Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

1993

Repository Evaluation of Software Reuse: An Empirical Study

R. D. BANKER

Robert J. Kauffman
Singapore Management University, rkauffman@smu.edu.sg

D. Zweig

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Numerical Analysis and Scientific Computing Commons

Citation

BANKER, R. D.; Kauffman, Robert J.; and Zweig, D.. Repository Evaluation of Software Reuse: An Empirical
Study. (1993). IEEE Transactions on Software Engineering. 19, (5), 379-389.

Available at: https://ink.library.smu.edu.sg/sis_research/2156

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2156&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2156&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 4, APRIL 1993 379

Repository Evaluation of Software Reuse

Rajiv D. Banker, Robert J. Kauffman, and Dani Zweig

Abstract— The traditional unit of analysis and control for
software managers is the software project, and subsequently
the resulting application system. Today, with the emerging ca-
pabilities of computer-aided software engineering (CASE) and
corresponding changes in the development process, productivity
gains can be realized by reusing portions of the organization’s
inventory of existing application designs and code. With this
opportunity, however, comes the need to monitor software rense
at the corporate level, as well as at the level of the individual
software development project. Integrated CASE environments
can support such monitoring. We illustrate the use and benefits of
repository evaluation of software reuse through an analysis of the
evolving repositories of two large firms that recently implemented
integrated CASE development tools. The analysis shows that
these tools have supported high levels of software reuse, but it
also suggests that there remains considerable unexploited reuse
potential. Our findings indicate that organizational changes will
be required before the full potential of the new technology can
be realized.

Index Terms— CASE, computer-aided software engineering,
domain analysis, organizational learning, repositories, software
metrics, software reuse.

I. INTRODUCTION

RADITIONALLY, the management of software devel-

opment has focused upon the individual software project.
Managers are evaluated, in turn, on the basis of their projects’
success in meeting cost and quality targets. Some organizations
are devoting resources to process improvement, so that projects
may be held to increasingly high standards, but even here,
in all but the most mature organizations, the emphasis is
on project-level monitoring [25]. Yet there is a range of
insights that can only be attained through the monitoring and
management of the software inventory at the level of the entire
firm.

The example upon which this paper focuses is that of
software reuse in an integrated computer-aided software engi-
neering (CASE) environment built around an object repository.
Software reuse, the incorporation of previously developed
software elements into a system under development, has
shown itself to yield substantial productivity benefits, even

Manuscript received October 23, 1991; revised December 9, 1992. This
work was supported in part by the Nippon Electric Corporation and by
the U.S.~Japan Business and Economics Research Center, Stern School of
Business, New York University. Recommended by R. Selby and K. Torii.

R. D. Banker is with the Department of Accounting and Information Sys-
tems, Carlson School of Management, University of Minnesota, Minneapolis,
MN 55455.)

J.J. Kauffman is with the Department of Information Systems, Stern School
of Business, New York University, New York, NY 10012.

D. Zweig is with the Department of Administrative Sciences, Naval
Postgraduate School, Monterey, CA 93943,

IEEE Log Number 9207593,

in traditional development environments.! CASE technology
can provide considerable support for software reuse.

A number of industry observers have pointed to the special
potential for development productivity and software quality
improvements, when development occurs using CASE tools
(81, [9], [16], [34]{36], [40], [27). The emergence of CASE
tools that emphasize software reuse can mean that much of
the real value of modular software will be derived from the
extent to which it can:

* defray the costs of the construction and testing, and raise
the overall level of perceived quality and reliability of
systems that are delivered;

* speed the implementation of new systems while opportu-
nities for competitive advantage still exist in the business
areas that the software is meant to support; and

* be leveraged across projects and areas of the firm in
support of multiple businesses.

Meanwhile, recent empirical research has begun to uncover
the extent of those gains [2]-[4].

The time-worn epithet that “you can’t manage what you
can’t measure” clearly applies here. Reuse, by its nature, is an
activity that spans multiple projects and application systems
enterprisewide. To manage such reuse requires monitoring the
firm’s software at the level of the organization or enterprise.
Even relatively simple metrics, collected at that level, can
answer key questions for senior managers that traditional
monitoring does not address.

Repository-based integrated CASE environments make the
collection of such metrics practical. A repository maintains
all of a corporation’s software and, more importantly, all
relevant information about that software, including its design,
its history, and its interactions with other system elements. By
analyzing software reuse at the repository level—what we call
repository evaluation—we can cut across multiple projects to
ask questions such as:

* What kinds of objects are most likely to be reused?
* Under what conditions is reuse most likely to occur?

This can lead, in turn, to a shift away from single or isolated
software product-oriented questions to a new focus on more
development process-oriented questions, such as:

1See, for example, Cavaliere’s [15] report on the software reuse program
at the Hartford Insurance Group, Lanergan and Grasso’s [26] review of
Raytheon’s achievement of 50% productivity gains through software reuse
and elimination of redundant software, and Cusamano’s [18] discussion of
efforts to reuse software among major Japanese electronics firms. For an
overview of the key references in the software reuse literature, see the books
by Biggerstaff and Perlis [11], [12], Freeman [22], and Tracz [46], and the
articles published in two special issues of IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING (vol. SE-10, Sept. 1984) and IEEE Software (July 1987); Hooper
and Chester [24] offer a useful update.

0098-5589/93%$03.00 © 1993 IEEE

380 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 4, APRIL 1993

* Do technical advances in the development methods in-
crease reuse to the same extent in different environments?

* Do differences in organizational structure lead to different
levels of success in managing software reuse?

* What can be done to encourage more software reuse?

In this paper we will use automated repository evaluation
to explore and interpret the experiences of two firms, the First
Boston Corporation, a large New York City-based investment
bank, and Carter Hawley Hale Information Services, the
information systems organization of a large California-based
retailing firm. A repository-based integrated CASE tool called
High Productivity Systems (HPS) was deployed at both sites.
Both firms believed that productivity increases in software
development would only become possible through significant
changes to their software development processes, and both
firms considered software reuse to be a key element of the
process improvement they sought. But, as the discussion will
show, the firms took contrasting approaches to its tactical
implementation.

II. SOFTWARE REUSE AND REUSE MEASUREMENT

Most of the attempts to implement formal programs of
software reuse have been initiated within the past decade. Such
programs rely heavily upon technological (CASE) support and
high levels of process maturity.

A. Software Reuse

Extensive reuse in the construction phase has been shown to
increase productivity by 20% or more [30], [3], [4], through the
use and invocation of previously developed software modules.
Greater productivity gains may be achieved by extending reuse
to other phases of the software life cycle.

