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Abstract
Multiagent planning has seen much progress with
the development of formal models such as Dec-
POMDPs. However, the complexity of these
models—NEXP-Complete even for two agents—
has limited scalability. We identify certain mild
conditions that are sufficient to make multiagent
planning amenable to a scalable approximation
w.r.t. the number of agents. This is achieved by
constructing a graphical model in which likeli-
hood maximization is equivalent to plan optimiza-
tion. Using the Expectation-Maximization frame-
work for likelihood maximization, we show that the
necessary inference can be decomposed into pro-
cesses that often involve a small subset of agents,
thereby facilitating scalability. We derive a global
update rule that combines these local inferences to
monotonically increase the overall solution quality.
Experiments on a large multiagent planning bench-
mark confirm the benefits of the new approach in
terms of runtime and scalability.

1 Introduction
Sequential multiagent planning under uncertainty enables
multiple cooperative agents, each with its own actions and ob-
servations, to operate autonomously in a shared environment
and achieve common objectives. A number of formal frame-
works have been developed to tackle such planning tasks,
including multiagent MDPs [Boutilier, 1999], decentralized
MDPs and POMDPs (Dec-POMDPs) [Bernstein et al., 2002].
Many problems such as multi-robot coordination [Becker et
al., 2004; Oliehoek et al., 2008], broadcast channel proto-
cols [Bernstein et al., 2002] and target tracking by a team of
sensors [Nair et al., 2005] can be modeled as a Dec-POMDP.
However, high complexity—NEXP-Complete even for two
agents—has limited scalability [Bernstein et al., 2002].

Many recent attempts to increase the scalability of planners
w.r.t. the number of agents impose restrictions on the allowed
interactions among the agents such as transition indepen-
dence [Becker et al., 2004; Nair et al., 2005], weak-coupling
among agents that is limited to certain states [Varakantham
et al., 2009], and directional transition dependence [Witwicki
and Durfee, 2010]. Instead of defining yet another restricted

model, we ask the following question: Is there a general
characterization of the interaction among agents that when
present in any multiagent planning model leads to a relatively
scalable approximate algorithm? In this work, we character-
ize a class of such agent interactions and derive a scalable
algorithm to solve models that belong to this class. Thus, our
algorithm offers a general recipe in that certain steps are im-
plemented in a way specific to the model at hand. In fact,
these steps are easy to implement for the problems we target.

Our approach is based on reformulating the planning prob-
lem as likelihood maximization in a mixture of dynamic
Bayes nets. This is inspired by recent advances in plan-
ning by probabilistic inference [Toussaint and Storkey, 2006;
Toussaint et al., 2008]. Kumar and Zilberstein [2010] ap-
plied this planning-by-inference approach to two-agent plan-
ning problems. While our approach is also based on the
Expectation-Maximization (EM) framework [Dempster et
al., 1977] to maximize likelihood, the significant contribution
is a novel characterization of general constraints that enables
our method to scale far beyond two agents. Another key result
is that in every model that satisfy these constraints, the E-step
decomposes into a set of feasible inference queries in small
components of the model. This facilitates the development
of a scalable, distributed message-passing implementation of
EM, ideal for large multiagent planning problems.

We show that the following common multiagent planning
models fulfill our constraints: transition-independent Dec-
MDPs [Becker et al., 2004], Network-Distributed POMDPs
(ND-POMDPs) [Nair et al., 2005] and Transition-Decoupled
POMDPs [Witwicki and Durfee, 2010]. We experiment on a
realistic target tracking problem in sensor networks [Lesser et
al., 2003] and show that EM easily scales up w.r.t. the number
of agents. It also produces better results than a state-of-the-art
industrial nonlinear programming solver [Gill et al., 2002].

