
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2004

Tool Support for Two-Tiered Architectural Design for Automotive Tool Support for Two-Tiered Architectural Design for Automotive

Control Systems Control Systems

Kevin STEPPE
Singapore Management University, kevinsteppe@smu.edu.sg

Greg Bylenok

David Garlan

Bradley Schmerl

Kanat Abirov

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
STEPPE, Kevin; Bylenok, Greg; Garlan, David; Schmerl, Bradley; Abirov, Kanat; and Shevchenko, Nataliya.
Tool Support for Two-Tiered Architectural Design for Automotive Control Systems. (2004). Proceedings of
the Automotive Software Workshop on Future Generation Software Architectures in the Automotive
Domain.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2175

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2175&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Kevin STEPPE, Greg Bylenok, David Garlan, Bradley Schmerl, Kanat Abirov, and Nataliya Shevchenko

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/2175

https://ink.library.smu.edu.sg/sis_research/2175

In Proceedings of the Automotive Software Workshop on Future Generation Software Architectures in the Automotive
Domain, San Diego, CA, Jan. 10-12, 2004.

Two-tiered Architectural Design for Automotive Control Systems:
An Experience Report

Kevin Steppe, Greg Bylenok, David Garlan, Bradley Schmerl,

 Kanat Abirov, Nataliya Shevchenko
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15221
{ksteppe,gbylenok,garlan,schmerl,kanatknt,san}@cs.cmu.edu

Abstract
An attractive approach to architecture-based design is

to structure the development process into two tiers. The
top tier represents the abstract design (or architecture) of
a system in terms of abstract components. The bottom tier
refines that design by making specific implementation
decisions, such as platform, middleware, and component
implementations. While attractive in principle, there has
been relatively little industrial-based experience to shed
light on problems and solutions involved in such an ap-
proach. In this paper we describe our experience in de-
veloping tools to introduce a two-tiered model-based ap-
proach to the design of Ford Motor Company’s automo-
tive control systems, highlighting the principle chal-
lenges, and evaluating the effectiveness of our solutions
for them.

Keywords: Model-driven architecture, architecture-
based design, architecture design tools, software devel-
opment environments.

1. Introduction

Over the past decade industry has become increasingly
aware of the value of architectural models and architec-
ture-based design. Architectural models define a system
at a high level of abstraction – typically in terms of a sys-
tem’s interacting components – where major design trade-
offs can be analyzed before committing to a particular
implementation. Architecture-based design typically starts
with an abstract architecture and then refines that model
to the point where the system can be directly imple-
mented.

For many classes of system it is helpful to structure the
process of architecture-based design into two phases. In
the first phase system architects design a system in terms
of abstract capability, postponing implementation deci-
sions, such as execution platforms, communications infra-
structure, and component implementations. In the second
phase implementation commitments are made in a struc-
tured and systematic way. For example, abstract compo-
nents can be assigned to platforms, middleware can be

chosen to support distributed interaction between compo-
nents, and component libraries can be used to select im-
plementations for the abstract components.

While attractive in principle, a two-tiered approach to
model-based development raises a number of interesting
issues that have yet to be fully understood. What kinds of
notations are best used to represent the two levels? What
kinds of architectural features should be modeled at each
level? What parts of the refinement process can be auto-
mated? How well does the approach scale to realistic sys-
tems? To what extent does the application domain influ-
ence the process and artifacts?

In this paper we offer insight into these issues by de-
scribing our experience of developing a tool to support
two-tiered design methods for automotive control systems
at Ford Motor Company. Currently, Ford has detailed
component specifications in the form of Simulink [9]
models. However, they are currently only able to perform
component level analyses. Composition of the Simulink
models is currently performed manually, and even con-
structing small subsystems can take a matter of weeks;
composing an entire automotive software system is infea-
sible with this approach. Our goal was to provide auto-
mated assistance that introduces a two-tiered modeling
process and dovetails well with Ford’s current practices.
In particular, Ford engineers desire to initially design
their systems at a high level of abstraction in terms of
abstract entities such as controllers, sensors, and schedul-
ers. These components could then be associated with spe-
cific component implementations and their Simulink
models, and used to automatically produce a more de-
tailed composition on which detailed design analysis
could take place.

As we will illustrate, architecture description lan-
guages and their associated tools can play a central role in
supporting two-tiered architectural design. However,
there were a number of difficult technical hurdles that we
had to surmount – hurdles that we suspect will be charac-
teristic of many other domains in which this kind of sup-
port is required. Section 2 discusses some related work. In
Section 3 we discuss the approach we used, give an over-
view of our tool (called Synergy), and present an example

problem to provide context. Section 4 & 5 discuss the
notational and technical issues encountered and the solu-
tions we used. We conclude with a review of the imple-
mentation status and evaluation of results.

