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Abstract

We propose a procedure to identify latent group structures in nonlinear panel data models

where some regression coeffi cients are heterogeneous across groups but homogeneous within a

group and the group number and membership are unknown. To identify the group structures,

we consider the order statistics for the preliminary unconstrained consistent estimators of the

regression coeffi cients and translate the problem of classification into the problem of break

detection. Then we extend the sequential binary segmentation algorithm of Bai (1997) for

break detection from the time series setup to the panel data framework. We demonstrate that

our method is able to identify the true latent group structures with probability approaching

one and the post-classification estimators are oracle-effi cient. The method has the advantage of

more convenient implementation compared with some alternative methods, which is a desirable

feature in nonlinear panel applications. To improve the finite sample performance, we also

consider an alternative version based on the spectral decomposition of certain estimated matrix

and link the group identification issue to the community detection problem in the network

literature. Simulations show that our method has good finite sample performance. We apply

this method to explore how individuals’portfolio choices respond to their financial status and

other characteristics using the Netherlands household panel data from year 1993 to 2015, and

find three latent groups.
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1 Introduction

Panel data modeling is one of the most active areas of research in econometrics. By combining

individual observations across time, panel data can produce more effi cient estimators than pure

cross section or time series estimators and allow us to study some problems that are not feasible

in the cross section or time series framework. Many advantages of the panel data analysis rest

on the parameter homogeneity assumption. Conventional panel data analysis often assumes slope

homogeneity to utilize the full power of cross section averaging and make the asymptotic theory

easier to derive. Nevertheless, such a homogeneity assumption is frequently called into question

and rejected in empirical researches; see Hsiao and Tahmiscioglu (1997), Phillips and Sul (2007),

Browning and Carro (2007), Su and Chen (2013), Lu and Su (2017), among others. When the

homogeneous slope assumption does not hold, inferences based on it are typically misleading (Hsiao

(2014, Chapter 1)). On the other hand, if complete heterogeneity is allowed, the advantages of

using panel data can be lost and even the estimation might be impossible. For this reason, more

and more researchers consider an intermediate case and study the panel structure model.

In a panel structure model, there exists a subset of parameters that are heterogeneous across

groups but homogeneous within a group, and neither the number of groups nor individuals’group

membership is known. There are many motivating examples for such a model. In macroeconomics,

Phillips and Sul (2007) study the hypothesis of convergence clubs where countries belonging to

different groups behave differently; in financial markets, stocks in the same sector share some simi-

lar characteristics and behave similarly (Ke, Fan, and Wu (2015)); in labor economics, researchers

consider black-white racial differences and classify them into different groups in studying earnings

dynamics (Hu (2002)); in economic geography, location is a natural criterion for group classifica-

tion (Fan, Lv, and Qi (2011); Bester and Hansen (2016)); in international trade, GATT/WTO

has uneven impacts on different groups of country-pairs (Subramanian and Wei (2007)). All these

examples motivate the use of panel structure models.

To identify the latent group structure is not an easy task. It is computationally infeasible

to try all possible combinations of groups, which is a Bell number (Shen and Huang (2010)).

Some authors propose to use external variables to determine the group structure; see, e.g., Hu

(2002), Subramanian and Wei (2007), and Bester and Hansen (2016). However, this approach may

fail for various reasons. For example, it may be impossible to find such an external variable to

determine the group structure in empirical studies, and the wrong choice of such a variable can

lead to misleading inferences. Several data-driven approaches have been proposed to overcome

the shortcomings of reliance on external variables to form groups. One popular approach is based

on the K-means algorithm; see Lin and Ng (2012), Sarafidis and Weber (2015), Bonhomme and

Manresa (2015), Ando and Bai (2016). The second popular approach is based on the classifier-

Lasso (C-Lasso) that has been recently proposed by Su, Shi, and Phillips (2016a, SSP hereafter)

and extended in Su and Ju (2017) and Su, Wang, and Jin (2017). In particular, SSP construct

a novel C-Lasso procedure where the penalty term is the addition of some multiplicative penalty
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terms and show that their method can identify the group structures and estimate the parameters

consistently at the same time. In addition, Wang, Phillips, and Su (2017) extend the CARDS

algorithm of Ke et al. (2015) to the panel data framework to identify the group structure of slope

parameters.

Recently, Ke, Li, and Zhang (2016, KLZ hereafter) borrow the idea of binary segmentation in

the structural change literature (e.g., Bai (1997)) and apply it to identify the unobserved group

structures in linear panel data models with interactive fixed effects. Let N denote the number of

cross sectional units and p the dimension of a parameter vector βi that is associated with individual

i. Let B = (β>1 , . . . , β
>
N )>. KLZ assume that the number of distinct elements in the Np-vector

B is given by a finite number, say N + 1 in their notation. Based on consistent preliminary

estimates B̃ of B, they order the elements of B̃ in ascending order and then apply the binary

segmentation algorithm sequentially as used in Bai (1997) to identify the group structure and

estimate the distinct elements in B. Apparently, the setup in KLZ is quite different from the

general setup in econometrics where the parameters of interest, βi as a whole vector, are assumed

to be heterogeneous across groups but homogeneous within a group.

Following the lead of Bai (1997) and KLZ, we propose to apply the sequential binary segmen-

tation algorithm (SBSA) to identify the latent group structure on parameter vectors in nonlinear

panel data models. In comparison with KLZ, our method is different from theirs in three important

ways. First, KLZ consider the classification of scalar coeffi cients but we consider the classification

of parameter vectors. In KLZ’s case, there is a natural ordering for their preliminary estimates

and they can draw support from the structural change literature where parameters of interest are

ordered naturally along the time dimension. In our case, there is no natural order for the estimates

of parameter vectors, and fortunately, inspired by the CART-split criterion (Breiman, Friedman,

Stone, and Olshen (1984)), we are able to propose a variant of binary segmentation algorithm

to classify the vectors. Second, KLZ consider the linear panel data models with interactive fixed

effects. They obtain their preliminary estimates by using an EM algorithm and then conduct the

binary segmentation based on the ordered preliminary estimates. In contrast, we consider general

nonlinear panel data models that contains the linear panel data model as a special case, and apply

the modified binary segmentation algorithm on the quasi-maximum likelihood estimates (QMLEs)

of the parameter vectors of interest. Third, to determine when the sequential binary segmentation

stops, KLZ propose to use the BIC to select a tuning parameter but do not justify the asymp-

totic validity of information criterion. In contrast, we propose a BIC-type information criterion to

determine the number of groups directly and prove that our information criterion can select the

number of groups correctly with probability approaching one (w.p.a.1).

In comparison with SSP’s C-Lasso method and the K-means algorithm, our method has both

pros and cons. First, the K-means algorithm is NP hard and thus computationally demanding.

SSP’s C-Lasso procedure is not a convex problem but can be transformed into a sequence of convex

problems. So the computational burden of SSP’s C-Lasso method is not as much as the K-means

algorithm but is still quite expensive. In contrast, our SBSA is least computationally demanding
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among the three methods. Second, the SSP’s C-Lasso need the choice of two tuning parameters,

one is used to determine the number of groups, and the other is used for the C-Lasso penalty. Unlike

the C-Lasso method but like the K-means algorithm, our binary segmentation algorithm only relies

on a single tuning parameter to determine the number of groups via an information criterion. Of

course, if the number of groups is known a priori, there is no tuning parameter involved in our

procedure and the K-means algorithm as well, and one tuning parameter is involved in the C-Lasso

procedure. Third, SSP’s C-Lasso may leave some individuals unclassified and one has to classify

some unclassified individuals after the algorithm based on some distance measure. Like the K-

means algorithm, our binary segmentation algorithm forces all individuals to be classified into one

of the groups. As SSP argue, leaving some individuals unclassified is not necessarily a bad thing.

We also find through our simulations that the preliminary estimates based on some realizations can

be rather abnormal when the time dimension T in the panel is not large. In this case, including such

abnormal estimates in the algorithm can significantly deteriorate the classification performance.

Fourth, in some sense our method can be regarded as a universal method and it works for all panel

structure models as long as one can obtain preliminary consistent estimates. The model can be

nonstationary panels or panel data models with interactive fixed effects.

In addition, we also allow the presence of common parameters across all individuals. This

corresponds to the mixed panel structure model mentioned in SSP (Section 2.7). It is useful when

economic theory suggests that some regressors’coeffi cients are identical across individuals (e.g.,

Pesaran, Shin, and Smith (1999)). Besides, when a regressor doesn’t change over time for many

individuals but it is an important factor that must be included in the model, we have no choice

but to assume it is homogeneous across individuals. We will illustrate the versatility of the model

considered in this paper with examples later.

To enhance the finite sample performance of the SBSA, we also propose an alternative algorithm

based on the spectral decomposition of certain symmetric matrix and establish the linkage between

the panel structure model and the stochastic block model (SBM) that is widely used for community

detection in the network literature (e.g., von Luxburg (2007) and Rohe, Chatterjee, and Yu (2011)).

Using a useful variant of the deep Davis-Kahan sin θ theorem a la Yu, Wang, and Samworth

(2015), we are able to show that the individuals’group information is contained in the largest few

eigenvectors of such a matrix and it is feasible to conduct SBSA based on such eigenvectors. We

also establish the asymptotic distribution theory in this case.

In the application, we study how individuals’portfolio choices are affected by financial assets,

non-capital income, retirement status and other factors. Among them, financial assets and non-

capital income are modeled to have heterogeneous responses for different individuals. The response

variable is the safe asset ratio, which is left censored at 0 and right censored at 1. We use data from

the De Nederlandsche Bank (DNB) panel survey. By using the method proposed here, we are able

to identify three latent groups. The first group of individuals respond to increasing non-capital

income by decreasing the safe assets ratio while the other two groups do the opposite. The increase

in financial assets has negative effects for all groups. But the extent is rather different between the
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second group and the others. The results are consistent with the general observation that some

people tend to invest income on safe assets while others (e.g., risk-loving people) do the contrary.

The rest of the paper is organized as follows. We introduce the latent structure panel data

model and the estimation algorithms in Section 2. Asymptotic properties of the algorithm and

the final estimators are given in Section 3. In Section 4, we propose an improved algorithm and

give its asymptotic properties. In Section 5, we show the finite sample performance of our method

by Monte Carlo simulations. In Section 6, we apply our method to study individuals’portfolio

choices by using the Netherlands household survey panel data. Section 7 concludes. All proofs are

relegated to the appendix.

Notation. For a real matrix (vector) A, we denote its transpose A>and its Frobenius norm ‖A‖.
When A is symmetric, λmax(A), λmin(A), and λj (A) denote its largest, smallest, and jth largest

eigenvalues, respectively. Ip and 0p×1 denote the p × p identity matrix and p × 1 vector of zeros,

respectively. 1{·} denotes the indicator function. The operators D→ and P→ denote convergence in

distribution and in probability, respectively.

2 The model and the estimators

In this section we consider the panel structure model and propose a sequential binary segmentation

algorithm (SBSA) to estimate the group structures.

2.1 The panel structure model and examples

We consider the general panel data model with latent group structures:

yit = g(xit, εit;βi, µi, θ), i = 1, . . . , N, t = 1, . . . , T, (2.1)

where g(·) is a general regression function, xit is a vector of regressors, εit is the idiosyncratic
shock, µi is a r × 1 vector of nuisance parameters (e.g., the fixed effects), θ is a q × 1 vector of

parameters that is common across individuals, and βi is a p × 1 vector of parameters whose true

values exhibit a group pattern of the general form

β0
i =

K0∑
k=1

α0
k · 1

{
i ∈ G0

k

}
.

Here α0
k 6= α0

l for any k 6= l and G0 ≡ {G0
1, . . . , G

0
K0} forms a partition of the set {1, . . . , N}. We

denote the number of individuals in G0
k by Nk ≡ |G0

k|, where |·| denotes the cardinality of the set
·. In this model, the true number of groups K0 and the group structure G0 are both unknown.

We denote the minus log-likelihood function of yit conditional on xit and the history of (xit, yit)

by ϕ(wit;βi, µi, θ). Let β = (β1, . . . , βN )>, α = (α1, . . . , αK0)>, and µ = (µ1, . . . , µN )>. The true

values of β, α, µ, and θ are denoted by β0, α0, µ0, and θ0, respectively. Without any information
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about the group structure, we propose to minimize the following objective function

LNT (β,µ, θ) =
1

NT

N∑
i=1

T∑
t=1

ϕ(wit;βi, µi, θ). (2.2)

When the likelihood function is correctly specified, by minimizing the above function we obtain

the maximum likelihood estimates (MLEs) β̃ = (β̃1, . . . , β̃N )>, µ̃ = (µ̃1, . . . , µ̃N )>, and θ̃ of β, µ,

and θ, respectively. Otherwise, they are the quasi-maximum likelihood estimates (QMLEs).

Next, we give some concrete examples for the model in (2.1) and its associated likelihood

function in (2.2).

Example 2.1 (Linear panel). We consider two cases.

(i). The standard heterogeneous linear panel data model with individual fixed effects is given by

yit = x>itβ
0
i + µ0

i + εit, (2.3)

where µi is the scalar fixed effect so that r = 1, βi, xit, and εit are defined as above, and the

model does not contain any common parameter of interest so that θ is absent. In this case,

we can set ϕ(wit;βi, µi) = 1
2(yit − x>itβi − µi)2, where wit = (yit,x

>
it)
>.

(ii). Following Pesaran et al. (1999), we can consider a mixed linear panel data model that

contains both homogeneous and heterogeneous slope coeffi cients:

yit = x>1,itβ
0
i + x>2,itθ

0 + µ0
i + εit,

where xit = (x>1,it, x
>
2,it)

> is a (p+q)×1 vector of regressors, µi is the scalar fixed effects, and

βi, θ, and εit are as defined above. In this case, ϕ(wit;βi, µi, θ) = 1
2(yit−x>1,itβi−x>2,itθ−µi)2,

where wit = (yit,x
>
1,it, x

>
2,it)

>.

Example 2.2 (Censored panel). The observed response variable yit is subject to two-sided cen-
soring

yit = mami(L, y∗it, R),

where the notation mami(·) is borrowed from Alan et al. (2014) and defined as

mami(L, y,R) =


L if y ≤ L

y if L < y < R

R if y ≥ R

.

Clearly, the one-sided censoring is included as a special case by setting L = −∞ or R = +∞ to

obtain the right or left censored model. Let ILit = 1{yit = L} and IRit = 1{yit = R}. We consider
four cases.
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(i). The unobserved response variable y∗it is generated as

y∗it = x>itβ
0
i + µ0

i + εit,

and we only observe {xit, yit} , where yit = mami(L, y∗it, R), xit, βi and µi are as defined in

Example 2.1, εit’s are independent and identically distributed (i.i.d.) N
(
0, σ2

)
. So here the

common parameter θ = σ2 and

−ϕ(wit;βi, µi, σ
2) = ILit ln Φ

(
(yit − x>itβi − µi)/σ

)
+ IRit ln

(
1− Φ

(
(yit − x>itβi − µi)/σ

))
+ (1− ILit − IRit ) ln

[
φ
(

(yit − x>itβi − µi)/σ
)
/σ
]
, (2.4)

where φ and Φ denote the probability density function and cumulative distribution function

of a standard normal variable, respectively.

(ii). The model in case (i) can be made slightly more general to include a common parameter

vector in the regression part:

y∗it = x>1,itβ
0
i + x>2,itθ

0
2 + µ0

i + εit,

where θ = (σ2, θ>2 )>and θ2 is a (q−1)-vector. The QMLE objective function follows directly

from (2.4) with yit − x>itβi − µi being replaced by yit − x>1,itβi − x>2,itθ2 − µi.

(iii). Here the DGP is similar to the first case. The only difference is that εit’s are i.i.d. N
(
0, σ2

i

)
across t. Then µ′i = (µi, σ

2
i )
> plays the role of µi in (2.1). The QMLE objective function

here is similar to (2.4) but with σ being replaced by σi.

(iv). This case is similar to case (ii) except that εit’s are i.i.d. N
(
0, σ2

i

)
across t. Note that here the

individual incidental parameters and common parameters are (µi, σ
2
i )
> and θ, respectively.

The QMLE objective function also follows from (2.4) with yit−x>itβi−µi and σ being replaced
by yit − x>1,itβi − x>2,itθ − µi and σi, respectively.

Example 2.3 (Binary choice panel). As in Example 2.1, we also consider two cases:

(i). The model is yit = 1{x>itβ0
i + µ0

i − εit ≥ 0}, where xit, βi, and µi are defined as in Example
2.1 and εit’s are i.i.d. N (0, 1). So in this case, −ϕ(wit;βi, µi) = yit ln Φ(yit − x>itβi − µi) +

(1− yit) ln[1− Φ
(
yit − x>itβi − µi

)
].

(ii). The model is yit = 1{x>1,itβ0
i + x>2,itθ

0 + µ0
i − εit ≥ 0}. Here, −ϕ(wit;βi, µi, θ) = yit ln Φ(yit −

x>1,itβi − x>2,itθ − µi) + (1− yit) ln[1− Φ(yit − x>1,itβi − x>2,itθ − µi)].

2.2 Sequential binary segmentation algorithm

The main interest of this paper is to identify the group structure G0, which contains the information

about the number of groups and all individuals’group membership.
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To introduce the estimation algorithm, we rewrite the N × p matrix β̃ ≡ (β̃1, . . . , β̃N )> as

β̃ = (β̃·1, . . . , β̃·p),

where β̃·j denotes the jth column of β̃ for j = 1, . . . , p. Let β0
i,j , α

0
k,j and β̃i,j denote the jth

element of β0
i , α

0
k and β̃i, respectively, for j = 1, . . . , p.We sort the N elements of β̃·j in ascending

order and denote the order statistics by

β̃πj(1),j ≤ β̃πj(2),j ≤ · · · ≤ β̃πj(N),j , (2.5)

where {πj(1), . . . , πj(N)} is a permutation of {1, . . . , N} that is implicitly determined by the order
relation in (2.5). Let

Si,l (j) ≡ {β̃πj(i),j , β̃πj(i+1),j , . . . , β̃πj(l),j}

for 1 ≤ i < l ≤ N.
Fix j ∈ {1, . . . , p} . Intuitively speaking, if the β0

i,j’s are not identical across i for some j,

then finding the homogeneity among β0
i,j’s is equivalent to finding the “break points” among

the ordered version of β0
i,j’s. When β̃i,j’s are consistent estimates of β

0
i,j’s, we expect the “break

points”in the ordered β0
i,j’s will be carried upon to the ordered β̃i,j’s. Consequently, we can apply

the binary segmentation algorithm sequentially to detect all breaks among the ordered β0
i,j’s.