2 Multiagent planning model
A multiagent planning problem with N cooperative agents
can be modeled as a Dec-POMDP [Bernstein et al., 2002].
We denote the action of the ith agent at time t by ai

t. The
environment is modeled by stationary state transition prob-
abilities P (st+1 | st, a

1:N
t ) with an initial state distribution

P (s0), where st denotes the (possibly factored) joint state and
a1:N

t = (a1
t , .., a

N
t ) is the joint action of all agents. At each

time step, agents receive a joint reward R(st, a
1:N
t ). The ob-



servation of agent i is denoted by yi
t, and P (y1:N

t |st, a
1:N
t−1) is

the joint observation probability. In this model, each agent re-
ceives only its local observation during execution time, which
is a key source of complexity [Bernstein et al., 2002].

We represent each agent’s policy as a bounded, finite state
controller (FSC). This approach has been used successfully
for both POMDPs [Poupart and Boutilier, 2003] and Dec-
POMDPs [Amato et al., 2010]. In this case, each agent has
a finite internal memory state, qi

t, which summarizes the cru-
cial information obtained from past observations to support
efficient action selection. For POMDPs, FSCs are beneficial
due to their compactness compared to the full belief state. In
Dec-POMDPs, it is the only approach to tackle effectively
both finite and infinite horizon problems. There are other ap-
proaches based on nested agent beliefs such as the I-POMDP
framework [Gmytrasiewicz and Doshi, 2005], however we do
not address them in this work.

Each agent chooses actions depending on its internal state,
q: P (a|q;π) = π(a, q). The internal state is updated
with each new observation, by the node transition function:
P (q′|q, y;λ) = λ(q′, q, y). Finally, ν is the initial node dis-
tribution P (q0; ν) for each agent. In sum, the FSC of the ith
agent is parameterized by θi =(πi, λi, νi). The goal is to find
parameters θ1:N for all the agents such that the value (ex-
pected discounted future return) of the joint-policy, V (θ1:N ),
is maximized.

Toussaint and Storkey [2006] introduced the idea of plan-
ning in Markov decision problems by probabilistic inference.
This approach recasts the planning problem as likelihood
maximization in a mixture of dynamic Bayes nets (DBNs).
In this mixture, there is one DBN modeling the reward emit-
ted at each time T . An auxiliary binary reward random
variable r̂ is introduced in each DBN such that its condi-
tional probability is proportional to the reward of the origi-
nal problem, P (r̂ = 1 | sT , aT ) ∝ R(sT , aT ). The time T
itself becomes a random variable. By choosing the geomet-
ric prior P (T ) = (1 − γ) γT , the likelihood of observing
r̂ = 1 in this mixture is proportional to the value function:
P (r̂=1; θ) =

∑
T P (T )〈P (r̂=1 | sT , aT )〉sT ,aT | θ ∝ V (θ),

where 〈· · ·〉sT ,aT | θ is the expectation w.r.t. the length-T DBN
conditioned on the policy parameters θ. Therefore, the plan-
ning problem reduces to maximizing the likelihood of ob-
serving r̂ = 1 in this mixture. A corresponding Expectation
Maximization approach has been also applied successfully to
POMDPs [Toussaint et al., 2008] and 2-agent Dec-POMDPs
[Kumar and Zilberstein, 2010]. Our approach extends this
framework, allowing us to derive an efficient algorithm for
larger multiagent planning problems.

3 New approach to multiagent planning
Let us assume that the state random variable st is factored
s.t. st=(s1

t , ..., s
M
t ), which is true in several multiagent plan-

ning models such as ND-POMDPs [Nair et al., 2005] and
TD-POMDPs [Witwicki and Durfee, 2010]. Without mak-
ing further (conditional independence) assumptions on the
problem structure, a general Dec-POMDP requires exact in-
ference in the full corresponding (finite-time) DBNs, which
would be exponential in the number of state variables and
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Figure 1: Plate notation for (a) Dec-MDPs; (b) ND-POMDPs

agents. Our approach relies on a general, simplifying prop-
erty of agent interaction, which we later show to be consistent
with many of the existing multiagent planning models.

