
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2009

Constraint-Based Dynamic Programming for Decentralized Constraint-Based Dynamic Programming for Decentralized

POMDPs with Structured Interactions POMDPs with Structured Interactions

Akshat KUMAR
Singapore Management University, akshatkumarR@smu.edu.sg

Shlomo ZILBERSTEIN
University of Massachusetts Amherst

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the Operations Research, Systems

Engineering and Industrial Engineering Commons

Citation Citation
KUMAR, Akshat and ZILBERSTEIN, Shlomo. Constraint-Based Dynamic Programming for Decentralized
POMDPs with Structured Interactions. (2009). Proceedings of the 8th International Conference on
Autonomous Agents and Multimagent Systems: May 10-15, 2009, Budapest, Hungary. 561-568.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2212

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2212&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

561

Constraint-Based Dynamic Programming for
Decentralized POMDPs with Structured Interactions

Akshat Kumar and Shlomo Zilberstein
Department of Computer Science

University of Massachusetts
Amherst, MA, 01003

{akshat, shlomo}@cs.umass.edu

ABSTRACT

Decentralized partially observable MDPs (DEC-POMDPs)
provide a rich framework for modeling decision making by
a team of agents. Despite rapid progress in this area, the
limited scalability of solution techniques has restricted the
applicability of the model. To overcome this computational
barrier, research has focused on restricted classes of DEC-
POMDPs, which are easier to solve yet rich enough to cap-
ture many practical problems. We present CBDP, an ef-
ficient and scalable point-based dynamic programming al-
gorithm for one such model called ND-POMDP (Network
Distributed POMDP). Specifically, CBDP provides magni-
tudes of speedup in the policy computation and generates
better quality solution for all test instances. It has linear
complexity in the number of agents and horizon length. Fur-
thermore, the complexity per horizon for the examined class
of problems is exponential only in a small parameter that de-
pends upon the interaction among the agents, achieving sig-
nificant scalability for large, loosely coupled multi-agent sys-
tems. The efficiency of CBDP lies in exploiting the structure
of interactions using constraint networks. These results ex-
tend significantly the effectiveness of decision-theoretic plan-
ning in multi-agent settings.

Categories and Subject Descriptors

I.2 [Artificial Intelligence]: [Dynamic programming, Mul-
tiagent systems, Intelligent agents]

Keywords

Multiagent planning, DEC-POMDPs

1. INTRODUCTION
DEC-POMDPs have emerged in recent years as an impor-

tant framework for modeling team decision problems under
uncertainty. They can effectively capture situations when
the environment state dynamics and the reward system de-
pend upon the joint action of all agents, but agents must
act based on different partial knowledge of the overall situa-
tion. Many problems such as multi-robot coordination [14],

Cite as: Constraint-Based Dynamic Programming for Decentralized
POMDPs with Structured Interactions, Akshat Kumar, Shlomo Zilberstein,
Proc. of 8th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2009), Decker, Sichman, Sierra and Castel-
franchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

broadcast channel protocols [2], and target tracking in sen-
sor networks [8] can be formulated as DEC-POMDPs.

Solving DEC-POMDPs optimally is NEXP-hard [2], with
optimal algorithms able to provide solution for very small
problems involving two agents and small horizons [6, 17].
Approximate algorithms can scale up the horizon, but they
remain limited to a few agents [14, 3]. An emerging ap-
proach to improve scalability has been to consider restricted
forms of interaction that arise frequently in practice [1, 11].
In particular, ND-POMDP [11] is one such general model
which is inspired by a realistic sensor network coordination
problem [8]. The key assumption in ND-POMDP is that of
transition and observation independence and the locality of
interaction, which help construct efficient algorithms that
exploit the independence among the agents.

A rich portfolio of algorithms has been developed for solv-
ing ND-POMDPs, featuring locally optimal policy search
[11], approximation schemes [18, 10] and a globally optimal
algorithm [11]. Most of these algorithms are based on policy
search. To the best of our knowledge, no bottom up dynamic
programming (DP) algorithm exists. The advantage of the
DP approach lies in its ability to focus planning on the reach-
able part of the belief space using a forward heuristic search.
Such approximate DP algorithms–often referred to as point-
based dynamic programming techniques–have shown great
success in solving POMDPs. The algorithm we introduce,
Constraint-Based Dynamic Programing (CBDP), shares its
motivation with such point-based approaches.

The efficiency of CBDP lies in effectively capturing the
independence and structure among agents using constraints.
CBDP uses a factored MDP-based heuristic function to iden-
tify relevant belief points. Solving a factored MDP is not
easy, as the space of both the joint actions and states is expo-
nential in the number of agents. We provide a novel way to
approximate this value function efficiently using constraint
optimization. The planning (backup operation in DP) for
these beliefs is performed using a constraint-based formu-
lation rather than a naive search through the exponential
number of policies. Such formulation makes the complexity
of CBDP exponential only in the induced width of the depth-
first search (DFS) ordering of the agent interaction graph,
while linear in the number of agents. This enhances the
scalability of CBDP for our sensor network domain, allow-
ing us to solve large loosely-coupled multi-agent planning
problems. Our results show that CBDP can handle very
large domains. It can solve efficiently problems with hun-
dreds of horizon steps while providing orders of magnitude
time savings over the previous best algorithm.

