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Abstract

Decentralized POMDPs provide an expres-
sive framework for multi-agent sequential de-
cision making. While finite-horizon DEC-
POMDPs have enjoyed significant success,
progress remains slow for the infinite-horizon
case mainly due to the inherent complexity of
optimizing stochastic controllers representing
agent policies. We present a promising new
class of algorithms for the infinite-horizon
case, which recasts the optimization problem
as inference in a mixture of DBNs. An attrac-
tive feature of this approach is the straight-
forward adoption of existing inference tech-
niques in DBNs for solving DEC-POMDPs
and supporting richer representations such
as factored or continuous states and actions.
We also derive the Expectation Maximization
(EM) algorithm to optimize the joint pol-
icy represented as DBNs. Experiments on
benchmark domains show that EM compares
favorably against the state-of-the-art solvers.

1 Introduction

Decentralized partially observable MDPs (DEC-
POMDPs) have emerged in recent years as an im-
portant framework for modeling sequential decision
making by a team of agents [5]. Their expressive
power makes it possible to tackle coordination prob-
lems in which agents must act based on different par-
tial information about the environment and about each
other to maximize a global reward function. Ap-
plications of DEC-POMDPs include coordinating the
operation of planetary exploration rovers [3], coordi-
nating firefighting robots [14], broadcast channel pro-
tocols [5] and target tracking by a team of sensor
agents [13]. However, the rich model comes with a
price–optimally solving a finite-horizon DEC-POMDP

is NEXP-Complete [5]. In contrast, finite-horizon
POMDPs are PSPACE-complete [12], a strictly lower
complexity class that highlights the difficulty of solv-
ing DEC-POMDPs.

Recently, a multitude of point-based approximate al-
gorithms have been proposed for solving finite-horizon
DEC-POMDPs [11, 8, 16]. However, unlike their
point-based counterparts in POMDPs ([15, 17]), they
cannot be easily adopted for the infinite-horizon case
due to a variety of reasons. For example, POMDP al-
gorithms represent the policy compactly as α-vectors,
whereas all DEC-POMDP algorithms explicitly store
the policy as a mapping from observation sequences
to actions, making them unsuitable for the infinite-
horizon case. In POMDPs, the Bellman equation
forms the basis of most point-based solvers, but as
Bernstein et. al. [4] highlight, no analogous equation
exists for DEC-POMDPs.

To alleviate such problems, most infinite-horizon al-
gorithms represent agent policies as finite-state con-
trollers [1, 4]. So far, only two algorithms have
shown promise for effectively solving infinite-horizon
DEC-POMDPs–decentralized bounded policy itera-
tion (DEC-BPI) [4] and a non-linear programming
based approach (NLP) [1]. However, both of these
algorithms have significant drawbacks in terms of the
representative class of problems that can be handled.
For example, solving DEC-POMDPs with continuous
state or action spaces is not supported by either of
these approaches. Scaling up to structured represen-
tations such as factored or hierarchical state-space is
difficult due to convergence issues in DEC-BPI and
a potential increase in the number of non-linear con-
straints in the NLP solver. Further, none of the above
approaches have been shown to work for more than
2 agents, a significant bottleneck for solving practical
problems.

To address these shortcomings, we present a promis-
ing new class of algorithms which amalgamates plan-
ning with probabilistic inference and opens the door



to the application of rich inference techniques to solv-
ing infinite-horizon DEC-POMDPs. Our technique is
based on Toussaint et. al.’s approach of transform-
ing the planning problem to its equivalent mixture
of dynamic Bayes nets (DBNs) and using likelihood
maximization in this framework to optimize the policy
value [20, 19]. Earlier work on planning by probabilis-
tic inference can be found in [2]. Such approaches have
been successful in solving MDPs and POMDPs [19].
They also easily extend to factored or hierarchical
structures [18] and can handle continuous action and
state spaces thanks to advanced probabilistic inference
techniques [10]. We show how DEC-POMDPs, which
are much harder to solve than MDPs or POMDPs,
can also be reformulated as a mixture of DBNs. We
then present the Expectation Maximization algorithm
(EM) to maximize the reward likelihood in this frame-
work. The EM algorithm naturally has the desirable
anytime property as it is guaranteed to improve the
likelihood (and hence the policy value) with each it-
eration. We also discuss its extension to large multi-
agent systems. Our experiments on benchmark do-
mains show that EM compares favorably against the
state-of-the-art algorithms, DEC-BPI and NLP-based
optimization. It always produces better quality poli-
cies than DEC-BPI and for some instances, it nearly
doubles the solution quality of the NLP solver. Fi-
nally, we discuss potential pitfalls, which are inherent
in the EM based approach.