Definition 1. A value factor f defines a subset Af⊆{1, .., N}
of agents and a subset Sf ⊆{1, ..,M} of state variables.
Definition 2. A multiagent planning problem satisfies value
factorization if the joint-policy value function can be decom-
posed into a sum over value factors:

V (θ1:N , s) =
X
f∈F

Vf (θf , sf ) , (1)

where F is a set of value factors, θf ≡ θAf is the collection
of parameters of the agents of factor f , and sf ≡ sSf is the
collection of state variables of this factor.

Even when the value factorization property holds, planning
in such models is still highly coupled because factors may
overlap. That is, an agent can appear in multiple factors as
can state variables. Therefore, a value factor cannot be op-
timized independently. But, as we show later, it leads to an
efficient Expectation Maximization algorithm. Such additive
value functions have also been used to solve large factored
MDPs [Koller and Parr, 1999]. We require that each value
factor Vf can be evaluated using the DBN mixture based ap-
proach of Sec. 2. However, this is not a restriction, as the
DBN-based approach can model arbitrary Markovian plan-
ning problems.

Theorem 1. The worst case complexity of optimally solving
a multiagent planning problem satisfying the value factoriza-
tion property is NEXP-Hard.

The proof of the above theorem is straightforward—any
two agent Dec-POMDP is NEXP-Complete and also satis-
fies the value factorization property as there is only a single
factor involving two agents. In fact, the work of Kumar and
Zilberstein [2010] precisely addresses this case using the EM
framework. Next we investigate when this property holds and
when it is computationally advantageous, and establish the
following result.

Theorem 2. The value factorization property holds in transi-
tion independent Dec-MDPs [Becker et al., 2004], Network-
Distributed POMDPs [Nair et al., 2005] and Transition-
Decoupled POMDPs [Witwicki and Durfee, 2010]. Each
value factor in these models also allows for efficient prob-
abilistic inference in the EM framework.

The joint value is shown to be factorized based on the
immediate-reward factorization in Dec-MDPs [Becker et al.,



2004] and ND-POMDPs [Nair et al., 2005]. Fig. 1 shows the
plate notation for our value factor representation for both of
these models. The outer plate shows a factor f and the in-
ner plate depicts the interaction among agent parameters. We
provide the EM algorithm for these two models in Sec. 3.2
and show that the inferences required by the E-step decom-
pose along the immediate-reward factorization, which in-
volves fewer number of agents and is thus scalable.

Our approach can also model Transition-Decoupled
POMDPs (TD-POMDPs) [Witwicki and Durfee, 2010]. In
this case, agents have local parameters (factored local state
and rewards). However, certain features of the local state
can depend on other agents’ actions. This dependency among
agents is described using an influence directed acyclic graph
(DAG) where each node is an agent. A parent-child rela-
tionship in this DAG implies that the child’s local states are
controllable by the parent, but not vice-versa. An important
characteristic is that given its parents’ policies, an agent can
compute its value function. In our representation, this trans-
lates into a value factor for each agent i, which consists of
i and all its ancestors in the DAG. The joint-value decom-
position along value factors is straightforward. It might ap-
pear that the DBN corresponding to the value factor of a leaf
node will become very large leading to prohibitive inference.
However, this is not so, as a summary of an agent’s influence
on its immediate children can be compactly represented as
an influence DBN [Witwicki and Durfee, 2010]. Intuitively,
the inference queries EM requires can be performed by up-
dating such influence DBNs for each edge in this DAG in
a top-down fashion, avoiding exponential complexity in the
number of agents.

We note that the value factorization property of Eq. (1) is
trivially satisfied when all the agent and state variables are
included in a single factor. Obviously, the computational ad-
vantages of our approach are limited to settings where each
factor is sparse, involving much fewer agents than the en-
tire team. This allows for efficient inference in the respec-
tive DBNs (inference can still be efficient for special cases
such as TD-POMDPs that have larger factors). In the general
case, the additive value function may include components de-
pending on all states and agent parameters. This is analo-
gous to the factored HMMs [Ghahramani and Jordan, 1995]
where, conditioned on the observations, all Markov chains
become coupled and the exact E-step of EM becomes infea-
sible. While this is beyond the scope of this paper, a promis-
ing approach for the general case is using variational methods
to approximate the posterior P (s1:M

1:T | r̂=1) (minimizing the
KL-divergence between the factored representation and the
true posterior) [Ghahramani and Jordan, 1995]. Given such
an approximate posterior, the M-step updates we derive next
can be used to realize an approximate EM scheme.