Cite as: Constraint-Based Dynamic Programming for Decentralized
POMDPs with Structured Interactions, Akshat Kumar, Shlomo Zilber-
stein, Proc. of 8th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.),
May, 10–15, 2009, Budapest, Hungary, pp. 561–568
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

562

N

S
EW

N

S
EW

N

S
EWloc1 loc2

1 2 3

Figure 1: A 3-chain sensor network configuration.
Each sensor can scan in 4 directions. Target moves
stochastically between loc1 and loc2.

2. BACKGROUND
This section briefly introduces the motivating sensor net-

work domain and the ND-POMDP model. More details can
be found in [8, 11].

2.1 Coordinated target tracking
Our target application is illustrated in Figure 1, which

shows a 3-chain sensor network configuration. Each sensor
has scanning ability in four directions (North, South, East,
West). The target moves stochastically between loc1 and
loc2. To track the target and obtain the associated reward
the sensors with the overlapping area must scan the area
together. For example, if the target is present in loc1 then
sensor 1 must scan East and sensor 2 must scan West to
track it. Thus, coordination plays an important role. The
movement of targets is unaffected by sensor agents. Sen-
sors have imperfect observability of the target, so there can
be false positive and negative observations. On successfully
tracking a target, sensors receive a reward. Otherwise they
incur a cost, when they scan an area in an uncoordinated
fashion or when the target is absent. The specifications of
the model are taken from [11].

2.2 ND-POMDP model
The problem of target tracking in sensor networks can be

easily represented as a DEC-POMDP [2]. However, explicit
utilization of independence among the agents can help us
construct more efficient algorithms. For example, sensors in
our domain are mostly independent–their state transitions
given the target location and the observations are indepen-
dent of the actions of the other agents. Agents are coupled
only through the joint reward function. The ND-POMDP
model [11] can express such independence relations. It is
described below for a group of n sensor agents.

S = ×1≤i≤nSi × Su. Si refers to the local state of agent
i. Su refers to a set of uncontrollable states that are
independent of the actions of the agents. In the sensor
network example, Si is empty, while Su corresponds to
the set of locations where targets can be present.

A = ×1≤i≤nAi where Ai is the set of actions for agent i.
For the sensor network example A1 = {N, W, E, S,Off}.

Ω = ×1≤i≤nΩi is the joint observation set.

P P (s′|s, a) = Pu(s′u|su) · Π1≤i≤nPi(s
′
i|si, su, ai), where

a = 〈a1, . . . , an〉 is the joint action performed in joint
state s = 〈su, s1, . . . , sn〉 resulting in joint state s′ =
〈s′u, s′1, . . . , s

′
n〉. This relies on transition independence.

O O(ω|s, a) = Π1≤i≤nOi(ωi|si, su, ai), where s is the joint
state resulting after taking joint action a and receiving
joint observation ω. This relies on observation inde-
pendence.

R R(s, a) = ΣlRl(sl, su, al). The reward function is de-
composable among sub groups of agents referred by
l. If k agents i1, . . . , ik are involved in a particular
sub group l, then sl denotes the state along the link
i.e. 〈si1 , . . . , sik 〉. Similarly, al = 〈ai1 , . . . , aik 〉. In
the sensor domain in Figure 1, the reward is decom-
posed among two subgroups (sensor 1–sensor 2) and
(sensor 2–sensor 3), hence R = R12(s1, s2, su, a1, a2)+
R23(s2, s3, su, a2, a3). Based on the reward function,
an interaction hypergraph can be constructed. A hy-
perlink l connects the subset of agents which form the
reward component Rl. This hypergraph visually de-
picts the dependency among agents and is an impor-
tant tool for the complexity analysis in later sections.

bo bo = (bu, b1, . . . , bn) is the initial belief for joint state
s = 〈su, s1, . . . , sn〉 and b(s) = b(su) · Πn

i=1b(si).

Solving the above decision problem requires to compute the
joint policy π = 〈π1, . . . , πn〉 that maximizes the total ex-
pected reward of all agents over a finite horizon T starting
from the initial belief bo.

The following theorem illustrates an important advantage
of transition and observation independence in ND-POMDP.

Theorem 1. Given transition and observation indepen-
dence, and a decomposable reward function, the value of a
joint policy π is also decomposable. That is,

V t
π(st,−→ω t) =

X
l

V t
πl

(st
l , s

t
u,−→ω t

l).

Hence, the value function of a policy in ND-POMDP can be
represented as a sum of local value functions, one for each
link. For proof please refer to [11].

3. POINT-BASED DYNAMIC

PROGRAMMING
The intractability of optimal (DEC) POMDP algorithms

can be attributed to planning for the complete belief space.
DEC-POMDPs are further disadvantaged as the joint pol-
icy has to be represented explicitly and cannot be extracted
directly from the value function. The idea of planning for a
finite set of belief points has been explored by Lovejoy [9],
leading to several successful point-based POMDP algorithms
such as PBVI [13], Perseus [16], and FSVI [15] among others.
For DEC-POMDPs, a similar point-based algorithm called
MBDP has been developed by Seuken and Zilberstein [14].
However, extending MBDP to multiple agents (>2) is non-
trivial because the computational cost of planning as well as
the MDP heuristic will require exponential effort. Even rep-
resenting the problem parameters (reward, transition func-
tion) will be exponential in the number of agents, clearly in-
feasible. CBDP shares its motivation with these successful
point-based algorithms. However, it is significantly different
from MBDP as it exploits the structure of interactions in
the ND-POMDP, whereas MBDP is oblivious to such struc-
ture. Next, we presents several novel techniques we employ
in CBDP to enable efficient planning for multiple agents.

