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Abstract

We study the problem of approximate infer-
ence in collective graphical models (CGMs),
which were recently introduced to model the
problem of learning and inference with noisy
aggregate observations. We first analyze the
complexity of inference in CGMs: unlike in-
ference in conventional graphical models, ex-
act inference in CGMs is NP-hard even for
tree-structured models. We then develop a
tractable convex approximation to the NP-
hard MAP inference problem in CGMs, and
show how to use MAP inference for ap-
proximate marginal inference within the EM
framework. We demonstrate empirically that
these approximation techniques can reduce
the computational cost of inference by two
orders of magnitude and the cost of learning
by at least an order of magnitude while pro-
viding solutions of equal or better quality.

1. Introduction

Sheldon & Dietterich (2011) introduced collective
graphical models (CGMs) to model the problem of
learning and inference with noisy aggregate data.
CGMs are motivated by the growing number of ap-
plications where data about individuals are not avail-
able, but aggregate population-level data in the form
of counts or contingency tables are available. For ex-
ample, the US Census Bureau cannot release individ-
ual records for privacy reasons, so they commonly re-
lease low-dimensional contingency tables that classify
each member of the population according to a few de-
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mographic variables. In ecology, survey data provide
counts of animals in different locations, but they can-
not identify individuals.

CGMs are generative models that serve as a link be-
tween individual behavior and aggregate data. As a
concrete example, consider the model illustrated in
Figure 1(a) for modeling bird migration from obser-
vational data collected by citizen scientists through
the eBird project (Sheldon et al., 2008; Sheldon, 2009;
Sullivan et al., 2009). Inside the plate, an indepen-
dent Markov chain describes the migration of each bird
among a discrete set of locations: Xm

t represents the
location of the mth bird at time t. Outside the plate,
aggregate observations are made about the spatial dis-
tribution of the population: the variable nt is a vector
whose ith entry counts the number of birds in location
i at time t. By observing temporal changes in the vec-
tors {nt}, one can make inferences about migratory
routes without tracking individual birds.

In general CGMs, any discrete graphical model can ap-
pear inside the plate to model individuals in a popula-
tion, and observations are made in the form of (noisy)
low-dimensional contingency tables (Sheldon & Diet-
terich, 2011). A key problem we would like to solve
is learning the model parameters (of the individual
model) from the aggregate data, for which inference is
the key subroutine. Unfortunately, standard inference
techniques applied to CGMs quickly become compu-
tationally intractable as the population size increases,
due to the large number of hidden individual-level vari-
ables that are all connected by the aggregate counts.

A key to efficient inference in CGMs is the fact that,
when only aggregate data are being modeled, the same
data-generating mechanism can be described much
more compactly by analytically marginalizing away
the individual variables to obtain a direct probabilis-
tic model for the sufficient statistics (Sundberg, 1975;
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Figure 1. CGM example: (a) Individuals are explicitly
modeled. (b) After marginalization, the hidden variables
are the sufficient statistics of the individual model.

Sheldon & Dietterich, 2011). Figure 1(b) illustrates
the resulting model for the bird migration example.
The new hidden variables nt,t+1 are tables of suffi-
cient statistics: the entry nt,t+1(i, j) is the number of
birds that fly from location i to location j at time
t. For large populations, the resulting model is much
more amenable to inference, because it has many fewer
variables and it retains a graphical structure analogous
to that of the individual model. However, the reduc-
tion in the number of variables comes at a cost: the
new variables are tables of integer counts, which can
take on many more values than the original discrete
variables in the individual model, and this adversely
affects the running time of inference algorithms.

The first contribution of this paper is to character-
ize the computational complexity of exact inference
in CGMs. For tree-structured graphical models, the
running time of exact inference (MAP or marginal)
by message passing in the CGM is polynomial in ei-
ther the population size or the cardinality of the vari-
ables in the individual model (when the other pa-
rameter is fixed). However, there is no algorithm
that is polynomial in both parameters unless P=NP.
This is a striking difference from inference in stan-
dard tree-structured graphical models, for which the
running time of message passing is always polynomial
in the variable cardinality. We also analyze the run-
ning time of message passing in a junction tree for
general (non-tree-structured) CGMs to draw out an-
other difference between CGMs and standard graphi-
cal models: the dependence on clique-width is doubly-
exponential instead of singly-exponential for some pa-
rameter regimes.

