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Abstract 

 
The authors previously developed a system to 

facilitate the self-directed learning and practicing of 
software languages in Singapore. One of the goals of 
this self-directed learning was to enable the 
development of student mentors who would then be 
able to assist other students during classroom 
sessions. Building on this work, the authors extended 
the platform to support personalized coaching with 
the goals of further enabling and preparing students 
to mentor their peers. This paper covers the 
challenges, insights, and features that were 
developed in order to develop and deploy this 
mastery-based coaching feature.  

 
 
1. Introduction 
 

Personalized, one-to-one teaching and mentoring 
has been recognized as one of the most effective 
methods of maintaining student engagement and 
enhancing learning [1][2].  The authors have been 
experimenting with ways to scale-up improved 
personalized assessment and learning using cloud-
based systems.  In 2011, the authors invited nearly 
200 students who were on the borderline of being 
rejected for university admission to participate in a 
new program, which would give them a second 
chance to gain one of the coveted admission spots. 
These students were asked to learn basic Java and 
Python programming languages on their own within 
a two week time period.  The students were 
instructed to use SingPath [3], the tool developed by 
the authors for practicing programming in a self-
directed manner. The students were expected to 
demonstrate minimal competence, and then take part 
in a short software tournament [4].   

Since this trial, the authors have extended the 
platform to support software lab delivery in 
classroom settings [5]. Additionally, SingPath has 
been extended to support added personalized, self-
directed learning in preparation for classroom 
sessions [6].  Lastly, the authors implemented an 
automated-mentor assignment feature [7] which 

automates the process of identifying students that 
have mastered material and pairs them up to serve as 
mentors to students still working on assignments. In 
2014, the authors designed and outlined how the 
system used to support self-directed learning and 
peer-based mentoring in a classroom environment 
could be extended to identify and coach students on a 
national scale [8]. After observing how students were 
preparing for classroom sessions and national 
software development tournaments, the authors 
identified the need and opportunity to develop an 
automated coaching feature to improve the efficiency 
of time spent resolving previously solved problems. 
 
2. SingPath 
 

SingPath is a web-based tool that enables users to 
practice programming in several software languages 
within a gaming environment. The platform started 
as a tool to provide students with immediate online 
feedback on solutions to programming problems and 
expanded over time to support different types of 
blended learning needs for a variety of classes and 
classroom settings. A picture of the interface is 
shown below in Figure 1.  

 

 
Figure 1: Normal Gameplay 

 
The SingPath platform supports traditional self-

directed learning mechanisms such as badges and 
completion metrics as well as features for use in 
classrooms, such as tournaments.  In these software 
tournaments, participants are usually asked to solve 
around ten short programming problems. SingPath 



tournaments are non-graded exercises based on 
serious gaming [9], which provide the student with 
an opportunity for hands on learning and present the 
instructor with an opportunity for data collection and 
customization of classroom materials.  

 
 

3. Tournaments 
 

During software tournaments, a live ranking is 
usually displayed on a screen to show the class 
progress. This ranking provides feedback to the 
students regarding how the participants are 
progressing and provides the tournament facilitator 
with information as to which participants may need 
the most assistance as well as how long the class is 
likely to take to finish the tournament (Figure 2).  
 

 
 Figure 2: Live Onscreen Tournament Rankings 
 

While preparing for these tournaments, many 
students attempt to work ahead by solving more 
problems in order to increase their mastery and to 
prepare themselves for future tournaments. However, 
once a student has solved 50 to 100 programming 
problems they often desire to revisit previous 
material to increase their mastery of that material and 
to better prepare themselves, should similar problems 
appear in upcoming tournaments.  

Because SingPath is designed with paths and 
levels, each student must pick a path or programing 
language such as Python, Java, or Ruby and solve a 
level, which consist of questions on specific topics 
such as functions, conditions, or strings. Usually this 
revisiting or review process entailed resolving the 
problems on a given level. This was an inefficient 
process since students would need to resolve all 
problems in that level regardless of how well they 
had performed when solving the problems the first 
time.  What students really wanted was a way to 
practice and resolve the problems where they had 
been the least proficient. 
 