Algorithm 1 shows the general point-based dynamic pro-
gramming framework that CBDP follows. The input is a
finite horizon problem with T decision steps. The algorithm
first computes the heuristic function used for sampling be-
lief points for each time step t. Then, the main bottom-up

Akshat Kumar, Shlomo Zilberstein • Constraint-Based Dynamic Programming for Decentralized POMDPs with Structured Interactions

563

Algorithm 1: Point-based DP framework

T ← horizon of the problem1

Belief set B ← {}2

Precompute the belief selection heuristic3 −→
QT ← all one step policy trees4

for t = T − 1 until 1 do5

eQt ← DoBackup(
−→
Q t+1)6

Populate B using heuristic function7 −→
Q t ← findBest(eQt,B)8

Output
−→
Q1 as the solution9

dynamic programming loop starts. For each step t, the set−→
Q t = {qt

i |1 ≤ i ≤ n} contains the best policies for each
agent. The set qt

i includes policies for agent i that con-
tributed to the best joint policy for some sampled belief.

The algorithm starts with the last time step, where there
are only immediate actions to take. These actions, which are

relatively few, are stored in the set
−→
QT without any belief

sampling. In each further iteration, the backup of the last

step’s best policies is stored in eQt. Then, a desired number
of beliefs are sampled using the precomputed heuristic func-
tion. For each of the sampled beliefs, the best joint policy

is extracted from the set eQt and stored in
−→
Q t, which forms

the basis for the next iteration. Finally, at t = 1, the best
policy for the initial belief bo is found and returned as the
solution. Note that the space and time complexity is defined
by the number of sampled beliefs as planning is restricted
only to this set. This is the key factor in the efficiency and
scalability of point-based approaches.

We now examine the main steps of Algorithm 1 as imple-
mented in CBDP: 1) Computation of the heuristic function;
2) Belief sampling using heuristic function; and 3) Finding
the best joint policy for a particular belief. Contrary to a
single-agent POMDP, each of these steps is non-trivial for
multiple agents. First, the well known MDP heuristic for
POMDPs translates to a factored MDP, which is difficult
to solve due to exponential state and action space [7]. Sec-
ond, belief sampling requires reasoning about joint states
and actions, which again requires exponential effort if done
naively. Finally, computing the best joint policy for a given
belief could require search through the exponential number
of candidates. We show in the following sections how we
perform efficiently each one of these steps of CBDP.

3.1 Heuristic function computation
We use as a heuristic the factored MDP derived from the

original ND-POMDP model by ignoring the observations.
The optimal policy of this MDP is used for belief sampling
in CBDP. One would intuitively believe that the factored
state and the reward dynamics of this MDP will make the
value function structured, making it easier to compute the
optimal policy. Unfortunately, this is not the case. The
value function eventually depends on all the states as has
been shown by Koller and Parr [7]. This makes the policy
harder to compute. To address this, we introduce a way to
approximate the value function such that it becomes struc-
tured and efficiently computable.

To simplify the equations, we introduce some shorthand
notation. Let rt

l denote the immediate reward along the link

l at time step t when the involved agents perform the action
al, i.e. rt

l = Rl(s
t
l , s

t
u, al). Let pt

u denote the transition of
the unaffected state at time t, i.e. pt

u = P (st+1
u |st

u). Let
pt

i denote the transition probability of agent i, i.e. pt
i =

Pi(s
t+1
i |st

i, s
t
u, ai). Similar shorthand notation can be de-

fined for a link l as well: pt
l is the product of the transition

probabilities of all the agents (say k) involved in the link l,
i.e. pt

l = pl1 . . . plk . The context of states and actions will
become clear from the usage.

The MDP value of any joint state st−1, V (st−1), can be
defined as follows:

V (st−1) = max
a

(R(st−1, a) +
X
st

P (st|st−1, a)V (st)).

which can be simplified as follows using the above notation
and the transition independence of the factored MDP.

V (st−1) = max
a

(
X

l

rt−1
l +

X
st

u,st
1...st

n

pt−1
u pt−1

1 . . . pt−1
n V (st))

(1)
The time complexity of solving Eq. 1 for all horizons

is O(T |Ai|n|Su|2|Si|2n). The presence of two exponential
terms, |Ai|n and |Si|2n, makes it harder to compute. We

inductively define an approximate function V̂ , which is an
upper bound on the optimal value function. V̂ is decompos-
able along the links and is thus easier to compute.

For the last time step T , V̂ is defined as the sum of im-
mediate rewards for each link. Thus, it is trivially decom-
posable along the links. Let us assume inductively that for
time step t, V̂ is decomposable, i.e. V̂ (st) =

P
l V̂ t

l (st
ust

l |st).
The conditioning over the current state is necessary as the
two different joint states s, s′ may share the state compo-
nent susl along the link l, and the value V (susl) may be
different in states s and s′. For example, let s = sus1s2s3,
s′ = sus1s2s4 and the state along a link be s1s2. The value
V (sus1s2) can be different for s and s′ although they share
the state along the link.