Reuse Throughout the Life Cycle: As modern software de-
velopment practices increasingly emphasize phases of the
life cycle other than programming, it becomes increasingly
profitable to extend reuse efforts to those phases. Early in
the life cycle, it is possible to reuse system architecture, and
data structure and data model elements [19], [26], as well as
the abstract representations of systems that are provided to
the people who do the coding work [30]). When the oppor-
tunity arises, it may even be appropriate to reuse application
prototypes and partial systems [37]. Later in the life cycle,
it is possible to reuse existing code, particularly where prior
development efforts have left behind well-documented code.
For example, see the discussions of the Reusable Software
Library (RSL) at Intermetrics Inc. in [13], and Westinghouse
Electric’s Reusability Search Expert (REUSE) in [33]. Even
later, there is potential for the reuse of test routines and test
data [43].

The benefits of reuse are enhanced when the software devel-
opment methodology focuses on the reuse of entire modules
[32] and software objects [31]. These may embody analysis
and design efforts, as well as code, and prior testing and
documentation, as well. When the activities involving reuse
spread throughout the life cycle are linked by a methodology
(for example, SSADM, information engineering or object-
oriented design and construction) or an integrated tool set (as
is the case with integrated CASE tools such as Texas Instru-

ments’ [EF, Andersen’s FOUNDATION or Seer Technologies’
HPS), software reuse offers the potential to create even greater
long-term benefits [29], [41], [42].

Horizontal and Vertical Reuse, and Domain Analysis: The
success of a program of software reuse depends upon the
degree of commonality among the applications across which
software is shared. Prior research distinguishes between reuse
across vertical and horizontal domains [45). Vertical reuse can
occur when the majority of the applications built by software
developers are representative of a single kind of data process-
ing activity, and many software objects that are employed by
one can be shared among the others. Horizontal reuse , by
contrast, occurs across a broad range of application areas.

According to [24], horizontal reuse is more often employed
and better understood than vertical reuse. Organizations that
operate across different, highly technical domains, where little
knowledge is readily transferred across businesses are likely
to emphasize horizontal reuse. The software reuse programs
undertaken by Raytheon [26], Hitachi [18], and the National
Aeronautics and Space Administration [33], and the hypertext
reuse search interface to unrestricted software at the Jet
Propulsion Laboratory [10] are good examples.

Vertical reuse occurs less frequently. Such reuse offers
greater potential benefits, but requires developers to first carry
out a relatively thorough domain analysis, in order to design
systems with the greatest possible commonalities. Prieto-Diaz
[39] offers a useful introduction to domain analysis, and
indicates that its use to date has tended to be ad hoc; the
analysis process itself, in his view, is more an art than a
science, and only with time can appropriate design decisions
be made so as to optimize design for the purposes of reuse.
Still there is a growing number of examples of vertical reuse.
Examples that have been reported in the literature include the
reusable software development program pursued by the Hart-
ford Insurance Group [15] and McNicholl et al.’s [28] software
reuse project in the domain of missile guidance systems.

We expect that vertical reuse will increase over time with the
increasing sophistication of the CASE tools that support the
functional and technical design activities. Although horizontal
reuse is likely to offer more easily implemented reuse opportu-
nities, vertical reuse offers higher payoffs, since it takes place
across systems with higher degrees of potential commonality.
In the absence of careful domain analysis, though, one expects
vertical reuse to fall short of its potential.

Reuse Search, Adaptation, and Incorporation Costs: A
major element that will determine the success of a software
reuse program is the relative magnitude of two costs:

¢ the cumulative cost of locating, adapting and incorpo-
rating an appropriate existing software object or 3GL
module into a new application, and

* the cost of building the same function from scratch and

incorporating it into the new software, thereby eliminating
the search and adaptation costs.

Search and adaptation can represent a significant cost to a
well-meaning developer who is interested in reusing software
[22]. The research suggests that search costs alone may often
be too high, causing a developer to end a search prior to locat-

BANKER ef al.: REPOSITORY EVALUATION OF SOFTWARE REUSE

ing the appropriate reusable software. One response to these
findings has been an effort to develop classification methods
for potentially reusable software. (See, for example, [38] or
[14].) A second has been the creation of tools and techniques
to assist the developer in her search. The approaches include
facet classification analysis [38), rule-based retrieval [21], and
hypertext search [10], among others.

Gaffney and Durek [23] presented an economic model of
software reuse that reflects the costs of porting, adapting, and
incorporating reusable software. The authors argue that the
value that reuse can deliver must be weighted by the costs
that developers experience as they sort out these problems,
relative to the total proportion of the application that results
from reuse. Bullard et al. point to varying component quality
when horizontal reuse occurs, and indicate that the major reuse
costs come in verifying and validating their performance.

Templating, Mining, and Refining: It is common knowl-
edge among software development researchers that there
is widespread, often informal, application of partial reuse
approaches, such as templating new functions from similar old
ones, mining existing code to pull out just the relevant pieces
and refining existing code to serve a different purpose [1]. The
benefits of these techniques, however, are largely restricted to
the coding phase of the software life cycle.

B. Measurement of Software Reuse

Software reuse is commonly measured as a ratio of reused
code to the total amount of code in a given system. Such
measures focus upon code to the exclusion of the products
of other development phases, but they have the virtue of
objectivity.

For example, Toshiba computes the percent of the lines
of debugged and delivered equivalent assembler source lines
(EASL) that were incorporated into an application from else-
where with little or no modification [18). The Software Produc-
tivity Metrics Working Group of the IEEE (1992) has proposed
that reuse be measured as the number of source lines of code
(SLOC) incorporated in a system without modification, divided
by the total number of SLOC in the system. Note that these
metrics consider only instances of reuse in which adaptation
costs can be ignored.

We have been engaged in a program of research on pro-
ductivity in object-based CASE environments. Our findings
suggest that for such environments it is appropriate and
meaningful to measure reuse in terms of entire objects, rather
than SLOC [3]-{5]. In related work, [6], showed that “object
counts” were found to be more useful than SLOC as a basis
for software cost estimation at such sites (they yielded post
hoc estimates that were as accurate, and they were available
far earlier in the life cycle) and were far more meaningful
to programmers and project managers. Objects have the added
advantage that they embody analysis and design efforts as well
as the product of the coding phase.

III. THE RESEARCH SITES

In this research, reuse levels were tracked over the first
two years of application systems development with the newly
deployed CASE tool, HPS, as two research sites: The First

381

Boston Corporation (FBC) and Carter Hawley Hale Informa-
tion Services (CHH).

