
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

2014

Personalizing Software Development Practice Using Mastery-Personalizing Software Development Practice Using Mastery-

based Coaching based Coaching

Chris BOESCH
Singapore Management University, cboesch@smu.edu.sg

Sandra BOESCH
Singapore Management University, sandraboesch@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
BOESCH, Chris and BOESCH, Sandra. Personalizing Software Development Practice Using Mastery-based
Coaching. (2014). Canada International Conference on Education (CICE-2014).
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2229

This Conference Paper is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2229&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2229&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Personalizing Software Development Practice Using Mastery-based
Coaching

Chris Boesch, Sandra Boesch
Singapore Management University, Pivotal Expert

Singapore

Abstract

The authors previously developed a system to

facilitate the self-directed learning and practicing of
software languages in Singapore. One of the goals of
this self-directed learning was to enable the
development of student mentors who would then be
able to assist other students during classroom
sessions. Building on this work, the authors extended
the platform to support personalized coaching with
the goals of further enabling and preparing students
to mentor their peers. This paper covers the
challenges, insights, and features that were
developed in order to develop and deploy this
mastery-based coaching feature.

1. Introduction

Personalized, one-to-one teaching and mentoring
has been recognized as one of the most effective
methods of maintaining student engagement and
enhancing learning [1][2]. The authors have been
experimenting with ways to scale-up improved
personalized assessment and learning using cloud-
based systems. In 2011, the authors invited nearly
200 students who were on the borderline of being
rejected for university admission to participate in a
new program, which would give them a second
chance to gain one of the coveted admission spots.
These students were asked to learn basic Java and
Python programming languages on their own within
a two week time period. The students were
instructed to use SingPath [3], the tool developed by
the authors for practicing programming in a self-
directed manner. The students were expected to
demonstrate minimal competence, and then take part
in a short software tournament [4].

Since this trial, the authors have extended the
platform to support software lab delivery in
classroom settings [5]. Additionally, SingPath has
been extended to support added personalized, self-
directed learning in preparation for classroom
sessions [6]. Lastly, the authors implemented an
automated-mentor assignment feature [7] which

automates the process of identifying students that
have mastered material and pairs them up to serve as
mentors to students still working on assignments. In
2014, the authors designed and outlined how the
system used to support self-directed learning and
peer-based mentoring in a classroom environment
could be extended to identify and coach students on a
national scale [8]. After observing how students were
preparing for classroom sessions and national
software development tournaments, the authors
identified the need and opportunity to develop an
automated coaching feature to improve the efficiency
of time spent resolving previously solved problems.

2. SingPath

SingPath is a web-based tool that enables users to
practice programming in several software languages
within a gaming environment. The platform started
as a tool to provide students with immediate online
feedback on solutions to programming problems and
expanded over time to support different types of
blended learning needs for a variety of classes and
classroom settings. A picture of the interface is
shown below in Figure 1.

Figure 1: Normal Gameplay

The SingPath platform supports traditional self-

directed learning mechanisms such as badges and
completion metrics as well as features for use in
classrooms, such as tournaments. In these software
tournaments, participants are usually asked to solve
around ten short programming problems. SingPath

tournaments are non-graded exercises based on
serious gaming [9], which provide the student with
an opportunity for hands on learning and present the
instructor with an opportunity for data collection and
customization of classroom materials.

3. Tournaments

During software tournaments, a live ranking is
usually displayed on a screen to show the class
progress. This ranking provides feedback to the
students regarding how the participants are
progressing and provides the tournament facilitator
with information as to which participants may need
the most assistance as well as how long the class is
likely to take to finish the tournament (Figure 2).

 Figure 2: Live Onscreen Tournament Rankings

While preparing for these tournaments, many
students attempt to work ahead by solving more
problems in order to increase their mastery and to
prepare themselves for future tournaments. However,
once a student has solved 50 to 100 programming
problems they often desire to revisit previous
material to increase their mastery of that material and
to better prepare themselves, should similar problems
appear in upcoming tournaments.

Because SingPath is designed with paths and
levels, each student must pick a path or programing
language such as Python, Java, or Ruby and solve a
level, which consist of questions on specific topics
such as functions, conditions, or strings. Usually this
revisiting or review process entailed resolving the
problems on a given level. This was an inefficient
process since students would need to resolve all
problems in that level regardless of how well they
had performed when solving the problems the first
time. What students really wanted was a way to
practice and resolve the problems where they had
been the least proficient.

