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A Class of Nonlinear Stochastic Volatility Models∗

Jun Yu† and Zhenlin Yang‡

April 18, 2002

Abstract

This paper proposes a class of nonlinear stochastic volatility models based on
the Box-Cox transformation which offers an alternative to the one introduced in
Andersen (1994). The proposed class encompasses many parametric stochastic
volatility models that have appeared in the literature, including the well known
lognormal stochastic volatility model, and has an advantage in the ease with which
different specifications on stochastic volatility can be tested. In addition, the func-
tional form of transformation which induces marginal normality of volatility is
obtained as a byproduct of this general way of modeling stochastic volatility. The
efficient method of moments approach is used to estimate model parameters. Em-
pirical results reveal that the lognormal stochastic volatility model is rejected for
daily index return data but not for daily individual stock return data. As a con-
sequence, the stock volatility can be well described by the lognormal distribution
as its marginal distribution, consistent with the result found in a recent literature
(cf Andersen et al (2001a)). However, the index volatility does not follow the
lognormal distribution as its marginal distribution.
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1 Introduction

Modeling the volatility of financial time series via stochastic volatility (SV) models has

received a great deal of attention in the theoretic finance literature as well as in the

empirical finance literature. Prices of options based on SV models are shown to be more

accurate than those based on the Black-Scholes model (see, for example, Melino and

Turnbull (1990)). Moreover, the SV model offers a powerful alternative to GARCH-type

models to explain the well documented time varying volatility. Empirical successes of

the lognormal SV model relative to GARCH-type models are documented in Danielsson

(1994), Geweke (1994), and Kim, Shephard and Chib (1998) in terms of in-sample

fitting, and in Yu (2002) in terms of out-of-sample forecasting.

In the theoretical finance literature on option pricing, the SV model is often formu-

lated in terms of stochastic differential equations. For instance, Wiggins (1987), Chesney

and Scott (1989), and Scott (1991) specify the following model for the asset price P (t)

and the corresponding volatility σ2(t),

dP (t)/P (t) = αdt+ σ(t)dB1(t), (1.1)

d lnσ2(t) = λ(ξ − lnσ2(t))dt+ γdB2(t), (1.2)

where B1(t) and B2(t) are two standard Brownian motions.

In the empirical literature, the above continuous time model is often discretized.

The discrete time SV model may be obtained, for example, via the Euler-Maruyama

approximation. The approximation, after a location shift and reparameterization, leads

to the so-called lognormal SV model given by

Xt = σtet, (1.3)

lnσ2
t = µ+ φ(lnσ2

t−1 − µ) + σvt, (1.4)

where Xt is a continuously compounded return and et, vt are two uncorrelated sequences

of independent and identically distributed (iid) N(0, 1) random variables. The above

model is equivalently represented, in the majority of empirical literature, by

Xt = exp(
1

2
ht)et, (1.5)
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ht = µ+ φ(ht−1 − µ) + σvt. (1.6)

This most widely used SV model is built upon the models of Clark (1973) and

Tauchen and Pitt (1983) and first introduced by Taylor (1982, 1986 and 1994). One

implication of its specification is that the marginal distribution of logarithmic volatility

is normal. This assumption has very important implications for financial economics and

risk management.

Alternative SV models have appeared in the theoretical literature as well as in the

empirical literature. For example, Stein and Stein (1991) and Johnson and Shanno

(1987) assume σ(t) follows, respectively, an Ornstein-Uhlenbeck (OU) process and a

geometric Brownian motion, while Hull and White (1987) and Heston (1993) assume a

geometric Brownian motion and a square-root process for σ2(t). In the discrete time

case, various SV models can be regarded as generalizations to corresponding GARCH

models. For example, a polynomial SV model is a generalization of GARCH(1,1) (Boller-

slev (1986)) while a square root polynomial SV model is a generalization of standard

deviation (SD)-GARCH(1,1). Andersen (1994) introduces a general class of SV models,

of which a class of polynomial SV models has been emphasized. This class encompasses

most of the discrete time SV models in the literature. Other more recent classes of

SV models include those proposed by Barndorff-Nielsen and Shephard (2001b) and by

Meddahi (2001).

Despite all these alternative specifications, there is a lack of procedure for selecting

appropriate functional form of stochastic volatility.1 The specification of the correct

stochastic volatility function, on the other hand, is very important in several respects.

First, different functional forms lead to different formulae for option pricing. Misspecifi-

cation of the stochastic volatility function can result in incorrect option prices. Second,

the marginal distribution of volatility depends upon the function form of stochastic

volatility.

In this paper, we propose a new class of SV models, namely, nonlinear SV models.

Like the class of Andersen (1994), it includes as special cases many discrete time SV

1It is well known that a GARCH process converges to a relevant stochastic volatility process (Nelson
(1990)). A specification test based on a GARCH family can be suggestive of an appropriate stochastic
volatility specification; see for example, Hentschel (1995). Such a test, however, is by no mean a direct
test of stochastic volatility specifications.
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models that have appeared in the literature. It overlaps with but does not encompass the

class of Andersen. An advantage of our proposed class is the ease with which different

specifications on stochastic volatility can be tested. In fact, the specification test is based

on a single parameter. Another advantage of our proposed class is that, as a byproduct

of this general way of modeling stochastic volatility, one obtains the functional form of

transformation which induces marginal normality of volatility. Section 2 presents this

class of nonlinear SV models. In Section 3, we use an efficient method of moments

(EMM) approach to estimate the proposed class of models. In Section 4, the class is

fitted to daily observations on an individual stock return and a stock index return and

in Section 5 we present conclusions and possible extensions.

