shown below:

do_module[MODULE id exports; import decls END.]〈env, state〉
⇒ let 〈env1, state1〉 = do_decls[decls](do_import[import]env) state
 in 〈do_exports[exports]env env1, state1〉

Listing 12: Semantic equation for MODULE.

Each module produces a EXPORT environment and a new state resulting from the decls. The
environment used in decls is the IMPORTed environment.

The semantics defining the behavior of import and export relationships is shown below:

do_import[IMPORT �;]env ⇒ emptyenv
do_import[IMPORT id;]env ⇒ [id→env id]
do_import[IMPORT id, idlist;]env
⇒ (do_import[IMPORT id;]env);(do_import[IMPORT idlist;]env)
do_exports[�]env env1 ⇒ env
do_exports[EXPORT idlist]env env1
⇒ let id1,…,idn = idlist
 in env[∀i, 1≤i≤n, (idi→
 let envi = env idi
 in envi[∀j, (id'j∈domain(env1)∩domain(envi), id'j→env1 id'j)]

Listing 13: Semantic equations for IMPORT and EXPORT.

IMPORT definitions are used only in interface and module. IMPORT returns the interface
environment named in idlist. These definitions must be exported by some module and have the
effect of overriding the declaration with the same name in the interface.

4. Dynamic Modules
In stark contrast with the static compile time modules for encapsulating classes presented above,
this section explores the semantics of a dynamic run time module that facilitates the definition
and manipulation of relationships between objects. The dynamic nature of modules is similar to
classes; that is, the scope is instantiated at run time. This run time instantiation is done explicitly
using the RELATE clause (similar to NEW), and has the effect of a late binding between objects
and parts in relationships. The binding itself is similar to parameter binding in methods: the
actual objects are bound to formal parts of the dynamic module. Thus, modules are templates for
defining relationships between objects. Each part of the template can be bound to an object when
instantiated. The template can define shared variables, and prescribe local scoping rules.

This subsection extends the denotational semantics of the object-oriented programming language
to support dynamic run time modules. Dynamic modules are defined using COMPOSE and
SUBCOMPOSE clauses and instantiated at run time using the RELATE clause. These three
clauses mirror CLASS, SUBCLASS and NEW defined for classes. RELATE binds run time
objects to formal participants of the dynamic module defined by COMPOSE and
SUBCOMPOSE. The resulting dynamic scope facilitates access to shared variables, local
variables defined within participants, and actual objects bound to participants.

The following presents the abstract syntax for the language supporting the dynamic module:

 decls ≡ �⏐decl decls
 decl ≡ compose;⏐class;⏐concreteproc;
 compose ≡ COMPOSE id (variabledecls) classes BEGIN stmts END⏐
 SUBCOMPOSE id = idsuper (variabledecls) classes BEGIN stmts END
 classes ≡ � ⏐ class; classes
 expr ≡ idobject.idmesg(exprs)⏐NEW (typename)⏐RELATE typename (actuals)
 actuals ≡ �⏐expr⏐expr, actuals

Listing 14: Syntax - Abstract Production Rules for dynamic modules.

Note that COMPOSE defines modules by an identifier (id), a set of variable declaration
(variabledecls), a set of class definition (classes), and a set of initialization statements (stmts).
The dynamic scope defined by COMPOSE identifies three separate contexts:

(1) The context for the entire module accessed through the reference CSELF.
(2) The context for each participant accessed within CLASS definitions of the dynamic

module using SELF.
(3) The context of the actual objects accessed by invoking redefined methods after the

module is instantiated using RELATE.

The following presents the extensions to the semantic domains and semantic functions relevant
to dynamic modules:

Semantic Domain
 val ≡ basicval + loc + procval + classval + objval + composeval + ⊥
 composeval ≡ state→(env × cenv × state)

Semantic Functions
 do_decl: decl →(env × state)→(env × state)
 do_compose: compose →env→env
 do_classes: classes →env→cenv
 do_actuals: actuals →env→state→((val ×)* state)

Listing 15: Semantic Domain and Functions for dynamic modules.

The semantics of defining dynamic modules with COMPOSE and SUBCOMPOSE is similar to
CLASS and SUBCLASS as shown below:

do_decl[compose;]〈env, state〉 ⇒ 〈do_compose[compose]env, state〉
do_compose[COMPOSE id (variabledecls) classes BEGIN stmts END]env
 ⇒ let composeval = λstate. let 〈env1, state1〉 =
 do_variabledecls[variabledecls]〈env, state〉
 env2 = env;env1
 cenv = do_classes[classes]env2
 〈val, state2〉 = do_stmts[stmts]env2 state1
 in 〈env1, cenv, state2〉
 in [id→composeval]
do_compose[SUBCOMPOSE id = idsuper (variabledecls) classes BEGIN stmts END]env
 ⇒ let composeval = env idsuper
 composeval1 = λstate. let 〈envs, cenvs, states〉 = composeval state
 〈env1, state1〉 =
 do_variabledecls[variabledecls]〈env, states〉
 env2 = env;envs;env1
 cenv = do_classes[classes]env2
 〈val, state2〉 = do_stmts[stmts]env2 state1
 in 〈envs;env1, cenvs;cenv, state2〉
 in [id→composeval1]

Listing 16: Semantic equations for COMPOSE and SUBCOMPOSE.