Both FBC and CHH exhibited strong managerial support
for software reuse. Both sites believed themselves to have
application systems with high degrees of commonality, and
considerable scope for reuse, and programmers at both sites
were encouraged to take advantage of HPS’s support of reuse.
Although the two sites followed different philosophies of reuse
management, their experiences turned out to be remarkably
similar.

A. The First Boston Corporation

This investment bank faced two key problems in the mid-
1980°s. It foresaw itself losing the ability to control its
development costs and to produce the increasingly complex
systems it needed in order to remain competitive. Efforts
to engineer software costs were hamstrung by application
complexity, which required expensive developer expertise,
and the development of applications running cooperatively on
multiple hardware platforms. Senior management believed that
the bank would be unable to control the costs of software
development five years into the future. At the same time,
strategic analysis indicated that the bank’s competitiveness
depended upon its ability to bring software-based trading
products to market ahead of, or at least in synch with, the
competition.

To senior management’s dismay, a 1986 survey deter-
mined that there would be no commercially available software
development tools within five years which would support cost-
effective expansion of the firm’s systems. Without substantial
changes in the firm’s software development methodology, it
was just a matter of time before the bank’s systems would
be unable to meet the demand for increased financial market
trades processing in a 24-hour a day, global market. At this
time, First Boston employed over 700 person-years of full-
time-equivalent software labor (in-house or contracted), an
expense that was growing more rapidly than any other cost
category.

The firm’s solution was to develop its own integrated CASE
tool, and to emphasize software reuse. The bank began the
development of HPS in 1987. When HPS was first deployed,
software developers reported that it took about two to three
months to travel about 70% of the way down the learning
curve. In addition to learning how to work with the CASE
tool set, developers and project managers reported that they
were simultaneously learning how to reuse software in that
environment. Part of that process involved learning the extent
to which it was necessary to concentrate on application design,
in lieu of technical design or construction. Most developers
whom we interviewed reported that development under HPS
encouraged the substitution of design labor for construction
labor.

B. Carter Hawley Hale Information Services (CHH)

The complexity of the data processing requirements of
multibusiness, multiunit retailing firms also grew dramatically
during the 1980’s. CHH’s Information Services unit was under
pressure to deliver a new generation of retailing applications

382 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 4, APRIL 1993

that would improve the flow of store and product performance
data to senior managers, enabling them to improve inventory
management and refine product pricing. These systems had
to support extremely high transaction volumes, at acceptable
costs, at a time when slowing economic growth and increasing
competition were intensifying cost pressures in the retailing
industry.

Beginning in mid-1989, CHH carried out what it called
its “benchmark project,” to determine the extent to which
the application design and software construction philosophies
embodied in HPS were workable for its own software de-
velopment. With technical challenges akin to those of FBC,
CHH investigated the extent to which HPS might enable the
development of complex transaction processing and multilevel
management reporting systems operating cooperatively across
multiple platforms. In addition, management hoped to evaluate
HPS in terms of its ability to support rapid prototyping of
applications that later would be deployed to the buying and
store organizations, where the usability of a system was of
paramount concern.

In the process of evaluating the results of the “benchmark
project,” CHH’s software development managers identified
software reuse as a key to improved productivity. They came
to believe that software products could be produced most
efficiently using HPS if there were many opportunities to reuse
software objects built for other projects. For this reason, and
with the benefit of FBC’s experiences, CHH chose to establish
a project whose sole purpose was to produce software objects
representing the core functions of its retailing domain, when
it adopted HPS in late 1989.

IV. SOFTWARE REUSE IN HPS

HPS was designed to support the development of widely
distributed application systems cooperatively processed on a
range of platforms. Developers are shielded from the technical
complexities entailed by such systems. They do not have
to develop platform-dependent code, and the programming
of communications between platforms is largely automated
by what the developers call “middleware.” The design of
HPS emphasizes productivity improvement through object-
based development, software reuse, and an integrated family
of CASE tools.

A. HPS: An Integrated CASE Environment

HPS is an integrated CASE environment of object-based
design. Its first applications were in the investment banking
industry, where it had to support the development of trad-
ing systems, which required global distribution and 24 hour
availability. Further, performance requirements demanded that
these systems run cooperatively on several different platforms:
High-function workstations programmed in C++ had to com-
municate with central DB2 databases residing on mainframes
programmed in COBOL. Minicomputers programmed in PL/I
linked the workstations and mainframes with each other and
with the market, providing real-time communication and pric-
ing information. The challenge was to create and maintain such
systems without having to support and interface three sets of
programmers, as had previously been the case.

map SCG_CUST_ID of SCG_CTRCT_BOX_LST X to
SCG, CUST D of SCG_ Cl'RCl‘ BOX SQL FET X
map SCG F[RST NM ot'SCG CI'RCl‘ BOX LST Xto
SCG_ FIRST NMofSCG Cl'RCI' BOX LST
mnpSCG LAST NMofSCG CI'RCI‘ BOX LST X to
SCG_LAST | NM of SCG_ CI'RCI‘ BOX LST
u.seruleSCG CTRCT] BOX_ . SQL] FET
converse window SCG_ CI'RCI' BOX LST
caseof WINDOW | RETCODE
case BOXLST.BOXFLD' 'OK’
map 'SCG_CTRCT_BOX_FET_OCC’ to
VIEW] DONG NAME of GET_SELECTED_FIELD_X
use component GET_SELECTED | _FIELD

Fig. 1.

An HPS rule set.

HPS supports a number of predefined object types, including
Screen Definitions, Report Definitions, Files, Data Domains,
Fields, Database Views, and Rule Sets, each class having its
own procedures and semantics. The Rule Sets are the backbone
of an HPS application system. Most of the procedural logic of
HPS applications is embodied in the Rule Sets (see Fig. 1
for an example), which are written in a fourth-generation
programming language. Rule Sets are the most labor-intensive
HPS objects to create, and our discussion of reuse in HPS will
focus upon the reuse of Rule Sets.

Other object types have more specialized functions. For
example, Screen Definitions are created by a screen-painting
utility to define a window’s format, input and output fields,
and front-end data validation. Report Definitions are created
by a report-generating utility to define a report’s output field
and format. All interactions between objects are mediated by
Database Views: if a Rule Set invokes a Screen Definition, for
example, it will typically use one output View to send data
to the terminal and one input View to receive data from the
terminal. A Rule Set may also call an existing 3GL module.?
For example, FBC was able to make considerable use of a
library of optimized 3GL routines for specialized financial
computations.

Third-generation code (PL/I, COBOL, or C++, depending
on the designers’ decisions as to which platforms would be
most appropriate) is generated automatically from the HPS
objects, and later compiled for the target machines.

