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ABSTRACT
A top-k query shortlists the k records in a dataset that best match
the user’s preferences. To indicate her preferences, the user typ-
ically determines a numeric weight for each data dimension (i.e.,
attribute). We refer to these weights collectively as the query vec-
tor. Based on this vector, each data record is implicitly mapped to
a score value (via a weighted sum function). The records with the
k largest scores are reported as the result. In this paper we propose
an auxiliary feature to standard top-k query processing. Specifi-
cally, we compute the maximal locus within which the query vec-
tor incurs no change in the current top-k result. In other words, we
compute all possible query weight settings that produce exactly the
same top-k result as the user’s original query. We call this locus the
global immutable region (GIR). The GIR can be used as a guide to
query vector readjustments, as a sensitivity measure for the top-k
result, as well as to enable effective result caching. We develop ef-
ficient algorithms for GIR computation, and verify their robustness
using a variety of real and synthetic datasets.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Management - Database
applications

Keywords
Top-k Search; Sensitivity Analysis

1. INTRODUCTION
Consider a service like HungryGoWhere.com or Yelp.com,

where users rate and search for restaurants. The former, for in-
stance, maintains for each registered restaurant the average user
ratings in terms of food quality, ambience, value for money, and
service. Users looking for restaurants base their decisions on these
four factors, yet different users weigh each factor differently.

A user interested in dining options can provide a numeric weight
for each decision factor and request for a personalized recommen-
dation of, say, the top-10 restaurants according to her preferences.
Through those weights, which we collectively refer to as the query
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Figure 1: Weight input and GIR-induced bounds

vector, each restaurant is implicitly associated with a score value,
computed as the weighted sum of its four average ratings. The
online service may employ an off-the-shelf top-k processing algo-
rithm to report the 10 restaurants with the largest scores.

In this work we propose to supplement the top-k result with a
global immutable region (GIR). The GIR indicates all the possible
weight settings for which the current top-k recommendation holds.
For the common case of linear scoring functions, the GIR is a con-
vex polytope in query space, wherein the query vector may freely
shift without inducing any changes in the result. In our restau-
rant example, the query space involves four dimensions, each cor-
responding to the weight for a factor, e.g., the first axis refers to the
weight w1 for food quality, the second to the weight w2 for ambi-
ence, etc; the GIR is a 4-dimensional polytope in that space. The
GIR can be used to guide weight readjustment, for the purpose of
sensitivity analysis, as well as for effective top-k result caching.

Suppose that the user in our restaurant example requests
for a top-10 recommendation, using an interface like the text-
boxes/slide-bars in Figure 1(a) or the radar chart in Figure 1(b),
which captures preferences in the form of movable locations on
each of the four axes. Assuming weights in the range from 0 to 100,
the user requests for a top-10 recommendation by specifying query
vector q = (60, 50, 60, 70) – this implies a weight w1 = 60 for
food quality, w2 = 50 for ambience, etc. Should the user decide to
explore alternative recommendations, she may change the weights
and reissue the query. Primarily, she would want to avoid a blind
readjustment that induces no change in the top-10 result. At the
same time, she would need a sense of how drastically each weight
affects the recommendation, so as to avoid overly radical changes.
Using the GIR, we may derive a lower and an upper bound mark on
each slide-bar (like those shown in Figure 1(a)) in between which
the corresponding weight value induces no change in the result.
Furthermore, we can inform the user what the new result will be
at each of these bounds. Figure 1(b) represents the same bounds
in the form of an inner and an outer solid polygon that connect the
“tipping points” on the four axes.

GIR computation finds application in sensitivity analysis as well.
Effective decision support involves providing the user with both a



recommendation, and a measure of its robustness [13, 28]. For ex-
ample, a robust top-k result would offer the user higher confidence
in her decision, while a sensitive one would trigger deeper deliber-
ation. An intuitive robustness measure for a top-k result is the ratio
of the GIR volume to the volume of the entire query space. This
ratio determines the probability that a randomly and uniformly gen-
erated query vector would have the same top-k result as the user’s
query. The higher this probability, the more robust the result. This
measure of robustness was proposed in [30], without however con-
sidering efficient approaches to compute it.

Another application of GIR computation is result caching. Sup-
pose that previous top-k results are maintained, along with their
GIRs. If the query vector of a new request falls within the GIR of
a cached result, the latter can be directly reported. Even if k in the
new query is larger than that of the cached result, it is still desirable
to report the available (highest-scoring) recommendations imme-
diately [31], before producing the rest of the top-k list. Note that
this is orthogonal to top-k view materialization [15, 36], since the
requested result either matches exactly a cached one or not.

In this paper we develop scalable algorithms for GIR compu-
tation. We determine the conditions under which changes in the
query vector invalidate the result, represent them in computational
geometric terms, and make crucial observations that enable fast
processing. Along the way, our GIR algorithms also compute the
new top-k result should the query vector shift to any point on the
GIR boundary. We verify the generality and efficiency of our meth-
ods using real and synthetic data with different characteristics.

2. RELATED WORK
As the notion of GIR builds on the top-k query, we first review

top-k processing. Next, we survey safe regions for spatial queries,
per-dimension (local) immutable regions for top-k queries, and
sensitivity analysis in operations research. We also briefly cover
convex hull computation, a foundation for our algorithms.

Given a database D and a scoring function, a top-k query re-
trieves the k records from D that achieve the highest scores. Top-k
queries have been studied in various domains, including relational
databases [21], middle-ware information systems [17], joins [33],
and dynamic databases [1, 22]. Suiting our problem setting, BRS
[32] is a top-k algorithm for low-dimensional data indexed by a
spatial access method (e.g., an R-tree [19]). Designed for the broad
class of monotone scoring functions, BRS applies the branch-and-
bound methodology. Specifically, it uses a max-heap to organize
the entries of visited R-tree nodes so as to access them in decreas-
ing order of their maxscore. The maxscore of an R-tree node is
the largest among the scores of its MBB corners (MBB stands for
the node’s minimum bounding box) and serves as an upper bound
for the score of any record under the node. When a leaf node
is accessed, the score of records inside is computed and the in-
terim top-k result is updated accordingly. BRS terminates when
the record with the k-th largest score in the interim result has a
score no smaller than the maxscore of the last R-tree entry popped
from the search heap. BRS is I/O optimal, meaning that it reads the
minimum possible number of pages (R-tree nodes) from the disk.

Another related problem is the reverse top-k query [35, 34],
which involves a database D and a collection of user preference
functions represented as query vectors. A reverse top-k query re-
turns those query vectors from the collection that include a given
record p ∈ D in their top-k result.

The most relevant existing study is [24], which determines im-
mutable regions on individual decision factors. An immutable re-
gion there takes the form of a validity interval for an isolated query
weight, assuming that all the other weights are kept constant. One

interval is defined for each decision factor. We term those local im-
mutable regions (LIRs) to distinguish from the GIR. In the context
of Figure 1, [24] produces the same original marks and inner/outer
polygons. However, due to the local nature of the LIRs, it cannot
support simultaneous readjustments to multiple weights. More im-
portantly, if a weight wi is updated, the immutable regions for all
the other factors are invalidated, even if the new value ofwi remains
within its LIR. Referring to Figure 1 again, ifw3 shifts to 40 (which
is still inside its permissible range) the technique in [24] needs to
compute from scratch new LIRs for all the remaining factors. At
the heart of LIR computation lie a pruning and a thresholding tech-
nique, both of which are tailored to LIRs and are inapplicable to
GIR formation. Note that we may trivially derive LIRs from the
GIR (as we discuss in Section 7.3), but the reverse does not hold.

