
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-1994

Automating output size and reuse metrics in a repository-based Automating output size and reuse metrics in a repository-based

computer-aided software engineering (CASE) environment computer-aided software engineering (CASE) environment

R. D. BANKER

Robert J. Kauffman
Singapore Management University, rkauffman@smu.edu.sg

C. Wright

D. Zweig

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Numerical Analysis and Scientific Computing Commons

Citation Citation
BANKER, R. D.; Kauffman, Robert J.; Wright, C.; and Zweig, D.. Automating output size and reuse metrics in
a repository-based computer-aided software engineering (CASE) environment. (1994). IEEE Transactions
on Software Engineering. 20, (3), 169-187.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2155

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2155&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

IEEE TRANSACTIONS ON SOJTWARE ENGINEERING, VOL. 20, NO. 3, MARCH 1994 169

Automating Output Size and Reuse Metrics
in a Repository-Based Computer-Aided

Software Engineering (CASE) Environment
Rajiv D. Banker, Robert J. Kauffman, Charles Wright, and Dani Zweig

Abstract-Measurement of software development productivity
is needed in order to control software costs, but it is discour-
agingly labor-intensive and expensive. Computer-aided software
engineering (CASE) technologies-especially repository-based,
integrated CASE-have the potential to support the automation
of this measurement. In this paper, we discuss the conceptual ba-
sis for the development of automated analyzers for function point
and software reuse measurement for object-based CASE. Both
analyzers take advantage of the existence of a representation of
the application system that is stored within an object repository,
and that contains the necessary information about the application
system. We also discuss metrics for software reuse measurement,
including reuse leverage, reuse value, and reuse classi3cation
that are motivated by managerial requirements and the efforts,
within industry and the IEEE, to standardize measurement. The
functionality and the analytical capabilities of state-of-the-art au-
tomated software metrics analyzers are illustrated in the context
of an investment banking industry application that is similar to
systems deployed at the New York City-based investment bank
where these tools were developed and tested.

Index Terms-Computer-aided software engineering (CASE),
function point analysis, object-based development, programming
productivity, repositories, reuse, software costs, software engi-
neering economics, software metrics

I. ~NTRODUCT~ON

A. The Incentive and Opportunity to

HE RECENT upsurge in interest concerning computer- T aided software engineering (CASE) technologies [59]
provides managers with both an incentive and an opportunity
to measure software development performance. The incentive
is that documenting the productivity gains from CASE can
help to justify (or, for some products, to discourage) the large
investment that the technology often requires. One popular
press observer of these developments has recently written:

Automate Sofmtare Metrics

Manuscript received August 1991; revised July 1993. Recommended by

R.D. Banker is with the Carlson School of Management, University of

R. J. Kauffman is with the Stem School of Business, New York University,

C. Wright is with Seer Technologies, New York, NY 10001.
D. Zweig is with the Department of Administrative Sciences, U.S. Naval

IEEE Log Number 9215571.

K. Toni.

Minnesota, Minneapolis, MN 55455.

New York, NY 10012.

Postgraduate School, Monterey, CA 93943-5000.

Like handcrafted fumiture, software has traditionally been
customized for a task in a laborious process more akin
to artistic work than to engineering. [But now], software
is increasingly being written in the form of pre-fabricated
pieces that can be reused in different combinations, much as
plumbing systems can be tailored for each house yet still be
built out of standard pipes, valves and joints.’
Many observers believe this is a “software industrial revolu-

tion” in the making, a view that has been held in the computer
science research community since the 1970s [38], [54]. The
cost of participating in this revolution may be substantial,
however, whereas the benefits have proven hard to verify [121,
[471, [481.

The opportunity is that of automating the collection of
productivity data. Any firm with high software expenditures
has a strong incentive to control and improve its software
development productivity, and this requires measurement [171,
[27], [39], [43], [50], [61]. But in traditional software shops,
such measurement requires discouragingly expensive man-
ual analysis of the software. CASE technologies, especially
repository-based integrated CASE technologies, provide a
means by which to automate a variety of software metrics
that can help managers to gain better control of their software
development operations.*

Automation of the process of collecting key software met-
rics is likely to be one of the next areas to receive attention
from CASE tool vendors. Sofmtare Magazine expressed a
similar view of the future by showcasing products from
nearly 40 vendors that measure productivity within a CASE
environment [12]. Very few of these, however, automate the
collection of the software metrics needed for productivity
analysis. The majority are project management tools that
require a significant amount of input from the user to make
them useful. The magnitude of this manual burden is precisely
what has made productivity measurement so difficult to carry
out in the past.

In this paper, we examine the automation of two important
metrics:

1) function points: A measure of programmer output in

2) sofmare reuse: A major determinant of programmer
terms of software functionality.

productivity.

‘See 1561.
2For an introduction to the “repository” concept, see [23], (291, 1361, and

W I .

0098-5589/94$04.00 0 1994 IEEE

Published in IEEE Transactions on Software Engineering, 1994 March, Volume 20, Issue 3, Pages 169-187
https://doi.org/10.1109/32.268919

170 IEEE TRANSACTIONS ON SOITWARE ENGINEERING, VOL. 20, NO. 3, MARCH 1994

Function point analysis is a widely accepted means of measur-
ing output in management information systems (MIS) software
development, but it is very labor-intensive, especially for large
systems, which has limited its adoption.

Software reuse allows organizations to take advantage of
previous development efforts, rather than paying to create
every system from scratch. Extensive reuse in the construction
phase can increase productivity by an order of magnitude and
more [4], because of the use and invocation of previously
developed software modules. But the reader should recognize
that reuse offers a philosophy for software development that
extends to every phase, including reuse of abstract represen-
tations of a system [42], software objects [44], [45], and
reusable components [46], prototypes and partial systems [57],
data and data models, program architecture and data structure
designs [20], [37], and downstream life-cycle processes (such
as implementation and test routines) [60]. In this way, software
reuse offers the potential to create even greater long-term
benefits, especially when efforts to reuse extend to include
early life-cycle planning activities, enabling development of
systems that share common architecture and common design
elements [59]. In fact, it has been recognized that it is
highly desirable to conduct software development projects that
result in reusable objects, which can then be used widely
by various development projects within a firm. Reuse, other
than the explicit invocation of previously written modules, has
proven difficult to identify, let alone measure. Software reuse
analysis, like function point analysis, requires knowledge of
the semantics of the software being analyzed.

This paper focuses upon function point and software reuse
measurement in the construction stage of software develop-
ment. As we shall see, however, this measurement supports
ex ante cost estimation for the entire development process, as
well as providing expost insights into the level of productivity
achieved in CASE development environments. To automate
the computation of these metrics, we require the ability to
automate the analysis of the content of the software being
analyzed. We shall see that in addition to other benefits claimed
for it, repository object-based development can provide this
capability, primarily by encouraging the division of software
into more easily analyzed units than the traditional procedure-
oriented program.

A prerequisite for gauging the strength of any “industrial
revolution in the making” is the ability to measure such basic
factors as output and productivity. Despite annual software
costs rising into the hundreds of billions of dollars, and a
general agreement that these costs must be controlled [8],
[9], such measurement has proven too difficult and expensive
for most organizations. We will examine the potential of
modem software development tools not only to increase the
productivity of the software development function, but to
finally begin to provide management with an understanding
of how to bring it under control.

B. Organization of the Paper

In this paper, we discuss the foundations for the design
and common architecture, and managerial application of two

automated software metrics analyzers made possible by using
a repository-based Integrated CASE Environment (ICE). These
include a Function Point Analyzer (FPA) and a Sof iare Reuse
Analyzer (SRA). The remainder of the paper is organized as
follows. Section I1 introduces the basic concepts necessary to
understand our strategy for developing the automated software
metrics facilities. It includes an overview of the function point
analysis methodology; a discussion of why the methodology
is useful, but costly and problematic to implement; a consid-
eration of prior attempts to automate function point analysis;
and an examination of the features of repository object-based
CASE development environments that enable us to automate
function point analysis. Section 111 presents the conceptual
basis of the FPA. We make the argument that much of the
information necessary for function point analysis is readily
available in an application’s metamodel, and we show how
the repository objects and the relationships between them
can be mapped into function point analysis3 We present the
architecture for FPA and then illustrate how it navigates the
hierarchy of rules to conduct an exhaustive search of the user
functionality built into an application.

Section 1V presents the conceptual basis for the SRA.
We discuss three classes of software reuse metrics that are
prompted by recent efforts to standardize such measurement,
explain the design of SRA, and describe the manner in
which it navigates the application metamodel hierarchy to
obtain the relevant information to instantiate the metrics.
The concluding section addresses additional technical and
managerial questions that were raised by our work, and the
future research required to resolve them. It also summarizes
the contributions of this work to practitioners and to research
on software development productivity. The paper includes
a stand-alone example of how the analyzers and six reuse
metrics can be applied to an investment banking application
called the Broker Sales Reporting System.

11. AUTOMATING FUNCTION POINT ANALYSIS: PRELIMINARIES

A. Function Point Analysis

The magnitude of a software development project’s effort
depends upon several factors, including the amount of infor-
mation processing accomplished by the system, the quality
and the extent of the input and output interfaces provided
to meet the users’ needs, and environmental productivity
factors ranging from the quality of the hardware used by the
programmers to the sophistication of the users requesting the
software [64]. Function point analysis, originally developed
by Allan Albrecht of IBM, provides a summary measure
of the functionality of a system, and is especially useful
as a descriptor of MIS applications. This measure, modified
by another that incorporates the influence of environmental

3The term “metamodel” builds on the idea of “metadata,” i.e., those
elements of a data dictionary that describe the keys, attribute order, formats,
and rules applied to individual records and attributes in a database. A
repository stores additional metadata conceming many other aspects of the
total system of which the database is only a part ([23], p. 47). In this paper, we
focus almost exclusively on the capability of a repository to store information
concerning the relationship between objects that comprise a system.

BANKER er al.: AUTOMATING OUTPUT SIZE AND REUSE METRICS 171

productivity factors, provides an empirically tested basis for
managers to estimate the resources required to build systems
of various sizes [I], [2].