All the objects of the application systems are stored in a
single repository. All calling relationships between objects are
also maintained in this repository, in the form of entries to
DB2 database tables. All such relationships are of the form
Object1-uses-Object2.

Once an object has been created, it may be incorporated into
an application system by adding a calling relationship between
that object and one which is part of the target application
system. Similarly, HPS implements software reuse by adding
a calling relationship between a previously-created object and

21t should be noted that the HPS object types described here are objects
of the CASE environment, rather than objects of the application environment.
The 4GL is not an object-oriented programming language, though HPS can,
and does, support object-based design. For more information about the design
of HPS, see [7].

3To be more precise, “uses” is restricted to a Rule Set calling another
Rule Set. A Rule Set calling a Screen Definition, for example, would have a
different operator, and somewhat different semantics.

BANKER ef al.: REPOSITORY EVALUATION OF SOFTWARE REUSE

one that is already in the repository. Beyond the obvious
role this capability plays in facilitating reuse, it also makes it
practical to monitor reuse, without having to examine system
documentation or program code, by analyzing the repository’s
database of calling relationships.

B. Reuse Measurement

The structure of the repository makes it practical to automate
reuse analysis. An application system consists of a high-
level Rule Set, designated as the root of that system, all the
objects which it calls, and all the objects which they call, etc.
Collectively, these objects are structured as a hierarchy that
defines the application. (Note that it is imprecise to speak of
an object as “belonging” to any one application system. An
object is part of any system which calls it.)

Once we have identified the objects of an application
system, the information in the repository allows us to identify
the application system for which each object was originally
created, and to count the number of times each object is called
within the current system.

A number of measures of software reuse may be computed,
depending on the purpose of the analysis. For the discussion
that follows, reuse will be measured in terms of REUSE
PERCENTAGE, which is defined as the proportion of object
calls that represent the reuse of unmodified, previously created
objects, rather than the initial creation of new objects:
REUSE PERCENTAGE =

(NUMBER OF NEW OBJECTS BUILT)*100

TOTAL NUMBER OF OBJECTS USED
where

1) NUMBER OF NEW OBJECTS BUILT = the number of

new objects that had to be created from scratch for the
application system and

2) TOTAL NUMBER OF OBJECTS USED = the number

of objects the application system would contain in the
absence of reuse, i.e., if a new objects had to be written
for every cell.

Note that objects that are reused multiple times are con-
sidered to represent multiple instances of reuse; this metric
focuses on the total benefit attributable to reuse [31, [4]. Fig.
2 illustrates the measurement of software reuse.

In the example in Fig. 2, there are four unique objects: A, B,
C, and D. But there are five object calls (counting the original
invocation of A), since B and C both call D. This subsystem,
then, has five calls for four unique objects: Reuse_Percentage
is 100*(1 — 4/5), or 20%. In the absence of reuse, object
D would be replaced by two unique objects, D1 and D2. The
subsystem would have five object calls and five unique objects,
for a Reuse_Percentage of 0%.

A further distinction may be made between internal reuse
and external reuse. Internal reuse is the multiple use of an
object (or, in other environments, a subroutine, procedure, or
module) within the application system for which it was orig-
inally written. External reuse, the use of an object originally
written for another application system, is more difficult to

“External reuse can be vertical or horizontal, depending on whether or not
the systems belong to a common domain.

383

(5] [Faeor
(ries] —. [

()
®)

Fig. 2. An illustration of reuse measurement. (a) No reuse: five calls for five
unique objects. Reuse percentage is 100 + (1 — 5/5) or 0%. (b) Rule D is
reused: five calls for four unique objects. Reuse percentage is 100 * (1-4/5)
for 20%.

- | Rule A

= Rule A

achieve, since it requires compatibility (planned or accidental)
of design [1], [17]. HPS programmers need not distinguish
between the two forms of reuse, but the distinction may be
important to the management of reuse. Some organizations
only reward external reuse.

C. Repository Evaluation in HPS

HPS stores all the objects of all its application systems, the
calling relationships linking those objects, and a considerable
amount of information about the objects, in the same easily-
accessible repository, an architecture that makes it highly
practical to automate repository evaluation. A suite of database
access routines has been created to monitor and analyze the
repository: we can determine when each object was created, by
whom, and for which application system. We can identify the
objects that call any given object, the objects it calls, and the
application systems in which it is used. We can also analyze
individual objects in greater detail, determining, for example,
what data is passed between any pair of objects. This has made
it possible to develop automated function point and software
reuse analyzers.

By analyzing the entire repository over time, we can assess
the success of the research sites in implementing a software
reuse strategy through the adoption of HPS. We can also
begin to open the black box of software reuse and identify
the factors—technological and otherwise—that determine the
success of the reuse effort.

V. REUSE PREDICTIONS AND OBSERVATIONS

Our earlier discussion of the software reuse literature re-
flected the primarily technical focus of the research in this
field: application domains are more or less conducive to reuse,
cataloging schemes are more or less successful in guiding the
search for reuse opportunities, and reuse is constrained by
search and adaptation costs. The initial reuse efforts at FBC
and CHH reflected a similar technical focus.

A. Simple Model of Reuse

Fig. 3 presents a simple model of reuse. In this model,
the chance that a programmer will reuse an existing object,

384

Software Design
for Reuse Existence
of Reusable JB—
Size of Pool Objects
of Reuse U
Candidates
—
Level of
Software
Reuse
 ——
Familiarity
Y Ability
Indexing, Yo Find -
Keywords Mobects
Automatic
Search

Fig. 3. A preliminary model of reuse.

rather than write a new one, depends upon the availability
of potentially reusable software, and upon the programmer’s
ability to find it. We can increase reuse levels by making
more reuse candidates available and by reducing programmers’
search costs. This is the software library theory of reuse—that
the keys to reuse are a large stock of objects within the
application domain, and a catalog to help locate them as
needed. HPS supports reuse by maintaining a growing pool
of reuse candidates within a single repository, by providing a
keyword search mechanism for locating appropriate objects,
and by automating the incorporation of reused objects into the
application system. From the perspective of the model in Fig.
3, this represents a strong foundation for a program of reuse.

Managers were aware of many of the limitations of these
mechanisms, and of the relevance of organizational factors.
They believed, correctly, that HPS’s technical support of
reuse could still allow them to realize far higher reuse levels
than they had with traditional software development tools.
The discussion that follows will seek to assess the utility of
this approach, and to identify factors which will enable the
achievement of yet higher levels of reuse.

The view of the reuse process depicted above suggests a
number of predictions:

1) As the pool of reusable objects increases over time with
the size of the repository, so will the level of reuse.

