
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2004

Tool Support for Model Based Architectural Design for Tool Support for Model Based Architectural Design for

Automotive Control Systems Automotive Control Systems

Kevin STEPPE
Singapore Management University, kevinsteppe@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
STEPPE, Kevin. Tool Support for Model Based Architectural Design for Automotive Control Systems.
(2004). First European Workshop on Model Driven Architecture with Emphasis on Industrial Application.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2176

This Conference Paper is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2176&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

In Proceedings of the First European Workshop on Model Driven Architecture with Emphasis on
Industrial Application, March 17-18, 2004. Enschede, The Netherlands.

Tool Support for Model Based Architectural Design for Automotive
Control Systems

Kevin Steppe, David Garlan, Greg Bylenok, Bradley Schmerl, Kanat Abirov, Nataliya Shevchenko

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15221

{ksteppe, garland, gbylenok, schmerl, kanatknt, san}@cs.cmu.edu

Abstract

In conjunction with Ford Motor Company, we built a tool to support multilevel architectural design. The
tool, called Synergy, allows Ford to visually design architectures of vehicle control components. The
components are imported from existing Simulink models; then the tool automatically generates a detailed
view showing all required connections and ports. The resulting model is exported to Simulink for further
analysis. In this paper we describe the conceptual and technical challenges encountered in building
Synergy and our design choices for solving them.

1. Motivation
Over the past few years, Ford Motor Company has experienced significant benefits in software
development using component models. By using Simulink [3] models of software components, Ford is
able to analyze component behavior before committing to code. While rigorous component analysis has
been successful at Ford, the approach has been difficult to scale.

Scaling the approach requires producing assemblies of these components. Currently these assemblies, if
they are built at all, are constructed manually. Because components typically have dozens of interfaces
each, manually connecting them is tedious and error prone. For a simple six-component subsystem, Ford
engineers report that construction takes approximately two weeks. Large (50-component) vehicle control
subsystems have taken six months to produce. Manual construction quickly becomes infeasible as the
number of component choices and design possibilities explodes upwards.

2. Related Work
There is considerable interest in model-based approaches to embedded control systems, including
avionics as well as automotive systems. The DARPA-sponsored MoBIES Project [1], for example,
specifically focuses on this area. The MoBIES community anticipates considerable benefits in quality
through model checking, reuse of proven components, and sharing of tools. Our work fits within that
general category of research, but explores the specific consequences of using architecture description
languages as the carriers of embedded systems designs.

Recently, the Object Management Group has been promoting model-based design using a two-tiered
approach that they refer to as “Model-Driven Architecture” (MDA) [4]. MDA is motivated by similar
concerns to ours, but attempts to advance the state of understanding about how to carry out such an
approach in the context of real systems, complementing existing development methods, and leveraging
special features of a product domain (in our case automotive control systems).

3. Proposed Solution
Ford’s challenge is to be able to quickly design large systems without sacrificing the detailed model
analysis capabilities, which have already proven to be successful. The two-tiered approach supports both
goals. The abstract view allows engineers to work at an architectural level, facilitating building larger,
more complex software systems within vehicles. The architectural tier allows the designer to think in
terms of components or component groups, without viewing all the details needed to perform the
analyses. The second tier then provides the details needed for the rigorous analysis of the design. A tool
able to work on both levels is insufficient, however. Generating the detailed view requires connecting
dozens of ports for every component, which is tedious and error-prone when performed manually. An
effective tool must automate the generation of the detail tier.

In Proceedings of the First European Workshop on Model Driven Architecture with Emphasis on
Industrial Application, March 17-18, 2004. Enschede, The Netherlands.

The two-tiered approach shows promise even conceptually, but there are a number of technical challenges
to overcome in making it feasible for use. These include:

• representation of the views

• scaling via hierarchy

• model interface specification

• design alternatives

• support for multiple types of analysis

• visual clarity,

• inter-tier consistency

The rest of this abstract gives a brief summary of these issues and our solutions.

3.1. Representation
The most obvious issue in a two-tier approach is representation of each level. As our intent was to
simplify component compositions, the abstract level needed to be easily created by the user. We also
wanted to facilitate some analysis at the abstract level before generating detailed assemblies. The detailed
level had to support the many ports and connections present in the system, as well as the properties to be
analyzed. We used the Acme Architecture Description Language (ADL) to describe both levels of
design, with separate but similar styles for each level [2]. This allowed for presentation of different design
aspects, while making automatic conversion straightforward.

3.2. Hierarchy
Managing the one hundred plus components in Ford’s architectures requires breaking the system into
modules and subsystems via architectural hierarchy. Ford engineers generally work with only five or six
components at a time, constructing larger systems from these subsystems. Additionally, hierarchy
provides a mechanism for reusing assemblies. Thus large architectures can be built in a bottom-up fashion
from previously built assemblies. In our case, hierarchical design was supported through Acme
“representations”. In representations, an abstract component is a placeholder for the underlying
substructure, a scheme which matched our intended use of hierarchy.