4. Relative Performance

As players solve problem while playing SingPath,
SingPath keeps track of both the player’s
performance and the performance of all other players
that have solved a given problem. This enables
SingPath to determine a percentile ranking of where
the player’s performance for a problem falls in
relation to all other players. In addition to the relative
speed performance in which a player solved a
problem, SingPath also tracks the number of
attempts and lines of code that a player required to
solve a problem. As such, SingPath compares each
student’s performance with all other players. With
this data, SingPath is then able to create a prioritized
list of problems that the student can resolve starting
with the problem with the worst relative performance
and working up from there. SingPath is then able to
present these problems to the player one at a time
enabling players to focus on the problems where they
demonstrated the most opportunity for improvement
compared with their peers.

5. Mastery-based Coaching

The mastery-based coaching feature and four

initial coaching personas were launched in February
2014 to support the self-directed learning of
hundreds of Singaporean students who would be
preparing for and competing in upcoming national
coding tournaments [8]. The authors approach to
coaching was designed to be scalable. As long as
more than one player has attempted a problem and
the current player has attempted at least one problem,
the coaching feature should be able to prioritize a list
of problems for the player to resolve.

As players resolve problems, their proficiency in
solving these problems is likely to improve. Since
the list of problems is prioritized by presenting the
players lowest percentile performance first, this
means that the player was able solve all other
problems at higher relative performance.
Considering that the player has demonstrated better
relative performance for all other problems, the
player is usually able to resolve their least proficient
problem a little better when it receives their focused
attention. Added to this is the fact that in order to be
coached to resolve a problem, players must have
solved the problem at least once previously. The
authors observed that players are better able to solve
problems in coaching sessions since the problems
being presented have been solved before and the
problems presented are the ones most likely to fall
below the player’s demonstrated relative level of
performance.

As players improve their proficiency on more
problems, their level of demonstrated proficiency on
their least proficient problem increases. Once the
players’ least demonstrated proficiency rises above

some target level of proficiency, the players are
encouraged by the coaches to stop resolving
problems and to go and practice new problems. The
target level of proficiency for the original prototype
was set to be 80%. This 80% target was chosen to
align coaching targets with the authors’ research into
identifying and training mentors.

In order to make this process more interesting
than simply resolving problems, the authors
implemented the new coaching feature using a
collection of coaching personas. The four initial
coaching personas were chosen to provide players
with choices based on the type of coaching,
feedback, and encouragement that they would want
to receive.

One of the coaches, named Shannon, is a young
girl who is most interested in how the student will
feel the next time that he or she has to code with
friends and other classmates. Shannon wants the
student to be comfortable and confident in his or her
coding capability. Shannon makes statements such
as: “You are doing great” and “Coding with your
friends is so much fun”. SGT MJR is a drill sergeant
that will use tough love to get the best out of the
student’s programming practices. The Sandra coach
is a recruiter interested in the student doing well in
his or her next technical interview where the
interviewer is likely to ask the student to write
software. And the last coach is Zandar, a young
teenage boy who is most interested in seeing the
student become “more awesome”. Zardar’s goal is
that the student will be prepared to do well in any
upcoming tournaments (See Figure 3).

Figure 3. Coach Selection

All of these mentors follow a common pattern of
encouraging players to resolve problems in less time
or in fewer attempts. Encouragement is provided by
playing audio clips along with displaying the text of
the coach’s comments for the players to read (see
Figure 4). The initial implementation involves
coaches working down a prioritized list of ten
problems based on the player’s relative solve times.

SingPath provides the coaching logic with an
ordered list of recommended problems for players to
reattempt. This ordered list contains players’
problem solving data such as previous time, number
of attempts, time percentile, and attempts percentile.
This information provides the coaching logic with
the ability to congratulate players when they resolve
problems in less time or fewer attempts than
previously achieved. Alternatively, the coach can
make comments such as: “We will try that one again
later”. Having visibility to the attempts data also
provides the coaching logic to encourage the player
to solve problems in fewer attempts rather than in
less time. This format provides some variety in how
coaches present problems to resolve. The authors’
initial implementation designed the coaches to ask
players to solve problems in fewer attempts
whenever their attempts percentile was lower than
their time percentile. Therefore, coach’s feedback
provided is based on how many attempts the player
requires to resolve a given problem.

 Figure 4. Coaching Gameplay

The addition of coaching is likely to further
differentiate the capability and preparedness of
students when they come to class sessions or
tournaments. Because of the authors’ automated
mentor assignment approach [7], this increased
differentiation is less of a problem. More prepared
students will spend less class time coding on their
own and more time mentoring other students. Less
prepared students will then be assigned a mentor
earlier during the sessions. It is also possible that
some students who might normally perform in the
bottom quartile of the class will have an opportunity
to use the coaching feature to enhance their
tournament performance if that is their desire.

6. Towards Intrinsic Motivation

Another objective of Mastery-based Coaching has
been to avoid providing players with a numeric
feedback metric on their progress. Even though
players will be increasing their proficiency and
relative performance as they resolve problems, they
are not shown this numerical and measurable

improvement. The SingPath platform already
contains a variety of gamification features such as
badges, level completion percentages, event
rankings, quest progress, and other items [6]. Rather
than tell players that they are at the 57 percentile,
coaches simply encourage players to continually get
better.