The derivation of V̂ for the previous step t−1 is as follows.
Define a new function V̂ ′ for the step t − 1:

V̂ ′(st−1) = max
a

{
X

l

rt−1
l +

X
st

pt−1
u . . . pt−1

n V̂ (st)}

Clearly, V̂ ′(st−1) is an upper bound on the exact value

V (st−1) because we assumed V̂ (st) was an upper bound on

V (st). In the following we derive V̂ from V̂ ′

V̂ ′(st−1) = max
a

{
X

l

rt−1
l +

X
st

pt−1
u . . . pt−1

n V̂ (st)}

= max
a

{
X

l

rt−1
l +

X
st

pt−1
u . . . pt−1

n

X
l

V̂ t
l (st

ust
l |st)}

≤ max
a

{
X

l

rt−1
l +

X
st

u,st
1...st

n

pt−1
u . . . pt−1

n

X
l

max
st

V̂ t
l

| {z }
}

The quantity under the brace is uniquely defined for each

of the link l and thus can be replaced with eVl
t
(st

ust
l) =

maxst V̂ t
l (st

ust
l |st). Intuitively, this approximation will per-

form better when the sensor agents along a link in a particu-
lar state (sl) with a given external state (su) provide similar
contribution to the value function across all joint states (st).

Upon rearranging the terms of the previous equation we

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

564

A
1

A
2

A
4

A
3

Q
12

Q
13

Q
24

Q
34

Figure 2: A coordination graph for 4 agents

get

= max
a

{
X

l

rt−1
l +

X
l

X
st

u,st
1...st

n

pt−1
u . . . pt−1

n
eVl

t}

= max
a

{
X

l

rt−1
l +

X
l

X
st

u,st
l
,st
−l

pt−1
u pt−1

l pt−1
−l

eVl
t}

st−1
l refers to the state of agents along the link l, st

−l refers to
the state of the rest of the agents. Similarly, pt−1

−l abbreviates
the transition probability product of agents except those on
link l. pt−1

−l is independent of the rest of the terms and will

sum up to 1. Finally, we obtain the decomposable V̂ which
was our goal.

V̂ (st−1) = max
a

X
l

(rt−1
l +

X
st

u,st
l

pt−1
u pt−1

l
eVl

t
) (2)

3.1.1 Joint action selection
Solving Eq. 2 still requires iterating over exponential num-

ber of actions. We now show how it can be solved effi-
ciently for each state st using coordination graphs. These
graphs, which were first introduced in the context of fac-
tored MDPs [5], are essentially constraint networks whose
solution corresponds to the solution of the underlying con-
straint optimization problem.

A coordination graph is very similar to the interaction
graph defined using reward functions. There is a node for
each agent and an edge (or an hyper-edge) connects nodes
for agents that are part of the same reward component Rl.
Agents have Q functions defining the local rewards, which
also depends upon some other agents–exactly those which
share the same reward component. For example, in Figure 2
agent A2 has two Q functions, Q12 shared with agent A1

along the link A1 − A2 and Q24. Eq. 2 can be solved for
every state st by formulating a joint task for the agents to
find the joint action a� that maximizes the sum of all Q
functions

P
l Ql. The Q function is defined for each link l

as follows.

st : Ql(al) = rt
l +

X
st+1

u ,st+1
l

pt
upt

l
eVl

t+1

The above optimization problem can be easily solved us-
ing techniques from constraint optimization. In particular,
the bucket elimination algorithm [4] can solve such problems
efficiently using dynamic programming. The complexity of
bucket elimination is exponential in the induced width of
the chosen DFS ordering of the coordination graph and lin-
ear in the number of nodes of the graph which is the same
as the number of agents. Note that the induced width is
much smaller than the number of agents. For a tree-like
network, the induced width is 1 no matter how many agents

are involved. Therefore, coordination graphs can be solved
efficiently for large loosely coupled systems.

3.1.2 Complexity
Computing the policy for our factored MDP requires solv-

ing Eq. 2 for each state and time step t using coordina-
tion graphs. The time complexity is O(nT |Su|2|Si|2n|Ai|d)
where d is the induced width of the coordination graph. The
space complexity is O(T |Su||Si|n + n|Ai|d). The term |Ai|d
refers to the space requirement of the bucket elimination al-
gorithm. The exponential factor corresponding to the state
space still remains. However, note that for the sensor net-
work domain, the internal states are empty. This makes
the time complexity O(nT |Su|2||Ai|d) and space complexity
O(T |Su| + n|Ai|d) which are polynomial in the state space
and linear in the number of agents. Hence, for the sensor
network domain we can effectively solve large problems with
low induced width.

3.2 Belief sampling
This section describes the belief sampling for any horizon

t. We use a portfolio of three heuristic functions: one based
purely on the underlying MDP, another taking observations
into account, and finally the random heuristic.

3.2.1 MDP-based sampling
In the pure MDP-based sampling, the underlying joint

state is revealed after each step. In POMDPs this is easy
as we draw a state from the current belief b. However, in a
DEC-POMDP the belief is over joint states, hence one has
to reason about the joint state space. But fortunately, in
a ND-POMDP, b(s) = bu(su)b1(s1) . . . bn(sn). This allows
us to sample each factored state from its corresponding dis-
tribution. Once we get the current underlying joint state
st = (st

u . . . st
n), we select the action a� using the precom-

puted MDP policy. Then, the next unaffected state is sam-
pled from the distribution st+1

u = Sample(P (·|st
u)). Each

state st+1
i can be sampled as st+1

i = Sample(P (·|st
i, s

t
u, a�

i)).
Repeated simulations using such a scheme gives us a belief
point for any horizon starting from the initial belief bo.