2 A Class of Nonlinear SV Models

The lognormal SV model specifies that the logarithmic volatility follows an AR(1) pro-

cess. However, this relationship may not always be warranted by the data. A natural

generalization to this relationship is to allow a general (nonlinear) smooth function of

volatility to follow an AR(1) process. That is,

Xt = σtet, (2.7)

h(σ2
t , δ) = µ+ φ[h(σ2

t−1, δ)− µ] + σvt, (2.8)

where et and vt are two uncorrelated N(0, 1) sequences, and h is a smooth function

indexed by a parameter δ. A nice choice of this function is the Box-Cox power function

(Box and Cox (1964)):

h(t, δ) =

 (tδ − 1)/δ, if δ 6= 0,

log t, if δ = 0.
(2.9)

As the function h is specified as a general nonlinear function, the model is thus termed

in this paper the nonlinear SV model. Several attractive features of this new class of

SV models include: i) as we will show below it includes the lognormal SV model and the

other “classical” SV models as special cases, ii) it adds great flexibility on the functional

form, and iii) it allows a simple test for the lognormal SV specification, i.e., a test of
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H0 : δ = 0, and some other “classical” SV specifications. If we write ht = h(σ2
t , δ), then

we can re-write the nonlinear SV models as

Xt = [g(ht, δ)]
1/2et, (2.10)

ht = µ+ φ(ht−1 − µ) + σvt, (2.11)

where g(ht, δ) is the inverse Box-Cox transformation of the form

g(ht, δ) =

 (1 + δht)
1/δ, if δ 6= 0,

exp(ht), if δ = 0.
(2.12)

Equivalently we can re-write them in a form of

Xt = σtet, (2.13)

(σ2
t )

δ − 1

δ
= µ+ φ[

(σ2
t−1)

δ − 1

δ
− µ] + σvt. (2.14)

Denote the parameters of interest by θ = (µ, δ, φ, σ).

The idea of our proposed SV models is similar to that made in Higgins and Bera

(1992) from the linear ARCH model (Engle (1982)) to the nonlinear ARCH (NARCH)

model. Obviously, our model provides a stochastic volatility generalization of a nonlinear

GARCH(1,1) model.

It can be seen as δ → 0, (1 + δht)
1/(2δ) → exp(0.5ht) and ((σ2

t )
δ − 1)/δ → lnσ2

t .

Hence the proposed nonlinear SV model includes the lognormal SV model as a special

case. If δ = 1, the variance equation (2.14) becomes

σ2
t = µ′ + φ(σ2

t−1 − µ′) + σvt, (2.15)

where µ′ = µ + 1. This is a polynomial SV model in Andersen (1994). According to

this specification, volatility follows a normal distribution as its marginal distribution. If

δ = 0.5, the variance equation (2.14) becomes

σt = µ′′ + φ(σt−1 − µ′′) + 0.5σvt, (2.16)

where µ′′ = 0.5µ + 1. This is a square root polynomial SV model in Andersen (1994)

and can be regarded as a discrete time version of the continuous time SV model in Scott
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(1987) and Stein and Stein (1991). As a result, the marginal distribution of the square

root of volatility is Gaussian.

In Table 1 we summarize some well-known stochastic volatility models and show

their parameter relations with our model. For the continuous time stochastic volatility

models, their Euler discrete time versions are considered. It can be seen that all these

models can be obtained from our model by placing the appropriate restrictions on the

three parameters δ, µ and φ. In fact, all the models except our model require δ to be 0,

0.5, or 1.2 For a general δ, our model is different from any of them and δ provides some

idea about the degree of departure from a “classical” parametric SV model. See Figure 1

for the comparison of the square root of inverse Box-Cox transformation, (1+ δht)
1/(2δ),

for various values of δ over the interval [−2, 2], a possible range that actual ht may lie

within in the framework of lognormal SV model.

The Box-Cox transformation has been applied in various areas in finance. One of the

most relevant applications to our work may be that proposed by Higgins and Bera (1992)

who introduce the nonlinear ARCH model. Another relevant application is Hentschel

(1995) who introduces a family of GARCH models by applying the Box-Cox transforma-

tion to the conditional standard deviation. A nice feature of our proposed class is that

it provides a simple way to test the null hypothesis of polynomial SV specifications, in-

cluding the lognormal SV specification, against a variety of non-polynomial alternatives.

In fact, this specification test is based entirely on a single parameter, δ. Moreover, as a

consequence of specification testing, our proposed class provides an effective channel to

check the marginal distribution of unobserved volatility. Therefore, our method serves

as an alternative approach to studying marginal distribution of daily volatility from that

which appeared in a recent literature based on ultra-high frequency data (cf Andersen

et al (2001a, b)).

To conclude this section, we establish some basic properties of the proposed class of

2Some specifications in Table 1 may be different from the actual specifications used in the original
references. However, they are equivalent to each other via Ito’s lemma. For example, Heston (1993)
adopts a square root specification for σ2

t which is identical to assuming σt follows a particular OU
process.

6



SV models. It is easy to see that ht is stationary and ergodic if φ < 1 and that if so

µh ≡ E(ht) = µ, σ2
h ≡ V ar(ht) =

σ2

1− φ
, and ρ(`) ≡ Corr(ht, ht−`) = φ`.