2. Related Work

The use of two-tiered approaches to software devel-
opment extends back to early specification languages,
such as Larch [6], which advocated the separation of
abstract capability from implementation details. More
recently the Object Manage Group has been promoting
model-based design using a two-tiered approach that they
refer to as “Model-Driven Architecture.” (MDA) [10].
MDA is motivated by similar concerns to ours, but
attempts to advance the state of understanding about how
to carry out such an approach in the context of real
systems, complementing existing development methods,
and leveraging special features of a product domain (in
our case automotive control systems).

Within the area of architectural design, many people
have advocated the importance of multi-view approaches
[3][8]. A two-tiered architectural method can be viewed
as a specialization of such approaches, focusing on two
specific architectural views: an abstract and a concrete
view. The specialization allows one to consider general
questions of multi-view consistency, and requirements for
multi-view tools in a more limited, but tractable, context.

There has been considerable recent interest in model-
based approaches to embedded control systems, such as
automotive and avionic. For example, the DARPA-
sponsored MoBIES Project specifically focuses on this
area, and has developed a number of techniques, nota-
tions, and tools [2]. Our work fits within that general
category of research, but explores the specific conse-
quences of using architecture description languages as the
carriers of embedded systems designs.

The ISIS group at Vanderbilt has been working with
Ford on a similar project [7]. They have so far focused
primarily on handling constraint satisfaction within a
large design space through BDD trees. Their solution
uses a single abstract view and presents the acceptable
solutions to the given constraints. The single view model,
however, prevents the user from fine-tuning or validating
the selections.

3. Two-tiered Architectural Design

In this section we describe a motivating example that
is typical of the work of a Ford engineer designing an
automotive software system. We cover the architectural
styles for background. We describe in general terms a
scenario of what engineers need to do, and then continue
with how to think about this example in architectural

terms. We then briefly introduce an architectural tool,
AcmeStudio, which is a typical software architecture en-
vironment. Following this, we show how Synergy, an
augmentation of AcmeStudio, supports the scenario.

3.1. The Problem

Ford Motor Company, like many in the automotive in-
dustry, build software systems for all their car models.
The software used in these systems is life critical, where
the failure can cause loss of human life. To address this,
Ford develops Simulink models of their componentry so
that they can conduct rigorous analyses of these compo-
nents to help ensure reliability. These models are a de-
tailed specification indicating all component interfaces in
addition to properties supporting simulation. Component
models are reused and iteratively changed across projects.

Despite having the ability to analyze individual com-
ponents, producing assemblies of these components to be
analyzed is problematic and does not scale. Currently,
these compositions, if they are built at all, are constructed
manually. Because components typically have dozens of
interfaces each, manually connecting them is tedious and
error prone. One of Ford’s main needs is to determine
whether all input ports in a model are connected. If any
input port has not been connected the final system will
not work. However, for a typical six component subsys-
tem, Ford engineers report that construction takes ap-
proximately two weeks. The handful of large (50 compo-
nent) vehicle control subsystems developed have taken
six months to produce.

Factor in that there are multiple choices for each com-
ponent (e.g., it is possible to use one of several wind
shield wiper servos), and the combinatorial explosion of
possible combinations quickly makes manual construc-
tion absolutely infeasible.

However, this problem presents an ideal opportunity
for automated tool support. Typically, engineers think of
constructing their software in terms of abstract system
architectures. Detailed compositions, called assemblies,
are only necessary when performing detailed analysis.
Thus, we introduced a two-tiered modeling approach that
reflected this, and allowed assemblies and composed
Simulink models to be automatically generated.

3.2. Overview of Approach

Thinking about a software system in terms of its com-
ponents and interactions can be represented with software
architectures [1][11][14]. A software architecture repre-
sents a system in such a way, and is amenable to auto-
matic analysis. To model an architecture in a specific do-
main, it is common to use an architectural style [4]. An
architectural style is a vocabulary of the possible types of
components, connectors, and interfaces that can be used

in a particular domain, in addition to rules governing the
correct composition of these elements.

To address the problem described above, we intro-
duced two levels of architecture representation to be used
by Ford: the high-level System Architecture and the low-
level Assemblies. These levels of abstraction are repre-
sented by two related architectural styles, which will be
discussed in Section 3.3. In this section, we discuss a
typical scenario for which Ford engineers desire tool sup-
port.