Function points are meant to provide a language-
independent and implementation-independent measure of
the functionality actually produced and delivered to the
user. In this, they differ from code-output measures (such as
source lines of code) that can reward verbose programming
practices. Since its introduction in the late 1970s, function
point analysis has evolved, with the help of the Intemational
Function Point Users Group (IFPUG), into a well-accepted
and operationally well-defined methodology that is used in
many firms [18], [61].4

Function points are computed by measuring the degree of
functionality actually delivered to the user of the system, in
terms of reports, inquiry screens, and so on. Function counts
are determined by computing a weighted sum of the point
scores that are assigned (on the basis of their complexity) to
each External Input, External Output, Logical Intemal File,
Extemal Interface, and Query that comprise the system. The
weights depend in part upon the complexity of the given inputs
and outputs, as determined by the number of data elements and
relations involved. Function counts are further adjusted by a
measure of the environmental complexity when a project is
implemented. The mathematical definition of function points
is shown below:

designed, rather than as it was finally delivered. This can
force the analyst to spend even more time analyzing the code
to determine the extent to which the design documentation
reflects the functionality that was actually produced.

A third concem is that of calibrating the analyses of people
who carry out the function point analysis. Our experience in
a study of the productivity of CASE development suggested
that even when well-trained individuals perform function point
analysis for the same set of software projects, there are bound
to be discrepancies that have to be resolved [4]. Individual
differences in interpretation of documentation, knowledge of
an application, and experience in conducting function point
analysis can all drive these differences. Low and Jeffrey [40]
examined the reliability of function point analysis in a more
structured manner and found that significant training in the
use of the complexity measures is necessary to ensure that the
correct constructs are being measured. More recently, Kemerer
[34] found evidence to support a more optimistic view. His
empirical work showed that counts differ by no more than
about plus or minus 10% between well-trained analysts. This
level of agreement, again, requires a substantial manpower
investment, first in training and subsequently in analysis.

B . ICE: A Repository Object-Based Integrated
CASE Environment

A large New York City-based investment bank made the
initial commitment to design and develop a repository object-
based integrated CASE environment at a cost of tens of
millions of dollars over the course of three years. ICE was
built by the firm as a response to the problems it faced in
developing and maintaining technically complex systems. The

FUNCTION POINTS = FUNCTION COUNTS

1 14

COMPLEXITYf) ,

where

FUNCTION COUNTS =

COMPLEXITY FACTORf =

the sum of the instances
of the five function types,
including External Inputs,
External Outputs, Logical
Intemal Files, External
Interfaces and Queries;
a variable, f, associated
with one of fourteen
descriptors of the
implementation complexity
of a system.

Two papers provide useful critiques of function point analy-
sis, altemative definitions and the issues that arise in calculat-
ing and using them in practice [34], [64]. The Appendix offers
a more in-depth description of the mechanics of function point
analysis, and includes a summary of the 14 complexity factors.

One roadblock to collecting function point metrics for soft-
ware applications is that their computation, usually performed
manually, is very labor-intensive. In addition, such compu-
tation requires the availability of consistently good system
documentation. In practice, where design documentation exists
at all, it too often describes the system as it was originally

4For additional details on the implementation of function points that extends
the approaches presented by Albrecht and Gaffney [2] and Zwanzig [70] , see
Symons [63], who discusses function points with entity-type complexity rules.

~~

firm’s computer operations were geographically distributed,
and were required to perform effectively on a 24-hour basis.

Similar to others in the investment banking industry,
the firm had been experiencing rapidly mounting software
costs that were expected to further rise as its trading
activities expanded to provide global coverage. To achieve
competitive performance in this environment required the
firm’s developers to program applications that were shared
by three hardware platforms (mainframe, minicomputer, and
microcomputer), each programmed in a different language:
COBOL, PL/I, and C++, respectively. A CASE tool was
needed that would support the programming of systems
running simultaneously on all three platforms, and reduce
the firm’s reliance on three separate sets of highly skilled
programmers.

ICE applications are written in a 4GL that buffers program-
mers from the complexity of the firm’s operating environment.
ICE automatically translates the 4GL code into the languages
appropriate for the target platforms, and communication pro-
tocols for cooperative processing across platforms are han-
dled without programmer intervention. Project managers and
software developers whom we interviewed commented that
development in this environment, with the strong emphasis on
software reuse, and with much of the coding effort automated,
tends to shift effort from the construction phase to the analysis
and design phases.

112

ICE maintains a metamodel whose structure is derived from
entity-relationship modeling [141, and ICE was especially con-
structed to support the development of cooperative processing
applications. The code is organized according to objects that
play specific roles in the functions delivered by the application,
and the various software functions can be allocated across
hardware platforms in the most appropriate manner. This
organization is also what makes it practical to automate the
analysis of the code for the computation of function points.

A feature of ICE, of special interest for the discussion
that follows, is its object repository. This includes all of the
definitions of the data and objects that make up the organi-
zation’s business, and also all of the pieces of software that
comprise its systems. In addition to the stronger control that it
provides, the advantage associated with a single repository for
all such objects is similar to that for having a single database
for all data: a program, procedure, screen, or report needs to
be written only once, no matter how many times it is used.
Such reuse has the potential to decrease software development
costs, and it forces developers to more carefully “engineer”
an information and information systems architecture that will
form a solid base for the firm’s business. The repository
also makes the automation of software reuse measurement
practical, because it maintains a record of each object and
where it is used or reused.

C. Definitions of Basic ICE Objects

The ICE object repository stores information about the
different kinds of entities or objects that form the basic build-
ing blocks of ICE-developed applications: BUSINESS PRO-
CESSES, RULE SETS, 3GL MODULES, SCREEN DEFINI-
TIONS, FILES, DATA VIEWS, DATA ELEMENTS, DATA
DOMAINS, REPORTS, and REPORT SECTIONS. It is useful
to think of these objects as being similar to corresponding 3GL
constructs. For example, a RULE SET is analogous to a 3GL
procedure, and a SCREEN DEFINITION can be thought of as
a window that provides a user interface. At the same time, it
is worthwhile to keep in mind that the object definitions in the
ICE environment are deliberately precise and rigid, with the
result that an analysis of the metamodel gives us a great deal
of semantic information about the application system without
forcing us to analyze the actual code. We next consider each
object type in more detail.

A RULE SET contains most of the instructions that ob-
servers unfamiliar with CASE tools would tend to think of
as “the program.” Most of the “traffic control” resides there.
A RULE SET can use other RULE SETS or 3GL MOD-
ULES, invoke REPORTS, which in tum invoke REPORT
SECTIONS, access FILES, and communicate with SCREEN
DEFINITIONS. (The 4GL used by ICE has a specialized set of
verbs to describe the various interactions among object types.)

A 3GL MODULE is a precompiled procedure, originally
written in a specific 3GL. Although the 4GL language used
by ICE developers is very small and general, it provides
the 10% of the data handling and computational capabil-
ities that constitute over 90% of the functionality of an
information system. It is left to 3GL MODULES to imple-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 20. NO. 3, MARCH 1994

Business
Function
(system i level)

(Subsystem

Set B Set C --
Fig. 1. A repository-based application metamodel. A BUSINESS FUNC-
TION is represented in ICE by a menu of BUSINESS PROCESSES. An
application consists of all of the objects called (directly or indirectly) by
a given BUSINESS PROCESS. The first step in analyzing a system is to
identify these objects, by iterativelytracing the calling relationships stored in
the metamodel. A BUSINESS PROCESS will call one or more RULE SETS.
Each RULE SET, in turn, may call other RULE SETS, 3GL MODULES, or
other ICE objects (Fig. 2). Note that the use of an object by an application
system does not preclude its reuse by another application.

ment more specialized capabilities. In investment banking
operations, highly quantitative options pricing and other val-
uation procedures for derivative instruments exist on the
shelf in optimized 3GL code at most firms. Such proce-
dures are used intact as 3GL MODULES, rather than being
recoded.

A SCREEN DEFINITION is the logical representation of
an on-screen image. A RULE SET can communicate with a
given SCREEN DEFINITION, meaning that data are passed
back and forth between them. The user-interface capabilities
of a SCREEN DEFINITION are built into ICE, and do not
have to be considered by the developer. This tends to speed
the development process for screens in ICE. By comparison,
the creation of screens delivered by IBM 3270 terminals using
traditional development methods is more labor-intensive by a
full order of magnitude [41.

A DATA VIEW consists of a set of DATA ELEMENTS,
data objects that have been defined in the object repository. A
DATA VIEW can be thought of as a logical data record. The
communication of all data between ICE objects is mediated by
DATA VIEWS. For example, data are passed from a RULE
SET’S DATA VIEW to a SCREEN DEFINITION’S DATA
VIEW and back. Data for a 3GL MODULE or a REPORT
must similarly be passed through a DATA VIEW.

A REPORT means much the same thing in ICE as it
does in other development environments. More specifically, a
REPORT is the internal logical representation of the physical
report. REPORTS consist of one or more REPORT SEC-
TIONS, each with its own layout.