Another related work is [30] which considers uncertain scoring
functions and proposes methods to compute representative top-k
results. It also introduces two sensitivity measures, STB and LIK.
Given a top-k query with a linear scoring function, STB computes
the largest ball around the query vector (in query space) where the
top-k result remains the same. This ball is enclosed in (i.e., a sub-
set of) our GIR, the latter being the maximal locus that preserves
the result. Moreover, STB requires a scan of the dataset, which is
prohibitive for large disk-resident data.

LIK defines a sensitivity measure that is equivalent to the ratio
of the GIR volume to the volume of the query space. Other than
the definition, however, [30] is not concerned with efficiency. It
sketches an approach based on half-space1 intersection that scans
the entire dataset. With a time complexity of O(n2d−2

), it is im-
practical for sizable databases. In Section 3.3 we sketch a straight-
forward approach to compute the GIR which, although it has a su-
perior complexity of O(nd/2) (compared to LIK), it is still hugely
impractical, thus motivating the elaborate techniques in this paper.

In location-based services, while processing spatial queries such
as nearest neighbors and window queries, servers face the problem
of frequent index maintenance and result re-computation as data
objects move around and update their locations. Safe region tech-
niques are designed to alleviate this problem by assigning to each
mobile object an area, known as safe region, within which it is
guaranteed not to alter the result of any spatial query in the system
[27, 25]. Safe region techniques are inapplicable to our problem,
since they consider the notion of spatial proximity, as opposed to
the score-based ranking involved in top-k processing.

Another topic that is related to GIR is sensitivity analysis in op-
erations research, which addresses how changes in the input param-
eters affect the output of a model [29, 20]. This includes studying
to what extent the input is allowed to change, so that the output
continues to be optimal. There are two approaches. The first, one-
factor-at-a-time (OFAT), varies one input factor while fixing the
rest. Although simple to use, OFAT is known to miss out opti-
mal combinations, as it cannot capture the interaction among mul-
tiple input parameters. This motivates the second approach, named
multi-parameter sensitivity analysis (MPSA). MPSA varies multi-
ple input factors simultaneously and observes the changes (in terms
of variance) in the model output under the combined influence of
the inputs. OFAT is also known as local sensitivity analysis, and
MPSA as global sensitivity analysis. In a sense, the LIRs in [24]
are analogous to OFAT, while our GIR to MSPA. Both the OFAT
and MPSA techniques, however, consider the effect of different in-
puts to the variance of a value (i.e., the model’s output). In our

1A half-space is either of the two parts into which a hyperplane
divides a coordinate space. In two dimensions, it is a half-plane.



problem, instead, the output changes refer to updates in the order
or composition of a top-k result.

Our solutions touch upon and employ convex hull computation
algorithms. The convex hull of a dataset D in a d-dimensional
space is the smallest convex set that encloses all the records in D.
In two dimensions, the hull is a convex polygon, whereas in higher
dimensions it is a convex polytope [6]. The boundary of the hull is
represented by vertices (i.e., data records) and facets. Algorithms
for efficient convex hull computation in two and three dimensions
include gift-wrapping [10], Graham’s scan [18], and Chan’s algo-
rithm [9]. For higher dimensions, Quickhull [3] and Clarkson’s
algorithm [14] are the most common, with a time complexity of
O(nd/2). Our solutions share some of the key operations in Clark-
son’s algorithm. Its crux is to incrementally build the hull by pro-
cessing the data records one by one. If the current record lies above
one or more facets of the hull (i.e., it is not enclosed by the hull),
these facets are replaced by new ones that include the new record.

3. PRELIMINARIES

3.1 Definition of Global Immutable Region
We consider top-k processing in a low-dimensional space. The

dataset D consists of n records. Each record p ∈ D has an iden-
tifier and d numeric attributes x1, x2, ..., xd (also referred to as
dimensions). The top-k query is defined by a vector of weights
q = (w1, w2, ..., wd), called the query vector, which can be seen
as a d-dimensional point. For ease of presentation, we assume
that the data space and query space are normalized, i.e., data at-
tributes and query weights have values in the range [0, 1]. The
score of a data record p with respect to q is given by the dot prod-
uct S(p, q) = q · p =

∑d
i=1 wixi. This definition of S(p, q) is

equivalent to what is also commonly referred to as a linear scor-
ing function. The result R of the query is a list of k records with
the highest scores in D, sorted in decreasing score order. In other
words, R = {p1, p2, ..., pk} where pi is the record with the i-th
highest score (1 ≤ i ≤ k).

When the query vector q changes, we say that R is preserved if
both its composition and the score order among its members are
unaltered. The problem we address in this paper is the computation
of the maximal locus in the query space where R is preserved. We
call this locus the global immutable region (GIR) of q.

DEFINITION 1. Global immutable region (GIR). Given a
dataset D and a top-k query q with result R = {p1, p2, ..., pk},
the GIR is the locus of all vectors q′ in query space where

1. S(pi, q
′) ≥ S(pi+1, q

′) for each i ∈ [1, k), and

2. S(pk, q
′) ≥ S(p, q′) for every record p ∈ D\R.

3.2 Nature of Global Immutable Region
A first step to understanding the problem is to determine the

shape of the GIR. For the score order within result R to be pre-
served, k − 1 conditions must hold, each of the form S(pi, q

′) ≥
S(pi+1, q

′) (for i ∈ [1, k)). For the k-th result record pk to remain
ahead of all the non-result records p, another n−k conditions must
hold, each of the form S(pk, q

′) ≥ S(p, q′). Due to the form of
the scoring function, each of these n − 1 conditions corresponds
to a half-space in query space, whose defining hyperplane passes
through the origin2. The top-k result is preserved if and only if the

2Consider for example condition S(pk, q
′) ≥ S(p, q′), which in

dot product notation is pk · q′ ≥ p · q′ ⇒ (pk − p) · q′ ≥ 0. Since

q=(0.6,0.5) w1

w2

1

1
0
0

GIR

q′=(0.3,0.2)

Figure 2: GIR example in 2-dimensional (query) space

query vector remains within the intersection of these n − 1 half-
spaces. This intersection constitutes the GIR of the query. Any
intersection of half-spaces (and therefore the GIR too) is by defini-
tion a convex polytope.

Figure 2 shows how the GIR looks in 2-dimensional space (i.e.,
d = 2). Query vector q = (0.6, 0.5) represents the user’s original
weight setting. In two dimensions, each of the n − 1 conditions
derived from Definition 1 corresponds to a half-plane (instead of
a half-space), whose defining line (instead of defining hyperplane)
passes through the origin. Their intersection (i.e., the GIR) is a
wedge like the one shown shaded in the figure. Any query vector
lying inside this area (like the depicted q′ = (0.3, 0.2)) is guaran-
teed to preserve the top-k result. Furthermore, this is the maximal
locus in the query space where result R is preserved.

Without loss of generality, each line that bounds the GIR cor-
responds to one of the original n − 1 conditions. This implicitly
determines what the new top-k result will be if the query shifts to
a particular line. For instance, assume that the upper bounding line
of the GIR corresponds to condition S(pk, q

′) ≥ S(p, q′), where
p is a non-result record. If the query is adjusted to fall on this line,
the new result will be the same as the current one, except that p
will replace the k-th record in R. If the bounding line corresponds
to condition S(pi, q

′) ≥ S(pi+1, q
′), the resulting update in R is

that pi+1 overtakes record pi in score, i.e., the perturbation is a
reordering between pi and pi+1 in the result.