2) Objects belonging to the system currently being pro-
grammed are more likely to be known to the programmers,
so they will exhibit comparatively low search costs, and there
will be a relatively high level of internal reuse.

2a) By a similar token, we expect programmers to exhibit
high levels of reuse of objects that they wrote themselves. Both
these familiarity effects may be mitigated by the presence of
a good search mechanism.

3) Given a high level of reuse of familiar objects, we may
expect reuse levels to be higher for larger systems, since they
represent a larger pool of salient reusable objects and familiar
reuse opportunities.

4) Programmers with more HPS experience at the site will
be familiar with more of the software, and will therefore
experience higher levels of reuse.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 4, APRIL 1993

TABLE 1

AN O VERVIEW OF THE HPS REPOSITORIES
Object Type FBC CHH
Rule Sets 8892 1775
Screens 7230 662

Domains 4200 97
Files 4236 170

3GL Modules 6062 92
Fields 6266 5823
Views 6755 3861

B. Repository Evaluation Findings

Automated repository analysis was used to assess each site’s
repository after about two years of HPS software developed.
The two sites had very different startup experiences. CHH
began using HPS two years later than FBC, when the tool
was more mature. The analyses that follow skip the initial
learning periods, and cover the 20 months following the first
development successes. Table I gives an overview of the
contents of the two repositories at the end of this time. The
repositories reflect differences in the application domains. The
retailer’s systems, for example, may be seen to be far more
data intensive.

Repository Growth and Software Reuse: Fig. 4 presents the
growth in Rule Set population and reuse during the periods
under analysis.® It is immediately clear that our first prediction,
that reuse levels would grow over time as the repository grew,
was incorrect: the repositories grew steadily during this period.
(So did the experience of the programmers, since this was
their first experience with HPS.) Reuse percentage, however,
achieved a strong initial value and never bettered it. The level
of reuse didn’t grow as the pool of reuse candidates grew.

Reuse of Familiar Objects: Our second prediction, which
was based on the belief that familiar objects were more
likely to be reused, was borne out strongly. We predicted that
programmers would tend to reuse objects from the system
upon which they were currently working, as those would be
the most easily identified as being appropriate for the task
at hand. We also predicted, on the basis of the belief that
familiarity was an important reuse factor, that programmers
would exhibit a strong propensity to reuse software written by
themselves.

Fig. 5(a) shows the relationship between internal and exter-
nal reuse: 85% of all observed instances of reuse were internal.
That is, if use was made of a previously written rule, that rule
was almost always one that had been written for the same
system.

This offers a partial explanation of the leveling off of
reuse over time. Reuse appears to be driven by the pool
of a familiar code, rather than by the entire pool of reuse
candidates. Each project is largely a self-contained universe
(we assume that programmers will be most familiar with
the code with which they are currently working than with

5Recall that Rule Sets are the most labor-intensive objects in these systems.
3GL modules might be more significant, except that they are typically used
in cases where special-purpose routines are already “on the shelf.”

BANKER ef al.: REPOSITORY EVALUATION OF SOFTWARE REUSE

Rule Sets Reuse Percentage

800

6000 145%

40040

30%
20040 15%
O 1 i i 1 1 1 i1 i 1 o%
0 2 4 [} 8 10 122 14 16 18 20
—— Size —% Reuse
(€)]
Rule Sets Reuse Percentage
o 60%
1600 145%
1000 30%
500 4 15%
o L 1 1 1 1 i 1 | 1 0%

0O 2 4 6 8 10 12 14 16 18 20

—%— Reuse
®
Fig. 4. Reuse and repository growth. (a) FBC. (b) CHH.

—— Size

that upon which other programming teams are working) and
new projects derive little benefit from previous projects. The
impertance of familiarity suggests that the search mechanisms
available are either inadequate or underutilized. As we explain
below, we believe both to be the case.

Fig. 5(b) shows the prevalence of self-reuse. Despite the
presence of over 250 programmers at FBC and over 100
programmers at CHH, more than 60% of the reuse consisted
of programmers reusing their own software.

If reuse is driven by the availability of familiar objects, we
would expect to find, as we also predicted, that larger projects
exhibit higher levels of reuse—since they provide larger pools
of familiar reuse candidates. This prediction was moderately
supported. Fig. 6 shows the relationship between system size

385

Source of Rules

100%

80%

60%

40%

20%

0%

CHH

FBC
NN New Rules] 1nternal Reuse

El External Reuse
(@

Reuse of Rules
100%

80%

60%

40%

20%

0%

FBC CHH

\ (] other Programmers
(®)

Fig. 5. (a) Internal and external reuse. (b) Reuse of own software. .

Own Software

and reuse. The correlation between these two factors was
37% (p = 0.09) for 22 application systems at FBC and 58%
(p = 0.04) for 13 application systems at CHH.®

The strong tendency of programmers to reuse objects of
their own development is further evidence of the importance
of familiarity. We are not able to estimate the degree to which
the prevalence of internal reuse is also driven by two other

®Fig. 6 uses a logarithmic scale to display system size, because order-
of-magnitude differences between systems make a linear display difficult to
interpret. In fact, though, the correlations between reuse and the log of system
size at the two sites is exactly the same as that between reuse and system size:
37% and 58%, respectively.

386 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 4, APRIL 1993

Reuse

08

-
o7t
06 ° *

o
osF
* - *
o
o * o«
0.4F * .
*
* o .

03t o

o
02 o *

- "
- ° ° -
0.1} o
L] o *
0 ! * 1 J
1 10 100 1000 10000
System Size (Rule Sets)
FBC --+ CHH--o0

Fig. 6. Reuse and system size.

factors—the better “fit” an application system’s own objects
might be expected to have, and the efforts of the developers to
design for internal reuse. We note, however, that the provision
of a pool of generally reusable objects did not enable CHH to
achieve higher levels of external reuse than FBC. This suggests
that familiarity is at least as important a factor as fit.

Individual Programmer Differences: As with so many
software-related activities, a small number of outstanding
programmers appear to account for a disproportionate amount
of the reuse achieved. Fig. 7 shows the distribution of
programmer output and reuse. The top 5% of the programmers
accounted for the creation of over 20% of the Rule Sets and
for over 50% of the reuse, with the top reusers achieving
average reuse percentages as high as 75%. Reuse levels were
consistently higher for programmers with larger total outputs.
The correlation between these factors is 50% (p = 0.03) for
(n = 19) at FBC and 60% (p = 0.0001) for (n = 76) at
CHH.’