Each of these ICE objects is reusable, and good practice in
the context of ICE development is to reuse them as much
as possible. Placing all of the objects associated with an
application in the object repository has two intended effects:
It prevents a programmer from circumventing the discipline

BANKER et al.: AUTOMATING OUTPUT SIZE AND REUSE METRICS 173

Fig. 2. ICE repository objects. This figure is an expansion of RULE SET A from Fig. 1 . There is a well-defined set of relationships
allowed. Each object resides in the repository, and has a descriptive entry in a database table that also resides there. In addition, the
repository contains other tables with entries for each relationship between two objects. A RULE SET may also use preexisting 3GL
MODULES. The repository contains no information about the processing performed by these modules. Any functionality that they
provide the user, via REPORTS, FILES, or SCREENS, however, must be mediated by an ICE object.

of database and object management, and it makes all of the
objects of one application available for reuse by any other
application that is stored in the rep~si tory.~

D. From ICE Repository Objects to ICE
Application Metamodels

An ICE application system consists of ICE repository ob-
jects, such as RULE SETS and SCREEN DEFINITIONS,
communicating with each other in a structured manner. This
is illustrated in Fig. 1. A single application is invoked by a
menu item that calls a high-level BUSINESS PROCESS. This
high-level BUSINESS PROCESS in turn refines into other
RULE SETS, which may in their own tum use other RIJLE
SETS or 3GL MODULES. A RULE SET may uccess a DATA
VIEW through which it can communicate with a SCREEN
DEFINITION, or create a REPORT. The DATA VIEW, in
rum, will be defined by one or more DATA ELEMENTS. A
RULE SET or 3GL MODULE may also uccess a FILE.6

These relationships, like the objects themselves, reside in
the object repository. Every such relationship is represented
by a DB2 database entry, and, collectively, this database

'Veryard has noted that considerable effort must still be expended to make
code reuse work effectively:

[Reusable] code may be more difficult to design and test, and there is
always a temptation for the designer to develop something new, rather
than take the trouble to investigate and implement something that already
exists.

See [68, p. 2291.
'The verbs in the ICE 4GL language that we have already mentioned

include use. m w , communicate. creme. include. and ac'c'ess. The reader now
should have a feel for how the nouns and verbs go together. without focusing
on details of the syntax that ICE enforces.

of relationships constitutes the application metumodel-the
abstract structural map of the application system as shown
in Fig. 2.

We can use this general metamodel to identify the objects
associated with any application system. Because the meta-
model is hierarchical, following the chain of relationships will
reliably lead us to all the objects that may be accessed or
invoked by a given object. Traversal of the hierarchy of RULE
SETS that comprise an application, or sets of applications,
is a very powerful capability that is exploited in the design
and development of automated software metrics facilities
for ICE. Clearly, any attempt to automate the collection of
software metrics in ICE begins with a major advantage over
similar efforts in third-generation environments. Much of the
information needed to calculate a variety of software metrics
(e.g., software reuse, complexity, function points) is already
contained in usable form in the metamodel. This information
would have to be deduced from a detailed (and probably
manual) analysis of the source code developed in a third-
generation environment.

111. FPA: A FUNCTION POINT ANALYZER FOR ICE

ICE satisfies two important prerequisites for the automation
of function point analysis. First, the object repository and its
application metamodels allow us to automate the identification
of all software belonging to a given system. In traditional
environments, this task must be accomplished on the basis
of documentation, which is rarely complete or up-to-date,
and software naming conventions that, even when they are
followed, rarely identify the use of software by multiple
applications.

174

FUNCTION TYPE

Extemal inputs

External interfaces
Extemal queries
Internal files

External outputs

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 3, MARCH 1994

FUNCTION COMPLEXITY SCORES (c)

Simple Average Complex

3 4 6
4 5 7
4 5 7
4 5 6 or 7
7 I O 15

output
Type A P P L I CAT1 0 N BO U N DA RY

Fig. 3. Mapping from ICE objects to function counts. Function point analysis measures the functionality that a system delivers
to the user in t e m s of data transfers into or out of that system (External Inputs, Extemal Outputs, Queries, External Interfaces),
and in terms of the data stores (Logical Intemal Files) used. A 3GL program can contain functionality of all five classes. An ICE
object, however, is severely constrained in the functionality that it can represent, to the point where a system’s function count can
be computed by identifying and classifying its objects. See Table 1.

Second, the design of ICE’S object-based 4GL is such that
a precise mapping may be defined between each object and
its associated functionality. In traditional environments, the
only way to perform the mapping between programs and
functionality is to manually figure out what each program is
doing, again with the aid of such documentation as may exist.

A . Mapping Function Point Concepts to ICE Objects

Of the five function types used in the computation of func-
tion points, four measure data flows that either enter or leave
the boundary of an application. These include External Inputs,
External Outputs, Extemal Interfaces, and Queries. Logical
Internal Files constitute the fifth function type; they measure
data stores intemal to the application. ICE decomposes object
and entity-relationship definitions into specific functional roles,
and there is a well-defined mapping from ICE objects or
relationships to function counts. This is illustrated in Fig. 3,
which also provides a conceptual representation of what we
mean by the “application boundary.”

External Inputs: A SCREEN with an output DATA VIEW
(i.e., a SCREEN that sends data back to the invoking RULE
SET) is an External Input. A FILE access is an input if
the FILE is external to the system. The complexity of the

TABLE I
FUNCTION POINT ANALYSIS FUNCTION COMPLEXITY MATRIX

Extemal Input is determined by examining the number of
DATA VIEWS and ELEMENTS or, in the case of a FILE
access, the number of keys instead of DATA VIEWS.

External Output: A SCREEN with an input DATA VIEW
(i.e., a SCREEN that receives data from the RULE SET that
calls it) is an External Output, as is a REPORT or an output to
an external FILE. Again, the complexity of the External Output

BANKER et al.: AUTOMATING OUTPUT SIZE AND REUSE METRICS 175

TABLE I1
REPOSITORY OBJECTS AND THE COMPUTATION OF FUNCTION COUNTS

BROKER SALES OBJECT NAMES FUNCTIONALITY COUNT USED COUNT OBJECT TYPES

RULE SETS

On-line reporting
Batch reporting

On-line update
On-line inquiry
Sales retrieval

1
Simple INPUT 3 1 3
Simple EXTERNAL

INTERFACE 1 1 1
1
2
3

Sales summary 3
3GL MODULES Calculate commission 3

Individual sales 1
Summary sales 1

REPORTS

Transaction detail Average output 5 1 5
REPORT SECTIONS Exception reporting Simple output 4 2 8

Detail sales 3 average QUERIES 5 2 30
Summary sales
Inquiry and update SCREEN

DEFINITIONS

3 average QUERIES 5 2 30
Average INPUT 4 1 4
Average QUERY 5 1 5
Average OUTPUTS S 2 I O

DOMAINS Transaction types Simple INTERNAL FILE 7 1 1

Transaction detail

FILES

Average INTERNAL FILE 10 4 40
Average INPUT 4 4 16
Average EXTERNAL

INTERFACE 7 4 28

TOTAL FUNCTION COUNT 198

Nofe: For every screen that displays tabular data, ICE automatically generates a graphic display screen and a HELP screen as well.
The Function Point Analyzer identifies all of the repository objects in the application system and determines how many times each is used.

The Detail Sales Screen, for example, is used twice: in response to an Online Inquiry and in response to an Online Update. In the latter case,
the Online Update RULE SET reuses the Online Inquiry RULE SET and all of the objects (including the Detail Sales Screen) that i f uses.

The Analyzer then determines the function types associated with each object. An application’s functionality depends upon its data stores
and upon the flows of data (reports, queries, or updates) across its boundary. Thus, almost all of its function counts will be associated
with REPORT SECTIONS, SCREENS, or FILES. In this example, there is also some functionality associated with a RULE SET that has
accessed a FILE belonging to a different application system.

is determined by examining the number of DATA VIEWS and
ELEMENTS or, in the case of a FILE access, the number of
keys instead of DATA VIEWS.

Queries: A SCREEN that allows a user to access data,
but not to update it (this can be determined by comparing
the FIELDS used in its input and output VIEWS), repre-
sents a Query. (Queries have lower function counts than
the input-output combination of update-capable screens.) The
complexity of a query is determined by examining the number
of DATA VIEWS and ELEMENTS.

Logical Internal Files: A Logical Internal File is defined in
the following manner: A FILE is internal to an application if
some RULE SETS and 3GL MODULES that access the FILE
are also internal to the application. (FPA checks which RULE
SETS or 3GL MODULES access the FILE and examines
whether they are subordinate to the high-level RULE SET
or BUSINESS PROCESS that defines the application). The
complexity of a Logical h e m a l File is determined by the
number of keys and DATA ELEMENTS that it is defined to
possess.

FPA also counts DATA DOMAINS, a special case of FILES
with ICE. DATA DOMAINS are used by an application

to validate or verify the values that a user inputs and are
analogous to sets.

External Interfaces: A FILE that is accessed by a RULE
SET or a 3GL MODULE that is not part of the application
represents an External Interface, as well as either an External
Input or an External Output. The complexity of the interface
is determined by the number of DATA ELEMENTS and keys.

Each function type gives rise to a number of function counts
that depend upon its type and complexity. The function count
of a system is the sum of the function counts of its component
function types. See, Table 1.

In most third-generation languages, a single program may
easily give rise to any or all of the five function types, possibly
multiple times. The only way to determine the functionality
that it represents is to read and understand it. Each ICE object,
by contrast, fills a limited role. That role, as we have seen, may
be determined by an examination of the metamodel and of the
data definitions associated with the object.

B . Computing Function Points in FPA

The Function Point Analyzer (FPA) has three main compo-
nents that execute the function point analysis methodology:

176

...............................

IEEE TRANSACTIONS ON SOlTWARE ENGINEERING, VOL. 20, NO. 3, MARCH 1994

OBJECT IDENTIFIER
Ent i ty

Relat ionship
Table

an Object Identifier, a Function Counter, and a Complexity
Factor Counter. These components are shown in Fig. 4.

The Object Identifier traverses the metamodel in order
to identify all of the objects used in an application that
have to be evaluated for functionality. It starts with
a FUNCTION, PROCESS, or high-level RULE SET
chosen by the project manager that defines the application
being analyzed, and navigates the hierarchy downward
until all relevant objects have been found.
The Function Counter performs the mapping described in
the previous section from objects and their relationships,
to function types and complexities, to function counts.
The Complexity Factor Counter computes environmental
complexity, which is used in function point analysis as an
adjustment factor to allow for the overall complexity of
the task being implemented and the environment within
which it is being implemented. A point score is assigned
to each of 14 complexity factors, and the total of these
scores is the complexity factor.