It follows that Xt is stationary and ergodic as it is the product of two stationary and

ergodic processes. For the moments of Xt, a distributional constraint has to be imposed

on vt or ht. As σ2
t is nonnegative, the exact normality of vt is incompatible unless

δ = 0 or 1/δ is an even integer.3 Our experience suggests that, as far as parameter

estimation is concerned, the assumption of the exact normality of vt works well for all

the empirically possible values of parameters that we have encountered.4 However, to

derive some theoretical results, we assume in general that ut = σ2
t = (1 + δht)

1/δ follows

a generalized lognormal distribution as defined in Chen (1995) with pdf

f(ut; δ, µ, σh) =


σ−1

h ψ[(ut(δ)− µ)/σh]u
δ−1
t /Ψ(θ), if δ > 0,

σ−1
h ψ[(ut(δ)− µ)/σh]u

δ−1
t , if δ = 0,

σ−1
h ψ[(ut(δ)− µ)/σh]u

δ−1
t /Ψ(−θ), if δ < 0,

(2.17)

where ut(δ) is the Box-Cox power transformation of ut, and ψ and Ψ are, respectively,

the standard normal pdf and cdf with θ = (1 + δµ)/δσh. Chen (1995) shows that

If δ = 0, E(uk
t ) = exp(kµ+

1

2
k2σ2

h), k = 1, 2, · · · ,

If δ > 0, E(uk
t ) =

1√
2π

∫ ∞

δ

exp(−1

2
v2)[1 + δ(µ+ σhv)]

k/δdv <∞, for k = 1, 2, · · · ,

If δ < 0, E(uk
t ) =

1√
2π

∫ −δ

∞
exp(−1

2
v2)[1 + δ(µ+ σhv)]

k/δdv <∞, iff δ < −k.

Combining Chen’s results with Gaussianity of et and independence between et and

vt, moments of Xt can easily be found. In particular, all the odd moments are zero and

the even moments are

E(Xk
t ) = E(u

k/2
t )E(ek

t ) =
k!

2k/2(k/2)!
E(u

k/2
t ), k = 2, 4, · · · .

3This is the well known truncation problem with the Box-Cox power transformation. The truncation
effect is negligible if δσh/(1 + δµ) is small, which is achieved when i) δ is small, or ii) µ is large, or iii)
σh is small. See Yang (1999) for a discussion on this. Furthermore, a small value of δσh/(1 + δµ) can
be achieved by re-scaling Xt. For example, one can denote a return by (lnPt − ln Pt−1) × 10 rather
than by (ln Pt − lnPt−1)× 100.

4The same problem occurs in the model proposed by Stein and Stein (1991). They claim that “for a
wide range of empirically reasonable parameter values, the probability of passing the barrier at σ = 0
is so small as to be of no significant consequence.”
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As a result, the expression for kurtosis is easily derived. Of particular interest are cases

where 1/δ is a positive, even integer, which give rise to some polynomial SV models

of Anderson (1994). In these cases, no truncation is necessary and exact normality

assumption can be given to the distribution of vt. Under Gaussianity of vt, we have

ht ∼ N(µ, σ2
h), and hence 1 + δht ∼ N(1 + δµ, δ2σ2

h). The recursive formulas of Katz

(1999) can be used for finding the moments of ut as well as the product moments of ut

and ut−`, which can then be converted to give moments and product moments for the

Xt process. Define

γ(i, j) = E(Z i
1Z

j
2), i, j = 0, 1, · · · ,

where Z1 and Z2 are two normal random variables with means µ1 and µ2, standard

deviations σ1 and σ2, and the correlation coefficient between them ρ. The recursive

formulae take the form

γ(i, 0) = µ1γ(i− 1, 0) + (i− 1)σ2
1γ(i− 2, 0)

γ(0, j) = µ2γ(0, j − 1) + (j − 1)σ2
2γ(0, j − 2)

γ(1, j) = µ2γ(1, j − 1) + σ1σ2ργ(0, j − 1) + (j − 1)σ2
2γ(1, j − 2)

γ(i, j) = µ1γ(i− 1, j) + jσ1σ2ργ(i− 1, j − 1) + (i− 1)σ2
1γ(i− 2, j),

where i, j = 2, 3, · · · . We now consider several special SV models to give explicit ex-

pressions for the moments and autocorrelation functions.

The square root polynomial SV model. When δ = 0.5, we have the square root

polynomial SV model and ut = (1 + 0.5ht)
2. Let Z1 = 1 + 0.5ht and Z2 = 1 + 0.5ht−`.

Then, we have µ1 = µ2 = 1 +µ/2, σ2
1 = σ2

2 = σ2
h/4 and ρ = φ`. The odd moments of Xt

are zero. The even moments can be found from the expression of γ(i, 0). In particular,

E(X2
t ) = (1 + µ/2)2 + σ2

h/4, and E(X4
t ) = 3[(1 + µ/2)4 + 3(1 + µ/2)2σ2

h/2 + 3σ4
h/16].

Further, the autocorrelation function of X2
t is found using expressions of γ(4, 0) and

γ(2, 2), which is

(1 + µ/2)4 + (1 + µ/2)2σ2
hφ

` + σ4
hφ

2`/8 + σ2
h((1 + µ/2)2 + σ2

h/4)

3[(1 + µ/2)4 + 3(1 + µ/2)2σ2
h/2 + 3σ4

h/16]
.
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The lognormal SV model. The moments and dynamic properties of other poly-

nomial SV models with 1/δ an even integer can be found in a similar way (though more

tedious) to the above. It should be pointed out that the popular lognormal SV model

can also be considered as a special case of the above model with 1/δ being a very large,

positive, even integer. Its moment and dynamic properties can be found in Shephard

(1996) and Knight, Satchell and Yu (2001).