2 The DEC-POMDP model

In this section, we introduce the DEC-POMDP model
for two agents [5]. Note that finite-horizon DEC-
POMDPs are NEXP complete even for two agents.

The set S denotes the set of environment states, with
a given initial state distribution b0. The action set
of agent 1 is denoted by A and agent 2 by B. The
state transition probability P (s′|s, a, b) depends upon
the actions of both the agents. Upon taking the joint
action 〈a, b〉 in state s, agents receive the joint reward
R(s, a, b). Y is the finite set of observations for agent 1
and Z for agent 2. O(s, ab, yz) denotes the probability
P (y, z|s, a, b) of agent 1 observing y ∈ Y and agent 2
observing z ∈ Z when the joint action 〈a, b〉 was taken
and resulted in state s.

To highlight the differences between a single agent
POMDP and a DEC-POMDP, we note that in a
POMDP an agent can maintain a belief over the envi-
ronment state. However, in a DEC-POMDP, an agent
is not only uncertain about the environment states but
also about the actions and observations of the other
agent. Therefore in a DEC-POMDP a belief over the
states cannot be maintained during execution time.

This added uncertainty about other agents in the sys-
tem make DEC-POMDPs NEXP complete [5].

We are concerned with solving infinite-horizon DEC-
POMDPs with a discount factor γ. We represent
the stationary policy of each agent using a fixed
size, stochastic finite-state controller (FSC) simi-
lar to [1]. An FSC can be described by a tuple
〈N, π, λ, ν〉. N denotes a finite set of controller nodes
n; π : N → ∆A represents the actions selection model
or the probability πan = P (a|n); λ : N × Y → ∆N
represents the node transition model or the proba-
bility λn′ny = P (n′|n, y); ν : N → ∆N represents
the initial node distribution νn = P (n). We adopt
the convention that nodes of agent 1’s controller are
denoted by p and agent 2’s by q. Other problem
parameters such as observation function P (y, z|s, a, b)
are represented using subscripts as Pyzsab. The value
for starting the controllers in nodes 〈p, q〉 at state s is
given by:

V (p, q, s) =
∑
a,b

πapπbq

[
Rsab+

γ
∑
s′

Ps′sab
∑
y,z

Pyzs′ab
∑
p′,q′

λp′pyλq′qzV (p′, q′, s′)
]
.

The goal is to set the parameters 〈π, λ, ν〉 of the agents’
controllers (of some given size) that maximize the ex-
pected discounted reward for the initial belief b0:

V (b0) =
∑
p,q,s

νpνqb0(s)V (p, q, s)

3 DEC-POMDPs as mixture of DBNs

In this section, we describe how DEC-POMDPs can
be reformulated as a mixture of DBNs such that max-
imizing the reward likelihood (to be defined later) in
this framework is equivalent to optimizing the joint
policy. Our approach is based on the framework pro-
posed in [19, 20] to solve Markovian planning problems
using probabilistic inference. First we informally de-
scribe the intuition behind this reformulation (for de-
tails please refer to [19]) and then we describe in detail
the steps specific to DEC-POMDPs.

A DEC-POMDP can be described using a single DBN
where the reward is emitted at each time step. How-
ever, in our approach, it is described by an infinite
mixture of a special type of DBNs where reward is
emitted only at the end. For example, Fig. 1(a) de-
scribes the DBN for time t = 0. The key intuition
is that for the reward emitted at any time step T ,
we have a separate DBN with the general structure
as in Fig. 1(b). Further, to simulate the discount-
ing of rewards, probability of time variable T is set as
P (T = t) = γt(1− γ). This ensures that

∑∞
t=0 pt = 1.

