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A Semantic Framework for Understanding the Behavior of 
Modules and Classes in Programming Languages 

Mahesh H. Dodania and Kok Siew Gana 

a Department of Computer Science, University of Iowa, Iowa City, IA 52242, USA 

Abstract 
Recent trends in programming language design and implementation are aimed at integrating the 
two most important constructs to combat complexity: modules and classes. Both constructs 
provide encapsulation, a cornerstone of reliable programming. These constructs differ in their 
approach to building hierarchies: modules define visibility of components while classes define 
visibility of functionality. 

How can modules and classes be effectively integrated within a simple programming language? 
This question captures the essence of developing semantics of these constructs to ensure that 
they interact in a meaningful way. 

This paper develops a formal denotational semantic framework for understanding the interaction 
between classes and modules within programming languages. This semantic framework is 
developed incrementally; beginning with a base object oriented language with support for 
classes, objects, message passing and inheritance; and followed by extensions that support 
modules. These extensions consider both conventional static compile-time as well as dynamic 
run-time module constructs. 

Keyword Codes: D.3.1; F.3.1; F.3.2; F.4.3 

Keywords: Programming Languages, Formal Definitions and Theory; Theory of Computation, 
Specifying and Verifying and Reasoning about Programs; Semantics of Programming 
Languages; Formal Languages 

1. Introduction 
Constructs supporting encapsulation and hierarchical composition are essential to modern 
programming languages. The two most popular choices for such constructs are modules and 
classes. Modules comprise definitions of related programming items (including variables, 
functions/procedures, and types). The scope (or visibility) of an item is restricted to the module 
where it is defined. This scope can be extended into another module by defining an import 
relationship. Classes comprise the definition of a set of objects. Classes define the items 
(including variables, methods, and types) that implement the behavior of each object. Objects are 
run-time instantiation of classes. A class can inherit items from another defined class. This 
inheritance relationship allows reuse of class definitions. 



In the 90s, several languages have attempted to integrate modules and classes. Are both 
constructs necessary in a programming language? This question is answered in a recent paper 
[Szy92] which argues for, and provides examples of, the need for both constructs. If a 
programming language supports both constructs then an important issue is whether modules 
interact with classes, objects, or both. This issue has major repercussions on the behavior of the 
constructs. On one extreme, modules are static compile-time constructs for encapsulating and 
organizing groups of classes. On the other extreme, modules are dynamic run-time constructs for 
encapsulating and organizing the behavior of objects. Examples of both extremes exist: Modular 
Smalltalk [Wir88], Modula-3 [Car88, Dona89, Nel91], and Ada9X [Ros92, Taft92] supports 
static modules, while Contracts [Helm90, Hol92] represent a dynamic module construct. These 
extremes of module behavior allow us to explore a range of interactions between modules and 
classes. 

A precise understanding of the behavior of modules and classes within programming languages 
necessitates a semantic framework. This paper develops a denotational semantic framework to 
explore the two extreme behaviors of modules described above, and their interactions with 
classes in a programming language. The presentation is organized as follows: Section 2 develops 
the denotational semantics of a base Object-Oriented (OO) programming language that supports 
classes, objects, message passing, and inheritance. Section 3 extends the denotational semantics 
with support for static, compile-time module constructs. Section 4 extends the denotational 
semantics  with support for dynamic, run-time module constructs which: 

(1) provide encapsulation and define scope for objects as opposed to classes, and 
(2) are instantiated and exist at run time. 

The final section summarizes the presentation, analyzes the results, and presents future directions 
for research. 