Theorem 3. In models satisfying the value factorization
property, the inferences in the Expectation-Maximization
framework can be performed independently for each value
factor f without imposing any restrictions on the interaction
among the agents associated with each value factor.

A constructive proof of this result is provided below. This re-
sult highlights the generality and scalability of our approach,

x0 y0 y0

x1r̂ y1

x0

r̂
F = 2F = 1 F = |F |

Figure 2: (a) Value factor mixture; (b) Zoomed-in view of
each mixture component (x, y are generic placeholders for
random variables).

which —unlike previous works—does not require any further
independence assumptions.

3.1 DBN mixture for value factors
Figure 2 shows a new problem independent DBN mixture,
also called value factor mixture, which models Eq. 1. It con-
sists of two mixture variable: F and T . F ranges from 1
to |F |, the total number of value factors. Intuitively, F = i
denotes the time dependent DBN mixture for value factor i.
A zoomed-in view of the this DBN mixture is provided in
Fig. 2(b). The mixture variable F has a fixed, uniform distri-
bution (= 1/|F |). The distribution of the variable T is set as
in [Toussaint and Storkey, 2006].

This model relies on the fact that in our representation,
each value factor can be represented and evaluated using the
DBN mixture of Fig. 2(b) and the reward variable r̂ as in [Ku-
mar and Zilberstein, 2010]. This DBN mixture for a particu-
lar value factor f will contain all the variables for agents in-
volved in factor f : actions, controller nodes and observations,
and the state variables Sf . The valuation Vf (Πf ) can be cal-
culated by finding the likelihood L(r̂; Πf ) = P (r̂ = 1;Πf )
of observing r̂ = 1.

Vf (Πf ) = kL(r̂; Πf ) + kf (2)

where k and kf are constants, with k being the same for all
value factors. This can be easily ensured by making all the
original rewards positive by adding a suitable constant. Next
we state one of our main results. We will also use a notational
convenience that

∑|F |
F=1 is equivalent to

∑
f∈F .

Theorem 4. Maximizing the likelihood L(r̂;Π) of observing
r̂ = 1 in the value factor mixture (Fig.2(a)) is equivalent to
optimizing the global policy Π.

Proof. The overall likelihood is given by:

L(r̂;Π) = P (r̂ = 1;Π) =
X
f∈F

1

|F |L(r̂; Πf )

The theorem follows by substituting the value of each
L(r̂; Πf ) in the previous equation from Eq. 2 and the joint-
policy value decomposition assumption of Eq. 1.

3.2 The Expectation-Maximization algorithm
We now derive the EM algorithm for maximizing the like-
lihood L(r̂;Π) in the value factor mixture. Only r̂ = 1 is
observed data, the rest are latent variables. We first handle
the infinite horizon case, assuming a stationary policy. Later,



we address finite-horizon problems. Note that our derivations
differ markedly from [Toussaint and Storkey, 2006] or [Ku-
mar and Zilberstein, 2010] as they focus on a single-agent
problem or a 2-agent Dec-POMDP. Our focus is on scalabil-
ity w.r.t. the number of agents and generality.