For example, suppose K0 = 3, α0
1,j < α0

2,j < α0
3,j , and N1 (resp. N2 and N − N1 − N2) β0

i,j’s

take value α0
1,j (resp. α0

2,j and α
0
3,j). Then we expect to see two break points in the sequence

S1,N (j) = {β̃πj(1),j , β̃πj(2),j , . . . , β̃πj(N),j} in large samples that are given by N1 and N1 +N2. This

is simply because when the sample size is suffi ciently large, all elements in the subsamples S1,N1 (j) ,

SN1+1,N1+N2 (j) , and SN1+N2+1,N (j) have the probability limits α0
1,j , α

0
2,j , and α

0
3,j , respectively.

We will show that w.p.a.1, we can identify the two break points N1 and N1 + N2 based on the

ranking relationship in (2.5) provided that α0
1,j , α

0
2,j , and α

0
3,j are distinct from each other.

Complications arise here because it is possible for all j ∈ {1, . . . , p} , α0
1,j , . . . , and α

0
K0,j are

not all distinct from each other and K0 is typically unknown. For this reason, we have to allow

the possibility that {α0
k,j , k = 1, . . . ,K0} are not all distinct from each other for all j and the

possibility that α0
1,j = · · · = α0

K0,j for some j.We achieve the identification of all K
0 groups based

on the key observation that the sample variance of the subsample Si,l (j) behaves quite differently
depending on whether β0

πj(i),j
is the same as β0

πj(l),j
. If β0

πj(i),j
= β0

πj(i+1),j = · · · = β0
πj(l),j

, then

the sample variance of Si,l (j) is proportional to T−1 when the preliminary estimates β̃i are all√
T -consistent; on the other hand, if there is a break between i and l such that β0

πj(i),j
< β0

πj(l),j
,

then the sample variance of Si,l (j) will be bounded away from zero. This motivates us to choose

regressor index j such that β̃i,j’s has the largest variance in the investigated segment (i, l) to detect

a possible break point.

Let

β̄i,l (j) =
1

l − i+ 1

l∑
i′=i

β̃πj(i′),j and V̂ 0
i,l (j) ≡

1

l − i

l∑
i′=i

[β̃πj(i′),j − β̄i,l (j)]
2
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denote the sample mean and variance of the subsample Si,l (j), respectively. Let σ̂2
i (j) denote

a consistent estimator of the asymptotic variance Var(
√
T β̃πj(i),j). Let V̂i,l (j) ≡ V̂ 0

i,l (j) /σ̄
2
i,l (j)

where σ̄2
i,l (j) = 1

l−i+1

∑l
i′=i σ̂

2
i′ (j) . Define

Ŝi,l(j,m) =
1

l − i+ 1

{
m∑
i′=i

[
β̃πj(i′),j − β̄i,m (j)

]2
+

l∑
i′=m+1

[
β̃πj(i′),j − β̄m+1,l (j)

]2
}
. (2.6)

Since K0 is typically unknown, we have to pick up a large enough number Kmax such that 1 ≤
K0 ≤ Kmax. Let K denote a generic number of groups. We propose to adopt the following SBSA

to estimate G0.

Sequential Binary Segmentation Algorithm 1 (SBSA 1)1

1. Let K ∈ [1,Kmax] . When K = 1, there is only one group, i.e., slope coeffi cients βi’s are

actually homogeneous. In this case, the estimated group Ĝ1 (1) = {1, . . . , N}.

2. When K = 2, let ̂1 = arg max1≤j≤p V̂1,N (j) . Given ̂1, we solve the following minimization

problem

m̂1 ≡ arg min
1≤m<N

Ŝ1,N (̂1,m).

Now we have two segments —Ĝ1(2) = S1,m̂1(̂1) and Ĝ2(2) = Sm̂1+1,N (̂1).

3. When K ≥ 3, we use m̂1, . . . , m̂K−2 denote the break points detected in the previous steps

such that m̂1 < · · · < m̂K−2 perhaps after relabeling the K − 2 break points that have been

detected so far. Define

̂K−1 ≡ argmax
1≤j≤p

K−1∑
k=1

V̂m̂k−1+1,m̂k (j) ,

m̂K−1 (k) ≡ arg min
m̂k−1+1≤m<m̂k

Ŝm̂k−1+1,m̂k(̂K−1,m) for k = 1, . . . ,K − 1,

where m̂0 = 0, m̂K−1 = N, and we suppress the dependence of m̂K−1 (k) on ̂K−1. Then

m̂K−1 (k) divides Ĝk (K − 1) into two subsegments, which are labeled as Ĝk1 (K − 1) and

Ĝk2 (K − 1) respectively. Calculate for k = 1, . . . ,K − 1,

ŜK−1 (k) ≡
∑

i∈Ĝk1(K−1)

[
β̃i,̂K−1 − β̄Ĝk1(K−1) (̂K−1)

]2
+

∑
i∈Ĝk2(K−1)

[
β̃i,̂K−1 − β̄Ĝk2(K−1) (̂K−1)

]2

+
∑

1≤l≤K−1,l 6=k

∑
i∈Ĝl(K−1)

[
β̃i,̂K−1 − β̄Ĝl(K−1) (̂K−1)

]2
,

1A major difference between our algorithm and that of KLZ is that KLZ specify a tuning parameter δ that is

compared with something similar to our S1,N (j,m) to determine when one should stop the algorithm. Even though

they propose to use the BIC to choose δ, there is no asymptotic justification for this. In contrast, we propose to use

an information criterion to determine the number of groups directly and justify its asymptotic validity. Admittedly,

Kmax plays the role of δ in KLZ but our result is insensitive to its choice.
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where, e.g., β̄Ĝk1(K−1) (̂K−1) = |Ĝk1 (K − 1) |−1
∑

i∈Ĝk1(K−1) β̃i,̂K−1 . Let

k̂ = arg min
1≤k≤K−1

ŜK−1 (k) .

We now obtain the K − 1 break points and the K segments given by {m̂1, . . . , m̂K−2,

m̂K−1(k̂)} and {Ĝ1 (K − 1) , . . . , Ĝk̂−1 (K − 1) , Ĝk̂1 (K − 1) , Ĝk̂2 (K − 1) , Ĝk̂+1 (K − 1) , . . . ,

ĜK−1 (K)}, respectively. Relabel these K − 1 break points as {m̂1, . . . , m̂K−1} such that
m̂1 < m̂2 < · · · < m̂K−1, and the corresponding K groups as {Ĝ1 (K) , Ĝ2(K), . . . , ĜK (K)}.

4. Repeat the last step until K = Kmax.

Of course if K0 is known a priori, we can set Kmax = K0. At the end of the SBSA 1, we obtain

the Ĝ
(
K0
)
≡ {Ĝ1, Ĝ2, . . . , ĜK0} as the estimates of the true group structure G0. Otherwise, we

need first to estimate K0 before we obtain the final estimate of G0. See the next subsection.

2.3 The estimation of the model parameters

Let Ĝ(K) ≡ {Ĝ1 (K) , Ĝ2 (K) , . . . , ĜK (K)}. Given the estimated group structure Ĝ(K) for K ∈
[1,Kmax] , we propose to estimate the model parameters by minimizing

LNT (β,µ, θ) =
1

NT

N∑
i=1

T∑
t=1

ϕ(wit;βi, µi, θ)

s.t. βi = αk for i ∈ Ĝk (K) and k = 1, . . . ,K. (2.7)

Let β̂ (K) , µ̂ (K) , θ̂ (K) , and α̂ (K) denote the solution to the above minimization problem, where

β̂ (K) = (β̂1 (K) , . . . , β̂N (K))>, µ̂ (K) = (µ̂1 (K) , . . . , µ̂N (K))>, α̂ (K) = (α̂1 (K) , . . . , α̂K (K))> ,

and α̂k (K) is the estimate of the group-specific parameter vector αk. We propose to select K to

minimize the following BIC-type information criterion

IC1(K) = 2LNT (β̂ (K) , µ̂ (K) , θ̂ (K)) + pK · ρNT , (2.8)

where ρNT is a tuning parameter that plays the role of ln (NT ) /(NT ) in the use of BIC in the

panel setup. Let

K̂ ≡ arg min
1≤K≤Kmax

IC1(K) and Ĝ ≡ Ĝ(K̂) ≡ {Ĝ1(K̂), Ĝ2(K̂), . . . , ĜK̂(K̂)}. (2.9)

We will show that

P (K̂ = K0)→ 1 and P (Ĝ = G0
) as (N,T )→∞.

Given K̂ and Ĝ, we consider the constrained minimization problem in (2.7) with K being

replaced by K̂ and obtain the final estimate of β, µ, α, and θ as

β̂ ≡ β̂(K̂) = (β̂1(K̂), . . . , β̂N (K̂))>, µ̂ ≡ µ̂(K̂) = (µ̂1(K̂), . . . , µ̂N (K̂))>,

α̂ ≡ α̂(K̂) = (α̂1(K̂), . . . , α̂K̂(K̂))>, θ̂ ≡ θ̂(K̂).
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Note that these estimates can be obtained via the standard profile maximum likelihood method

once we have the estimated group structure Ĝ. That is, α̂ and θ̂ can be obtained as the minimizer
of the following objective function

Q̂NT (α, θ) =
1

NT

K̂∑
k=1

∑
i∈Ĝk(K̂)

T∑
t=1

ϕ(wit;αk, µ̂i(αk, θ), θ), (2.10)

where µ̂i(αk, θ) = arg minµi
1
T

∑T
t=1 ϕ(wit;αk, µi, θ) for i ∈ Ĝk(K̂) and k = 1, . . . , K̂.We will study

the asymptotic properties of α̂ and θ̂ in the next section.

3 Asymptotic properties

In this section, we first study the consistency of the preliminary estimates and then study the

asymptotic properties of our estimates of the group structure and other model parameters.

3.1 Consistency of the preliminary estimates

Let γi = (β>i , µ
>
i )>, ςi = (γ>i , θ

>)>, γ0
i = (β0>

i , µ0>
i )>, and ς0

i = (γ0>
i , θ0>)>. Following the

literature on nonlinear panels (e.g., Hahn and Newey (2004), Hahn and Kuersteiner (2011), and

SSP), we consider the profile log-likelihood function

QNT (θ) =
1

NT

N∑
i=1

T∑
t=1

ϕ (wit; γ̃i(θ), θ) , (3.1)

where γ̃i(θ) = arg minγi
1
T

∑T
t=1 ϕ(wit; γi, θ). Let θ̃ = arg minθQNT (θ) and γ̃i = γ̃i(θ̃) = (β̃>i , µ̃

>)>.

Let

γi (θ) ≡ arg min
γi

1

T

T∑
t=1

E[ϕ(wit; γi, θ)].

Note that γ0
i = γi(θ

0) for i = 1, . . . , N .

Let Z(wit; γi, θ) ≡ ∂ϕ(wit; γi, θ)/∂γi and W (wit; γi, θ) ≡ ∂ϕ(wit; γi, θ)/∂θ. Let Zγi denote the

first derivative of Z with respect to γ>i . Define W
γi and W θ similarly. Define

Hi,γγ(θ) =
1

T

T∑
t=1

E [Zγi(wit; γi (θ) , θ)] and Hi,θθ(θ) =
1

T

T∑
t=1

E
[
W θ
it(θ) +Wµi

it (θ)
∂γi(θ)

∂θ>

]
,

where W θ
it(θ) = W θ

i (wit; γi (θ) , θ) and Wµi
it (θ) = Wµi

i (wit; γi (θ) , θ). For notational simplicity, let

maxi and maxi,t abbreviate max1≤i≤N and max1≤i≤N,1≤t≤T , respectively, and similarly for mini

and mini,t.

To state the first main result, we make the following assumptions.

Assumption A1 (i) For each i, {wit, t ≥ 1} is stationary strong mixing with mixing coeffi cient
αi(·). Let α(·) ≡ maxi αi(·) satisfies α(s) ≤ cαρ

s for some cα > 0 and ρ ∈ (0, 1). {wit} are
independent across i.
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(ii) For any η > 0, there exists a constant ε > 0 such thatmini{minςi:‖ςi−ς0i ‖>η
1
T

∑T
t=1 E[ϕ(wit; ςi)

−ϕ(wit; ς
0
i )]} > ε and infθ:‖θ−θ0‖>η

1
N

∑N
i=1

[
Ψi (γi (θ) , θ)−Ψi(γi(θ

0), θ0)
]
> ε, where Ψi (γi, θ) =

1
T

∑T
t=1 E[ϕ(wit; γi, θ)].

(iii) Let Υ and Θ denote the parameter space for ςi and θ, respectively. Υ is compact and

convex and the true value ς0
i lies in the interior of Υ for all i = 1, . . . , N .

(iv) For a (p+ r + q)× 1 vector d = (d1, . . . , dp+r+q)
> ∈ Np+r+q, we let |d| denote

∑p+r+q
j=1 dj .

Let Ddϕit(wit; ςi) ≡ ∂|d|ϕit(wit; ςi)/∂d1ςi,1 · · · ∂dp+r+q ςi,p+r+q, where ςi,j denotes the jth element

of ςi. There is a non-negative real function M(·) such that supςi∈Υ ‖Ddϕit(wit; ςi)‖ ≤ M(wit)

and ‖Ddϕit(wit; ςi) − Ddϕit(wit; ς
′
i)‖ ≤ M(wit)‖ςi − ς ′i‖ for all ςi, ς ′i ∈ Υ and |d| ≤ 3, and

maxi E|M(wit)|κ ≤ cM for some cM <∞ and κ ≥ 6.

(v) There exists a finite constant cH > 0 such that mini infθ∈Θ λmin (Hi,γγ(θ)) ≥ cH and

mini λmin (Hi,θθ(θ
0)) ≥ cH .

(vi) NT 1−κ/2 → c ∈ [0,∞) as (N,T )→∞.

Assumptions A1(i)—(v) parallel Assumptions A1(i)—(v) in SSP. Assumption A1(i) imposes that

wit’s are independent across individuals and strong mixing over time. This condition is commonly

assumed in the nonlinear panel literature; see, e.g., Hahn and Kuersteiner (2011) and SSP. The

stationarity condition is not necessary; it is assumed only for the purpose of simplifying the no-

tation in the proofs of some asymptotic results in the appendix. Assumption A1(ii) imposes the

identification condition for the common parameter θ. Assumption A1(iii) requires {ςi} take values
in the same bounded and closed subset of Rp+r+q. Assumption A1(iv) requires ϕ(·) and its partial
derivatives up to the third order are suffi ciently smooth and satisfying some moment conditions.

Assumption A1(v) assumes that the Hessian matrices Hi,γγ(θ) and Hi,θθ(θ
0) have eigenvalues that

are bounded away from zero. Assumption A1(vi) restricts that N can not diverge to infinity too

fast relative to T. In particular, we allow N/T 2 → c ∈ [0,∞) if κ = 6.

The following theorem establishes the consistency of the preliminary estimates θ̃ and γ̃i.

Theorem 3.1 (Consistency of preliminary estimators). Suppose Assumption A1 holds. Then (i)
θ̃ − θ0 = OP

(
T−1/2

)
, (ii) γ̃i − γ0

i = OP
(
T−1/2

)
, (iii) max1≤i≤N

∥∥γ̃i − γ0
i

∥∥ = OP (T−1/2 (lnT )3),

and (iv) 1
N

∑N
i=1

∥∥γ̃i − γ0
i

∥∥2
= OP (T−1).

The proof of the above theorem is rather complicated and relegated to the appendix. The rate

in Theorem 3.1(iii) is not optimal. In fact, following Su, Shi, and Phillips (2016b, SSPb hereafter)

we can establish that P (max1≤i≤N
∥∥γ̃i − γ0

i

∥∥ ≥ CT−1/2 (lnT )3) = o(N−1) for some large positive

constant C.We can obtain a slightly tighter probability order for max1≤i≤N
∥∥γ̃i − γ0

i

∥∥ when we do
not restrict the above tail probability to be o(N−1).

3.2 Consistency of classification

To study the classification consistency, we introduce some additional notation. Let G(K) =

{G1 (K) , G2 (K) , . . . , GK (K)} be an arbitrary partition of {1, . . . , N} where |Gk (K)| ≥ 1 for
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k = 1, . . . ,K. Define σ̂2
G(K) = 2(NT )−1

∑K
k=1

∑
i∈Gk

∑T
t=1 ϕ(wit; β̌i (K) , µ̌i(K), θ̌ (K)), where

β̌i (K) , µ̌i(K), and θ̌ (K) solve the constrained problem in (2.7) with {Ĝk} being replaced by
{Gk (K)} .

We add two assumptions.

Assumption A2 (i) There exists a constant cL > 0 such that slopesmin1≤k<k′≤K0 ‖α0
k−α0

k′‖ > cL.

(ii) The number of groups K0 is fixed. Nk/N → τk ∈ (0, 1) as N →∞ for k = 1, . . . ,K0.

Assumption A3 (i) N1/2(lnN)9/T → 0 as (N,T )→∞.
(ii) As (N,T ) → ∞, min1≤K<K0 minG(K) σ̂

2
G(K)

P→ σ̄2 > σ2
0, where σ

2
0 ≡ lim(N,T )→∞ 2(NT )−1∑K0

k=1

∑
i∈G0k

∑T
t=1 Eϕ(wit;α

0
k, µ

0
i , θ

0).