2. Denotational Semantics for Object-Oriented Language 
This section develops denotational semantics for a typical object oriented language with support 
for classes, objects, message passing, and inheritance. The presentation is based on [Doda92, 
Kam88, Red88, Tsai92]. The following is a skeleton denotation of two basic expression 
statements: 

 



Syntax - Abstract Production Rules 
 stmts ≡ �⏐stmt⏐stmt; stmts 
 stmt ≡ expr:= expr⏐expr 
 expr ≡ id 
 � = empty syntax 

Semantic Domain 
 loc ≡ {1, 2, 3, …, ⊥, T} 
 val ≡ basicval + loc + … + ⊥ 
 env ≡ id→val 
 state  ≡ loc→val 

Semantic Functions 
 do_stmts: stmts  →env→state→(val × state) 
 do_stmt: stmt  →env→state→(val × state) 
 do_expr: expr  →env→state→(val × state) 

Semantic Equations 
 do_stmts[�]env state ⇒ 〈⊥, state〉 
 do_stmts[stmt; stmts]env state ⇒ let 〈val, state'〉 = do_stmt[stmt]env state 
  in do_stmts[stmts]env state' 
 do_stmt[expr1:= expr2]env state 
 ⇒ let 〈val1, state1〉 = do_expr[expr1]env state 
   〈val2, state2〉 = do_expr[expr2]env state1 
  in (val1∈loc)?(〈val2, state2[val1→val2]〉⏐T) 
 do_stmt[expr]env state ⇒ do_expr[expr]env state 
 do_expr[id]env state ⇒ 〈env id, state〉 

Listing 1: Denotational semantic for expression. 

The semantic domain val (value) denotes a basicval (basic value), a loc (location), or an ⊥ 
(undefined value). Later, new values will be added to val to represent structures like procedures, 
objects, classes, and dynamic modules. The  basicval may be values in the following domains: 
integers, reals, characters, or boolean. Location loc represents an address in the underlying 
abstract machine. The domain env (environment) denotes the visibility scope for variables, and 
the domain state represents the memory of the abstract machine. The state takes a loc and maps 
it to its current val. T (top) represents an error, and ⊥ (bottom) represents undefined values. A 
conditional expression is represented by (condition)?(true expression⏐false expression). The 
semantics for the assignment statement (expr1:= expr2), evaluates the expressions expr1 and 
expr2, checks the result of expr1, and binds the value of expr2 (val2) to the location of expr1 
(val1). Note that an error occurs when val1 is not a location. The expression id retrieves its value 
from the current environment. 

The next step adds the syntax and semantics specific to OO concepts. These include support for 
defining a class, inheriting from a class by subclassing, sending a message to an object, and 
instantiating an object from a class. 

 



Syntax - Abstract Production Rules 
 class ≡ CLASS id (variabledecls) classprocs END⏐ 
   SUBCLASS id = typenamesuper (variabledecls) classprocs END 
 variabledecls ≡ �⏐variabledecl⏐variabledecl; variabledecls 
 variabledecl ≡ idlist: typename⏐idlist:= expr⏐idlist: typename:= expr 
 classprocs ≡ �⏐classproc⏐classproc classprocs 
 classproc ≡ concreteproc⏐abstractproc 
 concreteproc ≡ PROCEDURE id (formals):typename = BEGIN stmts END 
 abstractproc ≡ ABSTRACT id (formals):typename 
 formals ≡ �⏐formal⏐formal; formals 
 formal ≡ idlist: typename 
 expr ≡ idobject.idmesg(exprs)⏐NEW (typename) 
 typename ≡ id 
 idlist ≡ id⏐id, idlist 

Semantic Domain 
 val ≡ basicval + loc + procval + classval + objval + ⊥ 
 procval ≡ (state→(val→)*((val × state) + ⊥)) 
 penv ≡ id→procval 
 clsdef ≡ state→(env × state) 
 clspenv ≡ env→penv 
 classval ≡ clsdef × clspenv 
 cenv ≡ id→classval 
 objval ≡ penv 

Semantic Functions 
 do_class: class  →env→cenv 
 do_variabledecls: variabledecls →(env × state)→(env × state) 
 do_variabledecl: variabledecl →(env × state)→(env × state) 
 do_classprocs: classprocs →env→penv 
 do_classproc: classproc →env→penv 
 do_concreteproc: concreteproc →env→penv 
 do_abstractproc: abstractproc →env→penv 
 do_formals: formals →idlist 
 do_formal: formal →idlist 
 do_expr: expr  →env→state→(val × state) 
 do_typename: typename →env→val 

Listing 2: Denotational semantics specific to OO concepts. 