Our second main contribution is an approximate al-
gorithm for MAP inference in CGMs that is based on
a continuous and convex approximation of the MAP
optimization problem. Given observed evidence, the
algorithm computes a fractional approximation of the

MAP values of the sufficient statistics. Although the
true MAP values are integers, when the population
of individuals is large, the fractional approximation is
very good and can be interpreted as describing the
percentages of the population in the MAP configura-
tion. In bird migration, for example, this describes the
fraction of the population that flies between each pair
of locations for each day of the year.

Our final contribution is to show that this fractional
MAP approximation can be applied within an EM
algorithm to accurately learn the parameters of the
CGM. In EM, one must compute the posterior mean
(the expected value of the sufficient statistics given the
observations). While the MAP configuration is not the
mean, we show experimentally that the (fractional ap-
proximate) MAP configuration provides an excellent
approximation to the posterior mean. Indeed, for a
fixed time budget, it is usually significantly more ac-
curate than computing the expected sufficient statis-
tics via Gibbs sampling. We show that our approach
dramatically accelerates parameter learning while still
achieving less than 1% error.

2. Related Work

Sheldon et al. (2008) solved a related MAP infer-
ence problem on a chain-structured CGM using linear
programming and network flow techniques. Sheldon
(2009) extended those algorithms to the case when ob-
servations are corrupted by log-concave noise models.
The MAP problem in those papers is slightly differ-
ent from ours: it seeks the most likely setting of all of
the individual variables, while we seek the most likely
setting of the sufficient statistics, which considers the
probability of all possible settings of the individual
variables that give the same counts. This gives rise
to combinatorial terms in the probability model (see
Equation (2) of Section 3) and leads to harder non-
linear optimization problems.

Sheldon & Dietterich (2011) generalized the previous
ideas from chain-structured models to arbitrary dis-
crete graphical models and developed the first algo-
rithms for marginal inference in CGMs, which were
based on Gibbs sampling and Markov bases (Diaconis
& Sturmfels, 1998; Dobra, 2003). They showed empir-
ically that Gibbs sampling is much faster than exact
inference: for some tasks, the running time to achieve
a fixed error level is independent of the population
size. However, no analogous approximate method was
developed for MAP inference.

Inference in CGMs is related to lifted inference in re-
lational models (Getoor & Taskar, 2007). A CGM can
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be viewed as a simple relational model containing a
single logical variable to describe the repetition over
individuals. A unique feature of CGMs is that all ev-
idence occurs at the aggregate level. The most related
ideas from lifted inference are counting elimination
(de Salvo Braz et al., 2007) and counting conversion
(Milch et al., 2008), which perform aggregation oper-
ations similar to those performed by a CGM. See also
(Apsel & Brafman, 2011). Fierens & Kersting (2012)
recently proposed to “lift” probabilistic models instead
of inference algorithms, which is very similar in spirit
to CGMs, but they did not present a general approach
to do so. CGMs lift any model with a single logical
variable when all evidence is at the population level.
In general, while lifted inference algorithms use count-
ing arguments similar to those that appear in CGMs,
they cannot reproduce the CGM model, and none of
our results are consequences of any of the results in
those papers.

Multiple authors in econometrics and statistics have
considered the problem of fitting the transition prob-
abilities of a Markov chain from aggregate data by a
conditional least squares approach (Lee et al., 1970;
MacRae, 1977; Kalbfleisch et al., 1983). Van Der Plas
(1983) showed that the conditional least squares es-
timator is consistent and asymptotically normal un-
der weak assumptions about the Markov model. This
problem can be viewed as learning in the CGM in Fig-
ure 1, where the graphical model is chain-structured
and single-variable contingency tables are observed ex-
actly for each node. In our work, the CGM may take
on a more general graph structure, some nodes may be
unobserved, and the observations may be noisy, so the
conditional least squares estimator is not applicable.