An engineer starts designing the software for a car by
creating a high level architecture of the system. At this
level, the engineer is only concerned with the high-level
vocabulary of Servos, Managers, etc, rather than particu-
lar implementations or specializations of these. For ex-
ample, at this level the engineer may only be concerned
with putting together a system architecture for the cruise
control aspect of the car, and not be concerned about the
low level details such as particular connections, timing
requirements, or memory footprint of particular
implementations of a cruise control manager for a
particular car model. At this level, the engineer is
concerned with whether the system is well-formed and
consistent, and also which subsystems of the car interact
with other subsystems. Because the system architecture is
abstract, it can be reused in other products, both within
Ford or its subsidiary companies.

 After creating the system architecture, the engineer
associates the abstract components with component mod-
els that are stored in a repository and which may be re-
lated to particular products within the automotive lines.
They are reused for new abstract architectures.

In order to manage the complexity of the architecture,
the engineer may divide the architecture into sub-systems
and compose them in a hierarchical fashion. In such cases
the user must associate the deepest components of an ab-
stract component with component characterizations.

After associating abstract components with characteri-
zations of those components, the engineer needs to pro-
duce an assembly from this abstract design. This assem-
bly is based upon platform-specific information provided
by the component characterizations, and involves choos-
ing among multiple alternatives for components.

The final step of the process is translating assemblies
into Matlab/Simulink models of the entire subsystem. The
assemblies can then be imported into Matlab, and pre-
existing analyses and simulations of the system can be
conducted.

3.3. Architectural styles

Although each tier of our approach is closely related,
we developed two architectural styles to allow modeling
at each level in Acme [5]. When working at the system
architecture level, Ford engineers use the Ford-System

Architecture style to create abstract architectural models.
These models are then translated by the tool into architec-
tural models in the Ford-AssemblyR style.

To design these styles, we analyzed documents, Mat-
lab models, and papers provided by Ford researchers. We
then created Acme families based on these artifacts by
defining element types and creating rules. The high-level
vocabularies of these styles consist of component types,
their expected forms of interaction in the form of connec-
tor and interface types, and a set of constraints (heuristics
and invariants) on how components should be assembled
into abstract or low-level systems.

The Ford System Architectural style consists of the
following elements:

- Ten component types organized as depicted in
Figure 0. The component type RootT defines a
property allowing a component characterization
to be assigned to a component. At this level, the
components in the architectural style merely in-
teract with other components via input and out-
put ports. These ports are defined in BaseT. Ex-
ternalT represents the point of interaction be-
tween the subsystem being defined and other
systems. For example, if the cruise control sub-
system must interact with the brake subsystem, it
does so through this component.

- One connector type, called CSignalT that all
components at this level must interact through.

- Associated port and role types for input and out-
put, representing interaction points between
components and connectors.

Figure 0 illustrates the abstract architecture of our ex-
ample cruise control system. At this level, the architec-
tural style is not particularly rich. Ford engineers are only
concerned about the interconnections between compo-
nents at this level. Rules specify that all ports must be
attached to roles, and that BaseT’s contain a single ab-
stract input and output port.

At the Assembly level, engineers are concerned with
detailed knowledge of the connections between compo-

RootT

BaseT ExternalT

SchedulerT IODriverT DigitalDeviceT

ControllerT PlantT SensorT

Figure 1. The Component Types of the Sys-
tem Architectural Style.

nents. Thus, while the component types at this level are
the same as at the abstract architectural level they may
have any number of input and output ports showing de-
tailed communication. Additionally there are two new
connector types:

- ManSignalT, indicating a signal connection
added by the user at the assembly level rather
than automatically generated from the system ar-
chitecture.

- Bus, representing a specific publish-subscribe or
shared data bus connection.

Because architectures in this style are generated from
the higher design, this style does not have any new rules
on its connections. Similar rules to the high level are
maintained in case engineers manipulate the model at this
level.

Generation of the Assembly level from the System Ar-
chitecture level involves elaborating connections between
components in detail. All the possible ports on a compo-
nent are enumerated. Then all legal connections for those
ports to other components are made. This detail is pro-
vided through the component characterizations and the
connections made at the system architecture level.

3.4. Overview of Synergy

A typical architectural development environment pro-
vides support for producing architectural models, and
conducting architectural analysis to determine properties
of the model, such as performance, quality, and correct-
ness.

Many architectural design tools are written to work
with a particular architectural style, and making them
work with other or customized architectural styles is dif-
ficult. More recently, architectural tools have been devel-
oped that allow users to customize the environment based
on particular architectural styles. Among these include
Unicon [15], Mae [12], and AcmeStudio [13].