The semantic domains objval and penv define an object as a mapping from id (procedure 
identifier) to procval (procedure value). Thus, procedure identifiers denote messages. Procedures 
are defined as functions that map a state and a list of finite actual arguments val* into a new val 
and state. Note that an abstract procedure will result in ⊥ when called. The semantic domain 
classval (class value) is denoted by clsdef (class definition) and clspenv (class procedure 
environment). The clsdef takes a state and returns the env for local variables defined in the class, 

 



along with a new state from the local declarations. The clspenv takes an env (the local 
declaration) and returns the procedure environment penv. Splitting classval into clsdef and 
clspenv enables the environments used by clspenv and clsdef to be defined at run time. This 
delay facilitates dynamic instantiation and late binding. 

The semantic equations describing behavior of classes, inheritance and message passing are 
presented below. The semantics of a class definition is shown below: 

do_class[CLASS id (variabledecls) classprocs END]env 
⇒ let clsdef = λstate.do_variabledecls[variabledecls]〈env, state〉 
  clspenv = λenv1.do_classprocs[classprocs](env;env1) 
  classval = 〈clsdef, clspenv〉 
 in [id→classval] 

Listing 3: Semantic equation for CLASS. 

The new classval contains clsdef and clspenv. The clsdef defines variables which are allocated 
space in the run time state. The clspenv defines class procedures which uses the environment 
(env1) determined at run time. The environment (env1) is retrieved from clsdef. 

The semantics of inheritance is defined by the subclass construct shown below: 

do_class[SUBCLASS id = typenamesuper (variabledecls) classprocs END]env 
⇒ let 〈clsdefs, clspenvs〉 = do_typename[typenamesuper]env 
  clsdef = λstate. let 〈envs, states〉 = clsdefs state 
    〈env1, state1〉 =  
     do_variabledecls[variabledecls]〈env;envs, states〉 
   in 〈envs;env1, state1〉 
  clspenv = λenv2. let env3 = env;env2 
    penvs = clspenvs env3 
    penv = do_classprocs[classprocs]env3 
   in penvs;penv 
  classval = 〈clsdef, clspenv〉 
 in [id→classval] 

Listing 4: Semantic equation for SUBCLASS. 

This equation extends SUBCLASS with the superclass definition. First, the superclass 
(typenamesuper) is retrieved from the environment. Second, clsdef appends the superclass 
environment (envs) to its variable environment. Note that ";" represents the append operator. 
Third, clspenv includes the superclass procedure environment (penvs). The environment (env2) 
passed to clspenv denotes the variable environment defined in both the superclass and subclass. 

Message passing semantics is defined as follows: 

 



do_expr[idobject.idmesg(exprs)]env state 
⇒ let 〈objval, state'〉 = do_expr[idobject]env state 
  expr1,…,exprn = exprs  
  ∀i, 1≤i≤n, (〈vali, statei〉 = do_expr[expri]env((i≈1)?(state'⏐statei-1))) 
  penv = objval 
 in (penv idmesg)staten val1…valn 

Listing 5: Semantic equation for message passing. 

The identifier idobject is an objval from which a procedure environment (penv) is extracted. The 
procedure identifier idmesg is used to identify the appropriate procedure procval in penv. Each 
expri is evaluated and passed as arguments (val1…valn) to the procval. Note that the state 
resulting from expri-1 is used by expri. 

The clause NEW instantiates an object from a class. The semantics for object creation is defined 
as follows: 

do_expr[NEW (typename)]env state 
⇒ let classval = do_typename[typename]env 
  〈clsdef, clspenv〉 = classval 
  〈env1, state1〉 = clsdef state 
  penvwithself = λpenv.clspenv(env1[SELF→penv]) 
 in 〈fix penvwithself, state1〉 

Listing 6: Semantic equation for NEW. 