3 Estimation by Efficient Method of Moments

The literature on estimating SV models is vast. This is in part due to the fact that

the likelihood function has no closed form expression for the SV model and hence the

maximum likelihood approach is extremely difficult to implement. As a consequence,

the SV model becomes a central example to compare the relative merits of alternative

estimation procedures.

To estimate the discrete time SV model, Melino and Turnbull (1990) propose gener-

alized method of moments (GMM) which is further improved by Andersen and Sorensen

(1996). For the continuous time SV model, a GMM approach is developed by Hansen

and Scheinkman (1995). The idea behind GMM is to match a number of sample mo-

ments with model moments. Harvey, Ruiz and Shephard (1994) and Ruiz (1994) suggest

the quasi maximum likelihood (QML) approach. The main idea is to approximate non-

normal disturbances by normal disturbances and then maximize the Gaussian likelihood

function. Observing that the joint and conditional characteristic functions of the SV

model have closed form expression, Yu (1998), Knight et al (2001) propose to estimate

the discrete time SV model via the empirical characteristic function, while Singleton

(2001) and Jiang and Knight (2002) use the empirical characteristic function method

to estimate the continuous time SV model. More efficient estimation methods involve

the whole family of simulation based methods. These include the simulated maximum

likelihood method proposed by Danielson and Richard (1993) and Danielsson (1994);

the Markov Chain Monte Carlo (MCMC) method proposed by Jacquier, Polson and

Rossi (1994) and improved by Kim et al (1998); the maximum likelihood Monte Carlo

method (Sandmann and Koopman (1998)); the simulation method using important
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sampling and antithetic variables proposed by Durbin and Koopman (2000); and the

efficient method of moments (EMM) procedure by Gallant and Tauchen (1996).

The relative merits of the alternative methods depend not only on the finite sample

efficiency but also on the flexibility to adapt to modifications of model specification.

Moreover, in the framework of SV models, a good method should also allow one to

extract the unobserved volatility model with a low cost and to do simple but useful

model diagnostics. Judged by these criteria, EMM is our choice for inferences since it

provides a flexible and reasonably efficient approach to analyzing the SV model. The

asymptotic efficiency of EMM is provided in Gallant and Tauchen (1996) for Markov

processes, and Gallant and Long (1997) and Tauchen (1997) for non-Markov processes.

Andersen, Chung and Sorensen (1999) document a finite sample comparison of various

methods for estimating the lognormal SV model in Monte Carlo studies and find that

the EMM procedure performs quite well in comparison with other estimation proce-

dures. Gallant, Hsieh, and Tauchen (1997) and Gallant and Tauchen (2001c) discuss

flexibility of modeling modifications of the SV model. Using a nonlinear Kalman filter-

ing technique, Gallant and Tauchen (1998) propose a reprojection method to infer the

unobserved state vector. One advantage of the EMM approach lies in its diagnostics.

For example, it allows for a model diagnostic suggestive of the dimension along which

the model may be inadequate and provides simple overall model specification checking

(cf Gallant and Tauchen (1996) and Tauchen (1997)).

EMM is first introduced by Gallant and Tauchen (1996) and has now found many

successful applications in economics and finance; see Gallant and Tauchen (2001a) for

a brief review of the literature. It is closely related to GMM of Hansen (1982). An

important difference between them is that while GMM relies on an ad hoc chosen set

of moment conditions, EMM is based on a judiciously chosen set of moment conditions.

The moment conditions EMM employs is the expectation of the score of an auxiliary

model which is often referred to as the score generator.

Let the SV model of interest be the structural model. The conditional density of the

structural model is defined by

pt(xt|yt, θ),

10



where the true value of θ is θ0 and θ0 ∈ Θ ⊂ <`θ with `θ being the length of θ0. Denote

the conditional density of an auxiliary model by

ft(xt|yt, β), β ∈ R ⊂ <`β

where yt is a vector of lagged xt. Further define the expected score of the auxiliary

model under the structural model as

m(θ, β) =

∫
· · ·

∫
∂

∂β
ln f(x|y, β)p(x|y, θ)p(y|θ)dxdy.

Obviously, in the context of the SV model, the integration cannot be solved analytically

since neither p(x|y, θ) nor p(y|θ) has closed form. However, it is easy to simulate from

an SV model so that one can approximate the integral by Monte Carlo simulations.

That is

m(θ, β) ≈ mN(θ, β) ≡ 1

N

N∑
τ=1

∂

∂β
ln f(x̂τ (θ)|ŷτ (θ), β),

where {x̂τ , ŷτ} are simulated from the structural model. The EMM estimator is a

minimum chi-squared estimator which minimizes the following quadratic form,

θ̂n = arg min
θ∈Θ

m′
N(θ, β̂n)(In)−1mN (θ, β̂n),

where β̂n is a quasi maximum likelihood estimator of the auxiliary model and In is an

estimate of

I0 = lim
n→∞

V ar

(
1√
n

n∑
t=1

{ ∂
∂β

ln ft(xt|yt, β
∗)}

)
with β∗ being the pseudo true value of β. Under regularity conditions, Gallant and

Tauchen (1996) show that the EMM estimator is consistent and has the following asymp-

totic normal distribution,

√
n(θ̂n − θ0)

d→ N(0,
∂

∂θ
m(θ0, β

∗)(I0)
−1 ∂

∂θ′
m(θ0, β

∗)).