We used AcmeStudio as a basis for this project.
AcmeStudio is a style-neutral architecture development
environment that can use any style written in Acme and
tailor the environment for that style. It provides access to
the element types in the style, style-specific depictions of
elements in the architectural diagram, and support for
analysis of rules. Quite recently, AcmeStudio has been
retargeted to the Eclipse platform, which enables exten-
sion through the notion of plugins. AcmeStudio takes
advantage of this feature to allow style-specific analysis
to be integrated and used by designers. These extensions
allow customization of the user interface, specialized
views of the architecture, and access to extra analyses.
This meant that it was possible to reuse a large body of
code, and concentrate only on the areas specific to Ford.

In this experience we extended AcmeStudio so that it
supports the two architectural styles that were developed
for Ford, the ability to read Ford’s Simulink component
models, and generation of assemblies from high level
system architectures. This tool is called Synergy. In this
section we give an example of using Synergy to support
the scenario described above. In later sections, we discuss
the issues that we needed to resolve in order to make this
tool useful to Ford engineers.

3.4.1 Creating the abstract design
To illustrate the use of Synergy, and to give an impres-

sion of its capabilities, we follow the design of a simple
and generic cruise control system. The demo system dis-
cussed further in the paper is rather simple.

The system represents a cruise control system that con-
sists of the following components:
- “ExternalIO”. This ExternalT component provides a

bridge between this system and other outside sys-
tems. This component sends parameters to “Sched-
uler” and “Manager” components such as scheduling
periods and cruise settings respectively.

- “Scheduler”. This SchedulerT component manages
usage of hardware resources of the system and sched-
ules all the components.

- “Manager”. This ControllerT component is responsi-
ble for controlling the Servo component.

- “Servo”. The ActuatorT component manipulates
physical devices. The physical devices are not in-
cluded in this example, but can be modeled with
PlantT components.

- “Monitor” is a SensorT type which reads data about
the hardware from the servo and sends results to the
manager.

The user creates an abstract architecture of the demo sys-
tem without any platform specific details (see Figure 0).

At this abstract level a component of the architecture is
represented with two ports (input and output). These in-
put and output ports are interfaces to other components of
the design. Connectors are represented as buses that con-
nect interfaces of the architecture’s components.

Figure 2. The System Architecture of the

Design.

After creating the abstract architecture Ford engineers
must either associate each component to existing Simu-
link models or refine the component as a subsystem.
Synergy allows the user to browse and select a Simulink
model to associate with a component in the project, as
depicted in Figure 0. In this version of Synergy, there is
currently no check that the right kind of Simulink model
is assigned to a component. For example, a scheduler
model could be assigned to an Actuator component. An
error of this sort only becomes apparent in later stages of
the design.

Design choices between alternative Simulink models
or subsystems can be specified through AcmeStudio’s
support for multiple representations. For each possible
choice, a new representation of a component is created,
with subcomponents. A component characterization rep-
resenting the particular alternative is then assigned to
subcomponents.

3.4.2 Creating the assemblies
After the user creates the abstract architecture and as-

sociates its components with component characteriza-
tions, Synergy allows the user to generate low-level archi-
tecture alternatives or “Assemblies”. The low-level archi-
tecture elaborates details of the abstract architecture and
they are described as follows:
- The set of input and output ports are completely

enumerated. These sets are detailed refinements of
the abstract input and output ports shown in System
Architecture.

- Connectors of the design at the assembly level are
detailed representations of the buses used at the ab-

stract level. These buses are refined as end-to-end
connectors, each having only two roles connecting
two neighboring components.

At this time legal connections are defined by a match
of input port name and output port name. The buses cre-
ated in the system architecture are first represented as
hashtables. The name of output ports connected to the
high level bus is added to the table. Then, for every input
port connected to the bus, the corresponding output port
is found in the table and a point-to-point connector is
added to the assembly. Subsystems are handled recur-
sively, built from the bottom up. Though no data have
been collected, this solution should scale linearly with the
total number of ports in the system – an important feature
as a large system could contain thousands of ports.

For example, onsider the bus in between the ‘Sched-
uler’ and ‘Monitor’ in Figure 2. That bus becomes a
hashtable of all the output ports from the scheduler com-
ponent. The Manager, Monitor, and Servo components all
have input ports attached to the bus and thus may search
that hashtable for connections. For the ‘Monitor’, the port
named ‘trig_etc_monitor_fast’ will match with the output
port of the same name on the ‘Scheduler’ component as
shown in Figure 4.

Such detailed representations of components and con-
nectors empower the user with the ability to conduct com-
plex analyses using heuristics and constraints of Acme
architecture description language and/or custom-
developed analyses that could be plugged into Synergy.