(iii) ρNT → 0 as (N,T )→∞ and TρNT →∞ as (N,T )→∞.

Assumption A2(i)—(ii) is commonly assumed in the literature on panel structure models; see,

e.g., Bonhomme and Manresa (2015) and SSP. Assumption A2(i) requires the minimum distance

between the group-specific parameters are bounded away from zero. At the cost of more compli-

cated arguments, we can allow min1≤k<k′≤K0 ‖α0
k − α0

k′‖ to shrink to zero at a rate slower than
T−1/2 (lnT )3 . But in practice, when the group-specific parameters are not suffi ciently separated

from each other, it is hard to estimate the group structure accurately with any finite period of time

series observations. Assumption A2(ii) requires each group has an nonnegligible ratio of members

asymptotically. Assumption A3(i) strengthens the condition in Assumption A1(vi) to ensure that

the estimation error from the preliminary estimates does not play a role in the determination of

the number of groups and the asymptotic distribution of our final estimators. Note that unlike

KLZ who require (N lnN)2/T → 0, we allow N to diverge to infinity at a faster rate than T.

A reason for such a big distinction is that we explicitly evaluate the smaller order terms in the

differences of the objective functions in the proof of Theorem 3.2 below while KLZ only apply a

rough probability bound to control them. Assumption A3(ii)—(iii) imposes some typical conditions

to ensure both over-grouped and under-grouped panel structure models are ruled out. In particu-

lar, Assumption A3(ii) ensures that for all under-fitted models, the mean square errors would be

asymptotically greater than σ2
0.

The following theorem indicates that we can estimate the true group structure G0 in the case

of known number of groups.

Theorem 3.2 (Classification consistency). Suppose Assumptions A1—A2 hold. Suppose the true
number of groups is known to be K0. Let Ĝ(K0) = {Ĝ1(K0), . . . , ĜK0(K0)} be the estimated group
structure based on the SBSA 1. Then P (Ĝ

(
K0
)

= G0)→ 1 as (N,T )→∞.

Theorem 3.2 shows that when the true number of groups (K0) is known, we can estimate the

true group structure G0 correctly w.p.a.1. The proof of Theorem 3.2 relies on the result in Theorem

3.1 but is quite involved.
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Nevertheless, K0 is typically unknown in practice. In this case we need to rely on the informa-

tion criterion in (2.8) to determine the number of groups. The following theorem establishes the

consistency of the information criterion.

Theorem 3.3 (Consistency of the information criterion). Suppose Assumptions A1—A3 hold. Let
K̂ be as defined in (2.9). Then P (K̂ = K0)→ 1 as (N,T )→∞.

That is, we can consistently estimate the number of groups in practice. By using K̂ in place

of K0, we can estimate the true group structure G0 w.p.a.1 by Theorems 3.2 and 3.3.

Note that the last condition in Assumption A3(iii) imposes that TρNT → ∞ as (N,T ) → ∞
so that ρNT can only converge to zero at a speed slower than T−1. This is simply due to the fact

that the heterogeneous incidental parameters µi’s in the model can only be estimated at the slow

T−1/2 convergence rate. For linear panel data models where µi is an additive fixed effect, it can

be eliminated through the within-group transformation and does not affect the convergence rate

of the estimator of the error variance in the model. In this case, we can easily relax Assumption

A3(iii) to

Assumption A3 (iii*) ρNT → 0 as (N,T )→∞ and (NT + T 2)ρNT →∞ as (N,T )→∞.
If the constrained estimates of βi’s in (2.7) for the linear model are bias corrected. The above

condition can be further relaxed to

Assumption A3 (iii**) ρNT → 0 as (N,T )→∞ and NTρNT →∞ as (N,T )→∞.

An implication for this is that the usual BIC information criterion (ρNT = ln (NT ) / (NT )) is also

working in our framework when the model is linear and the estimators are bias-corrected.

3.3 Asymptotic distribution

In this section, we study the asymptotic distributions of α̂k’s and θ̂. Recall thatW (wit;βi, µi, , θ) ≡
∂ϕ(wit;βi, µi, θ)/∂θ. Let U (wit;βi, µi, θ) = ∂ϕ(wit;βi, µi, θ)/∂βi and V (wit;βi, µi, θ) ≡ ∂ϕ(wit;βi,

µi, θ)/∂µi. Let Uj denotes the jth element in U, and similarly for Vj and Wj . Let Uβ denote

the derivative of U with respect to β>. Define Uµ, V β, V µ, V θ, Wµ and W θ analogously. For

notational simplicity, let Uit ≡ U(wit;β
0
i , µ

0
i , θ

0), and similarly for Vit, Wit, U
µ
it, V

β
it , V

µ
it , V

θ
it , W

µ
it

and W θ
it. Let U

µ
it,j ≡ ∂Uj(wit;β

0
i , µ

0
i , θ

0)/∂µ>i , U
µµ
it,j ≡ ∂2Uj(wit;β

0
i , µ

0
i , θ

0)/∂µi∂µ
>
i , and similarly

for Wµ
it,j , V

µµ
it,j and W

µµ
it,j . Define

SiU ≡
1

T

T∑
t=1

E(Uµit), SiV ≡
1

T

T∑
t=1

E(V µ
it ), SiW ≡

1

T

T∑
t=1

E(Wµ
it),

SiU2,j ≡
1

T

T∑
t=1

E(Uµµit,j), SiV 2,j ≡
1

T

T∑
t=1

E(V µµ
it,j ), SiW2,j ≡

1

T

T∑
t=1

E(Wµµ
it,j),

Uit ≡ Uit − SiUS−1
iV Vit, U

µ
it ≡ U

µ
it − SiUS

−1
iV V

µ
it , Wit ≡Wit − SiWS−1

iV Vit, W
µ
it ≡W

µ
it − SiWS

−1
iV V

µ
it ,

ΩiT,ββ ≡
1

T

T∑
s=1

T∑
t=1

E(UisU
>
it), ΩiT,βθ ≡

1

T

T∑
s=1

T∑
t=1

E(UisW>it), and ΩiT,θθ ≡
1

T

T∑
s=1

T∑
t=1

E(WisW
>
it).
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Define

BNT ≡


B1NT

...

BK0NT

BθNT

 =


B1,1NT − B2,1NT

...

B1,K0NT − B2,K0NT

B1,θNT − B2,θNT

 ,

ΩNT ≡


1
N1

∑
i∈G01

ΩiT,ββ · · · 0 1
N1

∑
i∈G01

ΩiT,βθ

...
. . .

...
...

0 · · · 1
NK0

∑
i∈G0

K0
ΩiT,ββ

1
NK0

∑
i∈G0

K0
ΩiT,βθ

1
N

∑
i∈G01

Ω>iT,βθ · · · 1
N

∑
i∈G0

K0
Ω>iT,βθ

1
N

∑N
i=1 ΩiT,θθ

 ,

HNT (β, θ) ≡


1
N1

∑
i∈G01

Hi,ββ(βi, θ) · · · 0 1
N1

∑
i∈G01

Hi,βθ(βi, θ)
...

. . .
...

...

0 · · · 1
NK0

∑
i∈G0

K0
Hi,ββ(βi, θ)

1
NK0

∑
i∈G01

Hi,βθ(βi, θ)

1
N

∑N
i=1Hi,θβ(βi, θ) · · · 1

N

∑N
i=1Hi,θβ(βi, θ)

1
N

∑N
i=1Hi,θθ(βi, θ)

 ,
(3.2)

where

B1,kNT =
(
NkT

3
)−1/2 ∑

i∈G0k

T∑
s=1

T∑
t=1

UµitS
−1
iV Vis,

[B2,kNT ]j =
1

2
√
NkT

∑
i∈G0k

(
1√
T

T∑
t=1

Vit

)>
S−1
iV SiU2,jS

−1
i,V

(
1√
T

T∑
t=1

Vit

)
− 1

2
√
NkT

∑
i∈G0k

SiUS
−1
iV RiV ,

B1,θNT =
(
NT 3

)−1/2
N∑
i=1

T∑
s=1

T∑
t=1

Wµ
itS
−1
iV Vis,

[B2,θNT ]j =
1

2
√
NT

N∑
i=1

(
1√
T

T∑
t=1

Vit

)>
S−1
iV SiW2,jS

−1
i,V

(
1√
T

T∑
t=1

Vit

)
− 1

2
√
NT

N∑
i=1

SiWS
−1
iV RiW ,

Hi,ββ(βi, θ) =
1

T

T∑
t=1

[
Uβ(wit;βi, µi(βi, θ), θ) + Uµ(wit;βi, µi(βi, θ), θ)

∂µi(βi, θ)

∂β>i

]
,

Hi,βθ(βi, θ) =
1

T

T∑
t=1

[
U θ(wit;βi, µi(βi, θ), θ) + Uµ(wit;βi, µi(βi, θ), θ)

∂µi(βi, θ)

∂θ>

]
,

Hi,θβ(βi, θ) =
1

T

T∑
t=1

[
W β(wit;βi, µi(βi, θ), θ) +Wµ(wit;βi, µi(βi, θ), θ)

∂µi(βi, θ)

∂β>i

]
,

Hi,θθ(βi, θ) =
1

T

T∑
t=1

[
W θ(wit;βi, µi(βi, θ), θ) +Wµ(wit;βi, µi(βi, θ), θ)

∂µi(βi, θ)

∂θ>

]
.

Hereafter, [A]j denotes the jth element of the vector A, [RiV ]j = ( 1√
T

∑T
t=1 Vit)

>S−1
iV SiV 2,jS

−1
iV ( 1√

T

×
∑T

t=1 Vit), and [RiW ]j = ( 1√
T

∑T
t=1 Vit)

>S−1
iV SiW2,jS

−1
iV ( 1√

T

∑T
t=1 Vit).
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As we will see, ΩNT and HNT
(
β0, θ0

)
enter the asymptotic variance of our estimators and

BNT contributes to the asymptotic bias.
To study the asymptotic distribution of our estimators, we add an assumption.

Assumption A4 (i) Ω ≡ lim(N,T )→∞ΩNT exists and is positive definite.

(ii) H ≡ lim(N,T )→∞ E[HNT
(
β0, θ0

)
] exists and is nonsingular.

Assumption A4 is needed to derive the asymptotic bias and variance of the post-classification

estimators α̂k’s and θ̂. Define the oracle estimators α̂∗k’s and θ̂
∗ of αk and θ that are obtained with

K̂ and Ĝk(K̂) in (2.10) being replaced by K0 and G0
k. The following theorem indicates that these

two set of estimators are asymptotically equivalent.

Theorem 3.4 (Asymptotic distribution). Suppose that Assumptions A1—A4 hold. By using the
SBSA 1 in Section 2.2 and the information criteria in (2.8), the final estimators α̂k’s and θ̂ are

asymptotically equivalent to the oracle estimators α̂∗k’s and θ̂
∗. In particular, conditional on the

large-probability event {K̂ = K0} we have

DNT


α̂1 − α0

1
...

α̂K0 − α0
K0

θ̂ − θ0

+H−1
NTBNT

D→ N
(

0,H−1Ω(H−1)>
)
, (3.3)

where DNT = diag(
√
N1TIp, . . . ,

√
NK0TIp,

√
NTIq) and HNT = HNT (β0, θ0).

Note that we explicitly write elements of BNT as the difference between two terms that are
derived from the first- and second-order Taylor expansion of the profile log-likelihood estimating

equation, respectively. Comparing the above results with those in Hahn and Kuersteiner (2011)

and SSP, our asymptotic bias and variance formulae are a little bit more complicated than theirs

due to the presence of the common parameter θ. In the absence of θ, both formulae can be simplified

and one can easily verify that in this case the asymptotic bias and variance of α̂k’s are the same

as those of the group-specific parameter estimators in SSP.

To make inference, we need to estimate both the asymptotic bias and variance consistently.

Given the fact that the elements of HNT and BNT share similar structures as those in SSP, one can
follow SSPb and obtain the analytical formulae for both estimates and justify their consistency.

Alternatively, we can use the jackknife method to correct bias. See Hahn and Newey (2004) and

Dhaene and Jochmans (2015) for static and dynamic panels, respectively.

4 An improved algorithm

In this section we consider an improved algorithm that is based on the spectral decomposition of

the N ×N matrix D̃N = N−1β̃β̃
>
. We first explain why the eigenvectors associated with the few

largest eigenvalues of D̃N contain the individual’s group information. Then we show that we can
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apply the SBSA to these eigenvectors to infer the group membership for all individuals w.p.a.1.

The post-classification estimation and inference then follows directly from the previous section.

4.1 Spectral decomposition

Define the K0 ×K0 matrix and N ×N matrix:

A ≡ α0α0> =


α0>

1 α0
1 · · · α0>

1 α0
K0

...
. . .

...

α0>
K0α

0
1 · · · α0>

K0α
0
K0

 and DN ≡ N−1β0β0>. (4.1)

Define an N × K0 matrix ZN ∈ {0, 1}N×K
0

that has exactly one 1 in each row and Nk 1’s in

column k where k = 1, . . . ,K0. Let z>i denote the ith row of ZN for i = 1, . . . , N. The position of

the single 1 in zi indicates the group membership of individual i. For example, z>i = (1, 0, . . . , 0)

indicates that individual i belongs to Group 1 and z>i = (0, 0, . . . , 1) indicates that individual i

belongs to Group K0. Apparently, we have

DN = N−1ZNAZ
>
N . (4.2)

The expression in (4.2) helps us to link the panel structure model with the stochastic block

model (SBM) that is widely used for community detection in the network literature. In a SBM
that contains N nodes (vertices) and K communities (blocks), each node belongs to one of the K

communities, and the probability for two nodes to form a link only depends on the community

membership. In comparison of the SBM, ZN stores the individuals’ group membership in our

model and nodes’ community membership in a SBM. The matrix A here is analogous to the

probability matrix that contains the probability of edges within and between blocks in a SBM;

but we do not restrict elements of A to lie between 0 and 1. In both cases, the main interest is to

estimate ZN based on some sample information.

Various spectral clustering algorithms have been proposed for community detection based on a

SBM. It has been suggested that the eigenvectors corresponding to the few largest eigenvalues of

certain matrix associated with the adjacency matrix reveal the clusters of interest. For example,

Rohe, Chatterjee, and Yu (2011) work on the eigenvectors of a normalized adjacency matrix. This

motivates us to consider the eigenvectors of the sample analogue of DN , the counterpart of the

adjacent matrix, to identify the latent group structure.

To appreciate the advantages of using eigenvectors to identify the latent group structures, we

consider the example below.

Example 4.1 (When p > K0). This is a case when implementing SBSA on the eigenvectors is

generally better than on β̃. If the difference between different columns of the p×K0 matrix α0> is

small for each row, then it is diffi cult to use SBSA 1 to achieve group identification. Nevertheless,

the eigenvectors associated with the few largest eigenvalues of N−1β̃β̃
>
(or DN ) summarize all

the useful group information and implementing the SBSA on the eigenvectors tend to outperform
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Figure 1: Comparison of the plots of the p columns in the preliminary estimates β̃ with the three

eigenvectors of N−1β̃β̃
>
associated with its three largest eigenvalues when p > K0: row 1 for

preliminary estimates and row 2 for eigenvectors

that based on the original β̃ matrix. Due to limited space, we only consider N = 200 and T = 20

for a linear DGP with three groups (K0 = 3) and p regressors, where the group ratio is 3 : 3 : 4.

We consider three values of p: 6, 8, 10. In Figure 1, the first row plots different columns in β̃ for

p = 6, 8, 10, and the second row plots the three eigenvectors corresponding to the three largest

eigenvalues of N−1β̃β̃
>
for each p. The true group coeffi cients are not displayed here to save space.

From the figure, we can tell that the eigenvectors reveal the true group information much more

clearly than β̃. This is especially true when p is large (say p = 10).

Let K∗ denote the number of strictly positive eigenvalues of A. Apparently, K∗ ≤ min
(
K0, p

)
.

We consider the spectral decomposition of A

A = uΛu>,

where Λ = diag(λ1, . . . , λK∗) is a K∗×K∗ matrix that contains the nonzero eigenvalues of A such

that λ1 ≥ λ2 ≥ · · · ≥ λK∗ > 0, and the columns of u contain the eigenvectors of A such that

u>u = IK∗ . Interestingly, Assumption A2(i), min1≤k<k′≤K0 ‖α0
k − α0

k′‖ > cL > 0, ensures that

the K0 rows of u are distinct from each other. See the proof of Lemma 4.1 below. Similarly, we

consider the spectral decomposition of DN

DN = N−1UNΣNU
>
N = N−1U1,NΣ1,NU

>
1,N ,
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where ΣN = diag(µ1N , . . . , µK∗N , 0, . . . , 0) is a p×p matrix that contains the eigenvalues of DN in

descending order along its diagonal, Σ1,N = diag(µ1N , . . . , µK∗N ), the columns of UN contain the

eigenvectors of DN associated with the eigenvalues in ΣN , UN = (U1,N ,U2,N ), and U>NUN = Ip.

The following lemma establishes the link between the eigenvalues and eigenvectors of A and those

of DN .

Lemma 4.1. LetA,DN , Λ, Σ1,N , u and U1,N be defined as above. Then there exists a nonsingular

matrix S ≡ SN such that (i) the diagonal matrix Σ1,N can be written as S−1Λ(S−1)>, (ii) U1,N =

N−1/2ZNuS, (iii) S is given by (N−1/2U>1,NZNu)
−1, and (iv) z>i uS = z>j uS if and only zi = zj

for i, j = 1, 2, . . . , N.

The last result in Lemma 4.1 is obvious if uS is a nonsingular square matrix. In this case, there

exists a one-to-one map between U1,N and ZN . In the general case, we allow K∗ < K0 so that uS

has rank K∗ only, and we show in the proof of the above lemma that the rows of uS are distinct

from each other. This ensures that the rows of U1,N contain the same group information as ZN .

Therefore, we can infer each individual’s group membership based on the eigenvector matrix U1,N

if DN is observed.

In practice, DN is not observed. But we can estimate it by

D̃N ≡ N−1β̃β̃
>
.