An assignment to the mixture variables T and F = f de-
notes a T-step DBN for the value factor f . For example, as-
sume that the DBN mixture in Fig. 2(b) is for value factor f .
Then F = f and T = 1 denote the 1-step DBN (the second
DBN) in Fig. 2(b). Let zt denote all the hidden variables for
a single time slice t in this DBN. Let Zf = z0...T denote a
complete assignment to all the variables from slice 0 to T .
We assume for simplicity that each value factor f involves k
agents. The full joint for the mixture is:

P (r̂, Zf , T,F = f) = P (T )P (F = f)

kY
i=1

TY
t=0

ˆ
πfi(a, q)

˜
t

kY
i=1

TY
t=1

ˆ
λfi(q, q̄, y)

˜
t

kY
i=1

[νfi(q)]0P (Zf\(Af , Qf )|T,F = f) (3)

where the subscript fi denotes the respective parameters for
agent i involved in factor f . The square brackets denote de-
pendence upon time: [πfi(a, q)]t = πfi(at = a, qt = q).
We also use [P (v, v̄)]t to denote P (vt = v, vt−1 = v̄).
Zf\(Af , Qf ) denotes all the variables in this DBN except
the action and controller nodes of all the agents. The struc-
ture of this equation is model independent as by conditional
independence of policy parameters (π(a, q) = P (a|q)), the
first part of the equation (the product terms) can always be
written this way. Since EM maximizes the log-likelihood, we
take the log of the above to get:

log P (r̂, Zf , T,F = f) =

kX
i=1

TX
t=0

ˆ
log πfi(a, q)

˜
t
+

kX
i=1

TX
t=1

ˆ
log λfi(q, q̄, y)

˜
t
+

kX
i=1

ˆ
log νfi(q)

˜
0

+ 〈other terms〉 (4)

EM maximizes the following expected log-likelihood:
Q(Π, Π?) =

X
f∈F

X
T

X
Hf

P (r̂ = 1, Hf , T,F = f ; Πf )

log P (r̂ = 1, Hf , T,F = f ; Π?
f ) (5)

where Π denotes the previous iteration’s joint-policy and Π?

is the current iteration’s policy to be determined by maxi-
mization. The structure of the log term (Eq. 4) is particu-
larly advantageous as it allows us to perform maximization
for each parameter of each agent independently. This does
not imply complete problem decoupling as all the parame-
ters still depend on the previous iteration’s parameters for all
other agents. We first derive the update for the action param-
eter of an agent j. P (F) can be ignored as it is a constant.
Q(Π,Π?) for action updates is given by:

=
X
f∈F

X
T

P (T )
X
Zf

P (r̂ = 1, Hf |T, f ; Πf )

TX
t=0

ˆ
log π?

j (a, q)
˜
t

To maximize this expression, we only need to consider the
set of factors f that include agent j, denoted F (j). And be-
cause the policy is stationary, Q(Π,Π?) can be simplified:

=
X

f∈F (j),T

P (T )

TX
t=0

X
(a,q)j

P (r̂=1, (at, qt)=(a, q)j |T,f ;Πf ) log π?
j (a, q)

Ag1

f12 f23 f34

Ag2 Ag3 Ag4Ag1

f12 f23 f34

Ag2 Ag3 Ag4

µ θ!

Figure 3: Message passing on the value factor graph: (a)
shows the message direction for E-step; (b) shows the M-step.

Let µj(a, q; Πf ) be defined for each agent j and each factor
f ∈ F (j) as follows:

µj(a, q; Πf )=
X

T

P (T )

TX
t=0

P (r̂=1, (at, qt)=(a, q)j |T,f ; Πf ) (6)

Then, the expression for Q(Π,Π?) can be further simplified:
Q(Π, Π?) =

X
(a,q)j

log π?
j (a, q)

X
f∈F(j)

µj(a, q; Πf )

This expression can be easily maximized by using the La-
grange multiplier for the constraint

∑
a πj(a, q) = 1. The

final update for agent j’s action parameters is:

π?
j (a, q) =

1

Cq

X
f∈F(j)

µj(a, q; Πf ) (7)

Cq is a normalization constant. The update for λj(p, p̄, y) can
be found analogously by defining a function µj(p, p̄, y; Πf )
along the lines of Eq. 6. The parameter νj can be updated
similarly. Therefore the E-step in the EM algorithm involves
computing the function µj for each agent j and each factor
f ∈ F (j). Eq. 7 specifies the M-step.