3. Problem Statement

In this section, we describe the generative model for
aggregate data, introduce collective graphical models,
and state the problems of (collective) marginal and
MAP inference.

Generative Model for Aggregate Data. The
probability model starts with a graphical model over
random variables X1, . . . , XN . Let x = (x1, . . . , xN )
be a particular assignment to the variables (for simplic-
ity, assume that each takes values in [L] = {1, . . . , L}),
and let G = (V,E) be the independence graph. The
probability model is

p(x) =
1

Z

∏
(i,j)∈E

φij(xi, xj). (1)

Here Z is the normalization constant and φij : [L]2 →
R+ are edge potentials. We refer to this as the individ-
ual model. For the remainder of the paper, we assume
that G is a tree to develop the important ideas while
keeping the exposition manageable. For a graph with
cycles, the methods of this paper can be applied to
perform inference on a junction tree derived from G.

To generate the aggregate data, first assume that M
independent vectors x(1), . . . ,x(M) are drawn from the
individual probability model to represent the individ-
uals in a population. Aggregate observations are then
made in the form of contingency tables on small sets of
variables, which count the number of times that each
possible combination of those variables appears in the
population. Specifically, a contingency table nA on
variables (Xi)i∈A is a table with entries

nA(xA) =

M∑
m=1

1
{
x
(m)
A = xA

}
, xA ∈ [L]|A|,

where x
(m)
A is the subvector corresponding to indices

in A. In this section, we will focus first on observed
tables ni := n{i} over single variables, which we refer
to as node tables. Later, the tables nij := n{i,j} for
edges (i, j), which are the sufficient statistics of the
individual model, will play a prominent role. We will
refer to these as edge tables.

We will consider both an exact and a noisy model for
observing contingency tables. Let U be an observed
subset of nodes. In each model, for each i ∈ U we
observe a table yi of the same dimension as ni, where
the entry yi(xi) has one of the following distributions:

Exact observations: yi(xi) = ni(xi).

Noisy observations: yi(xi) |ni(xi) ∼ Pois(α ·ni(xi))
The Poisson model is motivated by the bird migration
problem, and models birds being counted at a rate
proportional to their true density. While it is helpful
to focus on these two observation models, considerable
variation is possible without significantly changing the
results: (1) observations of the different types can be
mixed, (2) higher-order contingency tables, such as
the edge tables nij , may be observed, either exactly
or noisily, (3) some table entries may be unobserved
while others are observed, or, in the noisy model, they
may have multiple independent observations, and (4)
the Poisson model can be replaced by any other noise
model p(y |n) that is log-concave in n. Sheldon & Diet-
terich (2011) discuss some of these extensions further.

In this paper, the exact observation model is used to
prove the hardness results, while the Poisson model
is used in the algorithms and experiments. Since the
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exact model can be obtained as the limiting case of a
log-concave noise model (e.g., y | n ∼ Normal(n, σ2)
as σ2 → 0), we do not expect that noisy observations
lead to a more tractable problem.

Inference Problems. Suppose we wish to learn the
parameters of the individual model from these aggre-
gate observations. To do this, we need to know the val-
ues of the sufficient statistics of the individual model—
namely, nij for all edges (i, j) ∈ E. Our observation
models do not directly observe these. Fortunately, we
can apply the EM algorithm, in which case we need
to know the expected values of the sufficient statistics
given the observations: E[nij |y].