FPA determines the 14 complexity factors from function
point analysis through a combination of objective, automated
measures, and online inputs provided by project managers
familiar with the technical aspects of implementation. In the
current implementation of FPA, the objective measures are
computed in parallel with managers' inputs, which take only
a few minutes. When they have been sufficiently validated

Ident i fy Object
. Objects t o ~ Repository

- Meta-Model I Analyze

through use of FPA, the corresponding manual inputs will be
replaced entirely, where possible. Each complexity factor has a
separate input response screen that displays a definition of the
complexity factor. See Fig. 5. This can help a project manager
who may not be familiar with function point analysis to give
accurate and consistent responses.

The sequence of computation, then, is as follows.
1) The Object Identifier traverses the metamodel in order

to identify the objects and relations that may represent
functionality.

2) The Function Counter computes and sums the function
count scores associated with those objects and relations.

3) The Complexity Factor Counter computes the environ-
mental complexity of the application on the basis of
user inputs, and generates an adjustment factor for the
function count. The maximum adjustment, positive or
negative, is 35%.

4) Function points are computed as the product of function
counts and the environmental complexity adjustment
factor. (Refer to the Appendix.)

Thus, an automated function point analysis for a given
application system would result in the collection of all data
needed to compute function counts and make the environ-
mental complexity adjustment. The output can be stored to
a historical database for future use by project, department,
and senior information system managers. (An illustration of

_-__-_____________-- --------- 8 -_--_____ __-__--__-__-___-_-_
8

__________________-________ -_ 8 _ _
Object

Function
Table

Function
D i f f i c u l t y

Determine
Function Type

Instances

Count - Weighting
Determine

Function
Scores

Database
Calculate Project Manager

Function VP, IS Development
Points (FPS) . Chief Information Of f i cer

I

I

I Repository Query

! Manager Inputs - Table
Determine

Complexity
Scores

BANKER et al.: AUTOMATING OUTPUT SIZE AND REUSE METRICS

COMPLEXITY FACTOR

DISTRIBUTED I"CTI0NS

COMPLEXITY SCORE

Complexity Factor 2

This complexity factor measures the degree an application
stores data in a distributed manner or distributes the
processing among CPUs. Applications which involve multiple
platforms (mainframe, minicomputer and microcomputer) would
receive a higher complexity score than for a mainframe-based
application.

Please select the complexity factor score which most closely
approximates the extent of cooperative processing:

0: Data is stored and processing occurs on a single

1: Data is stored on a single platform, but processing

2: Data is stored and processing occurs on two platforms.

3: Data is stored on one platform, but processing occurs

4: Data is stored on two platforms, but processing occurs

5: Data is stored and processing occurs on three

machine only.

occurs on two platforms.

on three or more platforms.

on three or more platforms.

or more platforms.

GO
(to next 1 HELP I

Fig. 5. Function point analysis complexity measures: An input screen. Each of the 14 complexity factors of the function point
methodology has its own input screen. Specific, objective descriptions, tailored to the organization's computing environment are
given to anchor the scoring of the programmer or manager entering the data. Since some of the factors require human judgment,
user input is still used in some cases. Other complexity factors, however, such as the one above that measures the extent of
distributed (or cooperative) processing, can be automated entirely, once the operational definition for this complexity factor has
been implemented in terms of multiplatform processing and data flows using ICE, and validated by managers. At this time, such
values are provided as modifiable defaults.

how FPA works in the context of the Broker Sales Reporting
System is presented in Sidebar 1, in Figs. 5 and 6, and in
Tables I through IV.)

Iv. SRA: A SOITWARE REUSE ANALYZER FOR ICE

Software reuse is known to be a major source of productivity
gains and cost reduction in software development operations
131, 1431, 1491, 1601. A study conducted at the Missile Systems
Division of the Raytheon Company found that more than 60%
of procedural code was repeated in multiple applications [9],
and that reuse levels in nonmanufacturing and nonengineer-
ing business applications (where less technical specificity is
required) may be even greater. Considering the high costs
of software development pervasively reported in the popular
press, reuse represents a source of savings that managers are
increasingly interested in tapping.

Because of the difficulties associated with identifying reuse
in 3GL and 4GL environments, efforts to implement and
manage successful reuse programs have been stymied in many
organizations [3 11, [41]. Although certain types of explicit
reuse (e.g., reuse of data definition files) have been easy to
identify, most reuse in these environments is buried within
programs where it is not easily identified without considerable
manual effort.

An integrated, object-based CASE environment provides
two major aids to the implementation and measurement of

Data communications requirements I 1
Distributed processing requirements
Response time or performance required
Heavily used configuration
High transaction rates
On-line data entry
End-user efficiency
On-line update
Complex processing or computations
Application designed for software reuse
Application designed for ease of installatior

2
1
1
2
2

3
1

I 2

1 :
Application designed for ease of operation
Application designed for multiple sites
A lication desi ned to facilitate chan es
TOTAL SCORE

Adjustment factor: 0.94

The difficulty of developing an application depends not only on its
magnitude (Function Counts) but also on the complexity of the tasks it
performs. To adjust for this complexity, scores from 0 (no influence) to 5
(difficult) are assigned for each of 14 factors. The resulting adjustment factor
can modify the Function Count by up to 35%) (plus or minus).

reuse. First, the code exists at a level of granularity more
conducive to the implementation of software reuse. Although

178

with little modification, were the programmer aware of their
existence. An object-based system may be designed so that
each such routine is a unique object. This makes reuse oppor-
tunities considerably easier to identify and to exploit. Second,

Number of objects
Number Of function types

~ ~ ~ ~ ~ ~ ~ d ~ u o s ~ ~ ~ n t factor
Total function points

IEEE TRANSACTIONS ON SO€TWARE ENGINEERING, VOL. 20, NO. 3, MARCH

17
32

I98
0.94
186

I994

I I

Fig. 6. The Broker Sales Reporting System: System layout. The Broker Sales Reporting System consists of those repository objects
that are invoked by the Broker Sales Reporting Process, and of the relationships between those objects. The PROCESS refines into
two RULE SETS, one for online processing, and one for batch processing. Since the two RULE SETS generate similar outputs,
they have a number of other repository objects in common. Each such object is stored only once in the repository, and reused as
necessary. Each use will be instantiated in the metamodel as an entry in the table of relationships.

instance of reuse becomes readily identifiable; it is simply the
repeated invocation of an object within the repository.

To provide managers with information on software reuse,
we designed and developed a facility within ICE called the
Sofhlare Reuse Analyzer (SRA). SRA analyzes an existing
software application, reporting the levels of reuse for the
various elements comprising the application. Like FPA, SRA
identifies all of the relevant objects for a given analysis by
systematically navigating the hierarchy of calling relationships
within the repository.

A. Measurement of Sofmare Reuse

number of logical source statements (LSS) or physical source
statements (PSS) incorporated or ported unmodified into an
application system. New software, then, may be measured by
the number of LSS or PSS that were created or modified
for the application system. We have adapted this taxonomy
for ICE: A preexisting object is considered to be reused if
it is incorporated unmodified into an application system that
is designed in accordance with another application system.’

’Pamas conceptualized the manner in which an operating system or a
program carries out its processes by distinguishing between two primary
operations upon modules, “invokes” and “uses.” “Uses” requires the actual
execution of a software object in order for the operation to conclude; “invokes”

According to the IEEE Computer Society’s recent is meant to indicate a conditional call to a software object. Pamas further
argues that it is possible to formally specify the operation of a software
application in terms of a module hierarchy that is loop-free while maintaining
a program structure (more formally called a “uses hierarchy”) that encourages

dards document, Standard for Sofmare Metrics
(#lo45 - 1992) [61], reused software may be measured by the

BANKER et ai.: AUTOMATING OUTPUT SIZE AND REUSE METRICS 179

In ICE terms, such reuse is implemented simply by adding a
new relationship to the metamodel, thus calling a previously
written object. Once all of the objects within an application
have been identified, SRA computes a number of managerially
useful reuse metrics that are based upon counts of new objects
and reused objects in an application system.

A number of studies have observed that the potential for
reuse in software development extends far beyond the reuse
of source lines of code. For example, Jones [32] suggested the
following kinds of reuse in software development operations:
data, architecture, designs, programs, and common subsystems
and modules. Kemighan [35] examined the same issues in the
context of the UNIX operating system and identified potential
reuse at the code library, programming language, program, and
system levels. Bollinger and Pfleeger [101 add documentation,
test data, and intangibles such as specialized leaming to this
list. The focus of this paper is limited to reuse of coded
software objects, though ICE stores information about the

Percent within an application as follows:

NEW OBJECT PERCENT
NUMBER OF NEW OBJECTS BUILT * - -

TOTAL NUMBER OF OBJECTS USED

To illustrate this metric, let us consider a system consisting
of 400 objects, of which 100 had to be programmed from
scratch. The New Object Percent is 100/400 * 100% = 25%,
meaning that for every four objects within the system, only
one had to actually be built for that system.” Knowing the
extent to which new software must be developed across a
firm’s applications provides management with the opportunity
to attempt to mandate what levels are desirable and manage
software development activities to achieve them.

We may say that the New Object Percent is 25%, or,
equivalently, that the average object is used four times.12We
refer to this metric as Reuse Leverage, which we formally
define as follows:

REUSE LEVERAGE functional and technical design of a system as well.*

TOTAL NUMBER OF OBJECTS USED
NUMBER OF NEW OBJECTS BUILT ’

As Hall [28] has pointed out, metrics based on counts of
- instances of reuse may be deficient in addressing many of the -

managerial questions concerning reuse:
[The] developer needs to ascertain what sort of reuse is These measures of reuse can be applied at several levels
meant. Is it the number of times the code is incorporated
into other code? The number of times the code is executed?
A combination, the number of times the incorporating code
is executed? A figure of merit reflecting the value or utility
or saving rather than being a simple count of uses?9
In the process of designing SRA, we identified three primary

types of issues that its software reuse metrics would need to
addre ss .

What objects are being reused?
How effective is a particular system or environment in
promoting software reuse?
What is the impact of this reuse on productivity and
development costs?1°

As a result, we present metrics to address all three kinds of
questions: reuse leverage metrics, reuse classification metrics,
and reuse value metrics, respectively.