Consider the spectral decomposition of D̃N : D̃N = ŨN Σ̃N Ũ
>
N , where Σ̃N = diag(µ̃1,N , . . . , µ̃p,N )

contains the first p eigenvalues of D̃N in descending order. By Theorem 3.1, we can readily

show that ‖D̃N −DN‖ = OP (T−1/2), ensuring that max1≤`≤N |µ̃`,N − µ`,N | ≤ ‖D̃N −DN‖ =

OP
(
T−1/2

)
, where µ̃`,N and µ`,N denote the `th largest eigenvalues of D̃N and DN , respectively.

To take into account the possibility of estimating a zero eigenvalue of DN by a positive value, we

have to ensure that µK∗N is not too close to zero in order to identify the nonzero eigenvalues of

DN and apply the Davis-Kahan theorem (see, e.g., the sin θ theorem in Davis and Kahan (1970),

Chapter VII in Bhatia (1997), Proposition 2.1 in Rohe, Chatterjee, and Yu (2011), Theorem 3 in

Yu, Wang, and Samworth (2015)).

Recall λj (A) denotes the jth largest eigenvalue of a symmetric matrix A. For clarity, we

continue to assume that K0 is fixed. In this case, it is natural to assume that λK∗ (A) =

λK∗
(
α0α0>) ≥ c for some constant c > 0. Noting that AB and BA share the same set of nonzero

eigenvalues, we have

µK∗N = λK∗(DN ) = λK∗
(
N−1ZNAZ

>
N

)
= λK∗

(
AN−1Z>NZN

)
≥ λK∗ (A)λmin

(
N−1Z>NZN

)
≥ c min

1≤k≤K0
Nk/N. (4.3)

It follows that limN→∞ µK∗N ≥ cmin1≤k≤K0 τk > 0 under Assumption A2(ii). Since only the

eigenvectors that are associated with the K∗ nonzero eigenvalues of DN can contain the group

information, we will restrict our attention to the eigenvectors associated with the first KN eigen-

values of D̃N such that λKN (D̃N ) ≥ cN , where cN is a positive sequence that converges to zero at
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a slow rate, e.g., cN = 0.1/ logN. By choosing such a tuning parameter, we can effectively avoid

using eigenvectors associated with the eigenvalues of D̃N whose population values are zero. To see

this, notice that when KN > K∗, λKN (D̃N ) converges to zero in probability at rate T−1/2. So it is

easy to show that KN = K∗ w.p.a.1.

Given KN , we decompose ŨN and Σ̃N as follows: ŨN = (Ũ1,N , Ũ2,N ) and Σ̃N = diag(Σ̃1,N ,

Σ̃2,N ), where Ũ1,N is an N × KN matrix and Σ̃1,N contains the largest KN eigenvalues of D̃N

along its diagonal in descending order. Let ũ>i = (ũ>1,i, ũ
>
2,i) and u

>
i = (u>1,i, u

>
2,i) denote the ith

row of ŨN = (Ũ1,N , Ũ2,N ) and UN = (U1,N ,U2,N ), respectively.

To state the next theorem, we add the following assumption.

Assumption A5 There exist a positive constant c such that λK∗ (A) ≥ c.

The main result in this subsection is summarized in the following theorem.

Theorem 4.2. Suppose that Assumptions A1—A5 hold. Then KN = K∗ w.p.a.1. Furthermore,

conditional on KN = K∗, there exists a sequence of K∗ × K∗ orthogonal matrices ON such that

max1≤i≤N
√
N ‖ũ1,i −ONu1,i‖ = OP

(
T−1/2(lnT )3

)
.

An immediate implication of Theorem 4.2 is ‖Ũ1,N −U1,NON‖ = OP
(
T−1/2(lnT )3

)
= oP (1) ,

and like U1,N , Ũ1,N contains the true group information for all individuals. As a result, we can

consider the SBSA based on Ũ1,N instead of β̃.

4.2 An eigenvector-based SBSA

Since Ũ1,N contains the group membership for all individuals, we implement the SBSA based on

it. Let Ũ1,N = (Ũ ·1, . . . , Ũ ·KN ) and U1,N = (U ·1, . . . ,U ·KN ) .2 Let Uij and Ũij denote the ith

element of U ·j and Ũ ·j , respectively. We sort the N elements of Ũ ·j in ascending order and denote

the order statistics by

Ũπj(1),j ≤ Ũπj(2),j ≤ · · · ≤ Ũπj(N),j , (4.4)

where {πj(1), . . . , πj(N)} is a permutation of {1, . . . , N} that is implicitly determined by the order
relation in (4.4). Let

S̃i,l (j) ≡ {Ũπj(i),j , Ũπj(i+1),j , . . . , Ũπj(l),j}

where 1 ≤ i < l ≤ N.
Let

Ūi,l (j) =
1

l − i+ 1

l∑
i′=i

Ũπj(i′),j and Ṽi,l (j) ≡
1

l − i

l∑
i′=i

[Ũπj(i′),j − Ūi,l (j)]
2

denote the sample mean and variance of the subsample S̃i,l (j) . Define

S̃i,l(j,m) =
1

l − i+ 1

{
m∑
i′=i

[
Ũπj(i′),j − Ūi,m (j)

]2
+

l∑
i′=m+1

[
Ũπj(i′),j − Ūm+1,l (j)

]2
}
. (4.5)

2To account for the scale effect, we use β̃
′

= (β̃
′
·1, . . . , β̃

′
·p) where β̃

′
·j = β̃·j/

√
σ̄21,N (j), j = 1, . . . , p, instead of β̃

in calculating the eigenvectors Ũ1,N . Recall that σ̄21,N (j) is defined in Section 2.2.
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We propose to adopt the following eigenvector-based SBSA to estimate G0.

Sequential Binary Segmentation Algorithm 2 (SBSA 2)

1. Let K ∈ [1,Kmax] . When K = 1, there is only one group with the estimate G̃1 (1) =

{1, . . . , N}.

2. When K = 2, let ̃1 = arg max1≤j≤KN Ṽ1,N (j) . Given ̃1, we solve the following minimization

problem

m̃1 ≡ arg min
1≤m<N

S̃1,N (̃1,m).

Now we have two segments —G̃1 (2) = S̃1,m̃1 (̃1) and G̃2 (2) = S̃m̃1+1,N (̃1).

3. When K ≥ 3, we use m̃1, . . . , m̃K−2 denote the break points detected in the previous steps

such that m̃1 < · · · < m̃K−2 (perhaps after relabeling) the K−2 break points that have been

detected so far. Define

̃K−1 ≡ argmax
1≤j≤K̃N

K−1∑
k=1

Ṽm̃k−1+1,m̃k (j) ,

m̃K−1 (k) ≡ arg min
m̃k−1+1≤m<m̃k

S̃m̃k−1+1,m̃k(̃K−1,m) for k = 1, . . . ,K − 1,

where m̃0 = 0, m̃K−1 = N, and we suppress the dependence of m̃K−1 (k) on ̃K−1. Then

m̃K−1 (k) divides G̃k (K − 1) into two subsegments, which are labeled as G̃k1 (K − 1) and

G̃k2 (K − 1) respectively. Calculate for k = 1, . . . ,K − 1,

S̃K−1 (k) ≡
∑

i∈G̃k1(K−1)

[
Ũi,̃K−1 − ŪG̃k1(K−1) (̃K−1)

]2

+
∑

i∈G̃k2(K−1)

[
Ũi,̃K−1 − ŪG̃k2(K−1) (̃K−1)

]2

+
∑

1≤l≤K−1,l 6=k

∑
i∈G̃l(K−1)

[
Ũi,̃K−1 − ŪG̃l(K−1) (̃K−1)

]2
,

where, e.g., ŪG̃k1(K−1) (̃K−1) = |G̃k1 (K − 1) |−1
∑

i∈G̃k1(K−1) Ũi,̃K−1 . Let

k̃ = arg min
1≤k≤K−1

S̃K−1 (k) .

We now obtain the K − 1 break points and the K segments given by {m̃1, . . . , m̃K−2,

m̃K−1(k̃)} and {G̃1 (K − 1) , . . . , G̃k̃−1 (K − 1) , G̃k̃1 (K − 1) , G̃k̃2 (K − 1) , G̃k̃+1 (K − 1) , . . . ,

G̃K−1 (K)}, respectively. Relabel these K − 1 break points as {m̃1, . . . , m̃K−1} such that
m̃1 < m̃2 < · · · < m̃K−1, and the corresponding K groups as {G̃1 (K) , G̃2(K), . . . , G̃K (K)}.

4. Repeat the last step until K = Kmax.
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Of course if K0 is known a priori, we can set Kmax = K0. At the end of the SBSA, we obtain

the Ĝ
(
K0
)
≡ {G̃1, G̃2, . . . , G̃K0} as the estimates of the true group structure G0. Otherwise, we

can estimate K0 either based on SBSA 1 or SBSA 2.

Let β̂
∗

(K) , µ̂∗ (K) , and θ̂∗ (K) be defined analogously to β̂ (K) , µ̂ (K) , and θ̂ (K) , now with

the estimated group based on SBSA 2. We can estimate K0 by minimizing the following BIC-type

information criterion

IC2(K) = 2LNT (β̂
∗

(K) , µ̂∗ (K) , θ̂∗ (K)) + pK · ρNT . (4.6)

Let

K̃ ≡ arg min
1≤K≤Kmax

IC2(K) and G̃ ≡ G̃(K̃) ≡ {G̃1(K̃), G̃2(K̃), . . . , G̃K̃(K̃)}. (4.7)

We will show that P (K̃ = K0)→ 1 and P (G̃ = G0
) as (N,T )→∞.

Given K̃ and G̃, we consider the constrained minimization problem in (2.7) with K being

replaced by K̃ and obtain the final estimate of β, µ, θ, and α. In particular, we denote the

estimates as α and θ as α̃ and θ̃, which can be obtained as the minimizer of (2.10) with K̂ and

Ĝk(K̂) being replaced by K̃ and G̃k(K̃). Let α̃k denote the kth column of α̃>. The following

section reports the asymptotic properties of G̃(K0), K̃ and α̃ and θ̃.

4.3 Asymptotic properties

In this subsection, we first state Theorems 4.3—4.5 which parallel Theorems 3.2—3.4 in Section 3,

and then provide some intuitive explanations on why they hold.

Theorem 4.3 (Classification consistency). Suppose Assumptions A1—A2 and A5 hold. Suppose the
true number of groups is known to be K0. Let G̃(K0) = {G̃1(K0), . . . , G̃K0(K0)} be the estimated
group structure based on the SBSA 2. Then P (G̃(K0) = G0)→ 1 as (N,T )→∞.

Theorem 4.4 (Consistency of the information criterion). Suppose Assumptions A1—A3 and A5
hold. Let K̃ be as defined in (4.7). Then P (K̃ = K0)→ 1 as (N,T )→∞.

Theorem 4.5 (Asymptotic distribution). Suppose that Assumptions A1—A5 hold. By using the
SBSA 2 in Section 4.2 and the information criteria in (4.6), the final estimators α̃k’s and θ̃ are

asymptotically equivalent to the oracle estimators α̂∗k’s and θ̂
∗. In particular, conditional on the

large-probability event {K̃ = K0}, the asymptotic distribution of DNT ((α̃1 − α0
1)>, . . . , (α̃K0 −

α0
K0)
>, (θ̃ − θ0)>)> is identical to DNT ((α̂1 − α0

1)>, . . . , (α̂K0 − α0
K0)
>, (θ̂ − θ0)>)> studied in

Theorem 3.4.

Combining the results in Theorems 4.3—4.4, we can recover the true group structure G0 w.p.a.1

by using the SBSA 2 and IC2 defined in (4.6). From the proof of Theorem 3.2, we can tell

that the key condition to ensure the consistency of classification is the uniform consistency of

the preliminary estimates β̃i and the consistency rate does not play a role here. Theorem 4.2
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ensures that Ũ1,N contains all the individual’s group information that are required and it implies

the uniform convergent of
√
N(ũ1,i − Ou1,i) to zero where O is the probability limit of ON . This

is all that we need in order to infer the individuals group membership consistently. Given the

consistency of G̃ = G̃(K̃) with G0, the results in Theorem 4.5 can be derived in the same way as

those in Theorem 3.4.

5 Monte Carlo simulations

In this section, we evaluate the finite sample performance of our SBSA through simulations.

5.1 Data generating processes

We consider four data generating processes (DGPs) here. DGPs 1—2 specify a linear panel data

model while DGPs 3—4 consider a double-censored static panel data model and a left-censored

dynamic panel data model, respectively. In all DGPs, the candidate number of individuals are

N = 100, 200 and the time spans are T = 10, 20, 40. We will evaluate all 6 combinations

of N and T . The true number of groups is 3, and the group member proportion is given by

|G0
1| : |G0

2| : |G0
3| = 4 : 3 : 3 in all DGPs.

DGP 1 (Linear panel). The data are generated as

yit = x>itβi + µi + εit,

where xit = (x1,it, x2,it)
>, x1,it = 0.2µi + e1,it, x2,it = 0.2µi + e2,it, and e1,it, e2,it, εit and the

fixed effect µi are all i.i.d. standard normal and mutually independent of each other. The true

coeffi cients βi can be classified into 3 groups with true group-specific parameter values given by

(α0
1, α

0
2, α

0
3) =

([
0.5

−1

]
,

[
0.5

1

]
,

[
0.5

2

])
.

Note that here α0
1,1 = α0

2,1 = α0
3,1 but we do not assume that they are known to be common. We

want to use this DGP to show our method is robust to this kind of specifications.

DGP 2 (Linear panel with p = 10). The data are generated as

yit = x>itβi + µi + εit,

where xit is a 10×1 vector with the jth element given by xj,it = 0.2µi+ej,it, j = 1, . . . , 10, and ej,it,

εit, and the fixed effect µi are all i.i.d. standard normal and mutually independent of each other.

The true coeffi cients βi can be classified into 3 groups with true group-specific parameter values

given by α0
1 = (−1,−1.1,−1.2, 0.3, 2, 1, 0.9, 0.1, 0.1,−0.1)>, α0

2 = (−1.1, 0.4, 0.7, 0.6, 1.7, 1.3, 2, 0.5,

0.1, −0.1)>, and α0
3 = (0, 1.8, 0.8, 0.2, 1.2,−0.3, 1.9,−0.2, 0.1,−0.1)>. We want to use this DGP to

show our SBSA 2 is well suited for the large p case.
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DGP 3 (Double-censored static panel). The data are generated according to

yit = mami
(

0, x>itβi + µi + εit, 4
)
,

where xit = (x1,it, x2,it)
> = (e1,it+0.1µi, e2,it+0.1µi)

>, and e1,it, e2,it, εit, µi are all independently

drawn from the standard normal distribution and are mutually independent of each other. The

censored ratio is around 51% (with left censored ratio 50% and right censored ratio 1%). The true

group-specific parameter values are

(α0
1, α

0
2, α

0
3) =

([
1.5

−1.5

]
,

[
−0.5

0.5

]
,

[
−1.8

1.8

])
.

The variance σ2 = Var(εit) is modeled as the common parameter across all individuals.

DGP 4 (Dynamic one-side censored panel). The model is

yit = max
(

0, ρyi,t−1 + x>itβi + µi + εit

)
,

where xit, µi, and εit are generated as in DGP 3. To generate T periods of observations for

individual i, we first generate T + 100 observations with initial value yi0 = 0, and then take the

last T periods of observations. We discard those individuals which have constant regressor or

constant regressand across all T periods. The censored ratio is around 40%. For the parameters,

ρ0 = 0.4 and the true group-specific parameter values are

(α0
1, α

0
2, α

0
3) =

([
−1.2

1.6

]
,

[
0.6

−0.8

]
,

[
1.5

−1.9

])
.

As in DGP 3, σ2 is modeled as the common parameter across all individuals but we do not assume

ρ is common in the estimation procedure.

In all DGPs, we use the information criteria in (2.8) to choose the number of groups. For DGPs

1—2, the information criterion is

IC1(K) = σ2
Ĝ(K)

+ pKρ1(NT ),

where ρ1(NT ) = 1
30 ln(NT )/(NT )1/3, Ĝ(K) = {Ĝ1(K), . . . , ĜK(K)}, σ2

Ĝ(K)
= 1

NT

∑K
k=1

∑
i∈Ĝk(K)∑T

t=1[ỹit−x̃>it α̂k(K)]2, ỹit = yit−T−1
∑T

t=1 yit, and similarly for x̃it. For DGPs 3—4, the information

criterion is

IC2(K) = 2LNT (β̂(K), µ̂(K), θ̂(K)) + pKρ2(NT ), (5.1)

where LNT (·) is explained in Section 2, and ρ2(NT ) = 1
60 ln(NT )/(NT )1/3.
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5.2 Simulation results

For all DGPs, results reported here are based on 200 repetitions.

Tables 1 and 2 report the frequency for the selected number of groups based on our information

criteria by setting Kmax = 5. The true number of groups is given by K0 = 3. We compare 4

algorithms: K-means on β̃, K-means on the eigenvectors of N−1β̃β̃
>
, SBSA 1 and SBSA 2 for

all DGPs. For DGPs 1—2 we also consider C-Lasso.3 From Tables 1 and 2, we see that for all

algorithms, given N , the frequency of choosing the right number of groups increases as T grows.

Our methods, especially SBSA 2, enable us to identify the true number of groups with large

probability. In DGP 1, SBSA 2 slightly outperforms the C-Lasso and in DGP 2, the opposite is

true. Both of them outperform other algorithms significantly. We also see one special property of

the binary segmentation algorithm: for fixed T , the frequency of choosing the correct number of

groups also increases with N, which is not observed when either the K-means algorithms or SSP’s

C-Lasso method is employed. In all DGPs under investigation, our information criterion works

well for T as small as 10 and it works almost perfectly when T ≥ 20. In short, our information

criterion is quite effective in determining the number of groups.

Suppose the true number of groups K0 is identified. Now we examine the performance of

classification and the post-classification estimators. We follow SSP to define the evaluation criteria.