For specification testing, we have

Jn = nm′
N (θ̂n, β̂n)(In)−1mN (θ̂n, β̂n)

d→ χ2
`β−`θ

under the null hypothesis that the structural model is correct. When a model fails the

above specification test one may wish to examine the quasi-t-ratios and/or t-ratios to
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look for some suggestion as to what is wrong with the structural model. The quasi-t-

ratios are defined as

T̂n = S−1
n

√
nmN(θ̂n, β̂n)

where Sn = [diag(In)]1/2. It is well known that the elements of T̂n are downward biased

in absolute value. To correct the bias one can use the t-ratios defined by

T̃n = Q−1
n

√
nmN (θ̂n, β̂n)

where

Qn =

(
diag{In −

∂

∂θ′
mN (θ̂n, β̂n)[m′

N(θ̂n, β̂n)(In)
−1mN(θ̂n, β̂n)]

−1 ∂

∂θ
mN(θ̂n, β̂n)}

)1/2

.

Large quasi-t-ratios and t-ratios reveal the features of the data that the structural model

cannot approximate.

Furthermore, Gallant and Tauchen (1996) show that if the auxiliary model nests the

data generating process, under regularity conditions the EMM estimator has the same

asymptotic variance as the maximum likelihood estimator and hence is fully efficient.

If the auxiliary model can closely approximate the data generating process, the EMM

estimator is nearly fully efficient (Gallant and Long (1997) and Tauchen (1997)).

To choose an auxiliary model, the seminonparametric (SNP) density proposed by

Gallant and Tauchen (1989) can be used since its success has been documented in many

applications. As to SNP modeling, six out of eight tuning parameters are to be selected,

namely, Lu, Lg, Lr, Lp, Kz, and Ky. The other two parameters, Iz and Ix, are irrelevant

for univariate time series and hence set to be 0. Lu determines the location transforma-

tion whereas Lg and Lr determine the scale transformation. Altogether they determine

the nature of the leading term of the Hermite expansion. The other two parameters Kz

and Ky determine the nature of the innovation. To search for a good auxiliary model,

one can use the Schwarz BIC criterion to move along an upward expansion path until

an adequate model is found, as outlined in Bansal et al (1995). To preserve space we

refer readers to Gallant and Tauchen (2001b) for further discussion about the role of

the tuning parameters and how to design an expansion path to choose them.
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4 Empirical Applications

In this section we consider two applications using an individual stock price series and a

stock index series. The stock price data consist of 3,778 observations on the daily price

of a share of Microsoft, adjusted for stock split, for the period from March 13, 1986

to February 23, 2001. The same data have been used in Gallant and Tauchen (2001a)

to fit a continuous time SV model. The stock index data consist of 4044 observations

on 100 times the log-first difference of the daily S&P 500 index for the period from

January 4, 1977 to December 31, 1992. The same data have been used in Gallant and

Tauchen (2001a) to fit the SV model of Clark (1973). Let Pt represent the stock price

of Microsoft at period t. Define the daily return Xt as (lnPt− lnPt−1)× 100. There are

3,777 observations for Microsoft return data.

Figure 2 displays the two return series and Table 2 reports some descriptive statis-

tics for them. From Table 2, it can be seen that, from maximums, minimums and

variances, the Microsoft returns are more volatile than the S&P500 returns. However,

the distribution of Microsoft returns is less lepkurtotic than that of S&P500 returns.

Neither return series is mean-adjusted. To allow for a possible no-zero mean and

also some dynamics in mean, we introduce an AR(1) structure in the mean equation.

As a consequence, we fit the following two models to each of the return series:

Xt = µ0 + c(Xt−1 − µ0) + exp(
1

2
ht)et, (4.18)

ht = µ+ φ(ht−1 − µ) + σvt; (4.19)

and

Xt = µ0 + c(Xt−1 − µ0) + (1 + δht)
1/(2δ)et, (4.20)

ht = µ+ φ(ht−1 − µ) + σvt. (4.21)

We call them the lognormal SV model and the proposed SV model respectively.

The same sets of tuning parameters in the SNP model are employed as in Gallant and

Tauchen (2001a), since identical datasets are used. We report these tuning parameters

in the following order

(Lu, Lg, Lr, Lp, Kz, Iz, Ky, Iy).
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To ensure that the chosen SNP model is reasonable, we have compared the BIC value

with those from many alternative sets of tuning parameters and find that the BIC value

from the chosen SNP model is one of the smallest. The set of the tuning parameters, the

corresponding BIC value, the leading term in the Hermite expansion, the characteriza-

tion of Xt and the number of parameters in the auxiliary model are presented in Table

3 for both series. A GARCH leading term is used for the Microsoft returns whereas an

ARCH leading term is used for the S&P500 returns.

Since the sample sizes for both series are large, we believe that the choice of leading

term is not crucial as long as a form of conditional heteroskedasticity has been accom-

modated. In a Monte Carlo study, Andersen et al (1999) find that the EMM efficiency

approaches that of maximum likelihood for larger sample size when various forms of

conditional heteroskedasticity are used as the leading term. Moreover, they find that

the EMM-based inferences, such as the t-statistic and Jn statistic, are robust to the

choice of auxiliary model when the sample size is large.

Table 4 and Table 5 report the empirical results for Microsoft returns. To ensure

a global minimum is obtained, we perturb starting values when minimizing quadratic

expression and estimating SNP density. Furthermore, we simulate 100,000 observations

from the SV models, of which first 10,000 observations are discarded in order to let

the effect from initialization die off. Table 4 reports the estimates, the numerical Wald

standard errors, the 95% approximate criterion-difference confidence intervals, the value

of statistic Jn, and the degrees of freedom and the p-value of Jn for the lognormal SV

model and for the proposed SV model. Table 5 reports the quasi-t-ratios and t-ratios

from the score generator for both models.