3.2.2 Direct belief space exploration
One shortcoming of the MDP heuristic is that it ignores

the effect of observations which are important to determine
the belief state accurately in a partially observable environ-
ment. To overcome this limitation, Shani et al. proposed
a new MDP-based heuristic that directly explores the be-
lief space [15]. Our second heuristic is motivated by this
approach, presented in the Algorithm 2. The algorithm re-
turns a belief after applying a desired number of updates.
The first few steps are similar to those of the pure MDP
heuristic. First, the current underlying state is sampled
from the current belief bt, the MDP action for it is found and
the next state is sampled using the corresponding transition
functions (steps 3 to 6 of the algorithm). Next, the most
probable observation is sampled for each agent i (step 7).
Then, the belief for each state component is updated using
the action a� and the observation ω = (ω1 . . . , ωn). This up-
dated belief is passed to the next iteration of BeliefExplore
until the desired number of updates are performed (step 1).
The call to BeliefExplore is initialized using the initial belief
bo. Further discussion of belief updates follows.

The belief update of b′ based on b, action a and obser-

Akshat Kumar, Shlomo Zilberstein • Constraint-Based Dynamic Programming for Decentralized POMDPs with Structured Interactions

565

Algorithm 2: BeliefExplore(bt)

if t == updatesRequired then1

return bt
2

Sample st from bt
3

a� ← GetMDPAction(st)4

st+1
u ← Sample(P (·|st

u))5

st+1
i ← Sample(P (·|st

i, s
t
u, a�

i)) ∀i = 1 to n6

ωi ← Sample(O(·|st+1
i , st+1

u , a�
i)) ∀i = 1 to n7

bt+1
u ← τu(bt

u, a�, ω)8

bt+1
i ← τi(b

t
i, a

�, ω) ∀i = 1 to n9

return BeliefExplore(bt+1)10

vation ω is represented by b′ = τ(b, a, ω). Performing such
updates on the joint belief space is costly. Therefore, we use
an approximation scheme which updates the factored belief
space individually, i.e. the current belief bt = bt

ubt
1 . . . bt

n is
updated as bt+1 = bt+1

u bt+1
1 . . . bt+1

n . The approximation is if
we are updating the belief over Si then the rest of the joint
state is fixed to the state sampled using MDP policy.

bt+1
u (su)a,ω = α

nY
i=1

Oi(ωi| st+1
i|{z}, su, ai)

X
s′u

bt
u(s′u)P (su|s′u)

The above equation shows the update of the unaffected state
space. The part of the joint state other than the unaffected
state is fixed (see the term under the brace). Each st+1

i is
found using the MDP policy (in step 6 of Algorithm 2). α is
the normalization constant. Similarly, other factored state
spaces can be updated as

bt+1
i (si)

a,ω = αOi(ωi|si, s
t+1
u , ai)

n\iY
j=1

Oj(ωj |st+1
j , st+1

u , aj) ·
X
s′i

bt
i(s

′
i)P (si|s′i, st+1

u , ai)

3.3 Best joint policy computation
This section describes the last step of the DP framework–

how to find the best policy for a sampled belief point. After
the backup of policies from the last iteration, each agent
can have a maximum of |Ai||B||Ωi| policies where |B| refers
to the number of sampled belief points, which can be fixed
a priori to a threshold maxBelief. Thus, the total number
of joint policies can be O((|Aj |maxBelief |Ωk|)n) where Aj

is the maximum action space of any agent and Ωk is the
maximum observation space. Searching for the best joint
policy will require exponential time in the number of agents
if done naively. We formulate below a constraint optimiza-
tion problem for this task, which performs much better than
naive search.

The value for a joint belief b upon executing the joint
policy π is given by

Vπ(b) =
X

s

b(s)Vπ(s, 〈〉)

Using the independence relations in ND-POMDP and The-

orem 1, we get

Vπ(b) =
X

su,s1,...,sn

bu(su)b1(s1) . . . bn(sn)
X

l

Vπl(sl, su, 〈〉)

=
X

l

X
su,sl,s−l

bu(su)bl(sl)b−l(s−l)Vπl(sl, su, 〈〉)

where bl(sl) refers to the product of beliefs for agents on
the link l and b−l refers to the rest of the agent. b−l is
independent of Vπl and will sum up to 1. So we are left with

Vπ(b) =
X

l

X
su,sl

bu(su)bl(sl)Vπl(sl, su, 〈〉) (3)

The above equation shows that the value of a policy for a
belief can be decomposed into contributions along the inter-
action links. The best joint policy for a given belief is thus
the solution of the following optimization problem:

Vπ�(b) = max
π

{
X

l

X
su,sl

bu(su)bl(sl)Vπl(sl, su, 〈〉)}

This problem can be solved using a constraint graph similar
to the coordination graphs defined in Section 3.1.1. There is
a policy variable Πi for each agent i. The domain D(Πi) =
{πi} is the set of all backed up policies of agent i. Variables
Πi and Πj are connected by an edge if their corresponding
agents i and j share a reward component Rl. The struc-
ture of this graph is similar to the interaction graph, except
that the agents are replaced by their corresponding policy
variables. A constraint is defined for each link l with the
valuation Cl(πl) =

P
su,sl

bu(su)bl(sl)Vπl(sl, su, 〈〉). For ex-
ample, consider the interaction structure of Figure 2. A con-
straint is defined for each of the 4 links and C12(π1, π2) =P

su,s1,s2
bu(su)b1(s1)b2(s2)Vπ1π2(s1, s2, su, 〈〉).