First, we define the percentage of correct classification as N−1
∑K0

k=1

∑
i∈Ĝk 1{β

0
i = α0

k}, which
denotes the percentage of individuals falling into the right group. We show its average value across

all replications in columns 4 and 8 of Tables 3 and 4. Columns 5—7 and 9—11 report the performance

of the estimates of α0
·2 ≡ (α0

1,2, . . . , α
0
K0,2)>, i.e., the second regressor’s coeffi cient of all groups.

We evaluate the performance through three criteria: the root mean squared error (RMSE), bias,

and coverage ratio. The RMSE is defined as the weighted average RMSEs of α0
k,2, k = 1, . . . ,K0,

with weight Nk/N . Specifically, it is
∑K0

k=1
Nk
N RMSE(α0

k,2). Similarly, we define weighted versions

of bias, and coverage ratio of the 95% confidence interval estimators. Tables 3 and 4 contain the

classification and post-classification results where the oracle estimates are obtained by using the

true group structure and the other estimates are obtained based as the post-classification ones.

We summarize some important findings from Tables 3 and 4. First, the percentage of correct

classification increases with T for all classification methods under consideration. In particular,

for all models under investigation we can achieve almost perfect classification when T increases

to 40 by using the improved SBSA 2 method. Second, as expected, the oracle estimates usually

have smaller RMSE than the post-classification estimates. Third, like the C-Lasso method, our

SBSA 2 method typically outperforms the other methods. As T increases, the RMSEs of the

post-classification estimates based on both the C-Lasso method and our SBSA 2 method decrease

rapidly and can match those of the oracle ones when T = 40. Fourth, the coverage ratios for the

post-classification estimates of SBSA 2 improve quickly and get closer to those of the oracle ones

3Even in the linear case, the computing time of C-Lasso is around 100 times longer than that of the SBSA

methods.
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Table 1: The frequency of selecting K = 1, . . . , 5 groups when K0 = 3 and Kmax = 5

DGP 1 DGP 2
N T 1 2 3 4 5 1 2 3 4 5

K-means on β̃ 100 10 0 0 0.875 0.125 0
100 20 0 0 0.845 0.155 0 0 0 0.935 0.060 0.005
100 40 0 0 0.910 0.090 0 0 0 0.920 0.080 0
200 10 0 0 0.870 0.120 0.010
200 20 0 0 0.855 0.145 0 0 0 0.950 0.050 0
200 40 0 0 0.865 0.130 0.005 0 0 0.925 0.075 0

K-means on 100 10 0 0.280 0.225 0.205 0.290
eigenvectors 100 20 0 0.050 0.420 0.360 0.170 0 0 0.975 0.025 0

100 40 0 0 0.800 0.180 0.020 0 0 0.975 0.025 0
200 10 0 0.150 0.225 0.270 0.355
200 20 0 0.025 0.310 0.370 0.295 0 0 0.985 0.015 0
200 40 0 0 0.725 0.270 0.005 0 0 0.990 0.010 0

C-Lasso 100 10 0 0 0.995 0.005 0
100 20 0 0 1 0 0 0 0 1 0 0
100 40 0 0 1 0 0 0 0 1 0 0
200 10 0 0 0.995 0.005 0
200 20 0 0 1 0 0 0 0 1 0 0
200 40 0 0 1 0 0 0 0 1 0 0

SBSA 1 100 10 0 0.010 0.990 0 0
100 20 0 0 1 0 0 0 0 0.100 0.890 0
100 40 0 0 1 0 0 0 0 0.030 0.965 0.005
200 10 0 0 1 0 0
200 20 0 0 1 0 0 0 0 0.065 0.935 0
200 40 0 0 1 0 0 0 0 0.005 0.995 0

SBSA 2 100 10 0 0 0.995 0.005 0
100 20 0 0 1 0 0 0 0 0.990 0.010 0
100 40 0 0 1 0 0 0 0 1 0 0
200 10 0 0 1 0 0
200 20 0 0 1 0 0 0 0 1 0 0
200 40 0 0 1 0 0 0 0 1 0 0
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Table 2: The frequency of selecting K = 1, . . . , 5 groups when K0 = 3 and Kmax = 5
DGP 3 DGP 4

N T 1 2 3 4 5 1 2 3 4 5
K-means on β̃ 100 10 0 0.04 0.905 0.055 0 0 0.085 0.7 0.215 0

100 20 0 0.03 0.875 0.095 0 0 0.06 0.685 0.255 0
100 40 0 0.005 0.925 0.07 0 0 0.035 0.635 0.32 0.01
200 10 0 0 0.955 0.045 0 0 0.14 0.705 0.155 0
200 20 0 0 0.9 0.1 0 0 0.13 0.695 0.175 0
200 40 0 0 0.905 0.095 0 0 0.055 0.645 0.3 0

K-means on 100 10 0 0.785 0.09 0.085 0.04 0 0.835 0.065 0.085 0.015
eigenvectors 100 20 0 0.795 0.075 0.09 0.04 0 0.77 0.055 0.155 0.02

100 40 0 0.82 0.085 0.08 0.015 0 0.78 0.075 0.105 0.04
200 10 0 0.92 0.03 0.035 0.015 0 0.93 0.025 0.045 0
200 20 0 0.87 0.05 0.06 0.02 0 0.87 0.055 0.065 0.01
200 40 0 0.805 0.075 0.085 0.035 0 0.86 0.075 0.055 0.01

SBSA 1 100 10 0 0.11 0.65 0.225 0.015 0 0.06 0.795 0.135 0.01
100 20 0 0 0.955 0.045 0 0 0 0.995 0.005 0
100 40 0 0 1 0 0 0 0 1 0 0
200 10 0 0 0.755 0.21 0.035 0 0.005 0.98 0.015 0
200 20 0 0 0.985 0.015 0 0 0 1 0 0
200 40 0 0 1 0 0 0 0 1 0 0

SBSA 2 100 10 0 0.005 0.995 0 0 0 0 0.995 0.005 0
100 20 0 0 1 0 0 0 0 1 0 0
100 40 0 0 1 0 0 0 0 1 0 0
200 10 0 0 1 0 0 0 0 1 0 0
200 20 0 0 1 0 0 0 0 1 0 0
200 40 0 0 1 0 0 0 0 1 0 0

as T increases.

6 Empirical application

6.1 The model and data

Individual portfolio choices are influenced by many factors, some of which are observable and

others are unobservable. For example, age, financial assets, labor income, and returns and risk

measures of different assets are among the set of observable factors. For a seminal paper on the

problem of portfolio choice, see Samuelson (1969). Cocco, Gomes, and Maenhout (2005) investigate

how labor income and financial wealth affect portfolio decisions. Unobservable factors also play

a very important role in the process of portfolio decision making. For example, individual risk

preference, habits and information acquirement affect how people respond to various observable

factors. Samuelson (1969) models risk preference as the fundamental factor in portfolio choices.

Polkovnichenko (2007) employs n the life cycle model to study the implications of endogenous habit

formation preferences on portfolio choices. Both academic studies and common sense suggest that

different people tend to have different responses to the same information. This fact motivates us

to consider the panel structure model in studying how individuals’portfolio choices are affected

by various factors.
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Table 3: Classification and point estimation of α0
·2

DGP 1 DGP 2
Correct Comparison Criteria Correct Comparison Criteria

N T Ratio RMSE Bias Coverage Ratio RMSE Bias Coverage
Oracle 100 10 1 0.059 0.000 0.933

100 20 1 0.041 -0.001 0.920 1 0.041 0.001 0.939
100 40 1 0.028 -0.000 0.947 1 0.028 0.002 0.954
200 10 1 0.040 -0.000 0.931
200 20 1 0.027 -0.002 0.950 1 0.028 -0.000 0.949
200 40 1 0.019 0.001 0.947 1 0.020 0.001 0.948

K-means 100 10 0.917 0.289 -0.080 0.766
on β̃ 100 20 0.964 0.276 -0.097 0.795 0.991 0.181 -0.029 0.897

100 40 0.984 0.214 -0.057 0.873 0.988 0.197 -0.025 0.903
200 10 0.920 0.260 -0.080 0.763
200 20 0.962 0.281 -0.097 0.831 0.991 0.134 -0.025 0.921
200 40 0.975 0.248 -0.081 0.845 0.987 0.247 -0.033 0.892

K-means 100 10 0.794 0.524 -0.241 0.332
on eigen- 100 20 0.861 0.381 -0.179 0.487 0.987 0.119 -0.005 0.891
vectors 100 40 0.955 0.278 -0.107 0.774 0.997 0.172 0.008 0.938

200 10 0.784 0.540 -0.237 0.308
200 20 0.858 0.384 -0.180 0.425 0.989 0.070 -0.009 0.910
200 40 0.944 0.332 -0.157 0.723 0.998 0.085 -0.002 0.942

C-Lasso 100 10 0.939 0.076 -0.017 0.866
100 20 0.985 0.044 -0.005 0.905 1 0.041 0.001 0.939
100 40 0.999 0.028 -0.001 0.944 1 0.028 0.002 0.954
200 10 0.941 0.052 -0.018 0.840
200 20 0.986 0.028 -0.005 0.942 1 0.028 -0.000 0.949
200 40 0.999 0.019 0.000 0.943 1 0.020 0.001 0.948

SBSA 1 100 10 0.929 0.104 0.003 0.846
100 20 0.983 0.044 -0.002 0.903 0.791 0.504 -0.042 0.334
100 40 0.999 0.028 -0.000 0.946 0.855 0.268 -0.023 0.327
200 10 0.933 0.051 0.004 0.860
200 20 0.985 0.028 -0.001 0.941 0.778 0.482 -0.044 0.314
200 40 0.999 0.019 0.001 0.946 0.852 0.226 -0.025 0.295

SBSA 2 100 10 0.931 0.076 0.004 0.856
100 20 0.984 0.043 -0.001 0.908 0.991 0.045 0.002 0.913
100 40 0.999 0.028 -0.001 0.946 1 0.028 0.002 0.954
200 10 0.931 0.050 0.006 0.864
200 20 0.984 0.029 -0.001 0.933 0.992 0.032 0.000 0.921
200 40 0.999 0.019 0.001 0.946 1 0.020 0.001 0.948
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Table 4: Classification and point estimation of α0
·2

DGP 3 DGP 4
Correct Comparison Criteria Correct Comparison Criteria

N T Ratio RMSE Bias Coverage Ratio RMSE Bias Coverage
Oracle 100 10 1 0.086 0.003 0.957 1 0.072 0.001 0.939

100 20 1 0.063 0.003 0.947 1 0.048 0.002 0.958
100 40 1 0.044 0.005 0.936 1 0.036 0.001 0.940
200 10 1 0.067 0.003 0.928 1 0.058 -0.004 0.912
200 20 1 0.045 0.002 0.931 1 0.040 -0.002 0.919
200 40 1 0.031 0.001 0.946 1 0.030 -0.004 0.942

K-means 100 10 0.930 0.210 -0.020 0.839 0.900 0.261 -0.069 0.637
on β̃ 100 20 0.970 0.138 -0.010 0.833 0.933 0.273 -0.085 0.673

100 40 0.985 0.163 -0.016 0.878 0.942 0.291 -0.112 0.623
200 10 0.937 0.153 0.001 0.823 0.900 0.235 -0.064 0.626
200 20 0.971 0.146 -0.011 0.825 0.935 0.222 -0.061 0.650
200 40 0.982 0.150 -0.021 0.861 0.940 0.204 -0.054 0.696

K-means 100 10 0.751 0.316 -0.089 0.157 0.768 0.312 -0.067 0.199
on eigen- 100 20 0.764 0.355 -0.137 0.143 0.773 0.273 -0.068 0.211
vectors 100 40 0.768 0.368 -0.140 0.105 0.777 0.226 -0.064 0.168

200 10 0.748 0.331 -0.107 0.100 0.757 0.293 -0.063 0.184
200 20 0.758 0.287 -0.094 0.082 0.765 0.217 -0.064 0.181
200 40 0.753 0.326 -0.118 0.033 0.767 0.230 -0.057 0.197

SBSA 1 100 10 0.885 0.180 0.062 0.541 0.877 0.124 0.017 0.650
100 20 0.959 0.087 0.024 0.832 0.949 0.069 0.006 0.845
100 40 0.991 0.048 0.009 0.920 0.982 0.040 0.002 0.914
200 10 0.885 0.166 0.084 0.472 0.878 0.117 0.020 0.598
200 20 0.962 0.074 0.031 0.755 0.956 0.058 0.003 0.770
200 40 0.992 0.034 0.005 0.930 0.985 0.033 -0.001 0.926

SBSA 2 100 10 0.935 0.114 0.039 0.872 0.925 0.085 0.012 0.893
100 20 0.986 0.065 0.006 0.940 0.972 0.051 0.004 0.944
100 40 0.997 0.045 0.006 0.938 0.994 0.036 0.002 0.940
200 10 0.936 0.097 0.044 0.831 0.929 0.063 0.010 0.881
200 20 0.986 0.048 0.009 0.920 0.977 0.041 0.001 0.901
200 40 0.998 0.031 0.002 0.948 0.997 0.030 -0.002 0.941
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In this application, we consider a censored model similar to that in Abrevaya and Shen (2014,

hereafter AS). The dependent variable yit is the ratio of safe assets in individual i’s portfolio in

year t, and it is left censored at 0 and right censored at 1. To account for parameter heterogeneity,

we consider the mixed panel structure model of the form

y∗it = x>1,itβ1i + x>2,itβ2 + µi + εit, (6.1)

where x1,it includes log financial assets and log non-capital income, x2,it includes AEX premium,

time trend and retirement dummy, µi is the fixed effect, and εit’s are i.i.d. normal.4 The observable

dependent variable yit is subject to two-sided censoring: yit = mami{0, y∗it, 1}. Note that β2 is

common across individuals in (6.1). We assume that the true values of β1i’s exhibit the group

structure, β0
1i =

∑K0

k=1 α
0
k ·1

{
i ∈ G0

k

}
. We are interested in identifying the number of groups (K0)

and the group membership for each individual i.

Next we explain briefly why we allow β1i’s to be heterogeneous across groups and impose

homogeneity assumption on β2. The variables contained in x1,it, namely, log financial asset and

log non-capital income, are usually modeled as determinant factors in portfolio choice theories.

Curcuru et al. (2004) argue that there is substantial heterogeneity in the portfolio choices. In other

words, different people tend to have different responses towards the same factors. But individuals’

behavior also tends to exhibit certain grouped patterns. For example, some individuals prefer

to holding diversified portfolios in order to hedge against various kinds of risks whereas others

hold almost no position on risky or riskless assets. In modeling economic behavior, homogeneous

representative individual assumption is a convenient way to explain some phenomenon. But it is

quite fragile as heterogeneity is ubiquitous. The panel structure model studied in this paper offers

a flexible and manageable alternative to handle the parameter heterogeneity issue.

The retirement dummy, which is contained in x2,it, may change over the time span for some

individuals, and remains as a constant (0 or 1) for other individuals. To avoid the multicollinearity

issue, we treat its coeffi cient as constant across i. Classic theory (e.g., Cocco et al. (2005))

generally predicts that the ratio of savings in safe assets tends to increase after retirement. AEX

premium is believed to be negatively correlated to yit, the ratio of safe asset in the portfolio.

There are few reasons to believe otherwise. Besides, AS’s regression results are aligned with these

theoretical predictions, which motivates us to assume homogeneous effects of the variables in x2,it

across individuals.

The dataset comes from the De Nederlandsche Bank (DNB) Household Survey of Netherlands,

which contains detailed demographic and financial information of Dutch household and individual

samples from 1993 to 2015. We use unbalanced panel data and first include all individuals with

time dimension Ti larger than or equal to 10. There are N = 378 individuals included in our

regression. The average period of observations for all individuals is about N−1
∑N

i=1 Ti ≈ 12.3.

4AEX premium is defined as Amsterdam exchange index return minus the deposit rate. The retirement age in

Netherlands is 65. For detailed explanation of all variables defined here, please refer to Alessie, Hochguertel, and

Van Soest (2002) and AS.

30



The majority of censoring is right censoring at one. To be specific, the right censored ratio is 1691

out of 4666 (36.2%); and the left censored ratio is 142 out of 4666 (3.0%). Table 5 provides a brief

summary of the dataset.

Table 5: Summary statistics for the DNB household survey dataset
yit log(FA) log(NCI) AEX prem. Time (t) Retire dummy

min. 0.0000 1.609 5.247 -0.475 2.000 0.000
max. 1.0000 14.881 13.768 0.384 23.000 1.000
mean 0.6606 9.852 10.227 0.009 13.012 0.260
median 0.8126 9.974 10.296 0.080 13.000 0.000
std. 0.3656 1.695 0.749 0.217 6.050 0.439

6.2 Classification and post-classification regression results

We apply our SBSAmethod to the above dataset and obtain the classification and post-classification

regression results. Based on SBSA 2, IC2 in (5.1) determines three estimated groups with Groups

1—3 containing 112, 100, and 166 individuals, respectively.

Table 6 reports the regression results for different specifications. Column (1) corresponds to the

usual pooled censored panel data regression with fixed effects. Columns (2)—(4) correspond to the

joint estimation of group-specific parameters and the common parameters in the model. Note that

we assume the effects of variables in x2,it and the variance of the error terms are common across

all individuals for this joint estimation. Column (5) collects some regression results, corresponding

to the relevant variables used here, from AS. Following AS, we include many common explanatory

variables and also use the censored regression model. That being said, the data used here are

different from theirs. They use the DNB household survey from 1993 to 2008 with individuals’

time periods (Ti) larger than or equal to three. Our data come from the same source, but range

from 1993 to 2015 with individuals’time periods longer than or equal to ten.