There are three possible explanations for these observations.
Ore is that the same skills that make some programmers ex-
traordinarily productive also make them extraordinarily good
reusers of software. A second is that these programmers have
a larger pool of familiar objects (i.e., objects of their own
making) to reuse. A third is that we are observing an attitude
change over time, with the high-reuse programmers simply
being the ones who had been using HPS the longest, and had
absorbed the reuse “message.” The data did not bear this last
hypothesis out: the partial correlations, controlling for months
of HPS experience, were within 1% of the raw correlations.

In summary, it appears that HPS provides capabilities
which allow programmers to achieve high levels of reuse.
However, the pattern of reuse—with most reuse attributable
to a small number of enthusiastic software reusers—suggests

70f the 110 programmers at CHH, only the 76 who wrote at least one Rule
Set were included in this analysis. Our data for FBC represents a sample of
19 programmers out of 250. A log scale is used, for display purposes only,

because order-of-magnitude differences in programmer outputs make a linear
display difficult to interpret.

Reuse
08 . *
. .
0.7F o
* o
0.6
. O %o
051 o [
o . o o
0.4t * ., *
Y °
03+ * o °
o o
o
[+]
0.2 o
o
* (o)
o o
o.1f g o %o
e
J o
Oemoo—o o - : !
4] 50 100 200 400
Output (Rule Sets)
FBC --*+ CHH -- o0

Fig. 7. Reuse and programmer output.

that there remains considerable unexploited reuse potential.
Programmers are writing new objects rather than searching for
reuse opportunities. It is of considerable interest to determine
whether the high reuse levels achieved by the most productive
programmers represent a skill that can be taught.

VI. ORGANIZATIONAL FACTORS AFFECTING
SOFTWARE REUSE

In addition to analyzing the repositories, we interviewed
developers to learn about the practice of software reuse from
the perspective of the users of the CASE tools. These inter-
views revealed some technical barriers to the realization of
software reuse opportunities. Most serious, however, were the
organizational barriers and disincentives to reusing software.

A. Search and Organizational Incentives

HPS makes the invocation of a previously written object
trivial. All objects reside in the same repository, and are avail-
able for reuse. The main formal mechanism for identifying
such an object, however, is a keyword search mechanism,
the use of which often turns out to require more effort than
programmers are willing to expend. We found no indication
that developers are failing to enter keywords into the index.
It appears to be the case, however, that such keywords do not
provide an efficient search mechanism. Given the relative ease
of writing any single object, programmers are often reluctant
to bother with an extended search.

The primary unexploited opportunity that we identified at
FBC and CHH revolves around the lack of formal incentives
to reuse objects. Managers believed that it was premature
to enforce reuse benchmarks while they were still learning
the best ways to use and to manage HPS and software
reuse.® While formal incentives to reuse software were not

8 In follow-up interviews at the sites, we learned that managers now believe
that higher levels of reuse can result from a maturing managerial process based

on formal productivity and reuse measurement. A study conducted at CHH
by an independent outside consultant, subsequent to our study, disclosed that

BANKER et al.: REPOSITORY EVALUATION OF SOFTWARE REUSE

a primary focus of management, informal incentives existed
for a programmer to prevent others from reusing her objects.
The creator of an object is its “owner,” and every reuse of that
object is a potential call upon that owner to maintain the object
in case of trouble—often trouble arising from its use within an
application for which it was not originally tuned and tested.
Every reuse is also a constraint on the owner’s subsequent
ability to modify that object, since any modification must meet
the requirements of all users of the object. Stronger change
control mechanisms might have mitigated this problem, at the
cost of interfering with the learning and experimentation that
management was trying to encourage in its HPS programmers.

In practice, programmers who wish to use an object from
another application are encouraged (by the other programmers,
not by management) to copy the object in question, to rename
it, and to use it as though it were a new object. We refer to
this practice as “hidden reuse,” a form of reuse which is not
captured by the monitoring mechanism. (The related practice
of “templating” is a dominant form of reuse in traditional
application environments.) Hidden reuse achieves only some
of the goals of software reuse: coding effort and unit testing
are reduced, but adaptation costs are higher, and subsequent
life cycle savings, particularly in maintenance, are not realized.

B. Preliminary Conclusions about Reusable Software

The initial drive for reuse at FBC and CHH was premised
upon the assumption that the primary determinants of reuse
were technical—that reuse could be achieved to the extent that
we had a large pool of reusable objects, and that we had good
tools for locating and using them. These expectations were
correct, as far as they went, but they did not go far enough. In
particular, they did not sufficiently stresses the organizational
prerequisites for successful reuse. The repository-level anal-
ysis illustrated above heightened management awareness of
organizational issues, and motivated a more complex model
of software reuse.

The managers continue to believe that there are high degrees
of commonality among the application systems at each site,
but the relatively low levels of external reuse reinforce the
importance of domain analysis, and formally designing for
reuse, in achieving the full benefits of vertical reuse.

Fig. 8 presents a revised model of software reuse, in light of
the repository evaluation results presented in Section V. The
mostly technical factors that the earlier model presented as
drivers of software reuse are still in place: the research sites
did achieve strong initial levels of software reuse, with reuse
percentages of about 35% at both sites, with the aid of the
technical support provided by HPS. At the time this study was
conducted, however, reuse appeared to have reached a plateau.

The immediate barriers to higher reuse levels appear to have
been organizational. Software reuse was encouraged, but not
mandated. Programmers were not rewarded for reuse while
HPS use was still in the learning and innovation stage.

CHH now produces about 30% more function points per person-year at 30%
less cost per function point, compared to a reference sample of over 25 other
Fortune 500 companies. Management attributed this in part to its program of
software reuse.

387
Repository Size =
Technical

I-CASE Support ————— Factors |
Search Tools —
Training
Ownership

. Level of
Object Administration ——e | Organizational Software

e

Factors —

Team Size wee———— Reuse
R

Reuse Incentives ~——————s

Application Size ———

Architectural

Synergy Across Factors

Business Areas

_—

Software Designed
For Reuse

Fig. 8. A revised model of reuse.

The weakest technical aspect of HPS with respect to soft-
ware reuse is the keyword search mechanism, which appears to
be unequal to its task. Since most objects are relatively small,
and since HPS is successful in making individual objects very
easy to develop, programmers are willing to bear extremely
low search costs before choosing to just write their own
objects—in the absence of managerial incentives to search
longer.

The findings reflected in our repository evaluation and
in our model suggest that integrated CASE technology can
indeed contribute to high levels of software reuse, but that the
realization of their full benefits requires corresponding changes
in the software development process.

VII. CONCLUSION

Integrated CASE tools support not only the implementation
of advanced software development processes, but also their
monitoring and control. In this paper, we have used repository
evaluation to study software reuse at two sites that are pursuing
reuse by means of the same CASE tool. Repository evaluation
allowed us to assess the success of these efforts. It enabled us
to critique a simple model of software reuse, and to suggest
a richer one.