In the following we focus on the GIR computation. Determining
the exact result perturbation when the query moves to the bound-
ary of the GIR happens along the way, by identifying the record
responsible for each of the half-spaces that bound the GIR.

3.3 Challenges, Assumptions and Setting
Our goal is to develop efficient GIR computation algorithms that

are scalable to large datasets. The discussion in the previous ses-
sion hints at a possible GIR computation approach, based on half-
space intersection. However, deriving the n− 1 half-spaces stated
in Definition 1 requires scanning the entire dataset, and incurs a
large data access cost. Furthermore, performing the intersection of
n − 1 half-spaces requires an excessive amount of computations,
specifically, Ω(nd/2) which explodes for large datasets. The main
challenge we address is how to reduce the number of records/half-
spaces considered so as to minimize (i) the data access cost to re-
trieve those records, and (ii) the processing time for half-space in-
tersection, while still guaranteeing correct/exact GIR computation.

Targeted at large scale, low-dimensional datasets, we assume
that D is indexed by a spatial access method. Our implementation

vector (pk − p) is fixed (with attribute values in both records being
constant), the inequality implies that q′ lies on a half-space that is
bounded by hyperplane (pk−p) ·q′ = 0. The latter passes through
the origin of the query space.



Symbol Description
d Data dimensionality
D Dataset in [0, 1]d

n Number of records in D
p A data record in D

q User query (vector in [0, 1]d)
S(p, q) Score of p w.r.t. q

R Top-k result
pi The i-th record in R (1 ≤ i ≤ k)
SL Skyline of D\R
CH Convex hull of non-result records
CH′ Convex hull of set {pk} ∪D\R

Table 1: Notation

x1 x2 p · q
p1 .54 .5 .516
p2 .5 .48 .488
p3 .52 .35 .418
p4 .4 .4 .4

w2
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0
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(a) Top-k records (b) Half-planes in query space

Figure 3: Phase 1 example (k = 4, d = 2)

employs the ubiquitous R∗-tree [4], though our techniques apply
directly to other space- or data-partitioning indices. The index and
data could reside in memory or on disk, the latter being our default
setting (although we evaluate our techniques in both scenarios).

When a query q is posed, prior to GIR computation, its top-k
result R must be retrieved. For this we employ the state-of-the-
art BRS technique [32], yet our work is not directly dependent on
the choice of top-k algorithm. To facilitate subsequent GIR-related
processing, we maintain all the data records encountered by BRS
(but not included in the top-k result), as well as its search heap.

After the top-k result is produced, GIR computation commences.
That comprises two phases. The first derives an interim GIR based
on the first set of conditions in Definition 1 (considering only
records inR). The second phase shrinks the interim GIR according
to the second set of conditions (imposed by non-result records). In
Table 1 we summarize the notation used in the paper.

4. PROCESSING IN PHASE 1
Given the original top-k result R, the first phase derives an in-

terim GIR from the first set of conditions in Definition 1. There are
k−1 conditions, each defining a half-space in query space. The in-
terim GIR in Phase 1 is obtained by intersecting these half-spaces.
Formally, the interim GIR is the following polytope in query space:

i=k−1⋂
i=1

{q′|q′ ∈ [0, 1]d such that (pi − pi+1) · q′ ≥ 0} (1)

Consider a query with q = (0.4, 0.6) and k = 4. Suppose
that a top-k algorithm (BRS in our implementation) reports in the
result records p1, p2, p3, and p4, whose attributes and scores are
shown in Figure 3(a). Phase 1 commences by deriving the half-
plane that preserves the order between p1 and p2, i.e., half-plane
(p1−p2)·q′ ≥ 0⇒ 0.04w1+0.02w2 ≥ 0. Figure 3(b) represents
the half-plane by its bounding line (0.04w1 + 0.02w2 = 0) in the
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Figure 4: SP example (k = 2, d = 2, data space)

query space. Similarly, preserving the order between p2 and p3
defines the half-plane (p2−p3)·q′ ≥ 0⇒ −0.02w1+0.13w2 ≥ 0.
In turn, p3 and p4 define (p3−p4) ·q′ ≥ 0⇒ 0.12w1−0.05w2 ≥
0. The interim GIR is the striped area at the intersection of the
three half-planes. Any query vector in this area is guaranteed to
uphold the score order among the four result records. We use a 2-
dimensional example here for ease of presentation. The process is
very similar in higher dimensions.

Phase 1 is fast because the number of result records k is typically
much smaller than the number of non-result records that need to be
considered. It is also uniform across all methods in our framework.
The distinction among them lies entirely in Phase 2, the bottleneck
in GIR computation.

5. BASIC METHODS FOR PHASE 2
Phase 2 further shrinks the GIR to ensure that no non-result

record can overtake the k-th result record pk in score. As explained
in Section 3, the efficiency of this phase hinges on the ability to
reduce the number of non-result records examined. In this section,
we present two basic methods for pruning the set D\R to safely
discard records that could not affect the GIR.

5.1 Skyline Pruning Method
The first method relies on the skyline operator [8]. The skyline

of a set includes only those members that are not dominated by
any other member. In our context, we say that record p dominates
another record p′ if the value of p in every dimension is no smaller
than the corresponding value of p′, and the two records differ on at
least one dimension. Due to the definition of dominance, record p
could have a score no smaller than p′ under any monotone scoring
function [21] (which is a superclass of the linear scoring functions
we assume). Since the score of p′ never exceeds that of p regardless
of the query vector, record p′ cannot overtake the current pk before
p overtakes pk. In other words, S(p, q′) ≥ S(p′, q′) for any q′ ∈
[0, 1]d so, by satisfying the condition S(pk, q

′) ≥ S(p, q′), our
GIR automatically also upholds S(pk, q

′) ≥ S(p′, q′). Hence, it is
safe to ignore p′ in GIR computation.

To generalize, we may safely prune the set D\R by retaining
only the records in its skyline SL. The final GIR can be derived
by intersecting the interim GIR from Phase 1 with the half-spaces
formed from inequalities (pk−p) · q′ ≥ 0 for each record p ∈ SL.
We term this approach Skyline Pruning (SP). Figure 4 shows a 2-
dimensional example where k = 2, the dataset comprises records
p1, p2, ..., p15, and the result includes p1 and p2. The skyline SL
of the non-result records includes p3, p4, ..., p9, which are the only
records considered by SP in Phase 2. Records that fall in the shaded
area are dominated by at least one member of the skyline.

Although SP can potentially disqualify many records fromD\R,
the cardinality of the skyline may still be large. As an indication,
the number of records in SL is in the order of O((logn)d−1) [5]



for independent data, while there are common (e.g., anti-correlated)
distributions where the cardinality is even higher.

In terms of implementation, the state-of-the-art algorithm for
skyline computation on spatial access methods is BBS [26], which
follows the branch-and-bound paradigm. It utilizes an R-tree on
the dataset to incrementally retrieve nearest neighbors (NNs) to the
top corner of the data space, i.e., to point (1, 1, ..., 1). The first
NN is guaranteed to be in the skyline, and is used to prune the part
of the space it dominates. Then, the next NN is retrieved in the
remaining part of the space; it is also included in the skyline and
used to further prune the search space. The process continues until
no more NNs can be found in the non-dominated part of the space.