 
 

4. Relative Performance 
 

As players solve problem while playing SingPath, 
SingPath keeps track of both the player’s 
performance and the performance of all other players 
that have solved a given problem. This enables 
SingPath to determine a percentile ranking of where 
the player’s performance for a problem falls in 
relation to all other players. In addition to the relative 
speed performance in which a player solved a 
problem, SingPath also tracks the number of 
attempts and lines of code that a player required to 
solve a problem. As such, SingPath compares each 
student’s performance with all other players. With 
this data, SingPath is then able to create a prioritized 
list of problems that the student can resolve starting 
with the problem with the worst relative performance 
and working up from there. SingPath is then able to 
present these problems to the player one at a time 
enabling players to focus on the problems where they 
demonstrated the most opportunity for improvement 
compared with their peers.  

 
5. Mastery-based Coaching 

 
The mastery-based coaching feature and four 

initial coaching personas were launched in February 
2014 to support the self-directed learning of 
hundreds of Singaporean students who would be 
preparing for and competing in upcoming national 
coding tournaments [8]. The authors approach to 
coaching was designed to be scalable. As long as 
more than one player has attempted a problem and 
the current player has attempted at least one problem, 
the coaching feature should be able to prioritize a list 
of problems for the player to resolve.  

As players resolve problems, their proficiency in 
solving these problems is likely to improve. Since 
the list of problems is prioritized by presenting the 
players lowest percentile performance first, this 
means that the player was able solve all other 
problems at higher relative performance. 
Considering that the player has demonstrated better 
relative performance for all other problems, the 
player is usually able to resolve their least proficient 
problem a little better when it receives their focused 
attention. Added to this is the fact that in order to be 
coached to resolve a problem, players must have 
solved the problem at least once previously. The 
authors observed that players are better able to solve 
problems in coaching sessions since the problems 
being presented have been solved before and the 
problems presented are the ones most likely to fall 
below the player’s demonstrated relative level of 
performance.  

As players improve their proficiency on more 
problems, their level of demonstrated proficiency on 
their least proficient problem increases. Once the 
players’ least demonstrated proficiency rises above 



some target level of proficiency, the players are 
encouraged by the coaches to stop resolving 
problems and to go and practice new problems. The 
target level of proficiency for the original prototype 
was set to be 80%. This 80% target was chosen to 
align coaching targets with the authors’ research into 
identifying and training mentors.  

In order to make this process more interesting 
than simply resolving problems, the authors 
implemented the new coaching feature using a 
collection of coaching personas. The four initial 
coaching personas were chosen to provide players 
with choices based on the type of coaching, 
feedback, and encouragement that they would want 
to receive.  

One of the coaches, named Shannon, is a young 
girl who is most interested in how the student will 
feel the next time that he or she has to code with 
friends and other classmates. Shannon wants the 
student to be comfortable and confident in his or her 
coding capability. Shannon makes statements such 
as: “You are doing great” and “Coding with your 
friends is so much fun”. SGT MJR is a drill sergeant 
that will use tough love to get the best out of the 
student’s programming practices. The Sandra coach 
is a recruiter interested in the student doing well in 
his or her next technical interview where the 
interviewer is likely to ask the student to write 
software. And the last coach is Zandar, a young 
teenage boy who is most interested in seeing the 
student become “more awesome”.  Zardar’s goal is 
that the student will be prepared to do well in any 
upcoming tournaments (See Figure 3). 
 

 
Figure 3. Coach Selection 
  

All of these mentors follow a common pattern of 
encouraging players to resolve problems in less time 
or in fewer attempts. Encouragement is provided by 
playing audio clips along with displaying the text of 
the coach’s comments for the players to read (see 
Figure 4). The initial implementation involves 
coaches working down a prioritized list of ten 
problems based on the player’s relative solve times.  

SingPath provides the coaching logic with an 
ordered list of recommended problems for players to 
reattempt. This ordered list contains players’ 
problem solving data such as previous time, number 
of attempts, time percentile, and attempts percentile. 
This information provides the coaching logic with 
the ability to congratulate players when they resolve 
problems in less time or fewer attempts than 
previously achieved. Alternatively, the coach can 
make comments such as: “We will try that one again 
later”. Having visibility to the attempts data also 
provides the coaching logic to encourage the player 
to solve problems in fewer attempts rather than in 
less time. This format provides some variety in how 
coaches present problems to resolve. The authors’ 
initial implementation designed the coaches to ask 
players to solve problems in fewer attempts 
whenever their attempts percentile was lower than 
their time percentile. Therefore, coach’s feedback 
provided is based on how many attempts the player 
requires to resolve a given problem.  
  