A few results emerge from these two tables. First, the point estimate of δ in the

proposed SV model is −0.0526 which is insignificantly different from 0 but significantly

less than 0.5 and 1. Consequently, one cannot reject the lognormal SV model but can

comfortably reject the other polynomial SV specifications, including the Stein-Stein

and Heston specifications. The marginal distributions of volatility implied from the

estimated lognormal and proposed models are plotted in Figure 3. It appears that they

are quite close to each other. Second, the point estimate of φ (0.9476) is close to 1 and in

the stationary region when the lognormal model is fitted. In the proposed SV model, it
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decreases to 0.7260 which is significantly less than 1 and greater than 0. As a result, one

has to reject the Hull-White and Clark specifications. Third, although our specification

test cannot reject the lognormal SV model, the minimum χ2 criterion provides some

evidence against the lognormal specification. One can reject it at the one percent level.

This evidence is further reinforced by the diagnostic quasi-t-ratios and t-ratios. There

are large t-ratios on the scores corresponding to the polynomial part of the SNP score

when the lognormal model is fitted. These t-statistics indicate that exp(0.5ht) may not

be the correct transformation. When the proposed SV model is fitted, although this

specification is not statistically significantly different from the lognormal specification,

the minimum χ2 criterion is quite encouraging. One can accept the proposed model at

the 5 percent level. We are not, of course, suggesting the proposed model is completely

satisfactory. In fact, one should note that the t-ratios are not entirely clean. However,

if we compare the t-ratios with those from the lognormal model, our model is overall

superior. For example, although there are large t-ratios on the scores corresponding

to the ARCH part of the SNP score in the proposed model, these compare with large

t-ratios on the scores corresponding to both the ARCH part and the polynomial part of

the SNP score in the lognormal model. Finally, δ seems to be more difficult to estimate

than other parameters with the Wald standard error being the largest.

Table 6 and Table 7 report the empirical results for S&P500 returns. As for Microsoft

returns, we perturb starting values when doing the optimizations. Furthermore, we

simulate 101,000 observations from the SV models, of which first 1,000 observations are

discarded in order to let transients die out. Table 6 reports the estimates, the numerical

Wald standard errors, the 95% approximate criterion-difference confidence intervals, the

value of statistic Jn, and the degrees of freedom and the p-value of Jn for the lognormal

SV model and for the proposed SV model. Table 7 reports the quasi-t-ratios and t-ratios

from the score generator for both models.

A few results emerge from these two tables. First and most interestingly, the point

estimate of δ is −0.4597. It is significantly less than 0 and hence significantly less than

0.5 and 1, although its Wald standard error remains the largest. As a consequence, one

has to reject the lognormal SV model and all the other SV models in Table 1. Observing

that δ is not significantly different from −0.5, to gain some idea about our estimated
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results, we approximate δ ≈ −0.5, plug the estimates into Equation (2.14) and get the

following estimated variance equation:

1

σt

= 1.2237 + 0.9840(
1

σt−1

− 1.2237) + 0.057vt.

This compares to the estimated variance equation in the lognormal model,

lnσ2
t = −0.3425 + 0.9846(lnσ2

t−1 + 0.3425) + 0.1022vt.

The marginal distributions of volatility implied from these two fitted models are plotted

in Figure 3. It is evident that these two distributions are not close to each other and

hence the lognormal distribution is not a good approximation to the marginal distri-

bution of volatility. Furthermore, as argued in Section 2, in theory, a distributional

constraint has to be imposed for general δ in the proposed SV models to ensure non-

negativeness of σt. In the empirical applications, however, we still adopt the assump-

tion of exact normality. To understand how restricted this assumption is, we calculate

Prob(σt < 0)=Prob(1/σt < 0)=0.0000065 which is a very small value.

Second, the point estimate of φ (0.984) is close to 1 and just in the stationary

region. In the proposed SV model, it remains at a similar level. In fact all the estimated

parameters have similar magnitude and similar standard errors across both models. The

only exceptions are µ which decreases from 1.4229 to 1.1781 and σ which increases from

0.1022 to 0.1140. This is because µ and σ are closely related to δ in the proposed model.

Since the estimated δ is far away from 0 in the proposed model, this translates to large

discrepancies between the estimated µ’s and the estimated σ’s. Third, the minimum χ2

criterion provides mild evidence against the lognormal specification. It is rejected at the

5 percent level but accepted at the 1 percent level. The evidence is consistent with the

diagnostic quasi-t-ratios and t-ratios. There are large quasi-t-ratios and t-ratios on the

scores corresponding to the polynomial part of the SNP score. These t-statistics indicate

that exp(0.5ht) may not be the correct transformation. When the proposed SV model is

fitted, the p-value of Jn statistic increases by about 80%. One can accept the proposed

model at the 5% percent level. Furthermore, all the quasi-t-ratios become insignificant

in the proposed model. Although some of the t-ratios on the scores corresponding to

the polynomial part of the SNP score are still too large, they are clearly smaller than

those in the lognormal model.
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We can briefly summarize the empirical results. Although the EMM diagnostics

suggest that the lognormal SV model cannot adequately capture some features in the