Leverage Metrics: New Object Percent measures the lever-
age achieved through reuse. It is the proportion of the objects
within a system that actually had to be written for the system.
(The rest of the objects represent instances of reuse, and hence
cost savings attributable to reuse.) We define New Object
software reuse and avoids the trap of highly interdependent system parts [53],
[54]. In ICE, reuse is the inclusion of a previously defined object within
an application system’s “uses hierarchy.” The reader who wants to obtain
additional familiarity with the principles of system decomposition should refer
to [51] and [52]. For a broader treatment of the issues of reusability and reuse,
see the surveys by Tracz (671, Hooper and Chester [30], Frakes et d. 1241,
and Norman et al. 1481. The latter two references were presented as panel
discussions at the 13th Inr. Conf. on Sofruwe Eng. in May 1991.

‘One of the major benefits of object-oriented design is that the reuse of an
object can imply the reuse of elements of the system’s design, as well as its
coding, to a far greater degree than is generally true for procedure-oriented
design [111.

’See [B, p. 411.
‘“For discussions of the use and value of economics-based approaches to the

evaluation of software development performance, see Banker and Kauffman
[41, Boehm [XI , Kang and Levy [33], and Levy [39]. Gaffney and Durek’s
[25], [26] analysis of the cost impact of reusable software also suggests a
strong rationale for creating such metrics.

-~

of analysis. In computing separate reuse leverage factors for
different object types, for example, we might find that the
summary New Object Percentage of 25% aggregates a level of
40% for RULE SETS and 15% for SCREEN DEFINITIONS.
Because RULE SETS take far more time than SCREEN
DEFINITIONS to write, the aggregate measure in this example
underestimates the benefits of reuse.

Classification Metrics: For most purposes, we include in
our computation of software reuse any object that is found in
the repository, rather than rewritten from scratch. For some
managerial purposes, however, we will wish to distinguish
internal reuse from external reuse. Reuse is intemal if an
object created for a system is used multiple times within the
system. (For additional background on the concept of intemal
reuse, the reader should refer to the work of Cruickshank
and Gaffney [16], who were first to make this distinction
in the literature.) It is extemal if an object from a different
system is used one or more times within the new system.
ICE considers an object to be owned by the system for which
it was originally created. Moreover, the SRA has access to
that information. (Almost all of the reuse displayed in Figs.
7 and 8 is intemal.) Although both kinds of reuse are of
equal value, different managerial policies may be required to
encourage them. Strictly speaking, extemal reuse guarantees
the developer that the object has been tested elsewhere prior
to being made more widely available in the repository.

The degree of intemal reuse will probably depend upon the
size of the team developing a given application, and upon the
quality of the communications within that team. The degree

I ’ Note that we have diverged from our initial definition in that a preexisting
object that is invoked without modification is considered to constitute an
instance of reuse, regardless of whether it originated in a different system or
was just written for the current system and then used more than once. This
distinction is dealt with in the next section.

’*Although this metric has less desirable analytical qualities, our experience
has been that managers often find it easier to understand.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 3. MARCH 1994

r l t k

Fig. 7. A subset of the Broker Sales Reporting System.

of external reuse, on the other hand, may depend more upon
the quality of the indexing system used to help programmers
to identify existing objects that they might be able to reuse
161, [21], [5 5] . When reuse metrics are being computed for
all of the objects within the repository, by definition, all reuse
is intemal.

Reuse classification mrtrics allow us to assess and compare
system reuse by classifying a system's objects by source. Some
examples are shown as

EXTERNAL REUSE PCT
NUMBER OF OBJECTS OWNED

BY OTHER SYSTEMS
TOTAL NUMBER OF OBJECTS USED

* lCJOO/O - -

INTERNAL REUSE PCT
= 100% - NEW OBJECT PCT

- EXTERNAL REUSE PCT

Internal Reuse Percent, here, is interpreted as the proportion of
occurrences of objects written for an application (not counting
the first occurrence of each object), compared to the total
number of objects used in the application. These metrics can
be modified as in the preceding section to reflect differences
in the relative costs of developing the objects.

Value Merrics: We also wish to measure the cost implica-
tions of reuse. The other metrics that we have discussed value
all instances of reuse equally, and do not consider the fact
that some objects may represent considerably greater costs, or
considerably more functionality, than others. Reuse 1,alue can
be determined by using two general approaches.

The Object Reuse Standard Cost Method computes a reuse
value by estimating the cost saving attributable to reuse. A
standard cost is assigned to each object type, based on actual
site experience, and the number of reuse instances for each
object type is multiplied by the appropriate standard cost. (In
practice, different standard costs can be estimated for objects
of low, average, and high complexity.) The computation can

be accomplished as a byproduct of the reuse leverage and
reuse classification analyses, and it requires no additional
automation, other than reference to a table of standard costs,
which may differ from firm to firm.

This method can be applied to a single application or to
the entire repository. Analysis yields the proportion of the
total software costs that have been avoided through reuse,
calculated as follows:

REUSE VALUE
E::, OBJECT STD COSTj

C:=, OBJECT STD COSTj
= I -

where

OBJECT STD COSTj = ,standard (average cost) in
person days for building
object type j;

J = total number of occurrences of
objects in an application
metamodel hierarchy;

J" = total number of unique objects
built for this application.

This metric differs from the similar one proposed by
Gaffney and Durek [26] in that it does not consider reuse
costs. In the ICE environment, the intent is to reuse software
objects without any modification. Reusing objects without
modification is not always possible, however. Sometimes
there is a near functionality match, resulting in the reuse
of the existing object to template a new one. The value of
this "hidden reuse" is not included in this metric. Gaffney
and Durek estimate that it costs from 3% to 20% of a code
object's construction cost to incorporate it into an application,
even when the object is not modified.I3

I3For additional details, see (261. There is also a search cost associated
with reuse. Programmers must identify appropriate objects, and then spend
enough time studying them to confirm that they are appropriate for reuse.
The reader should refer to Dunn and Knight [191 and Fischer, Henninger, and

BANKER et al.: AUTOMATING OUTPUT SIZE AND REUSE METRICS

........

Iu*-

...............

...............

,_..

,/'

I ~~~~

...

........
_,,.'. i 1. ;(-) ,,.I....

................

.......... i Ib...... ,,.- I,(-) ,,,"

,,..
Fig. 8. Expanded hierarchy for a subset of the Broker Sales Reporting System. This figure displays the same subset as it would appear
in the absence of object reuse. Several of the objects would have to be rewritten many times. Reuse Leverage is the ratio of the number
of objects used (Fig. 8) to the number of unique objects actually written for this application (Fig. 7). The 3GL MODULE (Calculate
Broker Commission) is exrer-nul to this application; it was originally written for a different application, and reused by the programmers
of this one. Therefore, the Software Reuse Analyzer will not include it in the count of unique objects written for this application.

The Function Point Reuse Standard Cost Method measures
the proportion of the application's function points that is
attributable to reuse. A value can be derived from this figure
by applying a single standard cost per function point. This
approach is primarily of interest at higher managerial levels
than that of the project manager.

In ICE, as was seen in our discussion of the Function Point
Analyzer, though development effort may depend upon the
number and complexity of the objects in the repository, the
functionality of the system (as measured by function points)
depends upon the relationships in the metamodel. Every time
we add a new call to an object that is already in use, we are
adding a computable number of function points to the system,
without writing any new objects. We can represent the value of
function point reuse by determining the total costs associated
with building all of the function points in an application (either
from real project costs or from organization-wide standard
costs for building a function point), and then determining the
proportion that results from reuse. The associated reuse value
metric is shown below:

5 FP,
REUSE VALUE = 1 -

c FP,
j=l

where

Redmiles 1221 for useful, current perspectives on the problem of searching for
reusable software. For additional background on the MITRE Corporation and
the Software Productivity Consortium's research program on the economics
of software reuse, see [IS]. [161, 1251.

181

FPj =

J =

J' =

the number of function points associated
with relation j;
the total number of relations in an application
metamodel hierarchy;
the total number of unique objects (and hence,
the total number of relations which are
first-time calls to those objects,
rather than instances of reuse)
built for this application,

Since function points are the basis for ICE productivity
measurement, this reuse value metric gives us a measure of the
proportion of system functionality, and hence of developers'
output and productivity, which is attributable to reuse. Unlike
the object reuse standard cost value metric, it has not yet been
implemented in SRA.

B . SRA Architecture

The operations of the Software Reuse Analyzer parallel
those of the Function Point Analyzer. First, SRA identifies
the objects used by a given application in the same way that
the FPA does. The repository contains a complete metamodel
describing the relationships between application objects, and
SRA uses it to trace all of the objects that are called, directly
or indirectly, by the application under analysis. As with FPA,
the scope of the analysis is determined by the user at the
time of execution. It can include the entire contents of the
repository, a small or large set of application systems, or even
a subset of a single system. The ability to start anywhere
in the hierarchy provides SRA with a great deal of power

IS2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 3 , MARCH 1994

TABLE V
INSTANCES OF REUSE

Object Required Objects Written Total Used Complexity Person-Days Total Person-Days Broker Sales Repository
Object Name

Reporting process 1 1 Simple 2 2
On-line reporting rule 1 I Simple 2 2
Batch reporting rule 1 I Simple 2 2
On-line update rule 1 1 Average 4 4
On-line inquiry rule I 2 Simple 2 4
Sales retrieval rule I 3 Average 4 12

Transaction detail file 1 4 Simple 3 12
Transaction type domain 1 1 Simple 1 1
Compute commission EXT 3 Complex (7) 21

Sales summary rule 1 3 Simple 2 6

TOTALS 9 20 22 66
The repository contains enough information for the automated Software Reuse Analyzer to classify each object as Simple,

Average, or Complex, on the basis of estimation heuristics used by ICE developers. (This is not the same classification used
by the Function Point Analyzer.) These heuristics also enable the Analyzer to assign a programming-time estimate to each
object, based on its type and complexity. Thus, we can estimate the programming time required, and the programming time
that would have been required in the absence of software reuse.

for addressing managerial concerns about reuse. For example,
reuse may be analyzed for a specific type of application,
for a given project team, or for a given manager. It also
facilitates research into what factors contribute to increased
reuse.