To see how BBS applies in our situation, recall that (before GIR
computation) the top-k result was produced by BRS, and that we
have retained its search heap and all the non-result records that were
encountered during its execution. We initialize SL by computing
the skyline of the encountered non-result records (using any main
memory algorithm [8]), and then invoke BBS on the retained search
heap to consider records that may belong to SL but were not ac-
cessed during BRS execution. Recall that the search heap of BRS
is organized on maxscore. That is, in our BBS execution, instead
of incrementally retrieving NNs to the top corner of the data space,
we retrieve records in decreasing S(p, q) order. This does not af-
fect the correctness of BBS, since the distance from the top corner
of the data space (in vanilla BBS) can be replaced by any mono-
tone scoring function to determine the retrieval order [26]. Another
modification is that any record p retrieved by BBS is inserted into
SL only if it is not dominated by any of its members, while if p
dominates any existing members, the latter are removed from SL.

5.2 Convex Hull Pruning Method
Our second basic solution for Phase 2 prunes non-result records

based on the concept of the convex hull. If we treat the records of a
dataset as points in d-dimensional space and compute their convex
hull, the geometric properties of the hull guarantee that the top-1
record under any linear scoring function (defined over the same d
dimensions) lies on the hull3 [23, 11].

Let CH be the convex hull of the non-result records. The above
property guarantees that for any query vector q′ ∈ [0, 1]d and any
record p′ that is strictly enclosed by CH (as opposed to lying on
it), there is at least one record p on the hull (i.e., p ∈ CH) such
that S(p, q′) ≥ S(p′, q′). This implies that p′ cannot overtake
the current k-th result record pk until some record on the hull has
overtaken pk. Hence, only records on CH could affect the GIR.

Utilizing the above observation directly would prune D\R by
retaining only those records that fall on its convex hull. Nev-
ertheless, we can do better. To exemplify, Figure 5 illustrates
the convex hull of the non-result records, assuming the same set-
ting/dataset as Figure 4. The records that lie on (as opposed to in-
side) CH are p3, p4, p6, p8, p9, p15, p13, p10. However, we observe
that p15, p13, p10 are dominated by p4, and could therefore not af-
fect the GIR (by the same reasoning as in SP). This observation
gives rise to our second baseline algorithm, Convex Hull Pruning
(CP), which considers in Phase 2 only those non-result records that
belong to the skyline and at the same time fall on the convex hull
of D\R, i.e., records p ∈ SL ∩ CH. Referring to the example in
Figure 5, CP considers only records p3, p4, p6, p8, p9.

In implementing CP, we first retrieve the skyline of D\R, using
the same BBS-based approach as SP. Following that, we compute
the convex hull of the skyline records only (using Clarkson’s algo-
rithm [14]). This hull is shown shaded in the example of Figure 5.
3When we say that a record “lies on” or “belongs to” the hull, we
mean that it lies on the boundary of the hull.
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Figure 6: SP and CP effectiveness (n = 1M, k = 20)

The records that lie on the hull are used for half-space intersec-
tion with the interim GIR from Phase 1 to derive the final GIR. An
alternative approach would be to compute the convex hull before
disqualifying the dominated among its records. This would be in-
efficient, because it would access parts of the space that are too far
(and irrelevant) from the GIR, like the vicinity of p15, p13, p10 in
Figure 5. Moreover, the only existing convex hull algorithm that
utilizes a spatial index [7] applies only to 2-dimensional space.

5.3 Performance Indications
We now provide preliminary indications of the performance

(and shortcomings) of SP and CP. We use three types of synthetic
datasets (independent, anti-correlated, and correlated) with cardi-
nality 1M each. We defer the description of these data, but note
that they are standard benchmarks for preference-based queries.

Figure 6(a) plots, for different dimensionalities, the number of
records that belong to the skyline of D\R, i.e., the non-result
records that SP needs to process in Phase 2. As anticipated, al-
though SP prunes a large fraction of D\R, it still needs to consider
numerous records. The problem is exacerbated with growing d.

CP retains only the records in SL ∩ CH, i.e., a subset of those
examined in SP. In Figure 6(b) we present the number of records
remaining after CP pruning in the same setting as Figure 6(a). CP
aggressively reduces the number of non-result records in Phase 2.
However, its effective pruning comes at the price of a convex hull
computation over SL, which entails substantial processing time.

6. ADVANCED SOLUTION FOR PHASE 2
The shortcomings of SP and CP motivate the development of

an efficient and scalable Phase 2 algorithm that also copes better
with dimensionality. We call this method Facet Pruning (FP). To
provide the intuition behind it, we explore the nature of top-k query.

6.1 Rationale of Facet Pruning Method
In Figure 7(a) we assume the same dataset and top-k query as in

Figures 4 and 5. Computing the top-k result can be seen as scan-
ning the data space from its top corner (i.e., point (1, 1)) towards
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Figure 7: Intuition behind FP (k = 2, d = 2, data space)

the origin, with a line (or hyperplane, in higher dimensions). The
orientation of the line is fixed, and it is determined by the query
vector4. The first encountered record has the highest score, the sec-
ond encountered record has the next highest score, and so on. The
search stops after finding k data records, which form the result R.

In our example, the sweeping line would first encounter p1 and
stop when it hits p2 (recall that k = 2). The line position when
it hits pk ≡ p2 is defined by equation w1x1 + w2x2 = S(pk, q)
and is drawn in bold in Figure 7(a). It partitions the data space into
two regions – all records above the line have higher scores than
pk and belong to R, whereas records below the line have lower
scores (than pk) and are not among the top-k. Any records on the
line have the same score as pk (yet, without loss of generality, we
assume that there are no ties).

For now, let us ignore reorderings within R, and focus on the
second set of conditions in Definition 1, which ensure that no non-
result record overtakes pk in score. Returning to Figure 7(a) and the
nature of top-k processing, a tilt in the orientation of the sweeping
line is equivalent to a shift in the query vector. Assume that we pin
the sweeping line at pk but allow it to rotate. A rotated position
of the line is permissible if it keeps all non-result records below it.
This implies that pk still scores higher than them, and the query
vector q′ that corresponds to the new line orientation preserves R.

Consider a clockwise rotation in Figure 7(a). The first record
hit by the line (i.e., p8) bounds the permissible clockwise rotations,
because any further tilting would perturb the result (p8 would score
higher than the current pk ≡ p2). Similarly, the permissible anti-
clockwise rotations are bounded by p4. Any other non-result record
cannot provide a stricter rotation bound than p4 and p8.

We make a crucial observation that hints at a general methodol-
ogy to identify records like p4 and p8. In Figure 7(b) we show the
convex hull of set {pk} ∪ D\R (i.e., the set of non-result records
extended by pk). The two facets that are incident5 to pk on the hull
(i.e., facets p4, p2 and p2, p8) correspond to the records of interest
(p4 and p8, respectively).

This is aligned with the property of the convex hull that each of
its facets keeps all the records on one of its sides (specifically, the
one toward the interior of the hull), which holds for any dimension-
ality [6]. Since the sweeping line (or the sweeping hyperplane, in
higher dimensions) is pinned at pk, its permissible orientations are
determined only by the facets of the convex hull that are incident
to pk. We call the records that are incident to those facets critical.
They are the only non-result records that could affect the GIR.

4Vector q is a normal vector to the sweeping line (or hyperplane,
for d > 2), meaning that it is perpendicular to the line (or hyper-
plane, respectively).
5A record and a facet are incident to each other if the record lies at
a corner of the facet. In two dimensions, for example, a facet is a
line segment, and it is incident to the two records at its endpoints.
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Figure 8: FP effectiveness (n = 1M, k = 20)

Intuitive as this fact may sound, translating it into an efficient
Phase 2 algorithm is challenging. Let CH′ denote the convex hull
of set {pk} ∪D\R. A naïve implementation would compute CH′,
get the hull facets that are incident to pk, collect their incident
records (i.e., the critical records), and derive the GIR using only
these records for half-space intersection. Convex hull computation,
however, has a time complexity of Ω(nd/2), which is equivalent to
the complexity of the exhaustive half-space intersection described
in Section 3.3 (actually, convex hull computation and half-space in-
tersection are dual to each other [6]). The situation becomes worse
if one considers that there is no off-the-shelf convex hull algorithm
for disk-resident data in more than two dimensions.