3.3. Interfaces
Any design will need to interact with other systems, requiring that the system representation include
facilities for identifying that interface. The interface is also crucial to using hierarchy and building
progressively larger architectures. Options for determining the interface include explicit specification by
the designer, automatic generation from the available ports of the system, or leaving unbound ports.
Explicit specification enables the system to check for completeness, but requires a extra work for
complex interfaces. Automatic generation is easier on the user, but can mask sub-system incompleteness
by generating additional inputs. Leaving unbound ports allows the user to review the incomplete system
to pick needed inputs, but prevents full analysis. Because Ford needs to determine whether all input ports
in a model are connected we chose to have the interfaces be explicit. Explicit interfaces allows us to
verify the completeness of the system, both for inputs and expected outputs.

3.4. Design Alternatives
Exploration of design alternatives is an important feature for Ford. With a large collection of components
there are often multiple choices, which fulfill the required interface yet have different properties. Ford
often uses a single architecture across several car makes and models, the differences coming in the choice
of components to fill in that architecture. The abstract component representation must be able to express
these alternatives. We used Acme’s support for multiple representations to indicate mutually exclusive
design alternatives for any component or subsystem in the model.

3.5. Support for Multiple Types of Analysis
Additionally various properties are needed to support analysis of the system. Synergy supports analysis
of three kinds. First are topological constraints and properties checked by AcmeStudio. Another set of

In Proceedings of the First European Workshop on Model Driven Architecture with Emphasis on
Industrial Application, March 17-18, 2004. Enschede, The Netherlands.

properties is pulled from the Simulink models – either analyzed through Simulink directly, or added to the
architectural description automatically. The component linking mentioned above enables Ford to take full
advantage of Simulink’s power to analyze assemblies generated by Synergy. Lastly, our tool uses its
own component characterization file containing properties that can be analyzed through a plug-in
framework in Synergy. Two such plug-ins were built – one checking resource usage of components, the
other suggesting scheduling order.

3.6. Visual Clarity
As mentioned previously, rather than source-code, Synergy generates a detailed model from the abstract
architecture. The newly generated model contains significantly more detail than the source model, and
care must be taken to keep the model readable. Components should be laid out intelligently so that
connections between components remain clear. Clarity remains a challenge within these highly detailed
models, where each component may involve twenty to thirty individual connections. Synergy employs a
simple layout engine, which keeps the detailed layout similar to the user constructed architecture.

3.7. Inter-tier Consistency
With multiple models involved in the development process, consistency between models becomes an
important issue. Synergy gives the developer free-reign to tinker with the design at both the high and low
levels of abstraction, so keeping them synchronized remains a challenge. Changes to the system
architecture or individual component models must be carried forward into the generated assemblies. With
our tool this is accomplished by regenerating the assemblies. Reverse engineering is not supported,
because developers are expected to make at most minor targeted changes to the assemblies.

4. Conclusion
The above discussion illustrates the major issues in building Synergy: architecture representation,
hierarchy, interface specification, analysis support, visual layout, and consistency. Our choices focused
on Ford’s needs and ease of implementation. Similar but separate styles make automatic conversion easy,
while supporting the difference in detail. We used AcmeStudio’s built-in representations to support
hierarchy and thus enable generation of large modules in an understandable fashion. The external
interface for a design is specified by the user through use of a special component. Design space is also
supported by Acme representations, considering each representation to be set of mutually exclusive
alternatives. Lastly, an analysis plug-in framework is part of both Synergy and AcmeStudio. We felt that
our architectural representation is rich enough to support many more analyses than we could develop.
Thus Synergy makes it easy for the customer to add more without having to address representational
issues.

We used AcmeStudio to provide graphical editing and the previously mentioned representational
facilities. While automatic layout will always be difficult for large, complicated systems, we took
advantage of the user constructed system architecture as a starting point. Integration with other tools was
a major requirement from Ford, which led us to select Eclipse and AcmeStudio as a base for plug-in
development. Ford is focused on the architecture and pushing for automatic generation, thus Synergy
maintains consistency in a feed-forward mechanism, re-generating the detailed model when requested.

References
[1] Bay, J.B. Model-Based Integration of Embedded Software.
http://dtsn.darpa.mil/ixo/programdetail.asp?progid=38.
[2] Garlan, D., Monroe, R.T., and Wile, D. Acme: Architectural Description of Component-Based
Systems. Foundations of Component-Based Systems. Leavens, G.T., and Sitaraman, M. (eds). Cambridge
University Press, 2000 pp. 47-68.
[3] The Mathworks. Simulink 5.1. http://www.mathworks.com/products/simulink.
[4] Object Management Group. MDA: The Architecture of Choice for a Changing World.
http://www.omg.org/mda.

	Tool Support for Model Based Architectural Design for Automotive Control Systems
	Citation

	Microsoft Word - Tool Support for Model Based Architectural Design.doc