Finite-horizon planning
EM can be easily adapted to the finite-horizon case with plan-
ning horizon H and no discounting (hence P (T ) = 1/H is
uniform). Each agent has a non-stationary policy represented
as an acyclic FSM. That is, each controller variable qt repre-
sents possible controller states at time t. The only difference
lies in the definition of the µ functions:

µj(a, qt; Πf ) =

HX
T=t

P (r̂= 1, (at, qt) = (a, qt)j |T, f ; Πf ) (8)

Notice that computing the µ functions is simpler than in the
infinite-horizon case (Eq. 6). The above inference requires
separate computation in each DBN of length T = t until T =
H . The global update rule (Eq. 7) remains the same.
Scalability and message-passing implementation The de-
scription of the µ functions highlights the high scalability of
EM. Even though the planning problem is highly coupled
with each agent, state variables allowed to participate in mul-
tiple value factors (see Eq. 1), yet updating policy parameters
requires separate local inference in each factor to compute
the µ function. The global update rule (Eq. 7) combines such
local inferences to provide a monotonic increase in overall so-
lution quality. Each local inference is model dependent and
can be computed using standard probabilistic techniques. As
our problem setting includes sparse factors, such local infer-
ence will be computationally much simpler than performing
it on the complete planning model.



Further, the E and M-steps can be implemented using a
parallel, distributed message-passing on a bipartite value-
factor graph G = (U, V,E). The set U contains a node uj

for each agent j. The set V contains a node vf for each factor
f ∈F . An edge e = (uj , vf ) is created if agent j is involved
in factor f . Fig. 3 shows such a graph with three value factors
in the black squares (the set V ) and 4 agents (the set U ).

During the E-step, each factor node vf computes and sends
the message µf→j = µj(•; Πf ) to each node uj that is con-
nected to vf . Fig. 3(a) shows this step. An agent node uj

upon receiving all the µ messages from each factor node con-
nected to it, updates its parameters as in Eq. 7 and sends the
updated policy parameters θ? back to each factor node it is
connected to (see Fig. 3(b)). This procedure repeats until con-
vergence. Another significant advantage is that all messages
can be computed in parallel by each factor node. Our exper-
iments, using an 8-core CPU resulted in near linear speedup
over a sequential version. These characteristics of the EM
algorithm significantly enhance its scalability for large, but
sparse planning problems.

Nature of local optima Variants of the Dec-POMDP model
are often solved by fixing the policies of a group of agents
and then finding the best response policy of the agent that
interacts with the group [Nair et al., 2003; Witwicki and Dur-
fee, 2010]. EM offers significant advantages over such strat-
egy. While both find local optima, EM is more stringent
and satisfies the Karush-Kuhn-Tucker conditions [Bertsekas,
1999], which is the norm in nonlinear optimization. The best-
response strategy provides no such guarantees. Furthermore,
in Dec-POMDPs computing the best response is exponential
in the plan horizon [Nair et al., 2003]. EM does not suffer
this drawback as it directly performs inferences on the DBN.

Dec-MDP, ND-POMDP updates We derived EM up-
dates for infinite-horizon transition-independent Dec-MDPs
[Becker et al., 2004] and ND-POMDPs [Nair et al., 2005].
Note that even 2-agent Dec-MDPs are NP-Complete. To the
best of our knowledge, no algorithm can scale up to more than
two agents for these models (with infinite-horizon). This un-
derscores the practical significance of EM. Eqs. 9-10 show
the µ functions for Dec-MDPs and ND-POMDPs. u denotes
the internal state of an agent; the rest of the notation is as
in [Kumar and Zilberstein, 2010]. Other parameters can be
updated similarly, not listed due to space reasons. Computing
the µ functions is polynomial in all problem parameters.