The equation for do_compose takes a COMPOSE definition and produces a new environment
from variabledecls, a class environment from classes, and a new state from stmts. The equation
of SUBCOMPOSE extends the compose definition with that of the super compose identified by
(idsuper). In particular, SUBCOMPOSE adds new variable definitions and new class
participants.

The actual binding of dynamic module participants to existing objects is done explicitly with the
RELATE expression. The semantics of the RELATE expression is presented below:

do_expr[RELATE typename (actuals)]env state
⇒ let composeval = do_typename[typename]env
 〈objval1, …,objvaln, state1〉 = do_actuals[actuals]env state
 〈env1, cenv, state2〉 = composeval state1
 [id1→〈clsdef1, clspenv1〉,…,idk→〈clsdefk, clspenvk〉] = cenv
 ∀i, 1≤i≤n, (〈env'i, state'i〉 = clsdefi ((i≈1)?(state2⏐state'i-1)))
 x = λpenv.(k≈n)?(let ∀i, 1≤i≤n,
 (penvi = mixobject objvali clspenvi
(env1;env'i;[idcself→penv])
 penv'i = qualify idi penvi)
 in (penv'1;…; penv'n)⏐T)
 objval = fix x
 in 〈objval, state'n〉
qualify: id → penv ⇒ penv
qualify idc penv ⇒ ∀idi ∈ domain(penv), [idc.idi→penv idi]

Listing 17: Semantic equations for RELATE.

RELATE binds the actual objects passed as arguments (actuals) to formal class participants of
the dynamic module. The dynamic module (composeval) derived from typename contains a local
environment (env1), a group of classes (cenv), and the new state (state2). The class environment
(cenv) comprise of the formal class participants of the dynamic module. These participants
(clspenvi) are instantiated in mixobject (described below) and bound with the corresponding
objects (objvali) from actuals. The result of this combination is an object whose dynamic scope
comprises shared variables, local variables defined in participants, and actual objects bound to
participants. Environment (env1) denotes the shared variables, env'i denotes the local variables of
each participant, and [idcself→penv] denotes the procedures defined within the module. The
entire environment (env1;env'i;[idcself→penv] is passed to mixobject. RELATE uses mixobject
to produce an objval or penvi for each participant of the dynamic module. Each participant object
is qualified using its identifier (idi) to avoid name clashes. The final step of RELATE finds the
fix point and returns the procedure environment of each participant (penv'i). Note that the result
of RELATE is itself an object which can participate in other dynamic modules.

The semantics of mixobject is shown below:

mixobject: penv → clspenv → env ⇒ pmenv
mixobject penv clspenv env
⇒ let x = λpenv1.mixobjmethod penv (clspenv (env;[idself→penv1]))
 in fix x
mixobjmethod: penv → penv ⇒ penv
mixobjmethod penv penv1
⇒ let ∀idi∈domain(penv1)∩domain(penv), (procvali = penv idi)
 in penv1;[∀i(idi→procvali)]

Listing 18: Semantic equations for mixobject.

The semantic function mixobject takes the actual object (penv), the corresponding dynamic
module participant (clspenv), and an environment (env). The arguments passed to mixobject

consists of objvali as penv, clspenvi as clspenv, and (env1[idself→penv1];env'i) as env. This
environment (env) is used in mixobject to bind SELF to each participant object. The fix point
(fix x) handles any recursion. The procedures are mixed in mixobjmethod to ensure proper
access to procedures in the actual object. Procedures of the actual object (penv) may override
abstract procedures with identical names in the participant object (penv1). Only procedures
defined in penv1 or overridden by penv is accessible to the participant object. Note that any
"message not understood" errors resulting from the redefinitions must be detected by an
appropriate type checker.

5. Conclusion
This paper has developed a denotational semantic framework for understanding the behavior of
modules and classes within a programming language. This semantic framework has been used to
precisely interpret two extreme behaviors of modules and their interaction with classes. On one
extreme, modules are interpreted as constructs that encapsulate groups of classes. Thus, a
program comprise modules, which in turn provide a local scope for class definitions. Explicit
import and export clauses allow the local scope to be extended and restricted. The local scope
also permits the definition of shared variables and invariants among the classes of a module. The
other extreme interprets modules as dynamic entities that facilitate encapsulation of related
objects. Thus, modules have a similar status as classes. In this interpretation, modules are
dynamically instantiated to form objects which respond to messages. The instantiation
dynamically binds actual objects to formal parts of modules. Such an approach allows the
establishment of dynamic relationships between objects at run time. Dynamic modules facilitate
reuse of definitions using an explicit SUBCOMPOSE construct.