To alleviate the problem, our FP approach computes only the rel-
evant part of the convex hull, i.e., only the hull facets that are inci-
dent to pk. This approach provides scalability with respect to both
dataset cardinality and dimensionality. We thoroughly demonstrate
this fact in Section 8, yet here we provide some preliminary empiri-
cal evidence that substantiates the FP rationale. In Figures 8(a) and
8(b) we plot the total number of facets in CH′ and the number of
facets that are incident to pk, for the same setting as Figure 6. The
charts suggest that FP needs to compute/consider only a very small
fraction of the hull facets. We remark that a critical record may be
incident to more than one facet, i.e., the number of critical records
may be smaller than the number of facets shown in Figure 8(b).
For example, for independent data and d = 4, there are 45 facets
incident to pk and 16 critical records, while for d = 6 the number
of incident facets is 1258 and that of critical records is 98.

Next, we present the detailed FP algorithm. We distinguish be-
tween the FP versions for d = 2 (discussed in Section 6.2) and
d > 2 (covered in Section 6.3), because the nature of 2-dimensional
space allows for special-purpose enhancements.

6.2 Facet Pruning in Two Dimensions
The convex hull/incident facet observation exemplified in Fig-

ure 7(b) is general and particularly useful for d > 2. In the
special case of 2-dimensional space, however, the visualization in
Figure 7(a) already suggests an effective processing methodology.
That is, FP needs to simply identify the two records that constrain
the rotation of the sweeping line around pk in the clockwise and
anticlockwise directions. Recall that some of the records in D\R
have already been fetched from the disk by BRS during the ini-
tial top-k computation, and kept in memory, as explained in Sec-
tion 3.3. Let T denote this set of records. The remaining non-result
records are on the disk and are accessible via the R-tree on D.

FP consists of two steps. The first considers T and identifies two
candidate critical records or, equivalently, interim facets incident to
pk. The second refines those facets by exploring data from the disk
(using the index), until it identifies the two actual critical records.

The first step starts by removing from T the records that are dom-
inated by pk, as they cannot overtake it in score under any query
vector q′ ∈ [0, 1]2. Then, it angularly sorts the remaining records
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Figure 9: FP example (k = 2, d = 2, data space)

in T . That is, for every record p ∈ T , it computes the angle by
which the sweeping line must rotate (in the anticlockwise direc-
tion) in order to hit p. It then picks as candidate critical records
the two with the minimum and maximum angles. The minimum-
angle record corresponds to the anticlockwise interim facet, and the
maximum-angle record to the clockwise interim facet.

We demonstrate the first step of FP in Figure 9(a), where T in-
cludes records p3, p4, ..., p10. We first remove p9 and p10 from T
because they are dominated by pk ≡ p2. The angle for each of the
remaining records in T is illustrated by a curved two-headed arrow.
The minimum-angle record is p3, while p7 is the maximum-angle
one. These records define the interim facets p3, p2 and p2, p7. Note
that if the area above the dominance region of p2 was empty (i.e., if
p3, p4, p5 were not there), the anticlockwise interim facet would be
the line segment between p2 and its projection on the vertical axis.
Similarly, if p6, p7, p8 were not there, the clockwise interim facet
would connect p2 with its projection on the horizontal axis.

In the second step of FP we consider non-result records that were
not encountered during top-k computation (i.e., records not fetched
from the disk as yet), utilizing the R-tree on D and the retained
search heap of BRS. We iteratively pop the heap, using its maxscore
key as is. If the popped entry corresponds to an R-tree node, and
the minimum bounding box (MBB) of the node lies completely
below the interim facets, we prune/ignore it. Alternatively (i.e., if
at least a part of the MBB is above an interim facet), we fetch the
node from the disk. If it contains index entries (i.e., it is an internal
node of the R-tree), we push its children into the heap, with key
equal to their maxscore according to q. On the other hand, if it
contains data records (i.e., it is a leaf of the R-tree), we consider
each of these records p as follows. If p lies above an interim facet,
we update the facet to connect pk with p; otherwise, we ignore p.
The process terminates when the heap becomes empty, reporting
the interim facets as the final ones. Our implementation uses the
beneath-and-beyond technique in [3] to check whether an MBB or
record lies below the interim facets.

In Figure 9(b) we demonstrate the second step of FP, continuing
the example of Figure 9(a). The interim facets p3, p2 and p2, p7
from the first step are shown as solid lines. Records p1, p2, p3, and
p7 that are already known to the algorithm, are represented as solid
points. Records shown as hollow points are on the disk and have not
been encountered yet. In the beginning of the process, the search
heap of BRS is assumed to include index entries that correspond to
R-tree nodes N5, N4, N1 (stated here in decreasing order of maxs-
core). The first entry popped from the heap corresponds to N5. A
part of its MBB lies above the clockwise facet p2, p7. Hence, node
N5 is fetched from the disk. It includes two records, p13 and p14,
none of which lies above p2, p7. Therefore, the clockwise facet re-
mains as is. The second popped entry corresponds to N4, which
lies completely below both interim facets and is thus ignored.

The next popped entry corresponds toN1. The node is read from
the disk, since part of its MBB is above the anticlockwise interim
facet p3, p2. The two child entries inN1 point atN2 andN3, which
are pushed into the heap (with key equal to their maxscore accord-
ing to q). The heap is popped again, producing the entry of N2.
Node N2 is fetched from the disk, because it is not completely be-
low facet p3, p2. Between records p11, p12 contained in the node,
p11 lies above the anticlockwise facet. The facet is therefore up-
dated to p11, p2, shown as a dashed line in the figure. The last en-
try popped from the heap corresponds to N3, which is below both
the current facets and hence ignored. The heap is now empty and
the final facets derived are p11, p2 and p2, p7. The correctness of
the second step relies on the fact that (i) any pruned index entry or
data record lies below both interim facets and therefore is unable
to update either of them, and (ii) the process terminates only when
the search heap becomes empty.

The facets derived by FP indicate the critical records, e.g., in
Figure 9 the critical records are p11 and p7. From these records,
we derive half-planes (p2 − p11) · q′ ≥ 0 and (p2 − p7) · q′ ≥ 0,
respectively, that embody the second set of conditions in Defini-
tion 1. The GIR from Phase 1 is intersected with those two half-
planes to produce the final GIR. We summarize FP in Algorithm 1.
Lines 1-2 implement the first step of FP to compute the interim
anticlockwise and clockwise facets fa and fc, respectively. Lines
3-16 correspond to the second step of FP, while Lines 17-19 in-
tersect the interim GIR from Phase 1 with the half-planes derived
from critical records pa, pc to produce the final GIR.