The optimization problem is to find the complete assign-
ment π� to the variables which maximizes the sum

P
l Cl,

which is also the best joint policy for the particular belief.
Using the bucket elimination algorithm, this problem can be
solved in O(n(|Aj |maxBelief |Ωk|)d) time and space where d
is the induced width of the interaction graph. Thus, we
have reduced the complexity from being exponential in the
number of agents to being exponential in the induced width,
which typically will be much smaller and linear in the num-
ber of agents.

4. COMPLEXITY

Theorem 2. CBDP has a linear time and space complex-
ity with respect to the problem horizon.

Proof. CBDP plans only for the sampled belief set whose
size can be fixed to maxBelief. Hence, the number of pol-
icy trees for each agent is between QLB = maxBelief (as-
suming each sampled belief requires a unique policy of the
agent) and QUB = |Aj |maxBelief|Ωk|. For each horizon, only
QLB policy trees are retained. To construct the new trees
after backup, we can use a pointer sharing mechanism in
which a tree from the previous iteration can be part of mul-
tiple new policy trees. Thus, the size of a T horizon policy
can be O(QLB · T). For n agents the total space required
is O(n · (QLB .T + QUB)). Taking into account the addi-
tional space required by the bucket elimination algorithm
for the best policy computation, the total space required is

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

566

11-Helix

(a)

7-H

(b)

15-3D

(c)

5-P

(d)

Figure 3: Sensor network configurations

O(n · (QLB · T + QUB) + (QUB)d) which is linear in the
horizon T .

As shown in Section 3.1.2, the complexity of calculating
the heuristic also increases linearly with T . Once the heuris-
tic is computed, the complexity depends upon the main dy-
namic programing loop (steps 5-8) of Algorithm 1. If the size
of the sampled belief set is fixed then the running time of
the loop is independent of T . Hence, CBDP requires linear
time complexity w.r.t. the horizon length.

The next two theorems show how well the CBDP and the
heuristic computation scale when we change the problem
parameters–state space, action space or number of agents.

Theorem 3. For each horizon, CBDP has polynomial time
and space complexity w.r.t. the factored state space, exponen-
tial in the induced width d of the interaction graph and linear
in the number of agents.

Proof. The time complexity of CBDP per horizon de-
pends upon the best joint policy computation. Its complex-
ity is O(maxBelief · ((QUB)kL|Su|2|Si|2k|Ωj |k + n(QUB)d)).
L denotes the number of links in the interaction graph, and k
denotes the maximum number of agents involved in an inter-
action link and n being the number of agents. The first term
denotes the time required to setup the constraint formula-
tion, second term is the time needed to solve it. Similarly,
the space complexity is dominated by the bucket elimination
algorithm, which is O(n(QUB)d), again linear in the number
of agents and exponential only in the induced width.

A direct implication of the above theorem is that CBDP
can scale up well to very large problem with low induced
width. For the sensor network domain, we can further show
the following property. A discussion of how to generalize it
is included in the last section.

Theorem 4. The MDP heuristic requires polynomial time
and space per horizon for the sensor network domain.

Proof. This follows directly from Section 3.1.2. The
time complexity is O(n|Su|2||Ai|d) and space complexity
O(|Su| + n|Ai|d).

 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 3 4 5 6 7 8 9 10

P
ol

ic
y

V
al

ue

Horizon

CBDP Node Link

(a)

 1

 10

 100

 1000

 3 4 5 6 7 8 9 10

T
im

e
(s

ec
)

Horizon

CBDP Node Link

(b)

Figure 4: a) compares the solution quality of CBDP
and different versions of FANS (Node, Link) on the
domain 5P. b) Compares the execution time.

5. EXPERIMENTS
This section compares CBDP with FANS [10]–the most

efficient of the existing algorithms including SPIDER [18]
and LID-JESP [11]. We conducted experiments on the sen-
sor network configurations introduced in [10], shown in Fig-
ure 3. All experiments were conducted on a Dual core ma-
chine with 1GB RAM, 2.4GHz CPU. The main purpose of
the experiments is to show the scalability of CBDP, which
has linear time and space complexity w.r.t. the horizon. We
use a publicly available constraint solver implementing the
bucket elimination algorithm [12]. The maxbelief was set
to 5 as it provided good tradeoff between speed and solution
quality across a range of tried settings.

The experiments are divided into two sets. In the first
set, we use relatively smaller domains (5-P and 7-H) because
they are the only domains for which FANS can scale up to
significant horizons. In the second set of experiments, we use
the remaining larger domains (11-helix, 15-3D, 15-mod). For
these domains, FANS cannot scale well (for 15-3D it fails to
solve problems with horizons greater than 5).