Second, once the set of objects has been identified, SRA
classifies the objects. The repository contains information not
only to identify the objects called by a given object but also
to identify the source of each object. If a given object was
originally written for a different system (i.e., one beyond the
scope of the current analysis), then it is an instance of external
reuse. If it was written for the system being analyzed, then the
first time that it is encountered by the analyzer, it is classified
as newly written software, and subsequent encounters are
classified as instances of intemal reuse. Finally, SRA computes
multiple reuse metrics for management. (An illustration of how
SRA computes the software reuse metrics in the context of the
Broker Sales Reporting System is presented in Sidebar 2, in
Figs. 7 and 8, and in Tables V and VI.)

V. CONCLUSION
We have discussed the conceptual basis for two automated

software analyzers: a Function Point Analyzer and a Software
Reuse Analyzer. In the process of thinking through the con-
ceptual design problems and testing the analyzers, we were
able to come to an improved understanding of the nature
of the productivity gains attributable to CASE tools. Such
productivity gains are typically thought of as the result of
being able to produce the desired software more quickly and
more cheaply. In fact, our analysis reveals that much of the
potential gain is represented by the production of functionality,
which, without the improved tools, might well not exist.

ICE automatically provides many capabilities that would
require considerable programmer resources in a traditional
programming environment, such as the automation of interplat-
form communications, the automatic generation of "HELP'
messages for every field on a screen, and the automatic

TABLE VI
SORWARE REUSE METRICS

Leverage Metrics:
Total number of objects used
Number of unique objects written
New Object Percent (9/20)
Reuse Leverage (2019)
Value Metrics:
Total person-days of objects used
Person-days required for objects written
Object reuse value (1-(22/66))

20
9

45 %
2.2

66
22

67 %
Function point reuse value
Classification Metrics: Oh'ects Person-Da s
Unique objects written

Reuse of external objects 15% 32%
Total number of ob'ects used 20 100% 66 100%

On the average, each object is used 2.2 times. We see from the reuse
value metric, however. that without reuse, the project would have taken
approximately three times as long to write. The simple levera~e metric
underestimates the benefits of reuse in this case, because it does not distinguish
that the more expensive objects are receiving a disproportionate amount of
reuse.

Reuse of internal objects 40% 35%

translation of any table to graphical format (an especially
useful capability for traders who use on-line real-time trader
workstations in investment banking firms).

In many cases, designers in a 3GL environment would
probably choose to do without these capabilities, rather than
expend the cost and effort needed to implement them without
the appropriate CASE support. Thus, the comparisons that are
frequently cited between the cost of producing a system by
using a given CASE technology and the cost that traditionally
would have been incurred may be misleading in the productiv-
ity advantage that they appear to indicate for the CASE tools.
At the same time, they may tend to overlook the superior
functionality and user-friendliness that may be expected to
accompany CASE deve10pment.I~

I4This raises a related issue. The function types that are assigned the highest
weights in function point analysis are those that are most difficult to implement
in a 3GL. But often these are not difficult at all, with CASE support. Function

183 BANKER el U!.: AUTOMATING O U T P U T SIZE A N D REUSE METRICS

A . Contributions

This paper had multiple objectives. We wished to report
on our automation of function point and software reuse met-
rics-automation that has not been possible in traditional
programming environments. We wished to generalize from our
experience, to identify the features of the CASE environment
that make this automation possible. We wished to report on
the implications that this research has for our understanding
of software productivity in an integrated CASE environment.

The conceptual work that supported the design of the
Function Point Analyzer and the Software Reuse Analyzer rep-
resents an effort that we expect to see replicated in automated
software metrics facilities that take advantage of specific fea-
tures of other integrated CASE tool environments. The present
implementations were made possible by two key features of
the repository object-based integrated CASE environment. The
first of these features is the repository itself, which contains
not only all of the software and data used by the applications
but also an indexing system (in this case, the metamodel) that
allows us to identify the software and files belonging to each
application, as well as the key relationships between them that
result in application functionality. It is conceptually possible
for this information to be maintained (within a repository or
otherwise) by a nonintegrated CASE tool, but we consider it
improbable that the integrity of the information could or would
be maintained in such circumstances. The second feature is the
repository object-based CASE environment and its 4GL. The
organization of the software into objects of limited and clearly
defined functionality has enabled us to compute function points
and to identify reuse without having to actually analyze and
understand the code itself.

We discussed three classes of metrics for assessing software
reuse: leverage metrics, value metrics, and classification met-
r i a . The first two of these metrics match the efficiency and
effectiveness dimensions of standard performance evaluation
approaches. These measures help managers to distinguish
between aggregate levels ofreuse that are achieved in projects
or by areas of the firm’s software development operations, as
well as reuse of individual objects that are especially costly
to build. Moreover, we have suggested that a variety of
metrics that triangulate on the key management problems are
of interest here: A unitary measure of software reuse lacks the
power to answer the questions that we found to be important
to managers.

We also showed how traversing a hierarchical metamodel of
a repository object-based system enables us to identify objects
used by a given system or subsystem, and define reuse that is
internal to the hierarchy (for example, software reused within
a program or an application) or that is extemal to it. Initial
analysis that we have conducted at our research site suggests
that this classification is important to managers wishing to
encourage software reuse. It appears that internal reuse will

points may he useful. then, in answering the question, “What would this
system have cost to develop without CASE’?” But a recalibrated measure may
be required in order to estimate costs within a given CASE environment.
See Banker, Kauffman, and Kumar [SI for a discussion of a new approach
called o h j ~ t p o i n t uw/ys i s that addresses this issue for an object-based CASE
environment.

proliferate where the technology supports it: Programmers
routinely reuse software from one part of an application in
another. Software that is extemal to the system, however, tends
to be written by other programmers, and different technical
support and organizational incentives are needed in order to
motivate programmers to seek out extemal reuse opportunities
[61.

Clearly, these questions are only the starting point for a
rich, new management agenda to better understand and control
CASE-based development [67]. Yet we are already left with
some answers that we did not have before we began this
research. We have learned that the data collection and analysis
needed in order to control software costs can be automated.
We have identified features of CASE systems that support
such automation, and we have begun to understand the issues
involved in measuring output and reuse in such environments
[71.

B. Future Research on Productivity and Sofmare Metrics

Our research raises questions about the continued usefulness
of function points-a measure designed and calibrated for
use in traditional 3GL environments. Are they still useful as
predictors of programming costs within an integrated CASE
environment? Are they useful as a means of exercising man-
agerial control in such an environment? Can they be used to
predict staffing requirements or future maintenance require-
ments? Could they be made more useful by recalibrating and
fine-tuning them for new conditions?

In a similar vein, our development of the Software Reuse
Analyzer gave us an improved understanding of software
reuse. Our tests of SRA confirmed that commercial application
systems built by using CASE offer tremendous scope for
software reuse. If the average object is used five times, this
can mean an up to 80% reduction in the cost of programming
(though the costs of incorporating an existing software object
into a new application do not disappear), and we have observed
such reuse levels for some systems built by using ICE. Initial
analysis suggests, however, that even here only a fraction of
the potential for reuse is being tapped. Programmers tend to
reuse only software with which they are personally familiar,
so that relatively low levels of external reuse are observed.

We are now in the process of formulating research to deal
with the questions raised by these observations, questions
that have been examined elsewhere, for example, in the
context of the U.S. Department of Defense’s Joint Integrated
Avionics Working Group (JIAWG) on software reuse [S I ,
the U.S. Army Information Systems Software Development
Center’s RAPID Center Library (RCL) software reuse library
for Ada [69], Magnavox’s U.S. Army Advanced Field Artillery
Tactical Data System (AFATDS) project [13] and GTE Data
Services’ software asset management program [62], and other
efforts reviewed by Hooper and Chester [30] and Tracz [66].
The questions that have been raised include the following:
How can software reuse be supported, encouraged, and moti-
vated? What aspects of the software are conducive to reuse and
most likely to pay off in the long term? What programming and

I84

managerial practices provide the proper incentives for software
reuse?

The automated report generation capabilities of the FPA
and SRA enable us to pursue research questions that were
simply beyond the scope of prior research in terms of cost and
availability of data. What can we learn about software develop-
ment productivity in this environment? Do productivity gains
change with CASE or application-specific experience? With
the passage of dme and the accretion of maintenance changes?
What are the features of CASE tools that best encourage
productivity? Which ones slow it down?

The questions raised here are the basic questions that soft-
ware development managers will have to answer: What works?
What does not work? How well does a given software solution
work? How can it be made to work better? The availability
of appropriate metrics makes it possible for managers to start
answering these questions.

IEEE TRANSACTlONS ON SOfTWARE ENGINEERING, VOL. 20, NO. 3. MARCH 1994

APPENDIX
THE FUNCTION POINT ANALYSIS PROCEDURE

STEP I : Identification of Function Types

function types.
Identify each functionality unit, and classify it into five user

External Outputs are items of business information pro-
cessed by the computer for the end user.
External Inputs are data items sent by the user to the
computer for processing, or to make additions, changes,
or deletions.
Queries are simple outputs; they are direct inquiries into
a database or master file that look for specific data, use
simple keys, require immediate response, and perform no
update functions.
Logical Internal Files are data stored for an application
as logically viewed by the user.
External Interface Files are data stored elsewhere by
another application, but used by the one under evaluation.

This step yields a count for each of the five different function
types.

STEP 2: Classification of Simple, Average,
and Complex Function Types

The individual counts by function type are further classified
into three complexity levels (Simple, Average, Complex),
depending on the number of data elements contained in each
function type instance and on the number of files referenced.
Each function complexity subtype is weighted with numbers
reflecting the relative effort required to construct the function.
For example, according to Albrecht's weighting scheme, a
Simple Input Type would be weighted by 3, whereas a Com-
plex Input Type would be weighted by 4. Additional details
about the FUNCTION COMPLEXITY SCORES follow:

FUNCTION FUNCTION COMPLEXITY SCORES (c)
TYPE (tJ Simple Average Complex

Inputs 3 4 6

Interfaces 5 7 I O
Queries 3 4 6
Files I 10 15

outputs 4 5 7

FUNCTION COUNTS (FC) summarizes the weighted
counts for the five function types as follows:

5 5 FUNCTION TYPEt*
t= l c=l

FUNCTION COMPLEXITY SCORE,.