Microsoft returns, the specification test based on the proposed nonlinear SV model in-

dicates that the nonlinear specification is not significantly different from the lognormal

specification. Therefore, the logarithmic volatility can be well approximated by the nor-

mal distribution as its marginal distribution. For S&P500 returns, although the EMM

diagnostics only provide mild evidence against the lognormal SV model, the specification

test based on the proposed nonlinear SV model rejects it and all the other SV specifica-

tions. As a consequence, the logarithmic volatility does not follow the normal distribu-

tion as its marginal distribution. These results compare interestingly with those reached

in Andersen et al (2001a, b), where ultra-high frequency data are used to calibrate daily

volatility via realized volatility and the distribution of daily volatility is then nonpara-

metrically estimated. Andersen et al (2001b) have justified the approach by showing

that the realized volatility constructed from ultra-high frequency data converges to daily

volatility as the sampling frequency goes to infinity. Despite this appealing theoretical

property, more recent studies suggest that the approach via ultra-high frequency data

has to be used with caution. For example, Barndorff-Nielsen and Shephard (2001a) find

that realized volatility can be a noise estimator of daily volatility even when the sam-

pling frequency is reasonably high. The properties of realized volatility as an estimator

of daily volatility are further complicated by microstructure problems in transaction

data; see the interesting work of Bai, Russell and Tiao (2000) and Andreou and Ghysel

(2001) in this context. Based entirely on the daily observations, not surprisingly, our

approach is not subject to these criticisms.

The empirical inadequacy of lognormal SV specification for financial time series has

been reported in many other works. Examples include Andersen and Lund (1997a) and

Gallant and Tauchen (2001c). To improve the overall specification, many extensions

have been suggested. Most of these extensions are based on the introduction of a third

factor into the structural model. For example, Andersen and Lund (1997b) suggest

the third factor should be associated with the mean level while Gallant and Tauchen

(2001c) make use of another volatility factor. As an alternative way to extend the

lognormal SV specification, our proposed SV model stays within the two-factor family
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and hence is conceptually simpler than three-factor models. Furthermore, the EMM-

based diagnostics indicate that our extension is quite encouraging for the data sets that

we have considered.

5 Conclusions and Extensions

In this paper a class of nonlinear stochastic volatility models has been proposed. The

new class is based on the Box-Cox power transformation and encompasses many para-

metric stochastic volatility models which have appeared in the literature, including the

well known lognormal stochastic volatility model. There are two advantages of our pro-

posed class. First, it facilitates a specification test of “classical” SV models. Second,

the functional form of transformation, which induces marginal normality of volatility, is

obtained. The EMM approach of Gallant and Tauchen (1996) is used to estimate model

parameters. Empirical applications are performed using an individual stock return se-

ries and an index return series. Empirical results show that the lognormal SV model is

not rejected for the stock returns but it has to be rejected for the index returns. In fact,

our result suggests that all the polynomial stochastic volatility models previously used

in the literature are rejected for the index returns. As a result, the daily logarithmic

stock volatility is well described by a normal distribution as its marginal distribution,

consistent with the results found in a recent literature (Andersen et al (2001a)). How-

ever, the daily logarithmic index volatility does not follow the normal distribution as its

marginal distribution.

One of the important questions in finance is how a superior specification can lead

to more accurate option prices. To address this question in the context of nonlinear

SV models, one has to first estimate the continuous time SV models. The approach

suggested in this paper can be applied. With estimated results, comparison of option

prices based on the nonlinear SV models and the “classical” SV models would be of con-

siderable interest. There are some other possible extensions to our work. One possibility

is to allow the so-called leverage effect in the nonlinear SV model. This can be done by

introducing a negative correlation between two disturbances (cf Harvey and Shephard

(1996) and Meyer and Yu (2000)). Another interesting extension would be to incorpo-
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rate jumps into the model; see for example Barndorff-Nielsen and Shephard (2001b).

Finally, it would be interesting to evaluate the out-of-sample forecasting performances

of the nonlinear SV models relative to other models.
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Table 1: Alternative Stochastic Volatility Models and Parameter Relationship

Models δ µ φ

Wiggins (1987) lnσ2
t = µ+ φ(lnσ2

t−1 − µ) + σvt 0
Scott (1987)

Chesney and Scott (1989)
Taylor (1994)

Jacquier et al (1994)
Kim et al (1998)

Scott (1987) σt = µ+ φ(σt−1 − µ) + σvt 0.5
Stein and Stein (1991)

Andersen (1994)

Heston(1993) σt = φσt−1 + σvt 0.5 0

Hull and White (1987) lnσ2
t = µ+ lnσ2

t−1 + σvt 0 1
Johnson and Shanno (1987)

Andersen(1994) σ2
t = µ+ φ(σ2

t−1 − µ) + σvt 1

Clark (1973) lnσ2
t = µ+ σvt 0 0

Nonlinear SV
(σ2

t )δ−1

δ
= µ+ φ[

(σ2
t−1)δ−1

δ
− µ] + σvt
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Table 2: Summary statistics for S&P500 Returns and Microsoft Returns

SP500 Microsoft

Sample Size 4044 3777

Mean 0.03472 0.1503

Variance 0.9799 6.4579

Excess Kurtosis 40.154 14.999

Maximum 8.2470 17.869

Minimum −19.3488 −35.828

Note: The S&P 500 index return series is for the period from January 4,
1977 to December 31, 1992. The Microsoft return series is for the period
from March 13, 1986 to February 23, 2001.