Figure 4(a) shows a comparison of the solution quality of
CBDP and two different versions of FANS, Node (k = 0.5)
and Link, on the 5-P domain. FANS has multiple heuristics
which tradeoff solution quality for speed. It has been sug-
gested in [10] that for smaller domains, the Link and Node
heuristics provide the best tradeoff. Hence, we chose these
two for comparisons. All three algorithms achieve almost
the same solution quality for all horizons. However, the key
difference is in the runtime (Figure 4(b)). CBDP provides
significant speedup over both the Node and Link heuristics.

Akshat Kumar, Shlomo Zilberstein • Constraint-Based Dynamic Programming for Decentralized POMDPs with Structured Interactions

567

 250

 300

 350

 400

 450

 500

 550

11-helix 15-3D 15-Mod

P
ol

ic
y

va
lu

e

CBDP
Greedy

Node

(a)

 1

 10

 100

 1000

 10000

11-helix 15-3D 15-Mod

T
im

e
(s

ec
s,

 lo
gs

ca
le

)

CBDP
Greedy

Node

(b)

Figure 6: Solution quality and execution time for 11-helix, 15-3D and 15-mod with T = 3.

 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

 2 3 4 5 6 7 8 9 10

P
ol

ic
y

V
al

ue

Horizon

CBDP Link Node

(a)

 0.1

 1

 10

 100

 1000

 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
)

Horizon

CBDP Link Node

(b)

Figure 5: a) compares the solution quality of CBDP
and different versions of FANS (Node, Link) on the
domain 7-H. b) Compares the execution time.

For horizon 10, CBDP is about 2 orders of magnitude faster
than FANS with either heuristic. Another notable obser-
vation is that the increase in runtime for CBDP with the
horizon is nearly linear as implied by Theorem 2.

Figure 5(a) shows a comparison of the solution quality on
the 7-H domain. We again compare with FANS using the
Node (k = 0.5) and Link heuristics. On this domain, due
to increase in the number of agents, FANS can provide so-
lutions up to horizon 7. With the increase in the domain
size, FANS is no longer as competitive in the solution qual-
ity as it was in the 5-P domain. CBDP provides much better
solution quality for all horizons. The runtime graph (Fig-
ure 5(b)) shows again that CBDP is much faster and that
more scalable. It is 5 times faster than the Link heuristic,

and orders of magnitude faster than the Node heuristic. The
average time required by CBDP per horizon is 710ms which
implies CBDP can solve a 100 horizon instance within 1.5
minutes due to its linear complexity as opposed to the Node
heuristic which requires 685 seconds to solve a horizon 7
instance. This further illustrates the scalability of CBDP.

Figure 6 shows the next set of experiments in which we
use larger domains (11-helix, 15-3D, 15-mod). To be consis-
tent with the results of Marecki et al. [10], we set the horizon
to 3 because for 15-3D, FANS scales up to horizon 4 only.
For these larger domains, a Greedy heuristic has been pro-
posed [10] and it provides best tradeoff than other heuristics.
Hence, we used this heuristic along with the Node (k = 0.75)
heuristic for comparisons. Figure 6(a) shows a comparison of
the solution quality. For 11-helix, CBDP provides much bet-
ter solution quality than either the Greedy or Node heuris-
tic. Similar trends are observed for the 15-3D and 15-mod
domains. CBDP provides better solution quality for them
as well. The runtime comparison (Figure 6(b)) again shows
the stark difference between CBDP and FANS. For 15-mod,
CBDP takes 0.6 secs while FANS with the Greedy heuristic
takes over 2,000 secs. One can easily see the magnitude of
speedup CBDP provides over FANS.

 1500

 2500

 3500

 4500

 5500

 6500

 7500

 8500

 9500

 0 10 20 30 40 50 60 70 80 90 100

 210
 410
 610
 810
 1010
 1210
 1410
 1610
 1810
 2010
 2210
 2410
 2610
 2810
 3010

P
ol

ic
y

V
al

ue

E
xe

cu
tio

n
T

im
e

(s
ec

s)

Horizon

Solution quality
Time

Figure 7: Solution Quality and Execution time for a
range of horizons for 15-3D.

The results of the last set of experiments are shown in
Figure 7. These experiments show the solution quality and
execution time statistics for CBDP for different horizons on
the problem 15-3D, which is the most complex problem in-
stance for both CBDP and FANS. FANS could scale up to
only horizon 5 on this problem. In contrast, CBDP can eas-
ily scale up to horizon 100. The execution time curve in this

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

568

experiment clearly supports the linear time complexity of
CBDP. The solution quality too increases at a nearly con-
stant rate with the horizon, which means that CBDP is able
to maintain good solution quality for large horizons.

To summarize, our experiments consistently illustrate that
CBDP provides several orders-of-magnitude of speedup over
different versions of FANS, while providing better solution
quality for all the instances examined. CBDP further has a
linear time and space complexity w.r.t. the horizon, which
makes it possible to apply it to problems with much larger
horizons than was previously possible.