STEP 3: Adjusting FUNCTION COUNTS by
TECHNICAL COMPLEXITY FACTOR

The adjustment factor reflects application and environmental
complexity, expressed as the degree of influence of 14 charac-
teristics (f) listed below. Each characteristic is rated on a scale
of 0 to 5 (COMPLEXITY FACTOR), and then all scores are
summed. The TECHNICAL COMPLEXITY FACTOR (TCF)
= 0.65 + (.01* Cf=ltoll C O M P L E X I T Y F A C T O R f) .
The 14 factors are shown below:

1. Data communications
2. Distributed functions
3 . Performance
4. Heavily used

configuration
5. Tranaction rate
6. On-line data entry
7. End user efficiency

On-line update
Complex processing
Reuse
Installation ease

Operational ease
Multiple sites
Facilities changes

Finally, FUNCTION POINTS (FP) are calculated as FC * TCF.

ACKNOWLEDGMENT

We wish to acknowledge Mark Baric, Gene Bedell, Tom
Lewis and Vivek Wadhwa for the access they provided us
to the software development activities and staff at The First
Boston Corporation and Seer Technologies. We also appreci-
ated the assistance and advice of Donna Dodson, Len Erlihk,
Gig Graham, Don Middleton, Michael Oara, Norman Shing
and Brian Weisinger, and research assistance of Eric Fisher and
Vannevar Yu. We thank Hank Lucas for valuable suggestions
on the presentation of the ideas in this paper. Robert J.
Kauffman also thanks the Nippon Electric Corporation for
partial funding. The research presented in this paper enabled
the development of Project Metrix, an automated function
point and software reuse analysis facility built at Seer Tech-
nologies in conjunction with its integrated CASE tool, High
Productivity Systems (Seer HPS).

BANKER et ul.: AUTOMATING OUTPUT SIZE AND REUSE METRICS I85

SIDEBAR 1
THE BROKER SALES REPORTING SYSTEM: INTRODUCTION

The Broker Sales Reporting System is a small (simplified) ICE application system that illustrates the concepts presented
in this article. The system tracks and reports the sales activity of brokers in a small investment firm. The application has
both online and batch capabilities designed to meet the needs of middle and senior management. Senior management is
provided with summarized reports and inquiries. Middle management is provided with detailed reports and inquiries
concerning the performance of individual brokers.

SIDEBAR 2

THE SOFTWARE REUSE ANALYZER

The operation of the Software Reuse Analyzer will be illustrated for a subset of the Broker Sales Reporting System. By
measuring software reuse one can measure the savings which may be realized by coding each object once and reusing it as
necessary (Fig. 7). instead of having to rewrite the code every time it is needed (Fig. 8). A simple ratio of object counts
yields the leverage merrics. NEW OBJECT PCT and REUSE LEVERAGE. The REUSE VALUE metric estimates the

savings attributable to reuse, by considering not only the number of reused objects, but also the function points that they
deliver. These can be equated with software development costs,

In principle, an integrated CASE system could be designed to capture actual costs for each object, as it is produced. This
has not yet been implemented for ICE. Rather, a set of heuristics was developed, on the basis of interviews with software
managers, for estimating the cost of an object (in days) based on its type and its complexity. The complexity is measured on
a three-point scale (Simple, Average or Complex-but not the same scale that is used for function point analysis) which is
simple enough to automate. (These heuristics are in actual use by managers for project cost estimation; see Banker,
Kauffman and Kumar [SI for a preliminary indication of their robustness.)

The Software Reuse Analyzer distinguishes between internal reuse - the reuse of objects written for the current task-and
external reuse-the reuse of objects previously written for different applications. We have observed relatively little reuse of
code written by other programming teams, for other application systems. This suggests that special support may be required
to encourage programmers to seek out opportunities for external reuse. Without that support, much of the potential of
software reuse goes unexploited.

REFERENCES

[I] A. J. Albrecht, “Measuring application development productivity,” in
Pro(,. Joint SHARE. GUIDE, and IBM Application Development Symp.,
IBM, pp. 83-92, Oct. 1979.

121 A. J . Albrecht and J. E. Gaffney, “Software function, source lines of
code, and development effort prediction: A software science validation,”
IEEE Trans. Sofiware Eng.. vol. 9, no. 6, pp. 639-647, Nov. 1983.

[3] U. Apte, C. S. Sankar, M. Thakur, and J. Turner, “Reusability strategy
for development of information systems: Implementation experience of
a bank,” MIS Q.. vol. 14, pp. 421431, Dec. 1990.

[4] R. D. Banker and R. J. Kauffman, “Reuse and productivity: An empirical
study of integrated computer aided software engineering at The First
Boston Corporation,” MIS Q., vol. 15, pp. 375401, Sept. 1991.

[5] R. D. Banker, R. J. Kauffman, and R. Kumar, “An empirical assessment
of object-based output measurement metrics in computer aided software
engineering,” .I. Mgmt. Inform. Sysf.. vol. 6, Winter 1991 - 1992.

161 R. D. Banker, R. J. Kauffman, and D. Zweig, “Factors affecting code
reuse: Implications for a model of computer aided software engineering
development performance,” Crr. f o r Research on Infirm. Syst., Tech.
Rep., Stern School of Business, New York Univ., New York, NY, 1990.

[7] -, “Repository evaluation of software reuse,” IEEE Trans. Sofiware
Eng.. vol. 19, pp. 379-389, Apr. 1993.

[SI B. W. Boehm, S o f f n ~ ~ r e Engineerin<? Economics. Englewood Cliffs,
NJ: Prentice-Hall, 1981.

[9] -, and P. N. Papaccio, “Understanding and controlling software
costs,” IEEE Trans. Sofhtwe En,?.. vol. 13, pp. 1462-1477, Oct. 1988.

[IO] T. B. Bollinger and S. L. Fleeger, “Economics of reuse: Issues and
alternatives,” Inform. Sofru,a/r Tech.. vol. 32, pp. 643-652, Dec. 1990.

[1 I] G. Booch, “What is and what isn’t object-oriented design,” Ed Yourdun’s

Software J . . vol. 2, pp. 14-21, Summer 1989.
B. M. Bouldin, “CASE: Measuring productivity-What are you mea-
suring? Why are you measuring it?” Software Mag., vol. 9, pp. 30-39,
Aug. 1989.
H. B. Carstensen, “A real example of reusing Ada software,” in Proc.
Cont. on Sofiware Reusability and Maintainability. Tysons Comer, VA:
National Institute for Software Quality and Productivity, 1987.
P. S. Chen, “The entity-relationship approach to information model-
ing and analysis,” in Proc. 2nd Int. Conf on rhe EntipRelafionship
Approach.
R. D. Cruickshank and J. E. Gaffney, “An economics model of software
reuse,” presented at MITRE-Washington Econ. Analysis Ctr. Conf on
Analvtic.al Methods in Sqfrwure En,?. Econ. I . Washington, DC, July
1991.
-, “A software cost model of reuse within a single system,”
presented at MITRE- Washington Econ. Analysis Crr. Conf on Analytical
Methods in Software Eng. Econ. 11, Washington, DC, July 1992.
G. B. Davis, “Commentary on information systems: Productivity gains
from computer aided software engineering,” Accr. Horizons, vol. 2, pp.
90-93, June 1988.
J. B. Dreger, Func.tion Point Analysis. Englewood Cliffs, NJ: Prentice-
Hall, 1989.
M. F. Dunn and J. C. Knight, “Software reuse in an industrial setting: A
case study,” in Proc. 13th Inr. Conf. Sofiware Eng. Austin, TX: IEEE
Comput. Soc. Press, 1991, pp, 329-338.
E. M. Dusink, “Towards a design philosophy for reuse,” in Proc,. Reuse
in Pracrice Workshup, J. Baldo and C. Braun, eds. Pittsburgh, PA:
Software Engineering Institute, 1989.
G. Fischer, “Cognitive view of reuse and redesign,” IEEE Software,
vol. 4, no. 4, pp. 60-72, July 1987.

Saugus, CA: ER Institute, 1981.

IEEE

-, S. Henninger, and D. Redmiles, “Cognitive tools for locating
and comprehending software objects for reuse,” in Proc. 13th f n t .
Conf Software Eng. Austin, TX: IEEE Comput. Soc. Press, 1991, pp.