The semantics for fix point is defined as follows: 

fix: penv→penv ⇒ penv 
fix penvwithself ⇒ let penv id = penvwithself penv id 
 in penv 

Listing 7: Semantic equation for fix point. 

The NEW clause dynamically instantiates an objval from a classval using the run time state. The 
instantiation produces an environment (env1) from clsdef and a procedure environment (penv) 
from clspenv. SELF is recursively bound through the environment provided to clspenv, resulting 
in a penv→penv function (penvwithself). Taking the fix point of penvwithself results in an objval 
where all SELF references (including superclass definitions) are bound to the object. This late 
binding results from associating clspenv with (env1[SELF→penv]) at runtime instead of at 
compile time when the CLASS is declared. 

The semantic equations for do_variabledecl, do_classproc, do_concreteproc, 
do_abstractproc, do_formal, and do_typename have been omitted for brevity. Complete 
denotational specifications can be found in [Gan94]. 

 



3. Static Modules 
This section, extends the denotational semantics of the OO language of section 2 with a static, 
compile time module construct. The module construct encapsulates a group of classes, thereby 
facilitating a local scope. Furthermore, the local scope allows definition of invariants among the 
classes in the module. Explicit import and export clauses facilitate a precise definition of 
visibility for the classes within the system. 

The extension to the abstract syntax for static compile time modules is shown below: 

 compilations ≡ �⏐compilation compilations 
 compilation ≡ interface⏐module 
 interface ≡ INTERFACE id; import decls END. 
 module ≡ MODULE id exports; import decls END. 
 exports ≡ �⏐EXPORT idlist 
 import ≡ �⏐IMPORT idlist; 
 decls ≡ �⏐decl decls 
 decl ≡ class;⏐concreteproc; 

Listing 8: Syntax - Abstract Production Rules for static modules. 

The program comprises a set of compilations, which in turn are made up of module and/or 
interface. Each module has a set of decls. The environment used in decls are defined in the 
IMPORTed interface. These interface definitions are replaced with EXPORTed definitions from 
the corresponding module definition.  

The semantic domains for static compile time modules are the same as the semantic domains for 
OO languages as described in section 2. The semantic functions associated with static compile 
time modules are shown below: 

execute_compilations: compilations →(val→)*(val × state) 
do_compilations: compilations →(env × state)→(env × state) 
do_compilation: compilation →(env × state)→(env × state) 
do_interface: interface →(env × state)→(env × state) 
do_module: module →(env × state)→(env × state) 
do_exports: exports →env→env→env 
do_import: import →env→env 
do_decls: decls →(env × state)→(env × state) 
do_decl: decl →(env × state)→(env × state) 

Listing 9: Semantic functions for static modules. 

The semantics of executing a program is defined by execute_compilations which identifies the 
main procedure defined in the environment produced by do_compilation. This main procedure 
is executed with actual parameters val1…valn, resulting in a return value and new state. Note 
that the semantics ensure definition of variables before use. 

 



execute_compilations[compilations] val1…valn 
⇒ let 〈env, state〉 = do_compilations[compilations]〈emptyenv, emptystate〉 
  procval = env idmain 
 in procval state val1…valn 

Listing 10: Semantic equation for compilation units. 

The semantics of handling computation units is defined by individual interface or module 
components. The semantics of an interface is shown below: 

do_interface[INTERFACE id; import decls END.]〈env, state〉 
⇒ let  〈env1, state1〉 = do_decls[decls]〈do_import[import]env, state〉 
 in 〈env[id→env1], state1〉 

Listing 11: Semantic equation for INTERFACE. 

Each interface consist of a name, imported environment and a declaration. 