This leads us to define two inference problems:
marginal inference and MAP inference. The aggregate
marginal inference problem is to compute the condi-
tional distributions p(nij | y) for all (i, j) ∈ E. Al-
though these are finite discrete distributions, the vari-
able nij can take a very large number of values,1 so
we typically don’t want to represent its distribution ex-
plicitly in tabular form. An important special case of
marginal inference that does not require a large tabu-
lar potential is to compute the L×L tables of expected
values E[nij | y], which are the quantities needed for
the E step of the EM algorithm.2

The aggregate MAP inference problem is to find the
tables n = (nij)(i,j)∈E that jointly maximize p(n | y).
A primary focus of this paper is approximate algo-
rithms for aggregate MAP inference. One reason for
conducting MAP inference is the usual one: to recon-
struct the most likely value of n given the evidence as
a way of “reconstruction” (e.g., for data exploration).
However, a second and important motivation is the
fact that the posterior mode p(n | y) is an excellent
approximation for the posterior mean E[n | y] in this
model, so approximate MAP inference also gives an
approximate algorithm for the important marginal in-
ference problem needed for the EM algorithm.

Collective Graphical Models. Notice that in the
setting we are considering, our observations and
queries only concern aggregate quantities. The obser-
vations are (noisy) counts and the queries are MAP or
marginal probabilities over sufficient statistics (which
are also counts). In this setting, we don’t care about
the values of the individual variables {x(1), . . . ,x(M)},

1There are
(
M+L2−1

L2−1

)
= O(ML2−1) different L × L ta-

bles of non-negative integers that sum to M .
2Sheldon & Dietterich (2011) also showed how to gen-

erate samples from p(nij | y), which is an alternative way
to query the posterior distribution without storing a huge
tabular potential.

so we can marginalize them away. This marginaliza-
tion can be performed analytically to obtain a proba-
bility model with many fewer variables. It results in
a model whose random variables are the vector n of
sufficient statistics and the vector y of observations.

For trees (and, more generally, for junction trees), the
distribution of n can be written in closed form given
the marginal probabilities µi(xi) = Pr(Xi = xi) and
µij(xi, xj) = Pr(Xi = xi, Xj = xj).

3 The following
expression is originally due to Sundberg (1975):

p(n) = M !
∏
i∈V

∏
xi

(
ni(xi)!

µi(xi)ni(xi)

)ν(i)−1
∏

(i,j)∈E

∏
xi,xj

µij(xi, xj)
nij(xi,xj)

nij(xi, xj)!
, (2)

subject to:

ni(xi) =
∑
xj
nij(xi, xj), ∀i, xi, j ∼ i (3)∑

xi
ni(xi) = M, ∀i. (4)

Here, ν(i) is the degree of node i, and the notation
j ∼ i means that j is a neighbor of i. By “subject to”
we mean that the probability is zero if the constraints
are not satisfied.

The distribution p(n) is the collective graphical model,
which is defined over the random variables {ni} and
{nij}. The CGM distribution satisfies a hyper Markov
property : it has conditional independence properties
that follow the same essential structure as the original
graphical model (Dawid & Lauritzen, 1993). (To see
this, note that Eq. (2) factors into separate terms for
each node and edge contingency table; when the hard
constraints of Eq. (3) are also included as factors, this
has the effect of connecting the tables for edges inci-
dent on the same node, as illustrated in Figure 1.)

Likelihood. We can combine the CGM with the like-
lihood term to derive an explicit expression for the
(unnormalized) posterior p(n |y) ∝ p(n)p(y |n). Un-
der the Poisson observation model, the likelihood has
the form

p(y |n) =
∏
i∈U

∏
xi

(αni(xi))
yi(xi)e−αni(xi)

yi(xi)!
.

Generalizations. For general graph structures, Shel-
don & Dietterich (2011) give a probability model anal-
ogous to Eq. (2) defined over a junction tree for the
graphical model. In that case, the vector n includes
contingency tables nC for each clique C of the junction

3If marginal probabilities are not given, they can be
computed by performing inference in the individual model.
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tree. Different junction trees may be chosen for a par-
ticular model, which will lead to different definitions
of the hidden variables n and thus slightly different
inference problems, but always the same marginal dis-
tribution p(y) over observed variables. Higher-order
contingency tables may be observed as long as each ob-
served table nA satisfies A ⊆ C for some clique C, so
it can be expressed using marginalization constraints
such as Eq. 3. The approximate inference algorithms
in Section 5 extend to these more general models in a
straightforward way by making the same two approx-
imations presented in that section for the expression
log p(n |y) to derive a convex optimization problem.