Table 3: Tuning parameters for SNP modeling, BIC, Leading Term, Characterization
of Xt and the Number of Parameters in the Auxiliary Model

Data Tuning parameters BIC Leading term Characterization of Xt `β

Microsoft (1, 1, 1, 1, 6, 0, 0, 0) 1.32087 GARCH Semiparametric GARCH 11

SP500 (2, 0, 11, 1, 4, 0, 0, 0) 1.32715 ARCH Semiparametric ARCH 19

26



Table 4: Parameter estimates, standard errors, confidence intervals, χ2 criterion for
Microsoft

Lognormal SV model Proposed SV model

µ0 0.1683 0.1821
(0.0313) (0.0320)

[0.1080, 0.2315] [0.1811, 0.1954]

c 0.0278 0.0249
(0.0174) (0.0174)

[−0.0066, 0.0622] [0.0092, 0.0366]

µ 1.4229 1.1781
(0.0824) (0.1418)

[1.2581, 1.5730] [1.0204, 1.2752]

φ 0.9476 0.7260
(0.0121) (0.0177)

[0.9053, 0.9625] [0.7084, 0.7372]

σ 0.1989 0.4265
(0.0121) (0.1081)

[0.1848, 0.2298] [0.3044, 0.5099]

δ NA −0.0526
(0.1629)

[−0.2351, 0.0887]

χ2 19.91 11.09

df 6 5

p− value 0.0029 0.050

Note: The number in parentheses is the standard error. The number in
brackets is the confidence interval. The results are based on 100,000 runs
with the first 10,000 runs discarded. The lognormal SV model is defined by
Equations (4.18) and (4.19). The proposed SV model is defined by Equations
(4.20) and (4.21).
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Table 5: Quasi-t-ratios and t-ratios for Microsoft

Lognormal SV model Proposed SV model

Quasi-t-ratio T-ratio Quasi-t-ratio T-ratio

VAR b1 0.108 0.734 0.135 0.611
b2 −0.063 −0.292 −0.113 −0.912

ARCH r1 1.022 2.753 1.619 3.075
r2 1.091 2.122 2.220 2.963
r3 1.175 2.577 2.028 3.092

SNP s1 0.451 0.707 0.122 0.204
s2 1.924 3.272 1.100 1.314
s3 0.538 0.586 0.454 0.511
s4 3.155 3.813 0.996 1.065
s5 0.187 0.202 0.303 0.396
s6 2.981 3.543 0.552 0.685

Note: The VAR and ARCH quasi-t-ratios and t-ratios correspond to the
conditional mean equation and conditional variance equation of the SNP
specification, respectively. The SNP quasi-t-ratios and t-ratios correspond
to the coefficients of the polynomial of the SNP specification.
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Table 6: Parameter estimates, standard errors, confidence intervals, χ2 criterion for
S&P500

Lognormal SV model Proposed SV model

µ0 0.0389 0.0387
(0.0136) (0.0137)

[0.0123, 0.0651] [0.0122, 0.0650]

c 0.0880 0.0875
(0.0159) (0.0158)

[0.0583, 0.1179] [0.0579, 0.1177]

µ −0.3425 −0.4474
(0.0613) (0.0812)

[−0.4593,−0.2291] [−0.5066,−0.3441]

φ 0.9846 0.9840
(0.0120) (0.0106)

[0.9657, 0.9966] [0.9736, 0.9946]

σ 0.1022 0.1140
(0.0456) (0.0405)

[0.0566, 0.1719] [0.0734, 0.1532]

δ NA −0.4597
(0.1807)

[−0.6316,−0.2885]

χ2 25.01 21.65

df 14 13

p− value 0.034 0.061

Note: The number in parentheses is the standard error. The number in
brackets is the confidence interval. The results are based on 101,000 runs
with the first 1,000 runs discarded. The lognormal SV model is defined by
Equations (4.18) and (4.19). The proposed SV model is defined by Equations
(4.20) and (4.21).
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Table 7: Quasi-t-ratios and t-ratios for S&P500

Lognormal SV model Proposed SV model

Quasi-t-ratio T-ratio Quasi-t-ratio T-ratio

VAR b1 −0.096 −0.334 −0.089 −0.302
b2 −1.243 −1.249 −1.243 −1.259
b3 −0.446 −1.540 −0.436 −1.571

ARCH r1 0.781 1.391 0.676 1.471
r2 0.627 0.909 0.513 0.896
r3 0.130 0.224 0.028 0.051
r4 1.122 1.228 1.047 1.160
r5 1.053 1.498 0.933 1.399
r6 0.253 0.312 0.132 0.179
r7 0.066 0.088 −0.052 −0.071
r8 1.032 1.521 0.861 1.489
r9 0.881 1.040 0.754 0.945
r10 0.549 0.588 0.448 0.494
r11 −0.243 −0.280 −0.388 −0.500
r12 0.257 0.270 0.145 0.159

SNP s1 0.033 0.063 0.093 0.179
s2 0.977 3.091 0.706 2.477
s3 0.205 0.232 0.258 0.291
s4 2.303 3.767 1.798 3.332

Note: The VAR and ARCH quasi-t-ratios and t-ratios correspond to the
conditional mean equation and conditional variance equation of the SNP
specification, respectively. The SNP quasi-t-ratios and t-ratios correspond
to the coefficients of the polynomial of the SNP specification.

30



h

Inverse Box-Cox Transformation

-2
-1

0
1

2

0.5 1.0 1.5 2.0 2.5

delta=0
delta=-1
delta=-0.5
delta=0.5
delta=1

Figure 1: Inversion Box-Cox Transformation for Various Values of δ
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Figure 2: Time Series Plots for Microsoft Returns and S&P500 Returns
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Figure 3: Marginal Densities of Volatility
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