In addition, the random variable r shown in Fig. 1(a,b)
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Figure 1: a) DEC-POMDP DBN for time step 0. b) for time step T . c) POMDP DBN for time step T

is a binary variable with its conditional distribution
(for any time T ) described using the normalized imme-
diate reward as R̂sab = P (r = 1|sT = s, aT = a, bT =
b) = (Rsab − Rmin)/(Rmax − Rmin). This scaling of
the reward is the key to transforming the optimization
problem from the realm of planning to likelihood max-
imization as stated below. θ denotes the parameters
〈π, λ, ν〉 for each agent’s controller.

Theorem 1. Let the CPT of binary rewards r be such
that R̂sab ∝ Rsab and the discounting time prior be set
as P (T ) = γT (1−γ). Then, maximizing the likelihood
Lθ = P (r = 1; θ) in the mixture of DBNs is equivalent
to optimizing the DEC-POMDP policy. Furthermore,
the joint-policy value relates linearly to the likelihood
as V θ = (Rmax −Rmin)Lθ/(1− γ) +

∑
T γ

TRmin

The proof is omitted as it is very similar to that of
MDPs and POMDPs [19]. Before detailing the EM al-
gorithm, we describe the DBN representation of DEC-
POMDPs–the basis for any inference technique.

The DBN for any time step T is shown in Fig. 1(b).
Every node is a random variable with subscripts in-
dicating time. pi denotes controller nodes for agent 1
and qi for agent 2. The remaining nodes represent the
states, actions, and observations. There are four kinds
of dependencies induced by the DEC-POMDP model
that the DBN must represent:

• State transitions: State transitions as a result
of the joint action of both agents and the previous
state, shown by the DBN’s middle layer.

• Controller node transitions (λ): These transi-
tions depend on the last controller state and the
most recent individual observation received. They
are shown in the top and bottom layers.

• Action probabilities (π): The action taken at
any time step t depends on the current controller
state. The links between controller nodes (pi or qi)
and action nodes (ai or bi) model this.

• Observation probabilities: First, the probabil-
ity of receiving joint observation yizi depends on
the joint action of both agents and the domain

state. This relationship is modeled by the DBN
nodes labeled yizi. Second, the individual obser-
vation each agent receives is a deterministic func-
tion of the joint observation. That is Pyy′z′ =
P (y|y′z′) = 1 if y = y′ else 0. This is modeled
by a link between yizi and the nodes yi and zi.

To highlight the differences from a POMDP, Fig. 1(c)
shows the DBN for a POMDP. The sheer scale of inter-
actions present in a DEC-POMDP DBN become clear
from this comparison, also highlighting the difficulty
of solving DEC-POMDPs even approximately. In a
POMDP, an agent receives the observation which is
affected by the environment state, whereas in a DEC-
POMDP agents only perceive the individual part of
the joint observation yizi. Such differences in the in-
teraction structure make the E and M steps of a DEC-
POMDP EM very different from that of a POMDP,
despite sharing the same high-level principles.

4 EM algorithm for DEC-POMDPs

This section describes the EM algorithm [7] for maxi-
mizing the reward likelihood in the mixture of DBNs
representing DEC-POMDPs. In the corresponding
DBNs, only the binary reward is treated as observed
(r = 1); all other variables are latent. While max-
imizing the likelihood, EM yields the DEC-POMDP
joint-policy parameters θ. EM also possesses the desir-
able anytime characteristic as the likelihood (and the
policy value which is proportional to the likelihood) is
guaranteed to increase per iteration until convergence.
We note that EM is not guaranteed to converge to
the global optima. However, in the experiments we
show that EM almost always achieves similar values
as the state-of-the-art NLP based solver [1] and much
better than DEC-BPI [4]. The main advantage of us-
ing EM lies in its ability to easily generalize to much
richer representations than currently possible for DEC-
POMDPs such as factored or hierarchical controllers,
continuous state and action spaces. Another impor-
tant advantage is the ability to generalize the solver to
larger multi-agent systems with more than 2 agents.