4. Computational Complexity

There are a number of natural parameters quantifying
the difficulty of inference in CGMs: the population
size M ; the number of variables N ; the variable cardi-
nality L; and the clique-width K (largest clique size)
of the junction tree used to perform inference, which is
bounded below by the tree-width of G plus one. The
inputs are: the vector y, the integer M , and the CGM
probability model. The vector y has at most NL en-
tries of magnitude O(M), so each can be represented in
logM bits. The CGM is fully specified by the potential
functions in Equation (1), which have size O(NL2).
Thus, the input size is poly(N,L, logM).

We first describe the best known running time for ex-
act inference in trees (K = 2), which are the focus of
this paper.

Theorem 1. When G is a tree, message passing in the
CGM solves the aggregate MAP or marginal inference
problems in time O(N ·min(ML2−1, L2M )).

Proof sketch. Because of the hyper-Markov property,
the CGM also has the form of a tree-structured graph-
ical model. Message passing gives an exact solution to
the MAP or marginal inference problem in two passes
through the tree, which takes O(N) messages (Koller
& Friedman, 2009). In a standard implementation of
message passing, the time per message is bounded by
the maximum over all factors of the product of the car-
dinalities of the variables in that factor. However, due
to the nature of the hard constraints in the CGM, it is
possible to bound the time per message by a smaller
number, which is the number of values for the random
variable nij (details omitted). The number of contin-

gency tables with c entries that sum to M is
(
M+c−1
c−1

)
,

which is the number of ways of placing M identical
balls in c distinct bins. This number is bounded above
by M c−1 and by (c − 1)M . In a CGM, the table
nij has L2 entries, so the number of values for nij is

X0

X1 X2 X3

Hyperedge

Elements

Figure 2. Reduction from 3-dimensional matching.

O(min(ML2−1, L2M )), which gives the desired upper
bound.

For general graphical models, message passing on junc-
tion trees can be implemented in a similar fashion. For
a clique of size K, the contingency table will have LK

entries, so there are O(min(MLK−1, LKM )) possible
values of the contingency table. This gives us the fol-
lowing result.

Theorem 2. Message passing on a junction tree with
maximum clique size K and maximum variable cardi-

nality L takes time O(N ·min(MLK−1, LKM )).

Thus, if either L or M is fixed, message passing runs
in time polynomial in the other parameter. When M
is constant, then the running time is exponential in
the clique-width, which captures the familiar case of
discrete graphical models. When L is constant, how-
ever, the running time is not only exponential in L but
doubly-exponential in the clique-width. Thus, despite
being polynomial in one of the parameters, message
passing is unlikely to give satisfactory performance on
real problems. Finally, the next result tells us that we
should not expect to find an algorithm that is polyno-
mial in both parameters.

Theorem 3. Unless P=NP, there is no algorithm for
MAP or marginal inference in a CGM that is polyno-
mial in both M and L. This remains true when G is
a tree and N = 4.

Proof of Theorem 3. The proof is by reduction from
exact 3-dimensional (3D) matching to a CGM where
both M and L grow with the input size. An instance
of exact 3D matching consists of finite sets A1, A2,
and A3, each of size M , and a set of hyperedges T ⊆
A1 × A2 × A3. A hyperedge e = (a1, a2, a3) is said
to cover a1, a2, and a3. The problem of determining
whether there is a subset S ⊆ T of size M that covers
each element is NP-complete (Karp, 1972).