The semantics of modules is shown below: 

do_module[MODULE id exports; import decls END.]〈env, state〉 
⇒ let 〈env1, state1〉 = do_decls[decls](do_import[import]env) state 
 in 〈do_exports[exports]env env1, state1〉 

Listing 12: Semantic equation for MODULE. 

Each module produces a EXPORT environment and a new state resulting from the decls. The 
environment used in decls is the IMPORTed environment. 

The semantics defining the behavior of import and export relationships is shown below: 

do_import[IMPORT �;]env ⇒ emptyenv 
do_import[IMPORT id;]env ⇒ [id→env id] 
do_import[IMPORT id, idlist;]env 
⇒ (do_import[IMPORT id;]env);(do_import[IMPORT idlist;]env) 
do_exports[�]env env1 ⇒ env 
do_exports[EXPORT idlist]env env1 
⇒ let id1,…,idn = idlist 
 in env[∀i, 1≤i≤n, (idi→ 
   let envi = env idi 
   in envi[∀j, (id'j∈domain(env1)∩domain(envi), id'j→env1 id'j)] 

Listing 13: Semantic equations for IMPORT and EXPORT. 

IMPORT definitions are used only in interface and module. IMPORT returns the interface 
environment named in idlist. These definitions must be exported by some module and have the 
effect of overriding the declaration with the same name in the interface. 

 



4. Dynamic Modules 
In stark contrast with the static compile time modules for encapsulating classes presented above, 
this section explores the semantics of a dynamic run time module that facilitates the definition 
and manipulation of relationships between objects. The dynamic nature of modules is similar to 
classes; that is, the scope is instantiated at run time. This run time instantiation is done explicitly 
using the RELATE clause (similar to NEW), and has the effect of a late binding between objects 
and parts in relationships. The binding itself is similar to parameter binding in methods: the 
actual objects are bound to formal parts of the dynamic module. Thus, modules are templates for 
defining relationships between objects. Each part of the template can be bound to an object when 
instantiated. The template can define shared variables, and prescribe local scoping rules. 

This subsection extends the denotational semantics of the object-oriented programming language 
to support dynamic run time modules. Dynamic modules are defined using  COMPOSE and 
SUBCOMPOSE clauses and instantiated at run time using the RELATE clause. These three 
clauses mirror CLASS, SUBCLASS and NEW defined for classes. RELATE binds run time 
objects to formal participants of the dynamic module defined by COMPOSE and 
SUBCOMPOSE. The resulting dynamic scope facilitates access to shared variables, local 
variables defined within participants, and actual objects bound to participants. 

The following presents the abstract syntax for the language supporting the dynamic module: 

 decls ≡ �⏐decl decls 
 decl ≡ compose;⏐class;⏐concreteproc; 
 compose ≡ COMPOSE id (variabledecls) classes BEGIN stmts END⏐ 
   SUBCOMPOSE id = idsuper (variabledecls) classes BEGIN stmts END 
 classes ≡ � ⏐ class; classes 
 expr ≡ idobject.idmesg(exprs)⏐NEW (typename)⏐RELATE typename (actuals) 
 actuals ≡ �⏐expr⏐expr, actuals 

Listing 14: Syntax - Abstract Production Rules for dynamic modules. 

Note that COMPOSE defines modules by an identifier (id), a set of variable declaration 
(variabledecls), a set of class definition (classes), and a set of initialization statements (stmts). 
The dynamic scope defined by COMPOSE identifies three separate contexts: 

(1) The context for the entire module accessed through the reference CSELF. 
(2) The context for each participant accessed within CLASS definitions of the dynamic 

module using SELF. 
(3) The context of the actual objects accessed by invoking redefined methods after the 

module is instantiated using RELATE. 