The E step we derive next is generic as any probabilis-
tic inference technique can be used.

4.1 E-step

In the E-step, for the fixed parameter θ, forward mes-
sages α and backward messages β are propagated.
First, we define the following Markovian transitions on
the (p, q, s) state in the DBN of Fig. 1(b). These tran-
sitions are independent of the time t due to the station-
ary joint policy. We also adopt the convention that for
any random variable v, v′ refers to the next time slice
and v̄ refers to the previous time slice. For any group
of variables v, Pt(v,v

′) refers to P (vt = v,vt+1 = v′).

P (p′, q′, s′|p, q, s) =∑
aby′z′

λp′py′λq′qz′Py′z′abs′πapπbqPs′sab (1)

αt is defined as Pt(p, q, s; θ). It might appear that
we need to propagate α messages for each DBN sep-
arately, but as pointed out in [19], only one sweep is
required as the head of the DBN is shared among all
the mixture components. That is, α2 is the same for
all the T-step DBNs with T ≥ 2. We will omit using
θ as long as it is unambiguous.

α0(p, q, s) = νpνqb0(s)

αt(p
′, q′, s′) =

∑
p,q,s

P (p′, q′, s′|p, q, s)αt−1(p, q, s)

Intuitively, α messages compute the probability of vis-
iting a particular (p, q, s) state in the DBN as per the
current policy. The β messages are similar to comput-
ing the value of starting the controllers in nodes 〈p, q〉
at state s using dynamic programming. They are prop-
agated backwards and are defined as Pt(r = 1|p, q, s).
However, this particular definition would require sep-
arate inference for each DBN as for T and T ′ step
DBN, βt will be different due to difference in the
time-to-go (T − t and T ′ − t). To circumvent this
problem, β messages are indexed backward in time as
βτ (p, q, s) = PT−τ (r = 1|p, q, s) using the index τ such
that τ = 0 denotes the time slice t = T . Hence we get:

β0(p, q, s) =
∑
ab

Rsabπapπbq

βτ (p, q, s) =
∑
p′,q′,s′

βτ−1(p′, q′, s′)P (p′, q′, s′|p, q, s)

Based on the α and β messages we also calculate two
more quantities α̂(p, q, s) =

∑
t P (T = t)α(p, q, s) and

β̂(p, q, s) =
∑
t P (T = t)β(p, q, s), which will be used

in the M-step. The cut-off time for message propa-
gation can either be fixed a priori or be more flexible
based on the likelihood accumulation. If α messages

are propagated for t-steps and β-messages for τ steps,
then the likelihood for T = t+ τ is given by

Lθt+τ = P (r=1|T = t+ τ ; θ) =
∑
p,q,s

αt(p, q, s)βτ (p, q, s)

If both α and β messages are propagated for k steps
and Lθ2k �

∑2k−1
T=0 γTLθT , then the message propaga-

tion can be stopped.

4.1.1 Complexity

Calculating the Markov transitions on the (p, q, s)
chain has complexity O(N4S2A2Y 2), where N is the
maximum number of nodes for a controller. The
message propagation has complexity O(TmaxN

4S2).
Techniques to effectively reduce this complexity with-
out sacrificing accuracy will be discussed later.

4.2 M-step

In the DBNs of Fig. 1(a,b) every variable is hidden ex-
cept the reward variable. After each M-step, EM pro-
vides better estimates of these variables, improving the
likelihood Lθ and hence the policy value. For details
of EM, we refer to [7]. The parameters to estimate are
〈π, λ, ν〉 for each agent. For a particular DBN for time
T , let L̃ = (P,Q,A,B, S) denote the latent variables,
where each variable denotes a sequence of length T .
That is, P = p0:T . EM maximizes the following ex-
pected complete log-likelihood for the DEC-POMDP
DBN mixture. θ denotes the previous parameters and
θ? denotes new parameters.