 
 Figure 4. Coaching Gameplay 
 

The addition of coaching is likely to further 
differentiate the capability and preparedness of 
students when they come to class sessions or 
tournaments. Because of the authors’ automated 
mentor assignment approach [7], this increased 
differentiation is less of a problem. More prepared 
students will spend less class time coding on their 
own and more time mentoring other students. Less 
prepared students will then be assigned a mentor 
earlier during the sessions. It is also possible that 
some students who might normally perform in the 
bottom quartile of the class will have an opportunity 
to use the coaching feature to enhance their 
tournament performance if that is their desire.  

 
 
6. Towards Intrinsic Motivation 
 

Another objective of Mastery-based Coaching has 
been to avoid providing players with a numeric 
feedback metric on their progress. Even though 
players will be increasing their proficiency and 
relative performance as they resolve problems, they 
are not shown this numerical and measurable 



improvement.  The SingPath platform already 
contains a variety of gamification features such as 
badges, level completion percentages, event 
rankings, quest progress, and other items [6]. Rather 
than tell players that they are at the 57 percentile, 
coaches simply encourage players to continually get 
better.  

The objective of this design is to endeavor to start 
moving away from extrinsic motivation factors such 
as grades, tournaments, and badges towards more 
intrinsically aligned motivations such as autonomy, 
mastery, and purpose [10]. As the name implies, 
Mastery-based Coaching focuses on mastery. The 
authors would like the players to feel that they are 
getting better. The coaches focus on conveying and 
reinforcing that message. For example: “You are 
faster and more accurate now than you were when 
you started practicing.”  

The positive feedback and encouragement 
provided by the coaches is still an additional 
extrinsic motivator, but the authors’ hypothesis is 
that by hiding the underlying time and time 
percentile metrics, players will need to reflect more 
on how they are doing. The authors hope that by 
providing status report messages, players might ask 
themselves questions such as: “How does the coach 
know that I am getting better” and “Am I really 
getting better”. If SingPath’s Mastery-based 
coaching can encourage players to reflect on their 
increased mastery of the material and appreciate their 
progress, this may also lead to additional intrinsic 
motivation that will encourage more players to 
practice longer.  
 
 
7. Conclusion 
 

The Mastery-based coaching method, based on 
relative performance metrics is an approach put in 
place to coach students to solve programming 
language problems faster and in fewer attempts. This 
platform could be extended to encourage students to 
use fewer lines of code, use less duplicate code, 
follow preferred coding conventions, or to use better 
algorithms. However, due to the authors focus on 
identifying, developing, and assigning qualified 
mentors, the authors’ research interests continue to 
focus primarily on speed and on the correlated metric 
of attempts needed to solve problems quickly and 
efficiently. In the future, the authors hope to learn 
from the data generated by students using the 
Mastery-based coaching feature as they prepare for 
coding competitions and classroom sessions. The 
authors plan to adapt any insight from this research 
for the benefit of programming students world wide. 
 
 

8. Future Research  
 

As part of the authors’ future research on 
Mastery-based coaching, they have also prototyped 
the option of having coaches introduce new problems 
and material rather than systematically directing 
players to exit coaching sessions to solve new 
problems. The authors’ hypothesis is that some 
students may enjoy the coaching experience and 
encouraging environment more than they might 
enjoy the practice or quest experiences [6]. Staying 
in the coaching experience might result in the further 
engagement of these students and their increase in 
time spent practicing and learning new material. This 
mode would also provide the benefit of allowing 
coaches to ensure that players have mastered all 
material to a given target level of proficiency such as 
80% before proceeding on to learning new material. 
This approach would more closely align with 
Bloom’s approach to mastery-based teaching [1]. In 
the future, the authors plan to conduct research to 
determine if having coaches introduce new material 
leads to better outcomes than simply concluding 
coaching sessions until material has been attempted 
using the other options available in SingPath.  
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