The objective of this design is to endeavor to start
moving away from extrinsic motivation factors such
as grades, tournaments, and badges towards more
intrinsically aligned motivations such as autonomy,
mastery, and purpose [10]. As the name implies,
Mastery-based Coaching focuses on mastery. The
authors would like the players to feel that they are
getting better. The coaches focus on conveying and
reinforcing that message. For example: “You are
faster and more accurate now than you were when
you started practicing.”

The positive feedback and encouragement
provided by the coaches is still an additional
extrinsic motivator, but the authors’ hypothesis is
that by hiding the underlying time and time
percentile metrics, players will need to reflect more
on how they are doing. The authors hope that by
providing status report messages, players might ask
themselves questions such as: “How does the coach
know that I am getting better” and “Am I really
getting better”. If SingPath’s Mastery-based
coaching can encourage players to reflect on their
increased mastery of the material and appreciate their
progress, this may also lead to additional intrinsic
motivation that will encourage more players to
practice longer.

7. Conclusion

The Mastery-based coaching method, based on
relative performance metrics is an approach put in
place to coach students to solve programming
language problems faster and in fewer attempts. This
platform could be extended to encourage students to
use fewer lines of code, use less duplicate code,
follow preferred coding conventions, or to use better
algorithms. However, due to the authors focus on
identifying, developing, and assigning qualified
mentors, the authors’ research interests continue to
focus primarily on speed and on the correlated metric
of attempts needed to solve problems quickly and
efficiently. In the future, the authors hope to learn
from the data generated by students using the
Mastery-based coaching feature as they prepare for
coding competitions and classroom sessions. The
authors plan to adapt any insight from this research
for the benefit of programming students world wide.

8. Future Research

As part of the authors’ future research on
Mastery-based coaching, they have also prototyped
the option of having coaches introduce new problems
and material rather than systematically directing
players to exit coaching sessions to solve new
problems. The authors’ hypothesis is that some
students may enjoy the coaching experience and
encouraging environment more than they might
enjoy the practice or quest experiences [6]. Staying
in the coaching experience might result in the further
engagement of these students and their increase in
time spent practicing and learning new material. This
mode would also provide the benefit of allowing
coaches to ensure that players have mastered all
material to a given target level of proficiency such as
80% before proceeding on to learning new material.
This approach would more closely align with
Bloom’s approach to mastery-based teaching [1]. In
the future, the authors plan to conduct research to
determine if having coaches introduce new material
leads to better outcomes than simply concluding
coaching sessions until material has been attempted
using the other options available in SingPath.

9. References

[1] Bloom, B. (1984). "The 2 Sigma Problem: The Search
for Methods of Group Instruction as Effective as One-to-
One Tutoring", Educational Researcher, 13:6(4-16).

[2] Leontidis, M., Halatsis, C., & Grigoriadou, M. (2009).
MENTORing Affectively the Student to Enhance his
Learning. Advanced Learning Technologies, IEEE
International Conference.

[3] http://singpath.com

[4] Boesch, C., & Steppe, K. Case Study on Using a
Programming Practice Tool for Evaluating University
Applicants. 3rd Annual International Conference on
Computer Science Education: Innovation and Technology.
2011.

[5] Boesch, C., & Boesch, S. (2012). Tournament-based
Teaching. 4th Annual International Conference on
Computer Science Education: Innovation and Technology.
2012.

[6] Boesch, C., & Boesch, S. (2013). Adaptive Gameplay
for Programming Practice. 5th Annual International
Conference on Computer Science Education: Innovation
and Technology (CSEIT 2013).

[7] Boesch, C., & Steppe, K. (2014). Automated Mentor
Assignment in Blended Learning Environments. 27th
Conference on Software Engineering Education and
Training (CSEE&T 2014).

[8] Boesch, C., & Boesch, S. (2014). Enabling National
Software Competitions to Identify and Enhance Student
Mentor Capability in Singapore. Ireland International
Conference on Education (IICE-2014).

[9] Adamo-Villani, N., Haley-Hermiz, T., & Cutler, R.
(2013). Using a Serious Game Approach to Teach
'Operator Precedence' to Introductory Programming
Students. 17th International Conference on Information
Visualisation (iV2013).

[10] Park, S., & Kim, C. (2011). Designing a Virtual Tutee
System to Enhance College Student Motivation. IEEE 11th
International Conference on Advanced Learning
Technologies (ICALT 2011).

	Personalizing Software Development Practice Using Mastery-based Coaching
	Citation

	CICE Mastery-based Coaching - F (1)