We investigated the extent to which the CASE technology
supported reuse, and found that it enabled both sites to achieve
steady-state reuse percentages of approximately 35%, but that
higher levels probably depended on nontechnical factors. We
are now attempting to estimate the degree of unexploited reuse
potential, and the costs of achieving it.

We asked whether expert programmers were also better at
reuse, and found that the highest levels of reuse were achieved
by the programmers with the highest outputs of objects. We
are investigating the question of whether this is a familiarity
effect or a skill effect, as this would determine the best way
to teach reuse.

We investigated the relative success of internal reuse, com-
pared to that of external reuse. Our findings reinforced the
messages of prior researchers, that success in external reuse
cannot be achieved informally. It relies upon formal domain
analysis and effective cataloguing and search mechanisms.

388 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 4, APRIL 1993

Repository evaluation allowed us to put numbers to aspects
of reuse of which we previously had only a qualitative
understanding—and it allowed senior management to assess
the strengths and weaknesses of their software reuse efforts,
and to decide how to improve them.

ACKNOWLEDGMENT

We wish to acknowledge M. Baric, G. Bedell, T. Lewis,
and V. Wadhwa for the access they provided us to the
software development activities and staff at The First Boston
Corporation and Seer Technologies in New York City. B.
Menar, N. Liebson, J. Yent, and D. Christy at Carter Hawley
Hale Information Services, in Anaheim, CA, provided similar
support. We also appreciated the research assistance of L.
Erlihk, R. Kumar, and M. Oara, whose efforts to automate
repository queries made this research possible. Finally, R. J.
Kauffman thanks the Nippon Electric Corporation and the
U.S.—Japan Business and Economics Research Center, Stern
School of Business, New York University, for partial funding
of data collection.

REFERENCES

[1] K. Allen, W. Krutz, and D. Olivier, “Software reuse: Mining, refining,
and designing,” in TRI-Ada '90 Proc., Dec. 1990, pp. 222-226.

[2] U. Apte, C. S. Sankar, M. Thakur, and J. Turner, “Reusability strategy
for development of information systems: Implementation experience of
a bank,” MIS Quart., vol. 14, no. 4, pp. 421-431, Dec. 1990.

[3] R.D.Banker and R. J. Kauffman, “Reuse and productivity: An empirical
study of integrated computer-aided software engineering (ICASE) at the
First Boston Corporation,” MIS Quart., vol. 15, no. 3, pp. 375-401,
Sept. 1991.

, “Automated software metrics, repository evaluation and the

software asset management perspective,” Center Inform. Syst., Stern

School of Business, New York Univ., Working Paper, 1991.

, “Measuring the development performance of integrated
computer-aided software engineering: A synthesis of field study results
from the First Boston Corporation,” in Software Engineering Economics,
T. Gulledge, Ed. New York: Springer-Verlag, 1993, to be published.

{6] R. D. Banker, R. J. Kauffman, and Kumar, “An empirical study of
object-based output metrics in a computer-aided software engineering
environment,” J. Management Inform. Systems., vol. 6, no. 3, Winter
1992.

[7] R. D. Banker, R. J. Kauffman, C. Wright, and D. Zweig, “Automating
output size and reuse metrics in a repository-based computer-aided
software engineering environment,” Stern School of Business, New York
Univ., Working Paper, 1991.

[8] H. B. Barnes and T. Bollinger, “Making software reuse cost effective,”
IEEE Software, vol. 8, no. 1, Jan. 1991.

[9] V. Basili, “Viewing maintenance as reuse-oriented software develop-
ment,” IEEE Software, vol. 7, no. 1, pp. 19-25, Jan. 1990.

[10] B. Beckman, W. Van Snyder, S. Shen, J. Jupin, L. Van Warren, B. Boyd,
and R. Tausworthe, “The ESC: A hypermedia encyclopedia of reusable
software components,” Jet Propulsion Lab., Catifornia Inst. Technol.,
Pasadena, CA, Sept. 1991.

[11] T. J. Biggerstaff and A. J. Perlis, Eds., Software Reusability: Volume
I—Concepts and Models. New York: Addison-Wesley/ACM Press,
1989.

41

(51

[12]

, Eds., Software Reusability: Volume ll—Applications Experience.
New York: Addison-Wesley/ACM Press, 1989.

[13] B. A. Burton, R. W. Aragon, S. A. Bailey, K. D. Koehler, and L. A.
Mayes, “The reusable software library,” IEEE Software, vol. 4, no. 4,
pp. 25-33, July 1987.

[14] G. Caldiera and V. R. Basili, “Identifying and qualifying reusable
software components,” IEEE Computer, pp. 61-70, Feb. 1991,

[15] M. J. Cavaliere, “Reusable code at the Hartford insurance group,” in
ITT Proc. Workshop Reusability in Progr ing,Newport, RI, 1983;
reprinted in Software Reusability: Volume Il—Applications Experience,
T. J. Biggerstaff and A. J. Perlis, Eds. New York: Addison-
Wesley/ACM Press, 1989.

[16] M. Chen and E. H. Sibley, “Using a CASE-based repository for systems
integration,” in Proc. 1991 Hawaii Int. Conf. Systems Sciences, 1EEE,
Jan. 1991, pp. 578-587.

[17] S. Cohen, “Process and products for software reuse in Ada,” in TRI-Ada

'90 Proc., Dec. 1990, pp. 227-239.

M. Cusamano, Japan's Software Factories: A Challenge to U.S. Man-

agement. Oxford, England: Oxford University Press, 1991.

E. M. Dusink, “Towards a design philosophy for reuse,” in Proc. Reuse

in Practice Workshop, J. Baldo and C. Braun, Eds. Pittsburgh, PA:

Software Eng. Inst., 1989.

[20] J. B. Frakes, T. J. Biggerstaff, R. Prieto-Diaz, K. Matsumura, and W.
Shaefer, “Software reuse: Is it delivering?” in Proc. 13th Int. Conf.
Software Eng., Austin, TX, IEEE Comput. Soc. Press, May 13-17, 1991,

. 52-59.

[21] .[l) P B. Frakes and Nejmeh, “Software reuse through information retrieval,”
in Proc. 20th Hawaii Int. Conf. Syst. Sci, B. D. Shriver and R. H.
Sprague, Jr., Eds., Kailua-Kona, HI, 1987, pp. 530-535.

[22] P. Freeman, Ed. Tutorial on Sofrware Reusability . Washington, DC:
IEEE Comput. Soc. Press, 1987.