To reduce exact 3D matching to inference in col-
lective graphical models, define a graphical model
with random variables X0, X1, X2, X3 such that X0 ∈
{1, . . . , |T |} is a hyperedge chosen uniformly at ran-
dom, and X1, X2, and X3 are the elements covered
by X0 (see Figure 2). Define the observed counts to
be ni(a) = 1 for all a ∈ Ai, i = 1, 2, 3, which specify
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that each element is covered exactly once by one of
M randomly selected hyperedges. These counts have
nonzero probability if and only if there is an exact 3D
matching. Thus, MAP or marginal inference can be
used to decide exact 3D matching. For MAP, there
exist tables n0i such that p({n0i}, {ni}) > 0 if and
only if there is a 3D matching. For marginal inference
p({ni}) > 0 if and only if there is a 3D matching.

Because the model used in the reduction is a tree with
only four variables, the hardness result clearly holds
under that restricted case.

5. Approximate MAP Inference

In this section, we address the problem of MAP infer-
ence in CGMs under the noisy observation model from
Section 3. That is, the node tables for an observed set
U are corrupted independently by noise, which is con-
ditionally Poisson:

p(y |n) =
∏
i∈U

∏
xi

p
(
yi(xi) |ni(xi)

)
, (5)

p
(
yi(xi) |ni(xi)

)
=

(αni(xi))
yi(xi)e−αni(xi)

yi(xi)!
. (6)

Our goal is to maximize the following objective:

log p(n |y) = log p(n) + log p(y |n) + constant (7)

As highlighted earlier, it is computationally intractable
to directly optimize log p(n|y). Therefore, we intro-
duce two approximations. First, we relax the con-
straint that the entries of n be integers. For large
sample size M , the effect of allowing fractional val-
ues is minimal. Second, as it is hard to incorpo-
rate factorial terms log n! directly into an optimiza-
tion framework, we employ Stirling’s approximation:
log n! ≈ n log n− n.
Using these two approximations, we arrive at the fol-
lowing optimization problem:

max
n

∑
i∼j

∑
xi,xj

(
logµij(xi, xj)+1

)
nij(xi, xj)−

∑
i∈U,xi

αni(xi)

+
∑
i∈V

∑
xi

(
1− ν(i)

)
ni(xi) +

∑
i∈U

∑
xi

yi(xi) log ni(xi)

−
∑
i∼j

∑
xi,xj

nij(xi, xj) log nij(xi, xj)

−
∑
i∈V

(
1− ν(i)

)∑
xi

ni(xi) log ni(xi) + const., (8)

subject to (3) and (4), for ni(xi), nij(xi, xj) ∈ R+.

Theorem 4. The optimization problem (8) for ap-
proximate MAP inference in tree-structured CGMs is
convex.

Proof. The constraints are linear and thus the feasi-
ble set is convex. Since this is a maximization prob-
lem, we must show that the objective is concave in n,
which is clearly true for each term but the last one:
the first three terms are linear, and the functions log n
and −n log n are concave. The last term is convex.
However, the sum of the last two terms:∑

i∼j

∑
xi,xj

−nij(xi, xj) log nij(xi, xj)

+
∑
i∈V

(
1− ν(i)

)∑
xi

−ni(xi) log ni(xi) (9)

is concave over the feasible set. Indeed, this is ex-
actly the expression for the Bethe entropy of a graph-
ical model, and the constraints (3) and (4) are identi-
cal to the constraints for pairwise and node marginals
used in Bethe entropy. Bethe entropy is concave over
the constraint set of a tree-structured graphical model
(Heskes, 2006). The only difference between this and
the conventional Bethe entropy is that the variables
are normalized to sum to M instead of 1, but scaling
in this way does not affect concavity. Therefore, the
problem is convex.

MAP Inference for EM. We now describe how
MAP inference for CGMs can be used to significantly
accelerate the E-step of the EM algorithm for learning
the parameters of the individual model. Let θ denote
the unknown parameter to be optimized, let y be the
observed variables, and let x = (x(1), . . . ,x(M)) be the
hidden variables for all individuals in the population.
The EM algorithm iteratively finds parameters θ? that
maximize the following expected log-likelihood:

Q(θ?, θ) =
∑
x

p(x | y; θ) log p(x,y; θ?)

where θ? denotes the parameters to optimize and θ de-
notes the previous iteration’s parameters. When the
joint distribution p(·) is from an exponential family, as
in our case, then the problem simplifies to maximiz-
ing log p(n̄,y; θ?), where n̄ = Eθ[n |y] is the expected
value of the sufficient statistics n = n(x,y) used to de-
fine the model; these are exactly the hidden variables
in the CGM. In general, this expectation is difficult
to compute and requires the specialized sampling ap-
proach of Sheldon & Dietterich (2011).