Q(θ, θ?) =
∑
T

∑
L̃

P (r=1, L̃, T ; θ) logP (r=1, L̃, T ; θ?)

In the rest of the section, all the derivations refer to
the general DBN structure of the DEC-POMDP as in
Fig. 1(b). The joint probability of all the variables is:

P (r = 1, L̃, T ; θ) = P (T )
[
Rsab

]
t=T

[ T∏
t=1

πapπbqPss̄āb̄

PyyzPzyzPyzsāb̄λpp̄yλqq̄z
][
πapπbqνpνqb0(s)

]
t=0

(2)

where brackets indicate the time slices, i.e.,[
Rsab

]
t=T

= R(sT , aT , bT ). Taking the log, we get:

logP (r = 1, L̃, T ) = . . .+

T∑
t=0

log πatpt +

T∑
t=0

log πbtqt

+

T∑
t=1

log λptpt−1yt +

T∑
t=1

log λqtqt−1zt

+ log νp0 + log νq0 (3)

where the missing terms represents the quantities inde-
pendent of θ. As all the policy parameters 〈π, λ, ν〉 get
separated out for each agent in the log above, we first
derive the action updates for an agent by substituting
Eq. 3 in Q(θ, θ?)



4.2.1 Action updates

The update for action parameters π?ap for agent 1 can
be derived by simplifying Q(θ, θ?) as follows:

Q(θ, θ?) =

∞∑
T=0

P (T )

T∑
t=0

∑
a,p

[
P (r=1, a, p|T ; θ)

]
t
log π?ap

By breaking the above summation between t = T and
t = 0 to T − 1, we get

∞∑
T=0

P (T )
∑
apqbs

RsabπapπbqαT (p, q, s) log π?ap+

∞∑
T=0

P (T )

T−1∑
t=0

∑
app′q′s′

βT−t−1(p′, q′, s′)Pt(a, p, p
′, q′, s′) log π?ap

In the above equation, we marginalized the last time
slice over the variables (q, b, s). For the intermediate
time slice t, we condition upon the variables (p′, q′, s′)
in the next time slice t+ 1. We now use the definition
of α̂ and move the summation over time T inside for
the last time slice and further marginalize over the
remaining variables (q, s) in the intermediate slice t:

=
∑

a,p,q,b,s

Rsabπapπbqα̂(p, q, s) log π?ap +

∞∑
T=0

P (T )

T−1∑
t=0

∑
ap

log π?ap
∑

p′q′s′sq

βT−t−1(p′, q′, s′)πap

P (p′, q′, s′|a, p, q, s)αt(p, q, s)

Upon further marginalizing over the joint observations
y′z′ and simplifying we get:

=
∑
ap

πap log π?ap
∑
qs

[∑
b

Rsabπbqα̂(p, q, s) +

∑
p′q′s′y′z′

∞∑
T=0

P (T )

T−1∑
t=0

βT−t−1(p′, q′, s′)P (s′|a, q, s)

λp′py′λq′qz′P (y′z′|a, q, s′)αt(p, q, s)
]

We resolve the above time summation, as in [19], based

on the fact that
∑∞
T=0

∑T−1
t=0 f(T − t − 1)g(t) can be

rewritten as
∑∞
t=0

∑∞
T=t+1 f(T − t − 1)g(t) and then

setting τ = T − t− 1 to get
∑∞
t=0 g(t)

∑∞
τ=0 f(τ).

Finally we get:

=
∑
ap

πap log π?ap
∑
qs

α̂(p, q, s)

[∑
b

Rsabπbq +
γ

1− γ∑
p′q′s′y′z′

β̂(p′, q′, s′)λp′py′λq′qz′P (s′|a, q, s)P (y′z′|a, q, s′)
]

The product P (s′|a, q, s)P (y′z′|a, q, s′) can be further
simplified by marginalizing out over actions b of agent
2 as follows:

=
∑
ap

πap log π?ap
∑
qs

α̂(p, q, s)

[∑
b

Rsabπbq +
γ

1− γ∑
p′q′s′y′z′

β̂(p′, q′, s′)λp′py′λq′qz′
∑
b

Py′z′s′abπbqPs′sab

]

The above expression is maximized by setting the pa-
rameter π?ap to be:

π?ap =
πap
Cp

∑
qs

α̂(p, q, s)

[∑
b

Rsabπbq +
γ

1− γ∑
p′q′s′y′z′

β̂(p′, q′, s′)λp′py′λq′qz′
∑
b

Py′z′s′abπbqPs′sab

]
(4)

where Cp is a normalization constant. The action pa-
rameters π?bq of the other agent can be found similarly
by the analogue of the previous equation.