We summarize some important findings from Table 6. First, the coeffi cient of log financial

assets (log(FA)) is very similar between the pooled model (column (1)) and AS’s model (column

(5)). The negative relationship between log(FA) and safe asset ratio (yit) is very stable across

time and individuals. For the other regressors, our pooled estimates are somewhat different from

those of AS’s. The coeffi cient of the time trend is positive and significant at the 1% level while

it is negative and significant at the 1% level in AS. One possible explanation is that we use data

from individuals with periods of observation more than or equal to ten, which is longer than that

of AS’s. After many periods of portfolio decisions, a person gets older and older and tends to

allocate more assets to safe investments. If the time periods are very short (three in AS’s data for

many individuals), the effect may not be captured properly. In short, when we choose to include

individuals with periods of observations greater than or equal to 10, we tend to choose different

samples than that of AS. It has some impacts on our regression results.

Second, our SBSA 2 method yields three estimated groups whose regression outputs are re-
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Table 6: Regression results for the DNB household survey dataset

(1) Pooled (2) Group 1 (3) Group 2 (4) Group 3 (5) AS
log(FA) -0.128c -0.055c -0.223c -0.048c -0.129c

(0.005) (0.009) (0.009) (0.008) (0.011)
log(NCI) 0.035c -0.255c 0.056c 0.091c -0.006a

(0.012) (0.024) (0.018) (0.016) (0.004)
AEX premium 0.008 -0.007 -0.039b

(0.023) (0.022) (0.017)
Time (t) 0.024c 0.020c -0.013c

(0.001) (0.001) (0.002)
Retirement dummy 0.079c 0.065c

(0.021) (0.020)
σ2 0.310c 0.290c

(0.004) (0.004)
Note : Column (1) reports the pooled estimation of all 378 individuals. By using SBSA 2, we obtain 3 groups.

Columns (2)—(4) report the regression results for each group where the coeffi cients of AEX premium, time trend

and retirement dummy are common. Column (5) reports part of regression results drawn from AS for comparison

purpose. Standard errors are in parentheses. a, b, and c denote significance at 10%, 5% and 1% levels, respectively.

ported in Columns (2), (3), and (4) in Table 6. The table suggests that the signs of the coeffi cient

estimates for log non-capital income (log(NCI)) are opposite for Group 1 and the other two groups

while the signs of the coeffi cient estimates for log(FA) are common across all three groups. The

former finding provides partial explanation for the opposite direction of log(NCI) in columns (1)

and (6). There are three latent groups. Pooling them together yields a weighted average of the

estimates in columns (2)—(4), which is positive for log(NCI) in column (1). Different composition

of elements from the three groups might generate a negative slope for log(NCI) in the pooled

estimation, e.g., in AS (column (6)).

Third, the effects of log(FA) on the ratio of safe assets (yit) are similar in Groups 1 and 3 and

they are much smaller than that in Group 2. So the separation between Groups 1 and 3 is mainly

caused by the quite distinct effects of log(NCI) on the ratio of safe assets.

Fourth, our estimate of the common coeffi cient of AEX premium is negative, which is different

from the pooled estimate but consistent with AS’s results and the theoretical prediction.

6.3 Robustness check

In the above subsection we consider the classification and post-classification regression results by

using SBSA 2 for individuals with Ti ≥ 10. There are 378 individuals in total. As a robustness

check, we now consider the cases where Ti ≥ 9 or Ti ≥ 8.

First, we consider the classification results based on individuals with Ti ≥ 9. Now the number

of individuals (N) increases to 504. By using the SBSA 2 method, we still obtain 3 groups.
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Groups 1—3 contain 129, 121, and 254 individuals, respectively. The left panel of Table 7 reports

the post-classification regression results in this case. A comparison with Table 6 suggests that

the post-classification results share some similar patterns, in terms of both estimated number of

groups and coeffi cient estimates for each group.

Next, we consider individuals with Ti ≥ 8. There are 627 individuals for this case. We apply

SBSA 2 method on this new subsample. As before, we obtain 3 groups. Groups 1—3 contain 116,

182, and 329 individuals, respectively. The post-classification regression results are reported in the

right panel of Table 7. A comparison between Table 6 and the right panel of Table 7 suggests that

the post-classification results here are similar to those in Table 6

In sum, we conclude that our SBSA 2 classification and estimation results are quite robust to

the choice of the minimum value of Ti.

Table 7: Regression results for the DNB household survey data for Ti ≥ 9 or 8 after using SBSA 2
Ti ≥ 9 Ti≥ 8

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3
log(FA) -0.043c -0.240c -0.055c -0.040c -0.224c -0.028c

(0.008) (0.009) (0.007) (0.008) (0.007) (0.005)
log(NCI) -0.304c 0.027c 0.068c -0.414c 0.031c 0.028c

(0.024) (0.017) (0.013) (0.025) (0.013) (0.011)
AEX premium -0.013 -0.010

(0.020) (0.017)
Time (t) 0.019c 0.022c

(0.001) (0.001)
Retirement dummy 0.069c 0.052c

(0.018) (0.015)
σ2 0.290c 0.266c

(0.004) (0.003)

We might also want to know how many individuals in Group 1 when Ti ≥ 10 are still in Group

1 when Ti ≥ 9. Such statistics are reported in Table 8. For example, the number 0.857 in row

2 and column 2 in the table means that 85.7% of the members in Group 1 are still in Group 1

when we relax Ti ≥ 10 to Ti ≥ 9. Similarly, Table 9 reports the group membership shifts when

the minimum Ti decreases from 9 to 8. Both Tables 8 and 9 show that the majority of individuals

have stable membership when we decrease the minimum Ti.

Table 8: The classification membership shifts when minimum Ti changes from 10 to 9
Ratio Group 1, Ti ≥ 10 Group 2, Ti ≥ 10 Group 3, Ti ≥ 10

Group 1, Ti ≥ 9 0.857 0 0
Group 2, Ti ≥ 9 0.045 0.870 0
Group 3, Ti ≥ 9 0.098 0.130 1.000
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Table 9: The classification membership shifts when minimum Ti changes from 9 to 8
Ratio Group 1, Ti ≥ 9 Group 2, Ti ≥ 9 Group 3, Ti ≥ 9

Group 1, Ti ≥ 8 0.674 0 0
Group 2, Ti ≥ 8 0.109 1.000 0.067
Group 3, Ti ≥ 8 0.217 0 0.933

7 Conclusion

In this paper we propose a sequential binary segmentation algorithm (SBSA) to estimate a panel

structure model. This method is motivated from the intuition that the parameter heterogeneity

problem can be translated into the break detection problem, which is well studied and understood

in the time series literature. We also propose an information criterion to determine the number

of groups. We show that our method can recover the true group structure w.p.a.1 and our post-

classification estimators are oracally effi cient. Furthermore, we build the link between the panel

structure model and the stochastic block model (SBM) in the network literature. The linkage

enables us to use community detection techniques from the SBM to the panel structure model.

We apply SBSA on the eigenvectors corresponding to the few largest eigenvalues of N−1β̃β̃
>

and improve the finite sample performance significantly in some cases. Our method is easy to

implement and effi cient to compute. Simulations demonstrate superb finite sample performance

of our method. We also apply our method to study how financial assets and non capital income,

among others, affect individuals’portfolio choices by allowing unobserved parameter heterogeneity

and using the DNB household survey dataset. We detect three latent groups in the dataset.

There are several possible extensions. First, we can also include time effects in our model.

Following the asymptotic analysis of Chen (2016) we can also show that the preliminary estimates

of the individual parameters are still
√
T -consistent, which enables us to conduct the SBSA as in

the current paper to detect possible grouped patterns. Second, we do not allow cross sectional

dependence in this paper. Chen et al. (2014) study homogeneous nonlinear panel data models

with interactive fixed effects (IFEs) and Su and Ju (2017) consider a linear panel structure model

with IFEs. It is possible to combine the approaches in these papers and study heterogeneous

nonlinear panel data models with IFEs. Again, as long as we can establish the
√
T -consistency

of the preliminary estimates of the individual parameters of interest, we can apply the SBSA to

detect latent groups among them. Third, we do not allow nonstationary (I (1)) regressors in our

model. It is possible to extend our method to nonstationary panels with latent group structures.

Fourth, it is also possible to allow for structural changes in the model; see, e.g., Okui and Wang

(2017). We leave these topics for future research.
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APPENDIX

In this appendix we first state and prove some technical lemmas, and then prove the main results in the
paper.

A Some technical lemmas

In this section we state and prove several technical lemmas that are used in the proofs of the main results
in the paper.

Lemma A.1. Let ξ(wit; ς) be a Rdξ -valued function indexed by the parameter ς ∈ Υ, where Υ is a convex
compact set in Rdς and E[ξ(wit; ς)] = 0 for all i, t, and ς ∈ Υ. Assume that there exists a function M(wit)

such that ‖ξ(wit; ς)− ξ(wit; ς ′)‖ ≤M(wit)‖ς − ς ′‖ for all ς, ς ′ ∈ Υ and supς ‖ξ(wit; ς)‖ ≤M(wit). Assume
that E[M(wit)]

κ <∞ for some κ ≥ 6 such that N = O(Tκ/2−1). Let {ςi} be a nonstochastic sequence in Υ.
Then maxi ‖T−1/2

∑T
t=1 ξ(wit; ςi)‖ = OP ((lnT )3).

Proof: This is Lemma S1.2(i) in SSPb. �

Recall that γi = (β>i , µ
>
i )>, γ0

i = (β0>
i , µ0>

i )>, and γ̃i = (β̃>i , µ̃
>
i )>. Let Ψ̂i (γ, θ) = 1

T

∑T
t=1 ϕ (wit; γ, θ)

and Ψi (γ, θ) = 1
T

∑T
t=1 E [ϕ (wit; γ, θ)] . Then γi (θ) = (βi(θ)

>, µi(θ)
>)> = arg minγi Ψi (γi, θ) and γ̃i (θ) ≡

(β̃i(θ)
>, µ̃i(θ)

>)> ≡ arg minγi Ψ̂i (γi, θ) .

Lemma A.2. Suppose that Assumption A1 holds. Then for any fixed η > 0 and v > 0, we have
(i) P

(
maxi sup(γ,θ)

∣∣∣Ψ̂i (γ, θ)−Ψi (γ, θ)
∣∣∣ ≥ η) = o(N−1),

(ii) γ̃i (θ)− γi (θ) = OP (T−1/2) for each i,

(iii) P
(

maxi supθ ‖γ̃i (θ)− γi (θ)‖ ≥ ηT−1/2 (lnT )
3+v
)

= o(N−1),

(iv) P
(

maxi supθ

∣∣∣ 1
N

∑N
i=1 [Ψi (γ̃i (θ) , θ)−Ψi (γi (θ) , θ)]

∣∣∣ ≥ ηT−1/2 (lnT )
3+v
)

= o(N−1),

(v) 1
N

∑N
i=1

∥∥γ̃i(θ0)− γi(θ0)
∥∥2

= OP (T−1).

Proof: (i), (ii) and (iii) follow from Lemmas S1.3, S1.5(i) and S1.5(iv) in SSPb by the repeated use of
Lemma A.1 with little modifications. Noting that∣∣∣∣∣ 1

N

N∑
i=1

[Ψi (γ̃i (θ) , θ)−Ψi (γi (θ) , θ)]

∣∣∣∣∣ ≤ max
i,t

E [M (wit)]
1

N

N∑
i=1

‖γ̃i (θ)− γi (θ)‖

and maxi,t E [Mi (wit)] ≤ c
1/κ
M by Assumption A1(iv) and the Jensen inequality, (iv) follows from (iii). We

are left to show (v). Recall that Z (wit; γi, θ) = ∂ϕ (wit; γi, θ) /∂γi and Zγi (wit; γi, θ) = ∂Z (wit; γi, θ) /∂γ
>
i .

Noting that γ̃i (θ) = arg minγi Ψ̂i (γi, θ) , we have

0 =
1

T

T∑
t=1

Z (wit; γ̃i (θ) , θ)

=
1

T

T∑
t=1

Z (wit; γi (θ) , θ) +
1

T

T∑
t=1

Ĥi (θ)Zγi (wit; γ̆i (θ) , θ) [γ̃i (θ)− γi (θ)] ,

where Ĥi (θ) = 1
T

∑T
t=1 Z

γi(wit; γ̆i (θ) , θ) and γ̆i (θ) lies between γ̃i (θ) and γi (θ) elementwise. Then

γ̃i(θ
0)− γi(θ0) = −Ĥi(θ

0)−1 1

T

T∑
t=1

Z
(
wit; γi(θ

0), θ0
)
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provided that Ĥi(θ
0) is asymptotically nonsingular. Let Ĥi = Ĥi(θ

0), H̆i = 1
T

∑T
t=1 Z

γi(wit; γi(θ
0), θ0),

and Hi = E(H̆i). Under Assumption A1, we can readily show that

max
1≤i≤N

‖Ĥi −Hi‖ ≤ max
1≤i≤N

‖Ĥi − H̆i‖+ max
1≤i≤N

‖H̆i −Hi‖ = oP (1) ,

which implies that λmin(Ĥi) = λmin(Hi) + oP (1) uniformly in i. Consequently, we have

1

N

N∑
i=1

∥∥γ̃i(θ0)− γi(θ0)
∥∥2 ≤

[
min

1≤i≤N
λmin(Hi) + oP (1)

]−1
1

NT 2

N∑
i=1

∥∥∥∥∥
T∑
t=1

Z
(
wit; γi(θ

0), θ0
)∥∥∥∥∥

2

= OP (1)OP (T−1) = OP (T−1),

where we use the fact that E[Z
(
wit; γi(θ

0), θ0
)
] = 0 and that E‖

∑T
t=1 Z(wit; γi(θ

0), θ0)‖2 = O(T ) by a
simple application of the Davydov inequality under Assumption A1 (e.g., Hall and Heyde (1980, p. 278)). �

Lemma A.3. Suppose that Assumption A1 holds. Then P (‖θ̃ − θ0‖ > η) = o(N−1).

Proof: Noting that θ̃ = arg minθ QNT (θ), we have QNT (θ̃) ≤ QNT (θ0). By Assumption A1(iv), there
exists a constant ε > 0 such that infθ:‖θ−θ0‖>η

1
N

∑N
i=1

[
Ψi (γi (θ) , θ)−Ψi(γi(θ

0), θ0)
]
≥ ε. Define

A1 ≡
{

max
1≤i≤N

sup
(γi,θ)

|Ψ̂i (γi, θ)−Ψi (γi, θ) | ≤
1

6
ε

}
, and

A2 ≡
{

sup
θ∈Θ

∣∣∣∣∣ 1

N

N∑
i=1

[Ψi (γ̃i (θ) , θ)−Ψi (γi (θ) , θ)]

∣∣∣∣∣ ≤ 1

6
ε

}
.

By Lemma A.2(i) and (iii)—(iv) and Assumption A1(ii), P (A1 ∩A2) ≥ 1− P (Ac1)− P (Ac2) = 1− o(N−1).

Then conditional on A1 ∩A2, we have

inf
θ:‖θ−θ0‖>η

1

N

N∑
i=1

Ψ̂i (γ̃i (θ) , θ) ≥ inf
θ:‖θ−θ0‖>η

1

N

N∑
i=1

Ψi (γ̃i (θ) , θ)− 1

6
ε

≥ inf
θ:‖θ−θ0‖>η

1

N

N∑
i=1

Ψi (γi (θ) , θ)− 1

6
ε− 1

6
ε

≥ 1

N

N∑
i=1

Ψi

(
γi(θ

0), θ0
)

+ ε− 1

6
ε− 1

6
ε

≥ 1

N

N∑
i=1

Ψi

(
γ̃i(θ

0), θ0
)
− 1

6
ε+ ε− 1

6
ε− 1

6
ε

≥ 1

N

N∑
i=1

Ψ̂i

(
γ̃i(θ

0), θ0
)
− 1

6
ε− 1

6
ε+ ε− 1

6
ε− 1

6
ε

=
1

N

N∑
i=1

Ψ̂i

(
γ̃i(θ

0), θ0
)

+
1

3
ε.

On the other hand, 1
N

∑N
i=1 Ψ̂i(γ̃i(θ̃), θ̃) ≤ 1

N

∑N
i=1 Ψ̂i(γ̃i(θ

0), θ0). It follows that P (‖θ̃ − θ0‖ > η) =

o(N−1). �

To state and prove the next lemma, we follow Hahn and Newey (2004) and SSPb and introduce
some notation. Let Fi and F̂i denote the cumulative and empirical distribution functions of wit, re-
spectively. Let Fi (ε) ≡ Fi + ε

√
T (F̂i − Fi) for ε ∈

[
0, T−1/2

]
. For fixed θ and ε, let γi (θ, Fi (ε)) ≡
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arg minγi
∫
ψ (·; γi, θ) dFi (ε) , which is the solution to the estimating equation

0 =
1

N

N∑
i=1

∫
Zi (·; γi (θ, Fi (ε)) , θ) dFi (ε) .

Define γθi (ε) = ∂γi (θ, Fi (ε)) /∂θ>. Apparently, Fi (0) = Fi, Fi
(
T−1/2

)
= F̂i, γi (θ) = γi(θ, Fi (0)), γ̃i(θ) =

γi(θ, Fi(T
−1/2)), ∂γi(θ)

∂θ>
= ∂γi(θ,Fi(0))

∂θ>
= γθi (0) , and ∂γ̃i(θ)

∂θ>
= ∂γi(θ,Fi(T

−1/2))
∂θ>

= γθi (T−1/2). We study the
properties of γi(θ, Fi(ε)) and γθi (ε) in the next lemma.

Lemma A.4. Suppose that Assumption A1 holds. Then
(i) P

(
max1≤i≤N max0≤ε≤T−1/2 ‖γi (θ, Fi (ε))− γi (θ) ‖ ≥ η

)
= o(N−1) for any η > 0,

(ii) max1≤i≤N,‖θ−θ0‖=o(1) ‖γi (θ)− γi(θ0)‖ = o (1) ,

(iii) P
(
max1≤i≤N,‖θ−θ0‖=o(1) ‖γ̃i (θ)− γ̃i(θ0)‖ ≥ η

)
= o(N−1) for any η > 0,

(iv) P
(

max1≤i≤N max0≤ε≤T−1/2 ‖
∂γi(θ,Fi(ε))

∂θ>
− ∂γi(θ)

∂θ>
‖ ≥ η

)
= o(N−1) for any η > 0,

(v) max1≤i≤N,‖θ−θ0‖=o(1) ‖∂γi(θ)∂θ>
− ∂γi(θ

0)
∂θ>

‖ = o (1) ,

(vii) P
(

max1≤i≤N,‖θ−θ0‖=o(1) ‖∂γ̃i(θ)∂θ>
− ∂γ̃i(θ

0)
∂θ>

‖ ≥ η
)

= o(N−1) for any η > 0.