µ(a, u; Πf ) = πau

X
v

α̂(u, v)

» X
v,b

R̂u,v,a,bπbv +

γ
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Figure 4: Benchmarks 20D (left), 15-3D, 5P and 11H (right)

4 Experiments
We experimented on a target tracking application in sensor
networks modeled as an ND-POMDP [Nair et al., 2005].
Fig. 4 shows four sensor topologies: 5P, 11H and 15-3D
from [Marecki et al., 2008] and the largest 20D from [Kumar
and Zilberstein, 2009]. Each node in these graphs is a sensor
agent and edges are locations where targets can move. Track-
ing a target requires simultaneous scan of the edge by two
adjacent sensors, producing a joint reward (+80), otherwise
a penalty (−1) is given per scanning agent. The internal state
of a sensor indicates its battery level (5 possible states). Each
scan action depletes the battery and an empty battery renders
the sensor unusable. Sensors can conserve power with the off
action or recharge the battery at some cost (−1). Each sen-
sor has three observations: target present, target absent and
idle. The first two observations can be false positive/negative.
EM was implemented in JAVA. All the experiments used an
8-core Mac Pro with 2GB RAM, using multithreading to uti-
lize all 8-cores. Each plot is the best of 10 runs. The discount
factor γ was 0.95. To speed up EM’s convergence, we used a
greedy variant of the M-step [Toussaint et al., 2008].

The 5P domain has 2 targets, 11H has 3 targets, 15-3D
has 5 targets, and 20D has 6 targets. These problems have
very large state-spaces: 6 × 55 for 5P, 64 × 511 for 11H,
144× 515 for 15-3D and 2700× 520 for 20D. Evidently, EM
efficiently exploits the factored representation of the state and
action spaces and is highly scalable with linear complexity
w.r.t. the number of edges in the graph.

Figure 5 shows the solution quality EM achieves for each
of these benchmarks with different controller sizes. A notable
observation from these graphs is that EM converges quickly,
taking fewer than 200 iterations even for such large multia-
gent planning problems. The solution quality, as expected,
increases monotonically with each iteration highlighting the
anytime property of EM. In general, the solution quality in-
creased with the number of controller nodes. For example,
for 20D, a 2-node controller achieves a quality of 3585.06

Instance\Size 2-Node 3-Node 4-Node 5-Node
5P .232 1.07 3.22 7.74
11H 1.29 6.07 18.90 45.23

15-3D 1.17 5.39 16.69 40.47
20D 5.03 22.01 67.85 171.26

Table 1: Time in seconds per iteration of EM
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Figure 5: Solution quality achieved by EM (y-axis denotes quality and x-axis denotes the iteration number).

Instance/Value EM U.B. Random
5P 1250.89 (44.3%) 2820 61.23
11H 1509.27 (35.6%) 4230 8.41

15-3D 3094.05 (43.8%) 7050 104.2
20D 4154.04 (49.1%) 8460 −31.67

Internal State = 2 Internal State = 3
N EM NLP EM NLP
2 670.8/3.8 79/5.4 972.5/8.9 905.7/17.8
3 670.8/13.02 140.4/14.5 1053.16/35.8 887.2/139
4 710.4/35.8 140.4/139.4 1062.4/107.4 1024.8/1078.1

Table 2: (a) Quality comparisons with a loose upper bound and random controllers for all instances; (b) Solution quality/time
comparison of EM (100 iterations) with NLP for the 5P domain, N denotes controller size, Time in seconds

and a 5 node controller achieves 4154.04. However, for 5P
and 15-3D, we did not observe a significant increase in qual-
ity by increasing controller size, possibly due to the relative
simplicity of these configurations.

Table 1 shows the runtime per iteration of EM for differ-
ent instances and varying controller sizes. Encouragingly,
the runtime is fairly small—particularly for smaller controller
sizes—even for large problems such as 20D. To further de-
crease the runtime for larger controllers, we plan to use
Monte-Carlo sampling techniques in the future.

Table 2(a) shows the solution quality comparison of EM
with random controllers and a loose upper bound. The upper
bound was computed by assuming that each target is detected
at every time step including the battery recharge cost. Against
random controllers, EM always achieves much better solution
quality. When compared against the upper bound, we can
see that EM performs quite well. Despite being a very loose
bound, EM still achieves a quality within 49.1% of this bound
for the largest 20D domain—a solid performance.