J. T. Fisher, “IBM’s repository: Can Big Blue establish OS/2 EE as the
professional programmer’s front end?” DBMS, pp. 4 2 4 9 , Jan. 1990.
J. B. Frakes, T. J. Biggerstaff, R. Prieto-Diaz, K. Matsumura, and W.
Shaefer, “Software reuse: Is it delivering?” in Proc. 13th Int. Conf,
Software Eng. Austin, TX: IEEE Comput. Soc. Press, 1991, pp. 52-59.
J. E. Gaffney, An Economics Foundation for Software Reuse. Hemdon,
VA: Software Productivity Consortium, 1989.
-, and T.A. Durek, “Software reuse-Key to enhanced produc-
tivity: Some quantitative models,” Inform. Software Tech., vol. 3 1, no.
5, pp. 258-267, June 1989.
G. W. Grammas and J. R. Klein, “Software productivity as a strategic
variable,” fnterfuces, vol. 15, no. 3, pp. 116126, May-June 1985.
P.A. V. Hall, “Software components and reuse: Getting more out of
your code,” Inform. Software Tech., vol. 29, no. 1, pp. 38-43, Jan.-Feb.
1987.
A. Hazzah, “Making ends meet: Repository manager,” software Mag-
azine, pp. 59-72, Dec. 1989.
J. W. Hooper and R. 0. Chester, Software Reuse: Guidelines and Meth-
ods New York: Plenum, 1991.
E. Horowitz and J. Munson, “An expansive view of reusable software,”
IEEE Trans. Soft. Eng., vol. SE-IO, no. 5, pp. 477-487, Sept. 1985.
T. C. Jones, “Reusability in programming: A survey of the state of the
art,” IEEE Trans. Software Eng., vol. SE-IO, no. 5, pp. 484494, Sept.
1984.
K. C. Kang and L. S. Levy, “Software methodology in the harsh light of
economics,” Inform. Software Tech., vol. 31, pp. 239-249, June 1989.
C. F. Kemerer, “Reliability of function points measurement,” Commun.
ACM, vol. 36, pp. 85-97, Feb. 1993.
B. W. Kemighan, “The UNIX system and software reusability,” IEEE
Trans. Software Eng., vol. SE- IO, no. 5, pp. 5 13-5 18, Sept. 1984.
B. J. Kitaoka, “Managing large repositories for reuse,” in Proc. Reuse
in Practice Workshop, J. Baldo and C. Braun, Eds. Pittsburgh, PA:
Software Engineering Institute, 1989.
R. G. Lanergan and C. A. Grasso, “Software engineering with reusable
designs and code,” fEEE Trans. Software Eng. , vol. SE-IO, no. 5, pp.
498-501, Sept. 1984.
R. G. Lanergan and B. A. Poynton, “Reusable code: The application
development of the future,” in Proc. IBM SHAREGUIDE Software
Symp. Monterey, CA: IBM, 1979.
L. S. Levy, Taming the Tiger: Software Engineering and SofhYare Eco-
nomics.
G. C. Low and D. R. Jeffrey, “Function points in the estimation and
evaluation of the software process,” fEEE Trans. Software Eng.. vol.
16, pp. 64-71, Jan. 1990.
R.F. Mathis, “The last 10 percent,” IEEE Trans. Softnure Eng.. vol.
SE-12, no. 6, pp. 705-712, June 1986.
Y. Matsumoto, “Some experiences in promoting reusable software:
Presentation in higher abstract levels,” fEEE Trans. Sofhvare Eng. , vol.
SE-IO, no. 5, pp. 502-512, Sept. 1984.
C. McClure, The Three Rs of Softwure Automation: Re-engineering,
Repository, Reusability.
B. Meyer, “Reuse: The case for object-oriented design,” fEEE Software,
vol. 4, no. 2, pp. 50-64, Mar. 1987.
-, Object Oriented Software Construction. Englewood Cliffs, NJ:
Prentice-Hall, 1988.
J. M. Neighbors, “The DRACO approach to constructing software from
reusable components,” IEEE Trans. Software Eng., vol. SE-IO, no. 5,
pp. 564-574, Sept. 1984.
R. J. Norman and J. F. Nunamaker, “CASE productivity perceptions
of software engineering professionals,” Commun. ACM, vol. 32, pp.
1102-1 108, Sept. 1989.
R. J. Norman, W. Stevens, E. J. Chikofsky, J. Jenkins, and B. L. Ruben-
stein, “CASE at the start of the 199Os,” in Proc. 13th f n t . Conf Software
Eng.
J. F. Nunamaker and M. Chen, “Software productivity: A framework of
study and an approach to reusable components,” in Proc. 22nd Hawaii
f n t . Conf. Sys. Sci.. 1989, pp. 959-968.
-, “Software productivity: Gaining competitive edges in an infor-
mation society,” in Proc. 22nd Hawaii f n t . Conf Syst. Sci., 1989, pp.

D. L. Pamas, “A technique for software module specification with
examples,” Commun. ACM, vol. 15, no. 5, pp. 330-336, May 1972.
-, “On the criteria to be used in decomposing systems into
modules,” Commun. ACM. vol. 15, no. 12, pp. 1053-1058, December
1972.

318-328.

New Yark Springer Verlag, 1987.

Englewood Cliffs, NJ: Prentice-Hall, 1992.

Austin, TX: IEEE Comput. Soc. Press, 1991, pp. 128-142.

957-958.

rRANSACTIONS ON S O R W A R E ENGINEERING, VOL. 20, NO. 3, MARCH 1994

-, “Some hypotheses about the uses hierarchy for operating sys-
tems,” Tech. Rep., Technische Hochschule Darmstadt, Darmstadt, Fed.
Rep. Germany, 1976.
-, “Designing software for ease of extension and contraction,”
IEEE Trans. Software Eng.. vol. SE-5, no. 2, pp. 128-137, Mar. 1979.
R. Prieto-Diaz, “Classifying software for reusability,” fEEE S@nwe.
vol. 4, no. I , pp. 6-16, Jan. 1987.
A. Pollack. “The move to modular software,” New York Times, pp.
DI-D2, Apr. 23, 1990.
F. J. Polster, “Reuse of software through generation of partial systems,”
IEEE Trans. Software Eng., vol. SE-IO, no. 5, pp. 402-416, Sept. 1984.
D. J. Reifer, Joint Integrated Avionics Working Group (JIAWC) Reusable
Sof’ure Program Operational Conc,ept Dowment. Torrance, CA:
Reifer Consultants Inc., 1990.
J. A. Senn and J. L. Wynekoop, “Computer aided software engineering
in perspective,” Tech. Rep., Inform. Tech. Mgmt. Ctr., Coll. Business
Admin., Georgia State Univ., 1990.
V. Seppanen, “Reusability in software engineering,” in Tutorial: Sofi-
ware Reusability, P. Freeman, Ed. Austin, TX: IEEE Comput. Soc.
Press, 1987, pp. 286297.
“Standard for Software Productivity Metrics.” IEEE Standard
#1045-1992, IEEE Comput. Soc. Press, 1992.
M. E. Swanson and S. K. Curry, “Implementing an asset management
program at GTE data services,” Inform. Mgmt.. vol. 16, 1989.
C. R. Symons, Extended Function Points with Entity Type Complexity
Rules.
__, “Function Point Analysis: Difficulties and improvements,” fEEE
Trans. Software Eng. , vol. 14, pp. 2-10, Jan. 1988.
W. Tracz, “Making reuse a reality,” fEEE Software. vol. 4, no. 4, July
1987.
-, “Ada reusability efforts: A survey of the state of the practice,”
in Tutorial: Software Reuse4merging Technology, Austin, TX: IEEE
Comput. Soc. Press, 1988, pp. 23-32.
-, Tutorial: Sofmare Reusedmerging Technology. Austin, TX:
IEEE Comput. Soc. Press, 1988.
R. Veryard, “Information and Software Economics,” Infor-m. Sojfnure
Tech., vol. 31, pp. 226230, June 1989.
T. Vogelsong, “Reusable Ada packages for information system devel-
opment (RAPID)-An operational center for the excellence of software
reuse,” in Proc. Reuse in Practice Workshop, J. Baldo and C. Braun,
eds.
K. Zwanzig, Handbook for Estimating Function Points. GUIDE
Project-DP-1234, GUIDE Int., Nov. 1984.

London: Nolan, Norton & Co., 1984.

Pittsburgh, PA: Software Engineering Institute, 1989.

R.D. Banker received the Ph.D. in business ad-
ministration from Harvard University in 1980, with
a concentration in planning and control systems.

He is the Arthur Andersen & Co./Duane R. Kull-
berg Chair in Accounting and Information Systems
at the Carlson School of Management, University
of Minnestota, Minneapolis. His research on infor-
mation systems development and maintenance is
field-based and empirical, involving collection and
analysis of data on software complexity, project
characteristics, systems environment, and program-

mer experience, and ability and effort, to estimate the impact of managerial
and technological factors on productivity and quality of commercial software.
He has a particular interest in the study of integrated CASE technologies and
the management of reusable software.

Dr. Banker’s research has been published in Management Science, Infor-
mation Systems Research, MIS Quarterly. Journal of Management Informution
Systems, IEEE TRANSACTIONS ON SOL~WARE ENGINEERING, Informution and
Software Tec,hnologies,and elsewhere. He also serves on the editorial boards
of several prominent research journals.

BANKER et al.: AUTOMATING OUTPUT SIZE A N D REUS€ METRICS I87

R.J. Kauffman received the Ph.D. in industrial
administration from Carnegie Mellon University,
Pittsburgh, PA, in 1988.

He is an Associate Professor of information sys-
tems at the Stem School of Business, New York
University, New York, NY, where he specializes in
information technology in the financial services sec-
tor. He is also Nippon Electric Corp. (NEC) Faculty
Fellow of the US-Japan Business and Economics
Research Center. He was on leave in 1992-1993 at
the Federal Reserve Bank of Philadelphia and the

Simon Graduate School of Management, University of Rochester. Previously,
he was an intemational bank lending and strategic planning officer. His current
research focuses on developing new methods for measuring the business value
of information technology investments, using techniques from finance and
economics.

He has published articles in MIS Quarterly. Journal of Munagement Infor-
mation Systems,, IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, Information
and Suftware Technologies. Information and Munagementlournal of Strategic
Information Systems, and elsewhere.

C. Wright received a B.S. from the U S Military
Academy, West Point, NY, and an M B.A. from
the Stem School of Business, New York University,
New York, NY.

He is a Senior Consultant in financial and bro-
kerage systems development at Seer Technologies,
New York, NY Since 1991, he has been involved
with the implementation of large CASE-developed
financial market trading syqtems at Kidder Peabody
Inc. He is now working to develop a consulting
practice in software metrics that is tailored to in-

tegrated CASE environments. He is also managing the merger of these two
activities in support of Seer Technologies’ business development activities in
Europe.

In 1989, he received the Society for Information Management New York
Chapter’s Outstanding Achievement Award

D. Zweig is an Assistant Professor of information
systems in the Department of Administrative Sci-
ences, U S . Naval Postgraduate School, Monterey,
CA. His research focuses on software reuse and
on cost implications of software complexity. He
is also currently working on an analysis of the
U S . Department of Defense’s software inventory,
tumover rate, and expected replacement costs.

	Automating output size and reuse metrics in a repository-based computer-aided software engineering (CASE) environment
	Citation

	Automating output size and reuse metrics in a repository-based computer-aided software engineering (CASE) environment