Instead, we will show that the approximate MAP solu-
tion, which approximates the mode of the distribution
p(n |y; θ), is also an excellent approximation for its
mean Eθ[n |y]. While this may seem surprising, re-
call that the random variables in question take values
that are relatively large non-negative integers. A good
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analogy is the Binomial distribution (a CGM with only
one variable), for which the mode is very close to the
mean, and the mode of the continuous extension of the
Binomial pmf is even closer to the mean. These charac-
teristics make our approach qualitatively very different
from a typical “hard EM” algorithm. Our experiments
show that by using the convex optimization approach
of Section 5, the approximate mode can be computed
extremely quickly and is an excellent substitute for the
mean. It is typically a much better approximation of
the mean than the one found by Gibbs sampling for
reasonable time budgets, and this makes the overall
EM procedure many times faster.

6. Evaluation

We evaluated our approximate MAP inference algo-
rithm by measuring its accuracy against exact solu-
tions for small problem instances and by comparing
it with Gibbs sampling for marginal inference within
the E step of the EM algorithm. For all experiments,
we generated data from a chain-structured CGM to
simulate wind-dependent migration of a population of
M birds from the bottom-left to the top-right corner
of an ` × ` grid to mimic the seasonal movement of
a migratory songbird from a known winter range to a
known breeding range. Thus, the variables Xt of the
individual model are the grid locations of the individ-
ual birds at times t = 1, . . . , T , and have cardinality
L = `2. The transition probabilities between grid cells
were determined by a log-linear model with four pa-
rameters that controlled the effect of features such as
direction, distance, and wind on the transition proba-
bility. The parameters θtrue were selected manually to
generate realistic migration trajectories. After gener-
ating data for a population of M birds, we computed
node contingency tables and generated observations
from the Poisson model (α = 1) for every node. For
the experiments that do not involve learning, we per-
form inference in the same model used to generate the
data—that is, the marginal probabilities µij(·, ·) and
µi(·) in the CGM are those determined by θtrue.

We solved the approximate MAP convex optimization
problem using MATLAB’s interior point solver. For
the comparisons with Gibbs sampling, we developed
an optimized C implementation of the algorithm of
(Sheldon & Dietterich, 2011) and developed an adap-
tive rejection sampler for discrete distributions to per-
form the log-concave sampling required by that algo-
rithm (Gilks & Wild, 1992; Sheldon, 2013).

Accuracy of Approximate MAP Solutions. To
evaluate the impact of the two approximations in our
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Figure 3. The effect of population size M on accuracy and
running time of approximate MAP (L = 4, T = 6). Left:
relative error vs. M . Right: running time vs. M .

approximate MAP algorithm, we first compare its so-
lution n∗approx to the exact solution n∗exact obtained by
message passing for small models (L = 4, T = 6).
We expect the fractional relaxation and Stirling’s ap-
proximation to be more accurate as M increases. By
Theorem 1, the running time of message passing in
this model is O(M15), we are limited to tiny popula-
tions. Nevertheless, Figure 3 shows that the relative
error ‖n∗approx−n∗exact‖1/‖n∗exact‖1 is already less than
1% for M = 7. For all M , approximate MAP takes
less than 0.2 seconds, while the running time of exact
MAP scales very poorly.