Currently no algorithm can solve infinite-horizon ND-
POMDPs (>2-agents). To further assess EM’s performance,
we developed a nonlinear programming (NLP) formulation
of the problem and used a state-of-the-art NLP solver called
Snopt [Gill et al., 2002]. Snopt could only solve the smallest
5P domain and could not scale beyond controller size 4 and
internal state 3 as it ran out of memory (=2GB). Table 2(b)
shows the solution quality and time comparisons. For inter-
nal state size of 2, Snopt gets stuck in a poor local optimum
compared to EM. It provides more competitive solutions for
internal state 3, but EM is still better in solution quality. Fur-
thermore, the runtime of Snopt degrades quickly with the in-
crease in nonlinear constraints. This makes Snopt about an
order-of-magnitude slower for controller size 4 and internal
state 3. These results further highlight the scalability of EM,
which could scale up to controller size 10 and internal state 5
within 2GB RAM and ≈ 4 hours for 100 iterations.

Table 3 shows a comparison of EM against handcrafted

Version \ FSC Size Handcrafted 2 (EM) 3 (EM) 4 (EM)
No penalty 13.92 13.95 15.48 15.7
Penalty (−.25) -3.36 5.27 5.27 5.27

Table 3: Quality of handcrafted controllers vs. EM (11H)

controllers designed to take into account the target trajecto-
ries and partial observation in the 11H benchmark (Fig. 4). To
simplify the problem for the handcrafted solution, all penal-
ties were zero and the reward for detecting a target was 1.
This allowed continuous scan by sensors without worrying
about miscoordination penalty. The first row in this table
shows this no penalty case. We see that EM is competitive
with the handcrafted controller. The second row shows the
results when there was a cost to charge batteries. In this
case, sensors need to decide when to become idle to conserve
power. The handcrafted controller cannot learn this behavior
and hence EM produces much better quality in this case.

Finally, Table 4 highlights the significant opportunities that
EM provides for parallel computation. We consistently ob-
tained almost linear speedup when using multithreading on an
8-core CPU (total possible parallel threads in the largest do-
main 20D is 60). By using a massively parallel platform such
a Google’s MapReduce,we could easily solve much larger
team decision problems than currently possible.

5 Conclusion
Despite the rapid progress in multiagent planning, the scala-
bility of the prevailing formal models has been limited. We
present a new approach to multiagent planning by identify-
ing the general property of value factorization that facilitates
the development of a scalable approximate algorithm using
probabilistic inference. We show that several existing classes
of Dec-POMDPs satisfy this property. In contrast to previous
approaches, our framework does not impose any further re-
strictions on agent interaction beyond this property, thus pro-
viding a general solution for structured multiagent planning.



Version \ FSC Size 2 3 4 5
Serial 41.05 177.54 543.52 1308.20
Parallel 5.03 22.01 67.85 171.26

Table 4: Serial vs. parallel execution times per EM iteration in 20D.

The key result that supports the scalability of our approach
is that, within the EM framework, the inference process
can be decomposed into separate components that are much
smaller than the complete model, thus avoiding an exponen-
tial complexity. Additionally, the EM algorithm allows for
distributed planning using message-passing along the edges
of the value-factor graph, and is amenable to parallelization.
It also provides significant advantages over existing locally
optimal approaches for Dec-POMDPs, delivering more rig-
orous guarantees on the solution. Results on large sensor net-
work problems confirm the scalability of our approach.

Our approach offers a form of policy iteration using finite-
state controllers to represent policies; extending it to the value
iteration is an important future work. We currently assume
that the structure of each value factor remains static. A sig-
nificant contribution would be to allow agents to change this
structure via their actions and still provide the current guar-
antees. Overall, this new approach promises to significantly
enhance the scalability and practical applicability of decen-
tralized POMDPs.
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