Proof: The proofs of (i)—(iii) parallel those of Lemma S1.8(i)—(iii) in SSPb and thus are omitted. Similarly,
the proofs of (iv)—(vi) parallel those of Lemma S1.9(i)—(iii) in SSPb. �

B Proof of the main results

Proof of Theorem 3.1: (i) Noting that θ̃ = arg minθ QNT (θ), by the second order Taylor expansion and
the envelope theorem, we have

0 ≥ QNT (θ̃)−QNT (θ0) =
1

N

N∑
i=1

[
Ψ̂i(γ̃i(θ̃), θ̃)− Ψ̂i(γ̃i(θ

0), θ0)
]

= δ̃>Ŝ +
1

2
δ̃>Ĥ(θ̆)δ̃ ≥ 1

2
λmin(Ĥ(θ̆))‖δ̃‖2 − ‖Ŝ‖ · ‖δ̃‖,

where δ̃ = θ̃ − θ0, θ̆ lies between θ̃ and θ0 elementwise, Ŝ = 1
NT

∑N
i=1

∑T
t=1 Z(wit; γ̃i(θ

0), θ0), and

Ĥ (θ) =
1

NT

N∑
i=1

T∑
t=1

[
Zθ(wit; γ̃i (θ) , θ) + Zγi(wit; γ̃i (θ) , θ)

∂γ̃i (θ)

∂θ>

]
.

It follows that ‖δ̃‖ ≤ 2[λmin(Ĥ(θ̆))]−1‖Ŝ‖. For Ŝ, we have

Ŝ =
1

NT

N∑
i=1

T∑
t=1

Z(wit; γi(θ
0), θ0) +

1

NT

N∑
i=1

T∑
t=1

[
Z(wit; γ̃i(θ

0), θ0)− Z(wit; γi(θ
0), θ0)

]
≡ S1 + S2, say.

Noting that E(S1) = 0 and Var(S1) = O((NT )−1), we have S1 = OP ((NT )−1/2). For S2, we have by the
Cauchy-Schwarz and Markov inequalities, Assumption A1(iv), and Lemma A.2(v)

‖S2‖ ≤
1

NT

N∑
i=1

T∑
t=1

‖Zγi(wit; γ̃i (θ) , θ)‖ · ‖γ̃i(θ0)− γi(θ0)‖

≤
[

1

NT

N∑
i=1

T∑
t=1

M(wit)
2

]1/2 [
1

N

N∑
i=1

∥∥γ̃i(θ0)− γi(θ0)
∥∥2

]1/2

= OP (1)OP (T−1/2) = OP (T−1/2).
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Then Ŝ = OP (T−1/2).

To study Ĥ(θ̆), recall H̆ (θ) = 1
NT

∑N
i=1

∑T
t=1[Zθ(wit; γi (θ) , θ)+Zγi(wit; γi (θ) , θ)∂γi(θ)

∂θ>
] and letH(θ) =

E[H̆ (θ)]. Then by the triangle inequality

‖Ĥ(θ̆)−H(θ0)‖ ≤ ‖Ĥ(θ̆)− Ĥ(θ0)‖+ ‖Ĥ(θ0)− H̆(θ0)‖+ ‖H̆(θ0)−H(θ0)‖.

Following the proof of Lemma S1.10 in SSPb, we can readily apply Assumption A1 and the results in
Lemmas A.3—A.4 to show that each term on the right hand of the last expression is oP (1). Consequently we
have λmin(Ĥ(θ̆)) = λmin(H(θ0))− oP (1) and ‖θ̃− θ0‖ = ‖δ̃‖ ≤ 2[λmin(H(θ0))− oP (1)]−1‖Ŝ‖ = OP (T−1/2).

(ii) Noting that γ̃i = γ̃i(θ̃) where γ̃i(θ) = arg minγi Ψ̂i(γi, θ), we have

0 ≥ Ψ̂i(γ̃i, θ̃)− Ψ̂i(γ
0
i , θ̃) =

1

T

T∑
t=1

[
ϕ(wit; γ̃i(θ̃), θ̃)− ϕ(wit; γ

0
i , θ̃)

]
= b̃>i Ŝi +

1

2
b̃>i Hi,θθ(γ̆i, θ̆)b̃i +OP (T−1/2),

where b̃i ≡ γ̃i − γ0
i , γ̆i lies between γ̃i and γ

0
i elementwise, θ̆ lies between θ̃ and θ

0 elementwise, θ̃ − θ0 =

OP (T−1/2) from (i) above, Ŝi = 1
T

∑T
t=1 Z(wit; γ

0
i , θ

0), and

Hi,θθ(γi, θ) =
1

T

T∑
t=1

[
Zθ(wit; γi, θ) + Zγi(wit; γi, θ)

∂γ̃i (θ)

∂θ>

]
.

It follows that ‖b̃i‖ ≤ 2[λmin(Hi,θθ(γ̆i, θ̆))]
−1‖Ŝi‖ + OP (T−1/2). As in the proof of Lemma A.2(v), we can

readily show that Ŝi = OP (T−1/2) and λmin(Hi,θθ(γ̆i, θ̆)) = λmin(Hi,θθ(θ
0))+oP (1) uniformly in i. It follows

that ∥∥γ̃i − γ0
i

∥∥ = ‖b̃i‖ = OP (T−1/2).

(iii) By Lemma A.1, max1≤i≤N ‖Ŝi‖ = OP (T−1/2 (lnT )
3
). This, in conjunction with the fact that

λmin(Hi,θθ(γ̆i, θ̆)) = λmin(Hi,θθ(θ
0))+oP (1) uniformly in i, implies that maxi ‖γ̃i−γ0

i ‖ = OP (T−1/2 (lnT )
3
).

(iv) 1
N

∑N
i=1

∥∥γ̃i − γ0
i

∥∥2 ≤ 4[min1≤i≤N λmin(Hi,θθ(γ̆i, θ̆))]
−2 1

N

∑N
i=1 ‖Ŝi‖2 = OP (T−1) by the uniform

consistency of Hi,θθ and the fact that 1
N

∑N
i=1 ‖Ŝi‖2 = OP (T−1). �

Proof of Theorem 3.2: Let ui = β̃i − β0
i . By Theorem 3.1, ui = OP (T−1/2) and max1≤i≤N ‖ui‖ =

OP (T−1/2(lnT )3). Without loss of generality (W.l.o.g.), we focus on the proof of the theorem when K0 = 3

and then remark on the other cases. By ranking the preliminary estimates {β̃i} according to their jth
elements, we have

β̃πj(1),j ≤ β̃πj(2),j ≤ · · · ≤ β̃πj(N),j for j = 1, . . . , p, (B.1)

where {πj(1), . . . , πj(N)} is a permutation of {1, 2, . . . , N} that is implicitly determined by the ranking
relation in (B.1).

Let α0
k denote the true group-specific parameter value for Group k and α

0
k,j the jth element of α

0
k for

j = 1, . . . , p and k = 1, . . . ,K0. For each regressor j, it falls into the three cases below:

Case 1: α0
1,j < α0

2,j < α0
3,j , α

0
2,j < α0

3,j < α0
1,j , or α

0
3,j < α0

1,j < α0
2,j and so on. W.l.o.g., we will consider

the subcase where α0
1,j < α0

2,j < α0
3,j as the other subcases can be done through the relabeling of the

group numbers.

Case 2: α0
1,j = α0

2,j < α0
3,j , α

0
1,j < α0

2,j = α0
3,j , α

0
2,j = α0

3,j < α0
1,j , α

0
2,j < α0

3,j = α0
1,j , α

0
3,j = α0

1,j < α0
2,j ,

or α0
3,j < α0

1,j = α0
2,j . W.l.o.g., we will analyze the subcase where α

0
1,j = α0

2,j < α0
3,j as similar

analysis applies to the subcase where α0
1,j < α0

2,j = α0
3,j and the other subcases through relabeling of

the group numbers. Note that when α0
1,j = α0

2,j , Groups 1 and 2 members are mixed in the ranking
relation in (B.1) according to the jth regressor.
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Case 3: α0
1,j = α0

2,j = α0
3,j . In this case, by using the ranking relation (B.1) we cannot separate any group

from the others based on the jth regressor.

Let Sl denote the collection of the regressor indices such that the conditions in Case l are satisfied for
l = 1, 2, 3. Apparently, S1 ∪ S2 ∪ S3 = {1, 2, . . . , p} and Sl ∩ Sl′ = ∅ for l 6= l′. Assumption A.2(i) ensures
that S1 ∪ S2 must be nonempty.

Let ̂1 = arg max1≤j≤p Ṽ1,N (j) where Ṽ1,N (j) = Ṽ 0
1,N (j)/σ̄2

1,N (j). Apparently, σ̄2
1,N (j) is bounded away

from zero in probability for each j. By Theorem 3.1, the sample variance of {β̃i,j , i = 1, . . . , N} converges
to a positive constant cj , say, for any j ∈ S1 ∪ S2, whereas that of {β̃i,j′ , i = 1, . . . , N} is O(T−1) for any
j′ ∈ S3. As a result, P (̂1 ∈ S1 ∪ S2)→ 1 and index ̂1 is chosen to estimate the break points in the whole
sample S1,N (j) ≡ {β̃πj(1),j , β̃πj(2),j , . . . , β̃πj(N),j} in the first step of the SBSA for some j ∈ S1 ∪ S2 such
that ̂1 = j. We will show no matter whether j is in S1 or S2, we can always identify one break point in
S1,N (j) w.p.a.1.

The second break point can be identified by choosing j ∈ S1 or j ∈ S1 ∪ S2 depending on whether the
break point {N1 +N2} or {N1} is identified in the first step. For example, if in the first step we rely on
some j ∈ S1 to identify the break point {N1} that distinguishes the first group from the rest two groups,
then in the second step, we may rely on an element j from either S1 or S2 to identify the second break
point {N1 +N2} that separates the second group from the third group. On the other hand, if the break
point {N1 +N2} is identified in the first step to separate the third group from the rest two groups, then in
the second step, we can only rely on some j ∈ S1 to identify the break point {N1} to separate the first and
second groups. In this second case, we will show that P (m̂1 = N1 +N2)→ 1 as (N,T )→∞, which implies
that w.p.a.1 ̂2 ≡ arg max1≤j≤p[Ṽ1,m̂1

(j) + Ṽm̂1+1,N (j)] = arg max1≤j≤p[Ṽ1,N1+N2
(j) + ṼN1+N2+1,N (j)].

Since the segment SN1+N2+1,N (j) does not contain any break point, ṼN1+N2+1,N (j) = OP
(
T−1

)
for any

j ∈ {1, 2, . . . , p} by Theorem 3.1. But Ṽ1,N1+N2 (j) is bounded away from zero in probability for any j ∈ S1

and OP
(
T−1

)
for any j ∈ S2 ∪ S3. As a result, P (̂2 ∈ S1) → 1 as (N,T ) → ∞. Our choice of selecting

̂K−1 in the SBSA ensures that such an argument continues to hold when we have K0 > 3 groups as long
as the K0 groups are separable from each other as required explicitly in Assumption A2(i).

Below, we prove that when either Case 1 or Case 2 applies (i.e., ̂1 ∈ S1 or ̂1 ∈ S2), we can successfully
identify one break point in the first step of the SBSA. After one break point is identified in the first step,
we can also identify the second break point in the second step no matter whether ̂2 ∈ S1 or ̂2 ∈ S2.

Case 1: ̂1 ∈ S1. Based on the ranking relation in (B.1) and the fact that max1≤i≤N ‖ui‖ = oP (1), we
have the following homogeneity property

β0
πj(i)

=


α0

1 if 1 ≤ i ≤ N1,

α0
2 if N1 + 1 ≤ i ≤ N1 +N2,

α0
3 if N1 +N2 + 1 ≤ i ≤ N,

for any j ∈ S1.

Fix j ∈ S1 and m̂1 (j) = arg min1≤m<N S1,N (j,m). We consider three subcases:

Case 1a: τ1
τ1+τ2

(α0
1,j−α0

2,j)
2 > τ3

τ2+τ3
(α0

2,j−α0
3,j)

2, ensuring P (S1,N (j,N1 +N2)− S1,N (j,N1) > 0)→ 1.5

Case 1b: τ1
τ1+τ2

(α0
1,j −α0

2,j)
2 > τ3

τ2+τ3
(α0

2,j −α0
3,j)

2, ensuring P (S1,N (j,N1 +N2)− S1,N (j,N1) < 0)→ 1.

Case 1c: τ1
τ1+τ2

(α0
1,j − α0

2,j)
2 = τ3

τ2+τ3
(α0

2,j − α0
3,j)

2.

W.l.o.g., we focus on Case 1a and will show that P (m̂1(j) = N1) → 1 as (N,T ) → ∞ by proving that
(i) P (m̂1(j) < N1) → 0; (ii) P (N1 < m̂1(j) ≤ N1 + N2) → 0; (iii) P (N1 + N2 < m̂1(j) ≤ N) → 0 as

5The condition can also be written as τ1
τ1+τ2

(α01,j − α02,j)2 > 1−τ1−τ2
1−τ1 (α02,j − α03,j)2, similar to equation (6) in Bai

(1997).
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(N,T ) → ∞. Then by mere symmetry, we can show that P (m̂1(j) = N1 + N2) → 1 as (N,T ) → ∞ in
Case 1b, and by arguments similar to those used in the proof of Lemma 7 in Bai (1997), we can show that
P (m̂1 (j) = N1) = P (m̂1 (j) = N1 + N2) = 1

2 . In each subcase, we can identify one break point {N1} or
{N1 +N2} in the first step of the SBSA.

We first show (i). When m < N1, the average of β̃i,j over the two binary segments are

β̄1,m(j) = α0
1,j + ū1,m(j) and β̄m+1,N (j) =

N1 −m
N −m α0

1,j +
N2

N −mα0
2,j +

N3

N −mα0
3,j + ūm+1,N (j),

where ū1,m(j) = m−1
∑m
i=1 uπj(i),j and ūm+1,N (j) = (N − m)−1

∑N
i=m+1 uπj(i),j . Noting that β̃πj(i),j −

β̄1,m(j) = uπj(i),j − ū1,m(j) when m < N1, we have

m∑
i=1

|β̃πj(i),j − β̄1,m(j)|2 =

m∑
i=1

|uπj(i),j − ū1,m(j)|2 =

m∑
i=1

|uπj(i),j |2 −m|ū1,m(j)|2.

Similarly, noting that

β̃πj(i),j − β̄m+1,N (j) =


a1m + uπj(i),j − ūm+1,N (j) if m+ 1 ≤ i ≤ N1,

a2m + uπj(i),j − ūm+1,N (j) if N1 + 1 ≤ i ≤ N1 +N2,

a3m + uπj(i),j − ūm+1,N (j) if N1 +N2 + 1 ≤ i ≤ N,

where a1m = (N − m)−1[N2(α0
1,j − α0

2,j) + N3(α0
1,j − α0

3,j)], a2m = (N − m)−1[(N1 − m)(α0
2,j − α0

1,j) +

N3(α0
2,j−α0

3,j)], a3m = (N−m)−1[(N1−m)(α0
3,j−α0

1,j)+N2(α0
3,j−α0

2,j)], and we suppress the dependence
of a1m, a2m and a3m on j, we have

N∑
i=m+1

|β̃πj(i),j − β̄m+1,N (j)|2 = (N1 −m)|a1m|2 +N2|a2m|2 +N3|a3m|2

+ 2a1m

N1∑
i=m+1

[uπj(i),j − ūm+1,N (j)] + 2a2m

N1+N2∑
i=N1+1

[uπj(i),j − ūm+1,N (j)]

+ 2a3m

N∑
i=N1+N2+1

[uπj(i),j − ūm+1,N (j)] +

N∑
i=m+1

|uπj(i),j − ūm+1,N (j)|2.

It follows that S1,N (j,m) = 1
N {
∑m
i=1 |β̃πj(i),j − β̄1,m (j) |2 +

∑N
i=m+1 |β̃πj(i),j − β̄m+1,N (j) |2} = M1j(m) +

r1j(m), where M1j(m) = N1−m
N |a1m|2 + N2

N |a2m|2 + N3

N |a3m|2, and

r1j(m) =
1

N

[
m∑
i=1

|uπj(i),j − ū1,m(j)|2 +

N∑
i=m+1

|uπj(i),j − ūm+1,N (j)|2
]

+
2a1m

N

N1∑
i=m+1

[uπj(i),j − ūm+1,N (j)] +
2a2m

N

N1+N2∑
i=N1+1

[uπj(i),j − ūm+1,N (j)]

+
2a3m

N

N∑
i=N1+N2+1

[uπj(i),j − ūm+1,N (j)].