There are three significant differences between these extreme interpretations. The first contrasts
between a static versus a dynamic construct. A static module is used only for defining scope, and
does not exist at run time. On the other hand, a dynamic module generates an object which
defines a run time scope for objects. The second contrasts the granularity of the scope. The static
module provides a local scope for classes, while the dynamic module provides a local scope for
objects. The final difference is more subtle, and contrasts the import/export and the
compose/subcompose relationships. The main difference is that import/export specifies visibility
of components, while compose/subcompose copies definitions from compose into subcompose.

This work has presented the first step in understanding the behavior of classes and modules
within a programming language. This semantic framework will be invaluable in answering
several significant questions for languages supporting both constructs including: What is the
effect of integrating a type system with classes, static modules and dynamic modules? How does
subtyping relate to subclassing and subcomposing? Are other interpretations of classes and
modules possible; that is, are there any interesting interpretations between the two extremes?

One major advantage of a denotational semantic framework is the ability to translate it into an
equivalent executable semantics in a functional language such as ML [Wik87, Xavi92]. This
translation allows validation of the semantics and testing of the intended behavior. Executable
semantics for the denotational specifications presented in this paper have been developed.
Several examples exercised the intended behavior. Future work is directed at developing
complete semantics of the intended behavior of languages such as Modula-3 and Modular
Smalltalk.

6. References
[Car88] Cardelli Luca, Donahue James, Glassman Lucille, Jordan Mick, Kalsow Bill, Nelson

Greg. The Modula-3 Report. Olivetti Research California technical report ORC-1,
1988.

[Doda92] Dodani H. Mahesh and Tsai Chung-Shin. ACTS: A type system for Object-Oriented
programming based on abstract and concrete classes. ECOOP '92, Lecture Notes in
Computer Science, Springer-Verlag, July 1992.

[Dona89] Donahue James. Modula-3. Distinguished lecture series Volume III, University video
communications, Olivetti Research California, November 29, 1989.

[Gan94] Gan Kok Siew. Denotational Semantics for compositions. Technical Reference,
Department of Computer Science, University of Iowa, 1994.

[Helm90] Helm Richard, Holland Ian M and Gangopadhyay Dipayan. Contracts: Specifying
behavioral compositions in Object-Oriented systems. Proceedings of
ECOOP/OOPSLA '90, SIGPLAN Notices 25 (10), pages 169-180, October 1990.

[Hol92] Holland Ian M. Specifying reusable components using Contracts. Proceedings of
OOPSLA, pages 287-308, 1992.

[Kam88] Kamin Samuel. Inheritance in Smalltalk-80: A Denotational Definition. Proceedings
of 15th Annual ACM Symposium on Principles of Programming Languages, pages
80-87, Jan 13-15, 1988.

[Nel91] Nelson Greg. Systems Programming with Modula-3. Prentice Hall Series in
Innovative Technology, 1991.

[Red88] Reddy Uday S. Object as closures: Abstract Semantics of Object Oriented Languages.
Proceedings of ACM Conference on Lisp and Functional Programming, pages 1-19,
July 1988.

[Ros92] Rosen J P. What Orientation should Ada Objects take? Communications of the ACM
35 (11), pages 71-76, November 1992.

[Szy92] Szyperski Clemens A. Why we need both: Modules and classes. Proceedings of
OOPSLA, pages 19-32, 1992.

[Taft92] Taft S. Tucker. Ada 9X: A Technical Summary. Communications of the ACM 35 (11),
pages 77-82, November 1992.

[Tsai92] Tsai Chung-Shin. ACTS: A formal model for reliable object-oriented programming
based on abstract and concrete classes. Ph.D. thesis, University of Iowa, May 1992.

[Wik87] Wikstrom Ake. Functional Programming using Standard ML. Prentice Hall
international series in CS, 1987.

[Wir88] Wirfs-Brock Allen and Wilkerson Brian. An overview of modular smalltalk.
Proceedings of OOPSLA '88, pages 123-134, September 25-30, 1988.

[Xavi92] Xaviar Leroy and Mauny Michel. The Caml Light system, release 0.5. Documentation,
September 11, 1992.

	A Semantic Framework for Understanding the Behavior of Modules and Classes in Programming Languages
	Citation

	Abstract
	1. Introduction
	2. Denotational Semantics for Object-Oriented Language
	3. Static Modules
	4. Dynamic Modules
	5. Conclusion
	6. References