4.2.2 Controller node transition updates

The update for controller node transition parameters
λpp̄y for agent 1 can be found by maximizing Q(θ, θ?)
w.r.t λ?pp̄y as follows.

Q(θ, θ?)=

∞∑
T=0

P (T )

T∑
t=1

∑
pp̄y

[
P (r=1, p, p̄, y|T ; θ)

]
t
log λ?pp̄y

By marginalizing over the variables (q, s) for the cur-
rent time slice t, we get

=

∞∑
T=0

P (T )

T∑
t=1

∑
pp̄ysq

log λ?pp̄yβT−t(p, q, s)Pt(p, p̄, y, s, q|T ; θ)

By further marginalizing over the variables (s̄, q̄) for
the previous time slice of t and over the observations
z of the other agent, we get

=
∑
pp̄y

λpp̄y log λ?pp̄y

∞∑
T=0

P (T )

T∑
t=1

∑
sqs̄q̄z

βT−t(p, q, s)λqq̄z

P (yz|p̄, q̄, s)P (s|p̄, q̄, s̄)αt−1(p̄, q̄, s̄)

The above equation can be further simplified by
marginalizing the product P (yz|p̄, q̄, s)P (s|p̄, q̄, s̄) over
actions a and b of both the agents as follows:

=
∑
pp̄y

λpp̄y log λ?pp̄y

∞∑
T=0

P (T )

T∑
t=1

∑
sqs̄q̄z

βT−t(p, q, s)λqq̄z

αt−1(p̄, q̄, s̄)
∑
ab

PyzsabPss̄abπap̄πbq̄



Upon resolving the time summation as before, we get
the final M-step estimate:

λ?pp̄y =
λpp̄y
Cp̄y

∑
sqs̄q̄z

α̂(p̄, q̄, s̄)β̂(p, q, s)λqq̄z∑
ab

PyzsabPss̄abπap̄πbq̄ (5)

The parameters λ?qq̄z for the other agent can be found
in an analogous way.

4.2.3 Initial node distribution

The initial node distribution ν for controller nodes of
agent 1 and 2 can be updated as follows. We do not
show the complete derivation as it is similar to that of
the other parameters.

ν?p =
νp
Cp

∑
qs

β̂(p, q, s)νqPsb0(s) (6)

4.2.4 Complexity and implementation issues

The complexity of updating all action parameters is
O(N4S2AY 2). Updating node transitions requires
O(N4S2Y 2 + N2S2Y 2A2). This is relatively high
when compared to the POMDP updates requiring
O(N2S2AY ) mainly due to the scale of the interac-
tions present in DEC-POMDPs.

In our experimental settings, we observed that hav-
ing a relatively small sized controller (N ≤ 5) suf-
fices to yield good quality solutions. The main con-
tributor to the complexity is the factor S2 as we
experimented with large domains having nearly 250
states. The good news is that the structure of the
E and M-step equations provides a way to effectively
reduce this complexity by significant factor without
sacrificing accuracy. For a given state s, joint action
〈a, b〉 and joint observation 〈y, z〉, the possible next
states can be calculated as follows: succ(s, a, b, y, z) =
{s′|P (s′|s, a, b)P (y, z|s′, a, b) > 0}. For most of the
problems, the size of this set is typically a constant
k < 10. Such simple reachability analysis and other
techniques could speed up the EM algorithm by more
than an order of magnitude for large problems. The
effective complexity reduces to O(N4SAY 2k) for the
action updates and O(N4SY 2k+N2SY 2A2k) for node
transitions. Other enhancements of the EM implemen-
tation are discussed in Section 6.