We added two analyses that demonstrate this plug-in
feature. The first takes a numerical property (CPU usage
in our case) and sums across all components, checking if
the final total is less than the system wide constraint
specified by the user. The second gives a suggested
scheduling order, by creating a dependency graph using
Apache’s Commons project graph code. Cycles are iden-
tified and reported, then a possible ordering suggested.

3.4.3 Generating Simulink Models
Ford’s primary model analysis tool is Mat-

lab/Simulink. Thus it was vital that Synergy produce
Simulink models from the designs. As noted above, all
the atomic components are linked to Simulink models.
Additionally, all the ports in the assembly view map di-
rectly to ports in the Simulink model. Using those map-
pings Synergy generates a model using the Simulink
scripting language. An example of the Simulink model
generated by Synergy is presented in Figure 4. Once run
through Simulink the model can be re-imported into Syn-
ergy as a single component, allowing for iterative devel-
opment of ever larger models.

Figure 3. The user links Acme components to
Matlab/Simulink models.

Summarizing this example – we have given Ford ar-
chitectural styles tailored to their domain modeling prob-
lems. AcmeStudio provides an effective tool for develop-
ing abstract architectures of vehicle control systems. The
Synergy extension to AcmeStudio automatically gener-
ates a more detailed view of the ‘assembly’. The user is
then able to review, analyze, and modify the details of the
design. Finally the entire assembly can be converted to
Simulink for further analyses.

4. Representation of component architec-
tures

Although in the example above, the use of Synergy
seems straightforward (because it was designed that way),
we had to deal with a number of representational issues.
Other architectural approaches to multilevel design are
likely to encounter similar issues.

4.1. Styles of multiple representations

The most obvious issue in multilevel design is how to
represent each level. We needed two design levels, the
more abstract System Architecture, and the detailed As-
sembly. As our intent was to simplify component compo-

sitions, the abstract level needed to be easily created by
the user. We also wanted the ability to do some analysis
at the abstract level before generating detailed assemblies.
The detailed level had to support the many ports and con-
nections present in the system as well as the properties to
be analyzed. In our case we used the Acme ADL for both
levels. To better represent the features of the two levels,
we used different architectural families for the two levels.
The family provides and requires the attributes and design
restrictions appropriate to that level. While it would be
possible to use different languages for each level, using
the same one as in our case means that engineers don’t
have to learn to two different tools. And since both views
and manipulations are architectural, it made sense to use
the same language.

4.2. Hierarchy

Ford’s vehicle control models are likely to include one
hundred different components. Managing that scale re-
quires breaking the system into modules and subsystems
via architectural hierarchy. In fact, Ford engineers gener-
ally work with only five or six components at a time, con-
structing large systems from these subsystems. Addition-
ally, hierarchy provides a mechanism for re-using assem-
blies. Thus large architectures can be built in a bottom-up

Figure 4.The Assembly for the Design.

approach from previously built assemblies. In our case
hierarchical design was supported through Acme repre-
sentations. In representations, the abstract component is a
place-holder for the underlying sub-structure, a scheme
which matched our intended use of hierarchy.

The interface to the subsystem must be clear for the
engineer to make use of the subsystem. At the system
architecture level a single input and output port is suffi-
cient, however the details must be identified somewhere.
This interface must also be mapped to ports within the
sub-structure. In some cases the mapping from external
port or ports to internal structure will have higher than 1:1
cardinality – for example an internal source ‘A’ may sup-
ply data to two components outside the subsystem. In
these cases a mechanism for one to many mapping is
needed which can distinguish the different possible mean-
ings applicable to the domain. One to many mappings
could be fan-in, fan-out, a priority arrangement, a rotation
of usage, or some other meaning depending on the do-
main. Some method is required to indicate this choice in
the model (so that it can be used in analysis, for example).
Unfortunately, no mechanism currently exists in Acme to
make this possible, and so handling different kinds of one
to many mappings was not supported.

4.3. External interfaces

Any design will need to interface with other systems,
requiring that the system representation includes facilities
for identifying that interface. The interface is also crucial

to using hierarchy and building progressively larger archi-
tectures. The question becomes how that interface is de-
termined. Options include explicit specification by the
designer, automatic generation from the available ports of
the system, or leaving unbound ports. Explicit specifica-
tion enables the system to check for completeness, but
requires a lot of extra work for complicated interfaces.
Automatic generation is easier on the user, but could
mask incompleteness by generating additional inputs.
Leaving unbound ports allows the user to review the in-
complete system to pick needed inputs, but prevents full
analysis. One of Ford’s main needs is to determine
whether all input ports in a model are connected. If any
input port has not been connected the final system will
not work. Thus we chose to have the interfaces be ex-
plicit. Having explicit interfaces allows us to check and
verify the completeness of the system, both for inputs and
expected outputs.