Algorithm 1: Facet Pruning
Input: heap H of BRS, query vector q, k-th result pk
Output: Final GIR

1 T ← set of non-result records encountered by BRS;
2 fa, fc ← InterimFacets(T, q, pk);
3 while H is not empty do
4 Pop the top entry e from H;
5 if e is below both facets fa, fc then
6 Continue;

7 if e corresponds to a leaf node then
8 Fetch the node from the disk;
9 for each record p in the node do

10 if p is above fa then
11 Update fa to p, pk;

12 if p is above fc then
13 Update fc to pk, p;

14 if e corresponds to an internal node then
15 Fetch the node from the disk;
16 Push all the child entries of the node into H;

17 pa, pc ← records incident to fa and fc, respectively;
18 Intersect GIR from Phase 1 with half-planes

(pk − pa) · q′ ≥ 0 and (pk − pc) · q′ ≥ 0;
19 Return GIR;

6.3 Facet Pruning in Higher Dimensions
In more than two dimensions, a top-k query q can be seen as a

sweeping hyperplane (to which the query vector is perpendicular).
Following the FP paradigm, if we pin the sweeping hyperplane at
pk and allow it to rotate freely in any direction, the critical records
are those (among the non-result records) that bound its movement,
so as to keep all non-result records under the hyperplane. To vi-
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sualize, we use a 3-dimensional example in Figure 10. The figure
illustrates the convex hull CH′ of set {pk} ∪D\R and the sweep-
ing plane that is pinned at pk. The goal in FP is to compute the hull
facets that are incident to pk so as to collect the critical records. In
our example, there are five such facets (shown shaded) that lead to
five incident/critical records, excluding pk.

Before we present algorithmic details, we note that a facet is a
(d−1)-dimensional object that is generally defined by d records. A
ridge is a (d− 2)-dimensional object representing the intersection
of two neighboring facets. For d = 3, the ridge is a line segment
where two facets meet, and it is defined by the two records at its
endpoints. In Figure 10 we point out a ridge at the intersection of a
shaded and a normal facet.

The main idea in FP is to avoid computing the entire hull by
maintaining only the facets that are incident to pk. This is carried
out in two steps, at the heart of which lies a strategy that incremen-
tally updates the set of incident facets as new records are consid-
ered. The first considers the set T of non-result records encountered
by BRS, and the second those still on the disk.

6.3.1 First Step of FP
The first step starts by discarding/removing from T those records

that are dominated by pk. Then, it draws d records6 from T and
computes a convex hull on these records and pk (note that the cost
to compute the convex hull of d + 1 records is trivial). The hull
facets that are incident to pk are maintained in set F , while the
rest are discarded. Consider the 3-dimensional example in Fig-
ure 11(a) where p5, p6, p7 are drawn from T . From the convex
hull of p5, p6, p7, pk, we keep in F the three facets incident to pk,
i.e., (pk, p5, p6), (pk, p6, p7), and (pk, p7, p5). The bottom facet
(p5, p6, p7) is not incident to pk and is discarded.

Next, we process each record p in T and incrementally update
F . If p lies below all the facets in F , it is discarded. Otherwise, we
update F following a process reminiscent of Clarkson’s algorithm,
yet focused on facets incident to pk only.

Specifically, we initialize a set Fv and place in it all the facets
from F that p lies above of. In Figure 11(a) the only facet that is
below p8 is (pk, p5, p6). Then, we collect all the ridges that are
shared between a facet in Fv and a facet in F\Fv . In the literature
these are called horizon ridges. In our example the horizon ridges
are p5, pk, p6, pk and p5, p6. Among them, we keep only those in-
cident to pk (i.e., the former two). We updateF by (i) removing the
facets that belong toFv , and (ii) inserting one new facet for each of
the retained horizon ridges (the new facets are formed by connect-
ing p with the respective ridge). Figure 11(b) shows the updated
F after processing p8. Observe that facet (pk, p5, p6) is removed

6If T contains fewer than d records, we may use instead the projec-
tions of pk on each of the d axes. This is equivalent to our strategy
in Section 6.2 when the first step of FP encountered empty areas
around the dominance region of pk.
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Figure 11: FP example (d = 3, data space)

and is replaced by two new facets. The first is defined by p8 and
horizon ridge p5, pk, and the second by p8 and p6, pk. Note that the
striped facet was never created nor inserted in the updated F . That
facet would not be incident to pk, and we avoided its unnecessary
formation through our strategy to discard those horizon ridges that
were not incident to pk (i.e., ridge p5, p6).

We optimize the first step with a heuristic. Recall that in the
beginning of this step, we draw d records from T to (build a convex
hull and) form the initial setF . Instead of a random choice, we pick
the d records from T with the maximum values along each of the d
dimensions. The rationale is that many non-result points are likely
to lie below the formed facets, and thus be pruned directly later on.

6.3.2 Second Step of FP
In the second step we refine F by considering non-result records

that have not been encountered (not fetched into memory) before.
F is updated gradually as we pop entries from the search heap of
BRS. The exploration of the R-tree is similar to the 2-dimensional
case. Index nodes are pruned (ignored) if they lie completely below
each facet in F ; otherwise, they are read from disk. When an inter-
nal node is read, its child entries are pushed into the heap with key
set to their maxscore according to q. When a leaf node is read, each
of its records is checked against F , the latter being updated if the
record lies above some of its facets. The update process is identical
to the description in Section 6.3.1. The process terminates when
the heap becomes empty, and the critical records are collected from
the final set F . Every critical record p is mapped into a half-space
of the form (pk − p) · q′ ≥ 0 and intersected with the interim GIR
from Phase 1 in order to produce the final GIR7.

Although the visual examples used in Section 6.3 are for d =
3, both steps of the FP methodology apply to higher dimensions
without modification, by simply using the conventional notions of
facets and ridges in the respective space.

We conclude the discussion about FP with a note on its complex-
ity. According to [12], the number of facets on CH′ is O(nd/2),
while the number of facets incident to a record on the hull (e.g., to
pk) is O(n

d
2
−1). Computing these facets is the bottleneck in FP.

FP uses a process based on Clarkson’s algorithm, whose complex-
ity for the entire hull is O(nd/2). Following a similar reduction to
[12], the cost to compute only the facets incident to pk isO(n

d
2
−1).

7. EXTENSIONS AND VISUALIZATION
In this section we extend our methodology to order-insensitive

GIR, discuss the handling of non-linear scoring functions, and de-
scribe possible GIR visualization techniques.
7An optimization is possible where the interim GIR from Phase 1
is mapped into facets and can be incorporated into the first step of
Phase 2 to further “tighten” the criteria for fetching nodes from the
disk in the second step of Phase 2.



q

p1

p2

p3

p4

p5

p6

p7

p8 p9

p10

p13

p14

p15

x2

x1

p16

p17 p18

p19

p11

p12

(a) Result pruning

p1

p2

p3

p4

p5

p6

p7

p8 p9

p10

p13

p14

p15

x2

x1

p16

p17 p18

p19

p11

p12

(b) Facet sets F5 and F6

Figure 12: GIR∗ computation (k = 6, d = 2, data space)

7.1 Order-Insensitive GIR
A variant of the GIR problem arises when the user or application

is concerned only about the composition of the top-k result (but not
the order of records in it). The order-insensitive GIR is the maximal
locus in query space where the composition of R is preserved. We
denote it as GIR∗.

DEFINITION 2. Order-insensitive GIR (GIR∗). Given a
dataset D and a top-k query q with result R = {p1, p2, ..., pk},
the GIR∗ is the locus of all vectors q′ in query space where

S(pi, q
′) ≥ S(p, q′)

for each i ∈ [1, k] and every record p ∈ D\R.