5 Experiments

We experimented with several standard 2-agent DEC-
POMDP benchmarks with discount factor 0.9. Com-
plete details of these problems can be found in [1, 4].

Size DEC-BPI NLP EM DEC-BPI EM

1 4.687 9.1 9.05 < 1s < 1s
2 4.068 9.1 9.05 < 1s < 1s
3 8.637 9.1 9.05 2s 1.7s
4 7.857 9.1 9.05 5s 4.62s

Table 1: Broadcast channel: Policy value, execution time

We compare our approach with the decentralized
bounded policy iteration (DEC-BPI) algorithm [4] and
a non-convex optimization solver (NLP) [1]. The
DEC-BPI algorithm iteratively improves the param-
eters of a node using a linear program while keeping
the other nodes’ parameters fixed. The NLP approach
recasts the policy optimization problem as a non-linear
program and uses an off-the-shelf solver, Snopt [9], to
obtain a solution. We implemented the EM algorithm
in JAVA. All our experiments were on a Mac with
4GB RAM and 2.4GHz CPU. Each data point is an
average of 10 runs with random initial controller pa-
rameters. In terms of solution quality, EM is always
better than DEC-BPI and it achieves similar or higher
solution quality than NLP. We note that our current
implementation is mainly a proof-of-concept; we have
not yet implemented several enhancements (discussed
later) that could improve the performance of the EM
approach. In contrast, the NLP solver [9] is an op-
timized package and therefore for larger problems is
currently faster than the EM approach. The fact that
a crude implementation of the EM approach works so
well is very encouraging.

Table 1 shows results for the broadcast channel prob-
lem, which has 4 states, 2 actions per agent and 5 ob-
servations. This is a networking problem where agents
must decide whether or not to send a message on a
shared channel and must avoid collision to get a re-
ward. We tested with different controller sizes. On
this problem, all the algorithms compare reasonably
well, with EM being better than DEC-BPI and very
close in value to NLP. The time for NLP is also ≈ 1s.

Fig. 2(a) compares the solution quality of the EM ap-
proach against DEC-BPI and NLP for varying con-
troller sizes on the recycling robots problem. In this
problem, two robots have the task of picking up cans
in an office building. They can search for a small can, a
big can or recharge the battery. The large item is only
retrievable by the joint action of the two robots. Their
goal is to coordinate their actions to maximize the joint
reward. EM(2) and NLP(2) show the results with con-
troller size 2 for both agents in Fig. 2(a). For this
problem, EM works much better than both DEC-BPI
and the NLP approach. EM achieves a value of ≈ 62
for all controller sizes, providing nearly 12% improve-
ment over DEC-BPI (= 55) and 20% improvement
over NLP (= 51). Fig. 2(b) shows the time compar-
isons for EM with different controller sizes. Both the
NLP and DEC-BPI take nearly 1s to converge. EM
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Figure 2: Solution quality and runtime for recycling robots (a) & (b) and meeting on a grid (c) & (d)

with controller size 2 has comparable performance, but
as expected, EM with 4-node controllers takes longer
as the complexity of EM is proportional to O(N4).

Fig. 2(c) compares the solution quality of EM on the
meeting on a grid problem. In this problem, agents
start diagonally across in a 2 × 2 grid and their goal
is to take actions such that they meet each other (i.e.,
share the same square) as much as possible. As the fig-
ure shows, EM provides much better solution quality
than the NLP approach. EM achieves a value of ≈ 7,
which nearly doubles the solution quality achieved by
NLP (= 3.3). DEC-BPI results are not plotted as it
performs much worse and achieves a solution quality of
0, essentially unable to improve the policy at all even
for large controllers. Both DEC-BPI and NLP take
around 1s to converge. Fig. 2(d) shows the time com-
parison for EM versions. EM with 2-node controllers
is very fast and takes < 1s to converge (50 iterations).
Also note that in both the cases, EM could run with
much larger controller sizes (≈10), but the increase in
size did not provide tangible improvement in solution
quality.