[23] J. E. Gaffney, Jr. and T. A. Durek “Software reuse—Key to enhanced
productivity: some quantitative models,” Inform. Software Technol., vol.
31, no. 5, pp. 258-267, June 1989.

[24] J. W. Hooper and R. O. Chester, Software Reuse: Guidelines and
Methods. New York: Plenum, 1991.

[25] W. S. Humphrey, Managing the Software Process.

Addison-Wesley, 1989.

R. G. Lanergan and C. A. Grasso, “Software engineering with reusable

designs and code,” IEEE Trans. Software Eng., vol. SE-10, no. 5, pp.

498-501, Sept. 1984.

M. Lenz, H. A. Schmid, and P. F. Wolfe, “Software reuse through

building blocks,” JEEE Software, vol. 4, no. 4, pp. 34—42, July 1987.

[28] D. G. McNichol, C. Palmer, S. G. Cohen, W. H. Whitford, and G. O.
Goeke, “Common Ada missile packages—CAMP, Vol. I: Overview and
commonality study results,” McDonnell Douglas, St. Louis, MO, Tech.
Rep. AFATL-TR-85-93, 1986.

[29] B. McNurlin, “Building more flexible systems,” 1/S Analyzer, Oct. 1989.

[30] Y. Matusmoto, “Some experiences in promoting reusable software:
Presentation in higher abstract levels,” IEEE Trans. Software Eng., vol.
SE-10, no. 5, pp. 502-512, Sept. 1984.

[31] B. Meyer, Object-Oriented Software Construction.
NIJ: Prentice-Hall, 1987.

[32] J. M. Neighbors, “The DRACO approach to constructing software from
reusable components,” IEEE Trans. Software Eng., vol. SE-10, no. 5,
pp. 564-574, Sept. 1984.

[33] W. E. Novak, “U.S. Army SDS CRWG reuse committee technical
requirements document: Technical guidance section,” draft version,
1990.

[34] J. F. Nunamaker, Jr. and M. Chen, “Software productivity: A framework
of study and an approach to reusable components,” in Proc. 22nd Hawaii
Int. Conf. Syst. Sci., IEEE, Jan. 1989, pp. 959-968.

, “Software productivity: Gaining competitive edges in an infor-
mation society,” in Proc. 22nd Hawaii Int. Conf. Syst. Sci., IEEE, Jan.
1989, pp. 957-958.

[36] A. Pollack, “The move to modular software,” New York Times, pp.

D1-D2, Apr. 23, 1990.

Polster, “Reuse of software through generation of partial systems,” I[EEE

Trans. Software Eng., vol. SE-10, no. 5, pp. 402-416, Sept. 1984.

R. Prieto-Diaz, “Classifying software for reusability,” IEEE Software,

vol. 4, no. 1, pp. 6-16, Jan. 1987.

, “Domain analysis: An introduction,” ACM Software Eng. Notes,
vol. 15, no. 2, pp. 47-54, Apr. 1990.

[40] H. D. Rombach, “Software reuse: A key to the maintenance problem,”
Inform. Software Technol., vol. 33, no. 1, Jan./Feb. 1991.

[41] J. A. Senn and J. L. Wynekoop, “computer-aided software engineering
(CASE) in perspective,” Inform. Technol. Management Center, College
Business Administration, Georgia State Univ., Working Paper, 1990.

[42] CASE Research Report, Sentry Market Research, Westborough, MA,
1990.

[43] V. Sepannen, “Reusability in software engineering,” in Tutorial: Soft-

ware Reusability, P. Freeman, Ed. Austin, TX: IEEE Comput. Soc.

Press, 1987, pp. 286-297.

“Software productivity metrics working group of the software engi-

neering standards subcommittee, standards for software productivity

metrics,” IEEE Comput. Soc. P1045/D5.0 (draft), Mar. 8, 1992.

[45] W. Tracz, “RECIPE: A reusable software paradigm,” in Proc. 20th
Hawaii Int. Conf. Syst. Sci., B. D. Shriver and R. H. Sprague, Jr., Eds.,
Kailua-Kona, HI, 1987, pp. 546-555.

, Tutorial: Software Reuse—Emerging Technology. ~Austin, TX:

IEEE Comput. Soc. Press, 1988.

[18]

[19]

Reading, MA:

[26]

[27]

Englewood Cliffs,

[35]

[37]
[38]

[39]

[44

—

[46]

BANKER er al.: REPOSITORY EVALUATION OF SOFTWARE REUSE

Rajiv D. Banker received the Doctorate in busi-
ness administration from Harvard University, Cam-
bridge, MA, in 1980, with a concentration in plan-
ning and control systems.

He is the Arthur Andersen & Co./Duane R. Kull-
berg Chair in Accounting and Information Systems
at the Carlson School of Management, University
of Minnesota, Minneapolis. He has published nu-
merous articles and serves on the editorial boards
of several prominent research journals. His research
on information systems development and mainte-
nance is field-based and empirical, involving collection and analysis of
data on software complexity, project characteristics, systems environment
and programmer experience, and ability and effort, to estimate the impact
of managerial and technological factors on productivity and quality of
commercial software. Of particular interest is the study of integrated CASE
technologies and the management of reusable software.

Robert J. Kauffman received the Doctorate
in industrial administration from Carnegie Mellon
University, Pittsburgh, PA.

He is an Associate Professor of Information
Systems at the Stern School of Business, New
York University (on leave in 1992-1993 at the
Federal Reserve Bank of Philadelphia and the Simon
Graduate School of Management, University of
Rochester), where he specializes in information
technology in the financial services sector. Previ-
ously an international bank lending and strategic
planning officer, he is currently Nippon Electric Corporation (NEC) Faculty
Fellow of the U.S.-Japan Business and Economics Rescarch Center. He
has published articles in MIS Quarterly, Journal of Manag Infor
Systems, IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, Information and
Software Technologies, Information and Management, and elsewhere. His
current research focuses on developing new methods for measuring the
business value of information technology investments (including CASE),
using techniques from finance and economics.

389

Dani Zweig received the Doctorate in industrial
administerial administration from Carnegie Mellon
University, Pittsburgh, PA.

He is an Assistant Professor of Information Sys-
tems in the Department of Administrative Sciences
at the Naval Postgraduate School, Monterey, CA.
Prior to this he was a consultant for Peat Mar-
wick. His research focuses on software reuse and
on cost implications of software complexity. He
is also currently working on an analysis of the
Department of Defense’s software inventory, its rate
of obsolescence, and expected replacement costs.

	Repository Evaluation of Software Reuse: An Empirical Study
	Citation

	Repository evaluation of software reuse - Software Engineering, IEEE Transactions on