The GIR∗ is defined by looser conditions than the (order-
sensitive) GIR, and hence it fully encloses the latter. Definition 2
suggests a straightforward processing approach. Consider a result
record pi ∈ R. Let GIRi be the GIR derived if we (skip Phase 1
and) apply Phase 2 by having pi play the role of pk, using any of
the methods in Sections 5 or 6. GIRi is the maximal region in query
space where S(pi, q

′) ≥ S(p, q′) for every record p ∈ D\R. By
Definition 2, the GIR∗ is the intersection of the GIRi regions for
each i ∈ [1, k], i.e., GIR∗ =

⋂i=k
i=1 GIRi.

To optimize this process, we observe that not every record in
R could affect the GIR∗. In Figure 12(a), where k = 6 and
R = {p1, ..., p6}, we consider the convex hull ofR. Any record pj
inside the hull (e.g., p3) can be ignored. The rationale is similar to
CP in Section 5.2. For every query vector q′ there is at least one re-
sult record pi that lies on the hull, such that S(pi, q

′) ≤ S(pj , q
′).

Thus, for any non-result record p to overtake pj in score, p would
first have to overtake a result record that lies on the hull.

Further result pruning is possible. Observe that p2 dominates p5,
i.e., for every query vector q′ ∈ [0, 1]d, p5 scores lower than p2.
Hence, any non-result record would have to overtake p5 before it
can reach p2 in score. That is, we can safely disregard all result
records that dominate at least another record in R. This strategy
prunes p2, p1, p4 (the first dominates p5 and the other two p6).

In summary, we disregard result records that (i) lie inside the
convex hull of R or (ii) dominate at least one other record in R.
We denote by R− the remaining result records. In our example,
R− = {p5, p6}. Subsequent processing follows SP, CP or FP.

SP and CP produce the GIRi region for each pi ∈ R− in the
same way as in Section 5, and report

⋂i=|R−|
i=1 GIRi as GIR∗. Note

that SL and SL ∩ CH over the non-result records (in SP and CP,
respectively) are computed once and used for all GIRi derivations.

FP, in its first step, considers the set T of non-result records en-
countered during top-k computation. For every pi ∈ R−, it com-
putes the set Fi of facets that are incident to pi (on the convex hull

of set {pi}∪T ). This is done in the same fashion as in Sections 6.2
or 6.3.1, depending on dimensionality.

In the second step, FP maintains the Fi sets concurrently as it
fetches new non-result records from the disk. The process is simi-
lar to Section 6. The main difference is that index nodes (that are
popped from the search heap) are only pruned if they lie below all
the facets in every Fi set. Also, each record p fetched from disk is
checked against all theFi sets and used to update those that include
at least one facet below p. When the search heap becomes empty,
each Fi set is used to derive the respective GIRi region. Finally,
FP reports GIR∗ =

⋂i=|R−|
i=1 GIRi.

Continuing our example, Figure 12(b) illustrates facet sets F5

andF6. Each facet inF5 determines a half-space of the form (p5−
p) · q′ ≥ 0. The intersection of these half-spaces is GIR5. Region
GIR6 is derived similarly, and FP reports GIR∗ = GIR5 ∩ GIR6.

7.2 Non-Linear Scoring Functions
Our main focus in this paper is on linear scoring functions. While

CP and FP (rely on convex hull properties that) may not extend
to more general function types, SP can handle a broader class of
functions. The following discussion considers the original (order-
sensitive) GIR, but it translates easily to the GIR∗ context too.

There are two components in SP, namely, (i) pruning non-result
records, and (ii) using the remaining non-result records to form the
GIR. SP pruning applies to any monotone8 scoring function. In
other words, the only non-result records that could overtake the k-
th record in R, under any such function, are guaranteed to belong
to the skyline of D\R [21].

Identifying the non-result records that could affect the GIR helps
to limit the number of conditions in Definition 1. Forming the
GIR, however, requires translating these conditions to a locus in
query space. If the scoring function is of the form S(p, q) =∑d

i=1 wigi(p), where each gi(p) is a function over the attributes
of p, the GIR is derived using half-space intersection as per nor-
mal. To see this, the GIR is defined by conditions of the form
S(p, q′) ≥ S(p′, q′) for various pairs of records p, p′. Condi-
tion S(p, q′) ≥ S(p′, q′) can be rewritten as

∑d
i=1 wigi(p) ≥∑d

i=1 wigi(p
′) ⇒

∑d
i=1 wi(gi(p) − gi(p′)) ≥ 0. Since we are

comparing specific records p and p′, the factors (gi(p) − gi(p′))
are constants, and thus the condition corresponds to a half-space
in query space. That is, Phase 1 and Phase 2 may employ plain
half-space intersection to produce the GIR.

For scoring functions that do not belong to the above category,
conditions of the form S(p, q′) ≥ S(p′, q′) no longer correspond
to half-spaces. This implies that the GIR is no longer a convex
polytope but a general convex set. Exact representation of the GIR
in such cases is computationally expensive or not possible at all,
which would call for approximate GIR representation techniques,
such as polytope approximation, Monte Carlo simulation, etc [30].

7.3 GIR Visualization
One of the GIR applications in Introduction is to give the user a

sense of the weight shift required to induce a change in the top-k
result. Being a d-dimensional polytope, GIR is challenging to vi-
sualize for d > 2. We describe two possible visualization options.

Assuming that the GIR is already derived using any of our
methods, the first visualization technique computes the maximum-
volume axis-parallel hyper-rectangle (MAH) that (i) contains the

8We follow the convention that the larger a record’s attributes the
higher its score. A scoring function S(p, q) is monotone iff for any
dimension i ∈ [1, d] and for any pair of records p, p′ with p.xi ≥
p′.xi and p.xj = p′.xj ∀j 6= i, it holds that S(p, q) ≥ S(p′, q).
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Figure 13: GIR visualization (d = 2, query space)

query vector q and (ii) lies completely inside the GIR. This is an
instance of the bichromatic rectangle problem, for which several
algorithms are available [2, 16]. Figure 13(a) shows the MAH in
a 2-dimensional query space. The MAH can be visualized easily
by projecting its sides on the different axes, producing for example
bounds like those in Figure 1. The advantage of this approach is
that the bounds are fixed as long as the query vector remains inside
the MAH. The disadvantage is that the MAH is a subset of the GIR.

An alternative is the interactive projection approach, which does
not sacrifice maximality (i.e., it allows exploration of the full ex-
tent of the GIR) but requires on-the-fly readjustment of the bounds
plotted on the interface. Consider the query vector in Figure 13(b).
We first find the horizontal projections of q on the GIR, i.e., points
α and β, and map them on the w1 axis to derive an upper and lower
bound for w1 like those in Figure 1. Similarly, we project q verti-
cally on the GIR (getting points γ and δ) and produce the bounds
for w2. Note that the derived ranges are equivalent to the LIRs in
[24]. Should the user shift the query vector (by varying one or mul-
tiple weights), we may interactively re-project the new location of
q on the GIR, and redraw on-the-fly the new permissible ranges for
each factor. That is, as the user shifts q (within the GIR), she sees
the bounds for each factor being adjusted in real time.

8. EXPERIMENTS
In this section we evaluate the efficiency of the SP, CP, and

FP algorithms, using synthetic and real datasets. The synthetic
datasets include Independent (IND), Correlated (COR), and Anti-
correlated (ANTI), which are standard benchmarks for preference-
based queries [8]. IND is uniformly and independently distributed.
In COR, records that have a large value in one dimension tend to
have large values in the other dimensions too. In ANTI, a record
with a large value in one dimension tends to have small values in
the rest. We also use real datasets HOUSE and HOTEL (from
ipums.org and hotelsbase.org, respectively). HOUSE contains
315,265 records, each with six attributes representing an American
family’s expenditure in gas, electricity, water, heating, insurance,
and property tax. HOTEL contains 418,843 hotel records with four
attributes, namely stars, price, number of rooms, and number of
facilities. All attributes are normalized to [0, 1]. The datasets are
indexed by an R∗-tree using 4KByte disk pages.