Fig. 3 shows the results for the multi-agent tiger prob-
lem, involving two doors with a tiger behind one door
and a treasure behind the other. Agents should co-
ordinate to open the door leading to the treasure [1].
Fig. 3(a) shows the quality comparisons. EM does
not perform well in this case; even after increasing the
controller size, it achieves a value of −19. NLP works
better with large controller sizes. However, this exper-
iment presents an interesting insight into the workings
of EM as related to the scaling of the rewards. Recall-
ing the relation between the likelihood and the policy
value from Theorem 1, the equation for this problem
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Figure 3: Solution quality (a) and likelihood (b) for “tiger”

is: V θ = 1210Lθ − 1004.5. For EM to achieve the
same solution as the best NLP setting (= −3), the
likelihood should be .827. Fig. 3(b) shows that the
likelihood EM converges to is .813. Therefore, from
EM’s perspective, it is finding a really good solution.
Thus, the scaling of rewards has a significant impact
(in this case, adverse) on the policy value. This is a
potential drawback of the EM approach, which applies
to other Markovian planning problems too when using
the technique of [19]. Incidently, DEC-BPI performs
much worse on this problem and gets a quality of −77.

Fig. 4 shows the results for the two largest DEC-
POMDP domains–box pushing and Mars rovers. In
the box pushing domain, agents need to coordinate
and push boxes into a goal area. In the Mars rovers
domain, agents need to coordinate their actions to per-
form experiments at multiple sites. Fig. 4(a) shows
that EM performs much better than DEC-BPI for ev-
ery controller size. For controller size 2, EM achieves
better quality than NLP with comparable runtime
(Fig. 4(b), 500 iterations). However, for the larger con-
troller size (= 3), it achieves slightly lower quality than
NLP. For the largest Mars rovers domain (Fig. 4(c)),
EM achieves better solution quality (= 9.9) than NLP
(= 8.1). However, EM also takes many more iterations
to converge than for previous problems and hence, re-
quires more time than NLP. EM is also much better
than DEC-BPI, which achieves a quality of −1.18 and
takes even longer to converge (Fig. 4(d)).

6 Conclusion and future work

We present a new approach to solve DEC-POMDPs
using inference in a mixture of DBNs. Even a simple
implementation of the approach provides good results.
Extensive experiments show that EM is always better
than DEC-BPI and compares favorably with the state-
of-the-art NLP solver. The experiments also highlight
two potential drawbacks of the EM approach: the ad-
verse effect of reward scaling on solution quality and
slow convergence rate for large problems. We are cur-
rently addressing the runtime issue by parallelizing the
algorithm. For example, α and β can be propagated
in parallel. Even updating each node’s parameters can
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Figure 4: Solution quality and runtime for box pushing (a) & (b) and Mars rovers (c) & (d)

be done in parallel for each iteration. Furthermore, the
structure of EM’s update equations is very amenable
to Google’s Map-Reduce paradigm [6], allowing each
parameter to be computed by a cluster of machines in
parallel using Map-Reduce. Such scalable techniques
will certainly make our approach many times faster
than the current serial implementation. We are also
investigating how a different scaling of rewards affects
the convergence properties of EM.

The main benefit of the EM approach is that it opens
up the possibility of using powerful probabilistic infer-
ence techniques to solve decentralized planning prob-
lems. Using a graphical DBN structure, EM can easily
generalize to richer representations such as factored or
hierarchical controllers, or continuous state and action
spaces. Unlike the existing techniques, EM can easily
extend to larger multi-agent systems with more than 2
agents. The ND-POMDP model [13] is a class of DEC-
POMDPs specifically designed to support large multi-
agent systems. It makes some restrictive yet realis-
tic assumptions such as locality of interaction among
agents, and transition and observation independence.
EM can naturally exploit such independence structure
in the DBN and scale to larger multi-agent systems,
something that current infinite-horizon algorithms fail
to achieve. Hence the approach we introduce offers
great promise to overcome the shortcomings of the pre-
vailing approaches to multi-agent planning.
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