However, within hand built sub-systems, we generated
the interface from unsatisfied input (or required) ports,
and any output ports used by the rest of the system. We
did not allow the user to specify or restrict which compo-
nents (or ports) within a sub-system would map to its
interface. For the highest level of the System Architecture
the user must specify the interface through the use of spe-
cial components representing external systems. This is not
an especially intuitive mechanism. A more intuitive
model would make a single choice between generated and
specified interfaces. However, the method does allow for
a designer to maintain control of the interface to be ex-

Figure 5. The Simulink Model generated by Synergy

posed to other systems, while making modularization
within the system easy.

4.4. Expression of alternatives

For Ford, exploration of design alternatives is an im-
portant feature. With a large collection of components
there are often multiple choices which fulfill the required
interface yet still have different properties. Ford often
uses a single architecture across several car makes and
models, the differences coming in the choice of compo-
nents to fill in that architecture. The abstract component
representation must be able to express these alternatives.
Since the number of alternatives grows exponentially, the
scalability of constraint checking across the possibilities
may be heavily dependant on representation. Even after
constraint checking, a single system architecture can gen-
erate a large number of assemblies. Each of these will
need to be stored and presented in some navigable man-
ner. The user may also wish to review how constraint
checks eliminated certain alternatives, requiring the soft-
ware to present easily searched reports on the fate of all
choices.

Vanderbilt used a special alternative component type
to indicate choices. We used Acme’s allowance for mul-
tiple representations to express choice points. Each rep-
resentation for a component represents a potential choice.
This mechanism is fairly heavy for a choice between two
components. However, it does allow for choice points
between entire subsystems – which may contain their own
choice points.

4.5. Component linking

When the design must link to an existing set of com-
ponents or models, the architecture description needs to
support that link. Component linking is especially impor-
tant when the architecture must integrate with external
tools as discussed in 4.6. We used a property on each
component to indicate which model to link to the archi-
tectural component. Every component to be used is
placed within the project directory making selection via a
browser easy. Unfortunately we did not find a way to
prevent erroneous linkages – such as mechanical models
with software models. Using a property rather than nam-
ing, allows the user to construct the architecture using a
naming scheme appropriate for that design while linking
to models named with a different scheme.

4.6. Analysis support

Additionally various properties are needed to support
analysis of the system. We supported analysis on three
different kinds of properties. The first kind is checked by
AcmeStudio and includes architectural constraints, as

well as properties added by the user directly to the archi-
tecture description. The second set of properties is pulled
from the Simulink models – either analyzed through
Simulink directly or added to the architectural description
automatically. The component linking mentioned above
enables Ford to take full advantage of Simulink’s power
on assemblies generated by Synergy. Lastly, our tool uses
its own component characterization file. Properties added
to the characterization can be analyzed through an analy-
sis plug-in framework in Synergy.

We presented a number of questions at the beginning

of the section. The solutions we chose to these issues
heavily influenced the development of Synergy. Similar
but separate styles make automatic conversion easy, while
supporting the difference in detail. We used AcmeStu-
dio’s built in representations to support hierarchy and
thus enable generation of large modules in an understand-
able fashion. The external interface for a design is speci-
fied by the user through use of a special component. In-
ternally, Synergy automatically generates the interface
between hierarchical levels. Design space is also sup-
ported by Acme representations, considering them to be
mutually exclusive alternatives. Linking to existing mod-
els is provided by Acme properties and a convenient
browser dialog. Lastly, an analysis plug-in framework is
part of both Synergy and AcmeStudio. We felt that our
architectural representation is rich enough to support
many more analyses than we could develop. Thus we
built Synergy to make it simple for the customer to add
more without having to address representational issues.

5. Tooling Issues

Usable multilevel design software requires more than
just appropriate representation solutions. The user needs
to be able to construct architectures easily, view them,
and analyze them – often using other software. In par-
ticular the developer must provide tool support for
graphical editing, layout of generated views, and integra-
tion with other analysis tools. Lastly, as there are multiple
views representing the same design, consistency checking
is also important.

5.1. Visualization & usability

Software architectures can be described using an archi-
tectural description language, but a textual description
may be difficult for users to read and understand. It is
more natural to deal with the architecture graphically,
where relationships between components can be made
clear. Since we had adopted the Acme architectural de-
scription language, we could utilize the AcmeStudio de-
sign tool to provide a graphical visualization of the
model. AcmeStudio also provides a way for users to

compose models visually. To create a new model, users
simply drag-and-drop new components from a palette of
pre-defined types. Beginning users will likely stick to the
graphical user interface, however, advanced users may
still edit the underlying Acme architectural description
directly.