Marginal Inference. We next evaluated the ap-
proximate MAP inference algorithm to show that it
can solve the EM marginal inference problem more
quickly and accurately than Gibbs sampling. For these
experiments, we fixed T = 20 and varied L by increas-
ing the grid size. The largest models (L = 49) result
in a hidden vector with (T − 1)L2 ≈ 46K entries. The
goal is to approximate Eθ[n | y]. Since we cannot com-
pute the exact answer for non-trivial problems, we run
ten very long runs of Gibbs sampling (10 million iter-
ations), and then compare each Gibbs run, as well as
approximate MAP, to the reference solution obtained
by averaging the nine remaining Gibbs runs; this yields
ten evaluations for each method.

Figure 4 shows that the solver quickly finds an opti-
mal solution to the approximate MAP problem, and it
takes Gibbs sampling nearly 100 times longer to reach
a solution that is as close to the reference as the one
found by approximate MAP. Table 1 shows that the
same pattern holds as the problem size increases: for
increasing values of L, Gibbs consistently takes 50 to
100 times longer to find a solution as close to the ref-
erence solution as the one found by MAP.

We conjecture that the approximate MAP solution
may be extremely close to the ground truth. In Fig-
ure 4, each Gibbs solution has a relative difference of
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Table 1. Comparison of Gibbs vs. MAP: seconds to achieve
the same relative error compared with reference solution.

L 9 16 25 36 49

MAP time 0.9 1.9 3.4 9.7 17.2
Gibbs time 161.8 251.6 354.0 768.1 1115.5
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Figure 4. Relative difference from reference solution versus
time (log scale) for MAP and Gibbs (M = 1000, L = 49).
Gibbs and MAP: average over 10 trials; 95% confidence
intervals are negligible.

about 0.09 from the reference solution computed using
the other nine Gibbs runs, which suggests that there is
still substantial error in the Gibbs runs after 10 million
iterations. Furthermore, each time we increased the
number of Gibbs iterations used to compute a refer-
ence solution, the MAP relative error decreased, mean-
ing that the reference solution was getting closer to the
MAP solution.

Learning. Finally, we evaluated approximate MAP
as a substitute for Gibbs within the full EM learn-
ing procedure. We initialized the parameter vector
θ randomly and then ran three variants of the EM
algorithm: MAP-EM uses approximate MAP within
the E step; Monte Carlo EM (MCEM) uses a fixed
number of 100K Gibbs iterations per E step; and
stochastic approximation EM (SAEM) uses a smaller
number of 10K Gibbs iterations per E step, but it
combines those with samples from previous iterations.
SAEM usually has better convergence properties than
MCEM (Delyon et al., 1999). We employed step sizes
of γt = 1/t0.75 within SAEM. In the M step, we ap-
plied a gradient-based solver to update the parameters
θ of the log-linear model for transition probabilities.
For each algorithm we measured the relative error of
the learned parameter vectors from θtrue.

Figure 5 shows that MAP-EM dramatically outper-
forms the other two algorithms, especially as the prob-
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Figure 5. Relative error of learned parameters versus run-
ning time for different EM algorithms (MAP and MCEM:
100 EM iterations, SAEM: 600 EM iterations, M = 1000).

lem size increases. SAEM has better long-term con-
vergence behavior than MCEM, but MAP-EM finds
parameters that are within 1% relative error of θtrue,
while SAEM still has relative error greater than 40%
after a much longer running time for the larger prob-
lems. We conclude that approximate MAP is an ex-
cellent substitute for marginal inference with the EM
algorithm, both in terms of accuracy and running time.

7. Conclusion

We presented hardness results and approximate algo-
rithms for the problems of MAP and marginal infer-
ence in collective graphical models. We showed that
exact inference by message passing runs in time that is
polynomial either in the population size or the cardi-
nality of the variables, but there is no algorithm that is
polynomial in both of these parameters unless P=NP.
We then showed that the MAP problem can be formu-
lated approximately as a non-linear convex optimiza-
tion problem. We demonstrated empirically that this
approximation is very accurate even for modest popu-
lation sizes and that approximate MAP inference is an
excellent substitute for marginal inference for comput-
ing the E step of the EM algorithm. Our approximate
MAP inference algorithm leads to a learning procedure
that is much more accurate and runs in a fraction of
the time of the only known alternative algorithms.
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