The following presents the extensions to the semantic domains and semantic functions relevant 
to dynamic modules: 

 



Semantic Domain 
 val ≡ basicval + loc + procval + classval + objval + composeval + ⊥ 
 composeval ≡ state→(env × cenv × state) 

Semantic Functions 
 do_decl: decl →(env × state)→(env × state) 
 do_compose: compose  →env→env 
 do_classes: classes  →env→cenv 
 do_actuals: actuals  →env→state→((val ×)* state) 

Listing 15: Semantic Domain and Functions for dynamic modules. 

The semantics of defining dynamic modules with COMPOSE and SUBCOMPOSE is similar to 
CLASS and SUBCLASS as shown below: 

do_decl[compose;]〈env, state〉 ⇒ 〈do_compose[compose]env, state〉 
do_compose[COMPOSE id (variabledecls) classes BEGIN stmts END]env 
 ⇒ let composeval = λstate. let 〈env1, state1〉 = 
     do_variabledecls[variabledecls]〈env, state〉 
    env2 = env;env1 
    cenv = do_classes[classes]env2 
    〈val, state2〉 = do_stmts[stmts]env2 state1 
   in 〈env1, cenv, state2〉 
 in [id→composeval] 
do_compose[SUBCOMPOSE id = idsuper (variabledecls) classes BEGIN stmts END]env 
 ⇒ let composeval = env idsuper 
  composeval1 = λstate. let 〈envs, cenvs, states〉 = composeval state 
    〈env1, state1〉 = 
     do_variabledecls[variabledecls]〈env, states〉 
    env2 = env;envs;env1 
    cenv = do_classes[classes]env2 
    〈val, state2〉 = do_stmts[stmts]env2 state1 
   in 〈envs;env1, cenvs;cenv, state2〉 
 in [id→composeval1] 

Listing 16: Semantic equations for COMPOSE and SUBCOMPOSE. 

The equation for do_compose takes a COMPOSE definition and produces a new environment 
from variabledecls, a class environment from classes, and a new state from stmts. The equation 
of SUBCOMPOSE extends the compose definition with that of the super compose identified by 
(idsuper). In particular, SUBCOMPOSE adds new variable definitions and new class 
participants. 

The actual binding of dynamic module participants to existing objects is done explicitly with the 
RELATE expression. The semantics of the RELATE expression is presented below: 

 



do_expr[RELATE typename (actuals)]env state 
⇒ let composeval = do_typename[typename]env 
  〈objval1, …,objvaln, state1〉 = do_actuals[actuals]env state 
  〈env1, cenv, state2〉 = composeval state1 
  [id1→〈clsdef1, clspenv1〉,…,idk→〈clsdefk, clspenvk〉] = cenv 
  ∀i, 1≤i≤n, (〈env'i, state'i〉 = clsdefi ((i≈1)?(state2⏐state'i-1))) 
  x = λpenv.(k≈n)?( let ∀i, 1≤i≤n, 
    ( penvi = mixobject objvali clspenvi 
(env1;env'i;[idcself→penv]) 
     penv'i = qualify idi penvi ) 
   in (penv'1;…; penv'n)⏐T ) 
  objval = fix x 
 in 〈objval, state'n〉 
qualify: id → penv ⇒ penv 
qualify idc penv ⇒ ∀idi ∈ domain(penv), [idc.idi→penv idi] 

Listing 17: Semantic equations for RELATE. 

RELATE binds the actual objects passed as arguments (actuals) to formal class participants of 
the dynamic module. The dynamic module (composeval) derived from typename contains a local 
environment (env1), a group of classes (cenv), and the new state (state2). The class environment 
(cenv) comprise of the formal class participants of the dynamic module. These participants 
(clspenvi) are instantiated in mixobject (described below) and bound with the corresponding 
objects (objvali) from actuals. The result of this combination is an object whose dynamic scope 
comprises shared variables, local variables defined in participants, and actual objects bound to 
participants. Environment (env1) denotes the shared variables, env'i denotes the local variables of 
each participant, and [idcself→penv] denotes the procedures defined within the module. The 
entire environment (env1;env'i;[idcself→penv] is passed to mixobject. RELATE uses mixobject 
to produce an objval or penvi for each participant of the dynamic module. Each participant object 
is qualified using its identifier (idi) to avoid name clashes. The final step of RELATE finds the 
fix point and returns the procedure environment of each participant (penv'i). Note that the result 
of RELATE is itself an object which can participate in other dynamic modules. 