5.2. Layout Tools

Rather than generating source-code from a model, our
modeling tool generates one model from another. Once
generated, the user must be able to visually inspect the
new model. The newly generated model contains signifi-
cantly more detail than the source model, and care must
be taken to keep the model readable. Components should
be laid out intelligently so that connections between com-
ponents remain clear. Clarity remains a challenge within
these highly detailed models, where each component may
involve twenty to thirty individual connections.

The right layout algorithm can help reduce the visual
complexity of the generated diagram. Existing graph lay-
out algorithms generally try to optimize a particular aes-
thetic quality of the diagram, for example, minimizing the
number of connection bends and overlaps. Choosing an
algorithm is generally a tradeoff between these different
aesthetics, as well as running time and development ef-
fort. In the end, the team settled for a heuristic-based ap-
proach. The layout algorithm used here takes the original
system architecture as a starting point, adjusting the posi-
tions of components to meet a minimum acceptable level
of readability. This helps promote some correspondence
between the system architecture and generated assembly.
It provides the user some influence over the generated
layout, but it relies on the user to place components intel-
ligently within the system architecture.

5.3. Integration with analysis tools

The tool fills a small but critical niche in the model-
based development cycle, so it should not be considered a
stand-alone tool. Rather, it must work in cooperation with
the other tools at the modeler's disposal. Foremost among
these is the Mathwork's Simulink modeling and analysis
package. Simulink provides the individual component
models that serve as building blocks within our tool.
Simulink also provides advanced analysis capabilities for
verifying completed assemblies. Our tool must therefore
be able to translate models to and from Simulink.

Unlike in the object-oriented world, the embedded sys-
tems community has yet to adopt a standard format for
exchanging models between tools. In the meantime, tool
developers must choose from one of several candidate
formats. Acme's roots as a generic description language
makes it a suitable candidate for model interchange.

Translating the models between Simulink and Acme was
fairly straightforward.

Once settling on the Acme ADL, the team was able to
make advantageous use of the existing Acme toolset.
Foremost among these was AcmeStudio, a tool for com-
posing and analyzing Acme models. AcmeStudio is itself
built upon the Eclipse open-source development envi-
ronment. Eclipse provides a ready-made framework for
integrating individual development tools under a common
user interface. The cornerstone of this framework is a
well-developed plug-in mechanism for expanding a tool's
capabilities. The Eclipse framework allowed the team to
deliver the core functionality in one plug-in, saving ad-
vanced forms of analysis for a later plug-in. Several more
plug-ins supporting additional data formats and analyses
will expand the tool's usefulness and reach.

5.4. Consistency Issues

With multiple models involved in the development
process, consistency between models becomes an impor-
tant issue. The tool gives the developer free-reign to
tinker with the design at both the high and low levels of
abstraction, so keeping everything synchronized remains
a challenge. Changes to the system architecture or indi-
vidual component models must be carried forward into
the generated assemblies. Today, this is accomplished
automatically by regenerating the assemblies. Reverse
engineering is not supported, because developers are ex-
pected to make at most minor targeted changes to the as-
semblies.

We used AcmeStudio to provide graphical editing of

architectures as well as the previously mentioned repre-
sentational facilities. Automatic layout will always be
difficult for larger, more complicated systems. To sim-
plify the problem we took advantage of the user con-
structed system architecture as a starting point. Integra-
tion with other tools was a major requirement from Ford,
which led us to select Eclipse and AcmeStudio as a base
for plug-in development. Ford is focused on the architec-
ture and pushing for automatic generation, thus Synergy
maintains consistency in a feed-forward mechanism, re-
generating the detailed model when requested.

6. Implementation status

Synergy has been built and delivered to Ford. Synergy
is best considered a prototype at an alpha or beta devel-
opment status. Ford is currently evaluating the tool, and
has expressed interest in further development.

Synergy was created by five students in the Master of
Software Engineering program at Carnegie Mellon Uni-
versity. Our experience report comes from one calendar
year of work as part of the masters program. Synergy is

an augmentation of AcmeStudio and uses AcmeLib, both
developed by the ABLE group at Carnegie Mellon. As of
writing, Synergy contains about 160 source files using
Eclipse, AcmeStudio and AcmeLib. To support Ford’s
interest in further development, another group of masters
students will be working on Synergy over the next year.
Areas for future work include:
- Improving support for hierarchy through interface

specification or restriction.
- Development of more architectural design rules and

heuristics.
- Improved component layout generation.
- Integration with Ford’s enterprise wide repository of

components, possibly including automated search.