6. CONCLUSION AND FUTURE WORK
We have introduced a point-based dynamic programing

algorithm called CBDP for ND-POMDPs–a restricted class
of DEC-POMDPs characterized by a decomposable reward
function. CBDP takes advantage of the structure of inter-
action in the domain and independence among the agents
to produce significantly better scalability over the state-of-
the-art algorithms. It uses constraint networks algorithms
to improve the efficiency of key steps of the dynamic pro-
gramming algorithm. Consequently, CBDP has linear time
and space complexity with respect to the horizon length and
polynomial complexity in other problem parameters. The
key feature of CBDP which contributes to its scalability is
that the complexity per horizon step is exponential only in
the induced width of the agent interaction graph, while it
is linear in the number of agents. The induced width is of-
ten much smaller than the number of agents–particularly in
loosely connected multi-agent systems–implying that CBDP
can scale up better and handle multi-agent systems that are
significantly larger than the existing benchmark problems.
Experimental results consistently validate these properties
of CBDP.

Continued work on CBDP focuses on two research direc-
tions. First, we are exploring additional real-world settings
that have an underlying interaction structure that CBDP
can exploit. Sensor networks in particular provide a good
application area where the challenge is to coordinate the op-
eration of a large team of sensors. The second research di-
rection aims to make the computation of the factored MDP
heuristic efficient in more complex domains. For the tar-
get tracking problem, the heuristic computation is already
efficient. But for problems that require agents to maintain
substantial internal states, an exponential effort is required.
To avoid this blowup in computation time, we plan to use
the approach developed by Guestrin et al. [5], which has
polynomial time complexity in the state space for factored
MDPs such as the ones used in our work. Such an approach
will further increase the scalability and applicability of DEC-
POMDPs to more complex real-world problems.

Acknowledgments

We thank Janusz Marecki for helping us perform the com-
parisons with FANS. Support for this work was provided in
part by the National Science Foundation under grant IIS-
0812149 and by the Air Force Office of Scientific Research
under grant FA9550-08-1-0181.

7. REFERENCES
[1] R. Becker. Exploiting Structure in Decentralized Markov

Decision Processes. PhD thesis, University of
Massachusetts Amherst, 2006.

[2] D. S. Bernstein, R. Givan, N. Immerman, and
S. Zilberstein. The complexity of decentralized control of
Markov decision processes. Mathematics of Operations
Research, 27:819–840, 2002.

[3] A. Carlin and S. Zilberstein. Value-based observation
compression for DEC-POMDPs. In Proc. of the Seventh
International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 501–508, 2008.

[4] R. Dechter. Bucket elimination: A unifying framework for
reasoning. Artificial Intelligence, 113(1-2):41–85, 1999.

[5] C. Guestrin, D. Koller, and R. Parr. Multiagent planning
with factored MDPs. In Proc. of the Neural Information
Processing Systems, pages 1523–1530, 2001.

[6] E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dynamic
programming for partially observable stochastic games. In
Proc. of the Nineteenth National Conference on Artificial
Intelligence, pages 709–715, 2004.

[7] D. Koller and R. Parr. Computing factored value functions
for policies in structured MDPs. In Proc. of the Sixteenth
International Joint Conference on Artificial Intelligence,
pages 1332–1339. Morgan Kaufmann, 1999.

[8] V. Lesser, M. Tambe, and C. L. Ortiz, editors. Distributed
Sensor Networks: A Multiagent Perspective. Kluwer
Academic Publishers, Norwell, MA, USA, 2003.

[9] W. S. Lovejoy. Computationally feasible bounds for
partially observed Markov decision processes. Operations
Research, 39(1):162–175, 1991.

[10] J. Marecki, T. Gupta, P. Varakantham, M. Tambe, and
M. Yokoo. Not all agents are equal: Scaling up distributed
POMDPs for agent networks. In Proc. of the Seventh
International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 485–492, 2008.

[11] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo.
Networked distributed POMDPs: A synthesis of distributed
constraint optimization and POMDPs. In Proc. of the
Twentieth National Conference on Artificial Intelligence,
pages 133–139, 2005.

[12] A. Petcu and B. Faltings. Dpop: A scalable method for
multiagent constraint optimization. In Proc. of the
International Joint Conference on Artificial Intelligence,
pages 266–271, 2005.

[13] J. Pineau, G. Gordon, and S. Thrun. Point-based value
iteration: An anytime algorithm for POMDPs. In Proc. of
the Eighteenth International Joint Conference on Artificial
Intelligence, pages 1025–1032, 2003.

[14] S. Seuken and S. Zilberstein. Memory-bounded dynamic
programming for DEC-POMDPs. In Proc. of the Twentieth
International Joint Conference on Artificial Intelligences,
pages 2009–2015, 2007.

[15] G. Shani, R. I. Brafman, and S. E. Shimony. Forward
search value iteration for POMDPs. In Proc. of the
Twentieth International Joint Conference on Artificial
Intelligence, pages 2619–2624, 2007.

[16] M. Spaan and N. Vlassis. Perseus: Randomized point-based
value iteration for POMDPs. Journal of Artificial
Intelligence Research, 24:195–220, 2005.

[17] D. Szer and F. Charpillet. MAA*: a heuristic search
algorithm for solving decentralized POMDPs. In Proc. of
the Twenty-First Conference on Uncertainty in Artificial
Intelligence, pages 576–583, 2005.

[18] P. Varakantham, J. Marecki, Y. Yabu, M. Tambe, and
M. Yokoo. Letting loose a SPIDER on a network of
POMDPs: Generating quality guaranteed policies. In Proc.
of the Sixth International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 1–8, 2007.

	Constraint-Based Dynamic Programming for Decentralized POMDPs with Structured Interactions
	Citation

	untitled