The semantics of mixobject is shown below: 

mixobject: penv → clspenv → env ⇒ pmenv 
mixobject  penv clspenv env 
⇒ let x = λpenv1.mixobjmethod penv  (clspenv (env;[idself→penv1])) 
 in fix x 
mixobjmethod: penv → penv ⇒ penv 
mixobjmethod penv penv1 
⇒ let ∀idi∈domain(penv1)∩domain(penv), (procvali = penv idi) 
 in penv1;[∀i(idi→procvali)] 

Listing 18: Semantic equations for mixobject. 

The semantic function mixobject takes the actual object (penv), the corresponding dynamic 
module participant (clspenv), and an environment (env). The arguments passed to mixobject 

 



consists of objvali as penv, clspenvi as clspenv, and (env1[idself→penv1];env'i) as env. This 
environment (env) is used in mixobject to bind SELF to each participant object. The fix point 
(fix x) handles any recursion. The procedures are mixed in mixobjmethod to ensure proper 
access to procedures in the actual object. Procedures of the actual object (penv) may override 
abstract procedures with identical names in the participant object (penv1). Only procedures 
defined in penv1 or overridden by penv is accessible to the participant object. Note that any 
"message not understood" errors resulting from the redefinitions must be detected by an 
appropriate type checker. 

5. Conclusion 
This paper has developed a denotational semantic framework for understanding the behavior of 
modules and classes within a programming language. This semantic framework has been used to 
precisely interpret two extreme behaviors of modules and their interaction with classes. On one 
extreme, modules are interpreted as constructs that encapsulate groups of classes. Thus, a 
program comprise modules, which in turn provide a local scope for class definitions. Explicit 
import and export clauses allow the local scope to be extended and restricted. The local scope 
also permits the definition of shared variables and invariants among the classes of a module. The 
other extreme interprets modules as dynamic entities that facilitate encapsulation of related 
objects. Thus, modules have a similar status as classes. In this interpretation, modules are 
dynamically instantiated to form objects which respond to messages. The instantiation 
dynamically binds actual objects to formal parts of modules. Such an approach allows the 
establishment of dynamic relationships between objects at run time. Dynamic modules facilitate 
reuse of definitions using an explicit SUBCOMPOSE construct. 

There are three significant differences between these extreme interpretations. The first contrasts 
between a static versus a dynamic construct. A static module is used only for defining scope, and 
does not exist at run time. On the other hand, a dynamic module generates an object which 
defines a run time scope for objects. The second contrasts the granularity of the scope. The static 
module provides a local scope for classes, while the dynamic module provides a local scope for 
objects. The final difference is more subtle, and contrasts the import/export and the 
compose/subcompose relationships. The main difference is that import/export specifies visibility 
of components, while compose/subcompose copies definitions from compose into subcompose. 

This work has presented the first step in understanding the behavior of classes and modules 
within a programming language. This semantic framework will be invaluable in answering 
several significant questions for languages supporting both constructs including: What is the 
effect of integrating a type system with classes, static modules and dynamic modules? How does 
subtyping relate to subclassing and subcomposing? Are other interpretations of classes and 
modules possible; that is, are there any interesting interpretations between the two extremes? 

One major advantage of a denotational semantic framework is the ability to translate it into an 
equivalent executable semantics in a functional language such as ML [Wik87, Xavi92]. This 
translation allows validation of the semantics and testing of the intended behavior. Executable 
semantics for the denotational specifications presented in this paper have been developed. 
Several examples exercised the intended behavior. Future work is directed at developing 
complete semantics of the intended behavior of languages such as Modula-3 and Modular 
Smalltalk. 
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