7. Evaluation

While Ford has had considerable success in simulating
individual software components, the complexity of build-
ing assemblies of components has prevented larger scale
model development. We took a two-tiered approach to
solving the problem. The user is able to work with
enough abstraction to design a large system. Synergy
then automates the time consuming process of connecting
the components and checking constraints across alterna-
tives. As discussed earlier, Synergy also handles issues
such as component linking, consistency, and hierarchy.

The initial reaction from Ford has been very positive.
In a demo we were able to build a system in twenty min-
utes that would have previously taken two weeks. They
estimate that large systems which took six months previ-
ously, would now take about two weeks.

The Synergy project illustrates a number of lessons.
There are several notational and tool support issues which
any similar endeavor will encounter. To be useful the tool
must support graphical construction of architectures and
layout of any generated diagrams. If editing is allowed at
all levels, consistency becomes a particularly difficult
problem. The notation of the solution must contain repre-
sentations for hierarchy or else the designs will be too
complex to be understood. A means of specifying the
system’s interface is needed as well as a way of linking to
existing component characterizations. For domains where
a large number of components exist, expression of design
choices and constraint satisfaction are particularly impor-
tant issues. An extensible analysis framework will greatly
enhance the system’s value. For example, Ford and Volvo
have similar design and architecture needs. However, the
components and analyses they use are different. Synergy
allows both companies to capitalize on the same tool by
adding analyses specific to their needs rather than build-
ing separate tools.

Not all of these issues are challenging, but a successful
project must have considered and decided upon a solution

for them. The more challenging issues will be difficult to
solve if they are not considered upfront.

Acknowledgements

The authors wish to acknowledge funding from Ford
Motor Company for this work. In particular, we thank
Ken Butts and William Milam for providing feedback on
our work.

References

[1] Bass, L., Clements, P., and Kazman, R. Software Architec-
ture in Practice. Addison-Wesley, 1999.
[2] Bay, J.B. Model-Based Integration of Embedded Software.
http://dtsn.darpa.mil/ixo/programdetail.asp?progid=38.
[3] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J.,
Little, R., Nord, R., and Stafford, J. Document Software Ar-
chtiectures: Views and Beyond. Addison-Wesley, 2002.
[4] Garlan, D., Allen, R.J., and Ockerbloom, J. Exploiting
Style in Architectural Design. Proc. SIGSOFT '94 Symposium
on the Foundations of Software Engineering, New Orleans, LA,
1994.
[5] Garlan, D., Monroe, R.T., and Wile, D. Acme: Architec-
tural Description of Component-Based Systems. Foundations of
Component-Based Systems. Leavens, G.T., and Sitaraman, M.
(eds). Cambridge University Press, 2000 pp. 47-68.
[6] Guttag, J.V., and Horning, J.J. (Eds) Larch: Languages and
Tools for Formal Specification. Springer-Verlag, 1993.
[7] Karsai, G, Sztipanovits, J., Ledeczi, A., and Bapty, T.
Model-Integrated Development of Embedded Software. Pro-
ceedings of the IEEE 91(1):145-164, 2003.
[8] Kruchten, P.B. The 4+1 View Model of Architecture. IEEE
Software, 2(6):42-50, 1995.
[9] The Mathworks. Simulink 5.1.
http://www.mathworks.com/products/simulink.
[10] Object Management Group. MDA: The Architecture of
Choice for a Changing World. http://www.omg.org/mda.
[11] Perry, D.E., and Wolf, A.L. Foundations for the Study of
Software Architecture. ACM SIGSOFT Software Engineering
Notes, 17(4):40-52, 1992.
[12] Roshandel R., van der Hoek A., Mikic-Rakic M., Medvi-
dovic N., Mae - A System Model and Environment for Manag-
ing Architectural Evolution, Submitted to ACM Transactions on
Software Engineering and Methodology (In review), 2002.
[13] Schmerl, B., and Garlan, D. Exploiting Architectural De-
sign Knowledge to Support Self-repairing Systems. Proc. 14th
International Conference on Software Engineering and Knowl-
edge Engineering, July, 2002.
[14] Shaw, M., and Garlan, D. Software Architectures: Perspec-
tives on an Emerging Discipline. Prentice Hall, 1996.
[15] Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young,
D.M., Zelesnik, G. Abstractions for Software Architectures and
Tools to Support Them. IEEE Transactions on Software Engi-
neering, 21(4):314-335, 1995.

	Tool Support for Two-Tiered Architectural Design for Automotive Control Systems
	Citation
	Author

	Microsoft Word - Ford-submitted.doc