In the default setting, we place data and indices on the disk and
evaluate performance in terms of CPU and I/O time9. However, the
CPU charts in isolation indirectly also evaluate the scenario where
data and indices are kept in memory. Unless otherwise specified,
we compute the order-sensitive GIR. We present total CPU and I/O
times, accounting for Phases 1 and 2. A buffer for disk pages can-
9Note that SP and CP have identical I/O cost, because they access
the disk through the same BBS process.

Parameter Range of values
Dimensionality, d 2, 3, 4, 5, 6, 7, 8
Dataset cardinality, n 0.5M, 1M, 5M, 10M, 20M
Top-k result size, k 5, 10, 20, 50, 100

Table 2: Experiment Parameters
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Figure 14: Ratio of GIR volume to query space volume

not improve I/O time, since none of the methods fetches the same
index or data page twice. Thus, we do not use one. All meth-
ods are implemented in C++ and use the Qhull library (qhull.org)
for half-space intersection. Experiments are run on a PC with Intel
Core2Duo 3GHz CPU. Table 2 summarizes the investigated param-
eters, along with their tested values and defaults (in bold). With the
real datasets we control only the last parameter (i.e., k). Each re-
ported measurement is the average over 100 random queries.

We first provide insight into the nature of the GIR. In Figure 14
we present the ratio of GIR volume to the volume of the query
space, which coincides with the sensitivity measure discussed in
the Introduction and the LIK probability in [30]. In Figure 14(a)
we use synthetic data and vary d. The GIR volume drops exponen-
tially with d, and Figure 8(b) provides the reason. As d increases,
so does the number of facets incident to pk, which implies that more
conditions (half-spaces) bound the GIR. The GIR is the largest in
COR and the smallest in ANTI, because COR has the fewest in-
cident facets among our synthetic data, while ANTI has the most
(as shown in Figure 8(b)). The trends in Figure 14(a) also reveal
an interesting fact about the nature of the top-k query itself; the
alternative top-k results become dramatically less distinguishable
as d grows. In Figure 14(b) we plot the volume ratio versus k for
the real data. A larger k implies more half-spaces induced from the
first set of conditions in Definition 1, leading to a smaller GIR.

In Figure 15 we study the effect of dimensionality d on the per-
formance of SP, CP, and FP, using synthetic data. All the charts for
this experiment are in logarithmic scale. FP outperforms SP and CP
in all cases, with SP being the runner-up. The largest differences
are observed for ANTI, where FP takes 53 to 2700 times shorter I/O
time than SP, and 1.3 to 47 times shorter CPU time. The difference
is smaller in COR (because there are fewer skyline records than
in IND and ANTI), with FP, however, still performing 9.6 to 224
times fewer I/Os and 1.8 to 24 times fewer computations. Interest-
ingly, the CPU time of CP is longer than SP. Although CP prunes
more records, its expensive convex hull computation outweighs the
benefits of pruning (an issue discussed at the end of Section 5.3).

In Figure 16 we use IND and investigate the effect of dataset car-
dinality n, varying it from 0.5M to 20M tuples. CPU and I/O times
naturally increase with n in all methods. The important finding is
that FP scales much better with cardinality, as a result of focusing
only on the (relatively few) convex hull facets that are incident to
pk. In terms of I/O cost, it outperforms the runner-up (SP) by 460
to 1748 times, and by 2.8 to 16.5 times in terms of CPU cost.

In Figure 17 we assess the effect of k using the real datasets. A
larger k implies more records in T , i.e., more non-result records
encountered during top-k computation by BRS. The larger T leads
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Figure 15: Effect of dimensionality d for synthetic data

to an increase in CPU time. On the other hand, the effect of k on
I/O cost involves two conflicting factors. A larger T implies that
most critical records (in FP) and skyline records (in SP/CP) have
already been fetched from disk (by BRS). This leads to a slight de-
crease in I/O cost for all methods in HOTEL. In HOUSE, however,
due to its higher dimensionality (six instead of four) and different
distribution, the inclusion of more records in the top-k result (and
thus their exclusion from D\R) deprives the skyline computation
module (BBS) of records with high dominating/pruning power and
“widens” the skyline, thus raising the I/O cost for SP and CP. In
contrast, FP is independent of the skyline, and its I/O cost slightly
decreases with k in this dataset as well.

In Figure 18 we evaluate our algorithms for the computation of
order-insensitive GIR. We set all parameters to their defaults and
vary n (for IND data). The trends are similar to Figure 16; however,
the cost of all methods increases. The reason is that, as explained
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Figure 16: Effect of dataset cardinality n (IND)

5 10 20 50 100
0

100

200

300

400

500

600

k

C
P

U
 ti

m
e 

(m
se

c.
)

 

 

CP
SP
FP

(a) CPU time (HOTEL)

5 10 20 50 100
0

1000

2000

3000

4000

5000

k

I/O
 ti

m
e 

(m
se

c)

 

 

CP
SP
FP

(b) I/O time (HOTEL)

5 10 20 50 100
0

200

400

600

800

1000

k

C
P

U
 ti

m
e 

(m
se

c.
)

 

 

CP
SP
FP

(c) CPU time (HOUSE)

5 10 20 50 100
0

2000

4000

6000

8000

10000

12000

k

I/O
 ti

m
e 

(m
se

c)

 

 

CP
SP
FP

(d) I/O time (HOUSE)

Figure 17: Effect of k for real data
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Figure 18: Order-insensitive GIR, effect of n (IND)

in Section 7.1, multiple result records need to be considered against
the non-results (as opposed to just considering pk against them).

Returning to the default, order-sensitive GIR, in Figure 19 we
consider non-linear scoring functions. Using HOTEL and vary-
ing k, we investigate the performance of SP for (monotone) func-
tions S(p, q) = w1x

4
1 + w2x

3
2 + w3x

2
3 + w4x

1
4 and S(p, q) =

w1x
2
1 + w2e

x2 + w3 log x3 + w4
√
x4 (recall that HOTEL is

4-dimensional). We label these functions as “Polynomial” and
“Mixed”, respectively. For comparison, we also include “Linear”.

SP performance is similar for all functions. That is because sky-
line computation by BBS is independent of the function type (thus
the comparable I/O cost), which in turn leads to a similar number
of half-spaces to intersect for GIR derivation (thus the comparable
CPU time). Results with other monotone functions are similar and
omitted in order not to clutter the charts.

5 10 20 50 100
0

100

200

300

400

500

600

k

C
P

U
 ti

m
e 

(m
se

c.
)

 

 

Polynomial
Mixed
Linear

(a) CPU time

5 10 20 50 100
0

1000

2000

3000

4000

5000

k

I/O
 ti

m
e 

(m
se

c)

 

 

Polynomial
Mixed
Linear

(b) I/O time

Figure 19: Non-linear scoring functions, effect of k (HOTEL)



9. CONCLUSIONS
In this paper we study the problem of global immutable region

(GIR) computation. Assuming a top-k query with a linear scor-
ing function, the GIR indicates all the possible weight settings that
produce exactly the same result as the original query. The GIR
can be used as a guide for query weight refinement, as a sensi-
tivity measure, and as a means for result caching. We propose a
suite of scalable algorithms that exploit the geometric properties of
the problem to achieve efficient GIR computation. A direction for
future work is to extend the GIR notion to other query types and
complex scoring functions.
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