Noting that a1m, a2m, and a3m are O(1) uniformly in m ≤ N1, we can readily apply Theorem 3.1(iii) and
show that r1j(m) = OP (T−1/2(lnT )3) uniformly in m < N1. Now, observe that S1,N (j,m)− S1,N (j,N1) =
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[M1j(m)−M1j(N1)] + [r1j(m)− r1j(N1)]. By straightforward but tedious calculations, we can show that

∆M1j(m) ≡M1j(m)−M1j(N1)

=
N1 −m

N(1−m/N)(1−N1/N)

∣∣∣∣(1− N1

N

)
(α0

1,j − α0
2,j) +

(
1− N1 +N2

N

)
(α0

2,j − α0
3,j)

∣∣∣∣2
� µ1mN for all m < N1,

where µ1mN = (N1 − m)/N, and aN � bN denotes that both aN/bN and bN/aN converge to a positive
number as N → ∞. Note that limN→∞ µ1mN ∈ [0, τ1] for each m < N1. Specifically, µ1mN → τ1 if
m = o(N1), → 0 if N1 − m = o(N1), and converges to a number on the interval (0, τ1) otherwise under
Assumption A.2(ii). Note that

r1j(m)− r1j(N1) =
1

N

[
m∑
i=1

|uπj(i),j − ū1,m(j)|2 −
N1∑
i=1

|uπj(i),j − ū1,N1(j)|2
]

+
1

N

[
N∑

i=m+1

|uπj(i),j − ūm+1,N (j)|2 −
N∑

i=N1+1

|uπj(i),j − ūN1+1,N (j)|2
]

+
2a1m

N

N1∑
i=m+1

[uπj(i),j − ūm+1,N (j)]

+
2

N

{
a2m

N1+N2∑
i=N1+1

[uπj(i),j − ūm+1,N (j)]− a2N1

N1+N2∑
i=N1+1

[uπj(i),j − ūN1+1,N (j)]

}

+
2

N

{
a3m

N∑
i=N1+N2+1

[uπj(i),j − ūm+1,N (j)]− a3N1

N∑
i=N1+N2+1

[uπj(i),j − ūN1+1,N (j)]

}
≡ I1,m + I2,m + 2I3,m + 2I4,m + 2I5,m, say.

By Theorem 3.1, the fact that µ1mN ≥ 1/N for anym < N1 and that ū1,N1
(j)−ū1,m(j) = 1

N1

∑N1

i=1 uπj(i),j−
1
m

∑m
i=1 uπj(i),j = −N1−m

m [ 1
N1

∑N1

i=1 uπj(i),j − 1
N1−m

∑N1

i=m+1 uπj(i),j ], we can readily show that uniformly in
m < N1

I1,m = − 1

N

N1∑
i=m+1

|uπj(i),j |2 +
1

N

[
N1|ū1,N1

(j)|2 −m|ū1,m(j)|2
]

= − 1

N

N1∑
i=m+1

|uπj(i),j |2 +
N1 −m
N

|ū1,N1
(j)|2 +

m

N
[ū1,N1

(j)− ū1,m(j)] · [ū1,N1
(j) + ū1,m(j)]

=
N1 −m
N

{
−1

N1 −m

N1∑
i=m+1

|uπj(i),j |2 + |ū1,N1
(j)|2

−
(

1

N1

N1∑
i=1

uπj(i),j −
1

N1 −m

N1∑
i=m+1

uπj(i),j

)
[ū1,N1

(j) + ū1,m(j)]

}
= µ1mN ·OP (T−1(lnT )6) = oP (µmN ).

Similarly, noting that ūN1+1,N (j)− ūm+1,N (j) = 1
N−N1

∑N
i=N1+1 uπj(i),j − 1

N−m
∑N
i=m+1 uπj(i),j = N1−m

N−N1
×
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[ 1
N−m

∑N
i=m+1 uπj(i),j − 1

N1−m
∑N1

i=m+1 uπj(i),j ], we have

I2,m =
1

N

N1∑
i=m+1

|uπj(i),j |2 +
1

N

[
(N −N1) |ūN1+1,N (j)|2 − (N −m)|ūm+1,N (j)|2

]
=

1

N

N1∑
i=m+1

|uπj(i),j |2 −
N1 −m
N

|ūm+1,N (j)|2

+
N −N1

N
[ūN1+1,N (j)− ūm+1,N (j)] · [ūN1+1,N (j) + ūm+1,N (j)]

=
N1 −m
N

(
1

N1 −m

N1∑
i=m+1

|uπj(i),j |2 − |ūm+1,N (j)|2
)

+
N1 −m
N

(
1

N −m

N∑
i=m+1

uπj(i),j −
1

N1 −m

N1∑
i=m+1

uπj(i),j

)
[ūN1+1,N (j) + ūm+1,N (j)]

= µ1mN ·OP (T−1(lnT )6) = oP (µ1mN ), and

I3,m =
N1 −m
N

× a1m

N1 −m

N1∑
i=m+1

[uπj(i),j − ūm+1,N (j)]

= µ1mN ·OP (T−1/2(lnT )3) = oP (µ1mN ).

For I4,m, noting that

|a2m − a2N1 | =
∣∣∣∣N1 −m
N −m (α0

2,j − α0
1,j) +

(
N3

N −m −
N3

N −N1

)
(α0

2,j − α0
3,j)

∣∣∣∣
=
N1 −m
N

· N

N −m

∣∣∣∣(α0
2,j − α0

1,j) +
N3

N −N1
(α0

3,j − α0
2,j)

∣∣∣∣ = O(µ1mN ) for all m < N1,

we have

I4,m =
a2m

N

N1+N2∑
i=N1+1

[uπj(i),j − ūm+1,N (j)]− a2N1

N

N1+N2∑
i=N1+1

[uπj(i),j − ūN1+1,N (j)]

= (a2m − a2N1
)

1

N

N1+N2∑
i=N1+1

[uπj(i),j − ūm+1,N (j)]− N2a2N1

N
[ūm+1,N (j)− ūN1+1,N (j)]

= (a2m − a2N1
)

1

N

N1+N2∑
i=N1+1

[uπj(i),j − ūm+1,N (j)]

+ µ1mN
N2a2N1

N −N1

[
1

N −m

N∑
i=m+1

uπj(i),i −
1

N1 −m

N1∑
i=m+1

uπj(i),i

]
= µ1mN ·OP (N−1/2(lnT )3) + µ1mN ·OP (N−1/2(lnT )3) = oP (µ1mN ).

Similarly, noting that

|a3m − a3N1
| =

∣∣∣∣N1 −m
N −m (α0

3,j − α0
1,j) +

(
N2

N −m −
N2

N −N1

)
(α0

3,j − α0
2,j)

∣∣∣∣
=
N1 −m
N

N

N −m

∣∣∣∣(α0
3,j − α0

1,j)−
N2

N −N1
(α0

3,j − α0
2,j)

∣∣∣∣ = O(µ1mN ) for all m < N1,
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we can show that

I5,m =
a3m

N

N∑
i=N1+N2+1

[uπj(i),j − ūm+1,N (j)]− a3N1

N

N∑
i=N1+N2+1

[uπj(i),j − ūN1+1,N (j)]

= (a3m − a3N1
)

1

N

N∑
i=N1+N2+1

[uπj(i),j − ūm+1,N (j)] +
N3a3N1

N
[ūN1+1,N (j)− ūm+1,N (j)]

= µ1mN ·OP (T−1/2(lnT )3) + µ1mN
N3a3N1

N −N1

[
1

N −m

N∑
i=m+1

uπj(i),j −
1

N1 −m

N1∑
i=m+1

uπj(i),j

]
= µ1mN ·OP (T−1/2(lnT )3) + µ1mN ·OP (T−1/2(lnT )3) = oP (µ1mN ).

Thus r1j(m)− r1j(N1) = oP (µ1mN ) uniformly in m < N1 and

P (m̂1 (j) < N1) ≤ P (∃m < N1, S1,N (j,m)− S1,N (j,N1) < 0)

= P (∃m < N1,∆M1(m) + [r1(m)− r1(N1)] < 0)→ 0

as (N,T )→∞. Then (i) follows.

We now study case (ii). Noting that when N1 < m ≤ N1 +N2, β̄1,m(j) = N1

m α0
1,j + m−N1

m α0
2,j + ū1,m(j),

and β̄m+1,N (j) = N1+N2−m
N−m α0

2,j + N3

N−mα
0
3,j + ūm+1,N (j). It follows that for i = 1, . . . ,m,

β̃πj(i),j − β̄1,m(j) =

{
b1m + uπj(i),j − ū1,m(j) if πj(i) ∈ G0

1,

b2m + uπj(i),j − ūm+1,N (j) if πj(i) ∈ G0
2,

where b1m = m−N1

m (α0
1,j − α0

2,j) and b2m = N1

m (α0
2,j − α0

1,j). So for the left segment, we have

m∑
i=1

|β̃πj(i),j − β̄1,m(j)|2 =

N1∑
i=1

|β̃πj(i),j − β̄1,m(j)|2 +

m∑
i=N1+1

|β̃πj(i),j − β̄1,m(j)|2

= N1 |b1m|2 + (m−N1) |b2m|2 + 2b1m

N1∑
i=1

[uπj(i),j − ū1,m(j)]

+ 2b2m

m∑
i=N1+1

[uπj(i),j − ū1,m(j)] +

m∑
i=1

|uπj(i),j − ū1,m(j)|2.

Similarly for i = m+ 1, . . . , N, we have

β̃πj(i),j − β̄m+1,N (j) =

{
b3m + uπj(i),j − ūm+1,N (j) if πj(i) ∈ G0

2,

b4m + uπj(i),j − ūm+1,N (j) if πj(i) ∈ G0
3,

where b3m = N3

N−m (α0
2,j − α0

3,j) and b4m = N1+N2−m
N−m (α0

3,j − α0
2,j). Note that b1m, b2m, b3m, and b4m are

each O(1) uniformly in m ∈ {N1 + 1, . . . , N1 +N2}. Then for the right segment, we get

N∑
i=m+1

|β̃πj(i),j − β̄m+1,N (j)|2 = (N1 +N2 −m)|b3m|2 +N3|b4m|2 + 2b3m

N1+N2∑
i=m+1

[uπj(i),j − ūm+1,N (j)]

+ 2b4m

N∑
i=N1+N2+1

[uπj(i),j − ūm+1,N (j)] +

N∑
i=m+1

[uπj(i),j − ūm+1,N (j)]2.

43



Combining the above expressions yields S1,N (j,m) = M2j(m) + r2j(m), where M2j(m) = N1

N |b1m|
2

+
m−N1

N |b2m|2 +N1+N2−m
N |b3m|2 + N3

N |b4m|
2, and

r2j(m) =
1

N

m∑
i=1

|uπj(i),j − ū1,m(j)|2 +
1

N

N∑
i=m+1

|uπj(i),j − ūm+1,N (j)|2

+
2b1m
N

N1∑
i=1

[uπj(i),j − ū1,m(j)] +
2b2m
N

m∑
i=N1+1

[uπj(i),j − ū1,m(j)]

+
2b3m
N

N1+N2∑
i=m+1

[uπj(i),j − ūm+1,N (j)] +
2b4m
N

N∑
i=N1+N2+1

[uπj(i),j − ūm+1,N (j)].

Now for m ∈ {N1 + 1, . . . , N1 +N2}, we have S1,N (j,m)−S1,N (j,N1 +N2) = [M2j(m)−M2j(N1 +N2)] +

[r2j(m)− r2j(N1 +N2)] , where a rough uniform bound for r2j(m)− r2j(N1) is OP (T−1/2(lnT )3) by The-
orem 3.1. Note that b1N1 = 0, we have

∆M2j(m) ≡M2j(m)−M2j(N1)

=
N1

N
|b1m|2 +

m−N1

N
|b2m|2 +

N1 +N2 −m
N

|b3m|2 +
N3

N
|b4m|2 −

N2

N
|b3N1 |2 −

N3

N
|b4N1 |2

=
m−N1

N

[
N1

m
(α0

1,j − α0
2,j)

2 − N2
3

(N −N1) (N −m)
(α0

2,j − α0
3,j)

2

]
≥ m−N1

N

N1 +N2

m

[
N1

N1 +N2
(α0

1,j − α0
2,j)

2 − N3

N −N1
(α0

2,j − α0
3,j)

2

]
= µ2mN

N1 +N2

m

[
τ1

τ1 + τ2
(α0

1,j − α0
2,j)

2 − τ3
τ2 + τ3

(α0
2,j − α0

3,j)
2

]
· [1 + o (1)]

� µ2mN uniformly in m ∈ {N1 + 1, . . . , N1 +N2},

where the inequality follows from the fact that N3

N−m ≤ 1 ≤ N1+N2

m for all m ∈ {N1 + 1, . . . , N1 + N2},
µ2mN = m−N1

N , and the last line follows from the fact that τ1
τ1+τ2

(α0
1,j − α0

2,j)
2 − τ3

τ2+τ3
(α0

2,j − α0
3,j)

2 > 0

in Case 1a. Following the analysis of r1j(m) − r1j(N1), we can show that r2j(m) − r2j(N1) = oP (µ2mN )

uniformly in m ∈ {N1 + 1, . . . , N1 +N2}. It follows that as (N,T )→∞, for any j ∈ S2 we must have

P (N1 < m̂1 ≤ N1 +N2) = P (∃m ∈ {N1 + 1, . . . , N1 +N2} s.t. S1,N (j,m)− S1,N (j,N1) < 0)→ 0.

Analogously, we can show (iii). It follows that P (m̂1(j) = N1)→ 1 as (N,T )→∞ in Case 1a. In other
words, by using the ranking relation (B.1) based on regressor ̂1 = j ∈ S1, we could find the right break
point w.p.a.1. in the first round of the SBSA. For the ease of presentation, we continue to use j ∈ S1 to
represent ̂1. Given the first identified break point being {N1} in Case 1a, we have

S1,N (j,N1) =
1

N

 ∑
1≤i≤N1

∣∣∣β̃πj(i),j − β̄1,N1(j)
∣∣∣2 +

∑
N1+1≤i≤N

∣∣∣β̃πj(i),j − β̄N1+1,N (j)
∣∣∣2


=
1

N

[
N2

∣∣∣∣α0
2,j −

N2

N2 +N3
α0

2,j −
N3

N2 +N3
α0

3,j

∣∣∣∣2 +N3

∣∣∣∣α0
3,j −

N2

N2 +N3
α0

2,j −
N3

N2 +N3
α0

3,j

∣∣∣∣2
]

+ oP (1)

=
1

N

N2N3

N2 +N3

∣∣α0
2,j − α0

3,j

∣∣2 + oP (1)
P→ τ2τ3
τ2 + τ3

c023,j ≡ ∆1,j ,

where c023,j = |α0
2,j − α0

3,j |2. Now we have two segmentations with one containing elements in Group 1 and
the other containing elements in Groups 2 and 3 w.p.a.1. That is,

P
(
Ĝ1(2) = {πj(1), . . . , πj(N1)}, Ĝ2(2) = {πj(N1 + 1), . . . , πj(N)}

)
→ 1.
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In the second step, we repeat the iterative algorithm on Ĝ1(2) and Ĝ2(2). When ̂1 ∈ S1 and {N1} is iden-
tified in the first step w.p.a.1, ̂2 can belong to either S1 or S2.We show that no matter which value ̂2 takes
in S1 ∪S2, we can identify the second break point {N1 +N2} w.p.a.1. For the binary segments over Ĝ2(2),
following similar arguments leading to P (m̂1(j) = N1) → 1 as (N,T ) → ∞, we can show that P (m̂2(j) =

N2)→ 1 for any j ∈ S1 ∪ S2 (and thus also for ̂2) where m̂2 (j) = arg min1≤m<N2+N3
SN1+1,N (j,m). Then

Ĝ2(2) is divided into two sub-segments Ĝ21(2) and Ĝ22(2) such that

P
(
Ĝ21(2) = {πj(N1 + 1), . . . , πj(N1 +N2)}, Ĝ22(2) = {πj(N1 +N2 + 1), . . . , πj(N)}

)
→ 1.

Furthermore, we can show that by using arguments used in the proof of Theorem 3.1

1

N

 ∑
i∈Ĝ1(2)

∣∣∣β̃i,j − β̄Ĝ1(2) (j)
∣∣∣2 +

∑
i∈Ĝ21(2)

∣∣∣β̃i,j − β̄Ĝ21(2) (j)
∣∣∣2 +

∑
i∈Ĝ22(2)

∣∣∣β̃i,j − β̄Ĝ22(2) (j)
∣∣∣2
 = OP (T−1),

where β̄Ĝ1(2) (j) = 1
|Ĝ1(2)|

∑
i∈Ĝ1(2) β̃i,j , and β̄Ĝ21(2) (j) and β̄Ĝ22(2) (j) are similarly defined. In contrast, for

any binary segments {Ĝ11 (2) , Ĝ12 (2)} over Ĝ1 (2) , we can show that

1

N

 ∑
i∈Ĝ11(2)

∣∣∣β̃i,j − β̄Ĝ11(2) (j)
∣∣∣2 +

∑
i∈Ĝ12(2)

∣∣∣β̃i,j − β̄Ĝ12(2) (j)
∣∣∣2 +

∑
i∈Ĝ2(2)

∣∣∣β̃i,j − β̄Ĝ2(2) (j)
∣∣∣2
 = ∆1,j +oP (1),

because

∆1,j = lim
N→∞

1

N

N∑
i=N1+1

∣∣∣∣∣β0
πj(i),j

− 1

N −N1

N∑
i′=N1+1

β0
πj(i′),j

∣∣∣∣∣
2

= lim
N→∞

1

N

(
N2

∣∣∣∣α0
2,j −

N2

N2 +N3
α0

2,j −
N3

N2 +N3
α0

3,j

∣∣∣∣2 +N3

∣∣∣∣α0
3,j −

N2

N2 +N3
α0

2,j −
N3

N2 +N3
α0

3,j

∣∣∣∣2
)

= lim
N→∞

1

N

N2N3

N2 +N3

∣∣α0
2,j − α0

3,j

∣∣2 =
τ2τ3
τ2 + τ3

c023,j > 0.

Then based on our SBSA, N1 +N2 will be identified as the second break point.
In sum, if ̂1 ∈ S1 and Case 1a is in effect, we have shown {N1} is identified in the first step, and no

matter what value ̂2 takes in S1∪S2, we can identify the second break point {N1 +N2} in the second step.
This results 3 groups with Ĝ (3) = {Ĝ1 (2) , Ĝ21 (2) , Ĝ22 (2)} such that P (Ĝ (3) = G0)→ 1 as (N,T )→∞.

Analogously, when ̂1 ∈ S1 and Case 1b is in effect, we can show that {N1 +N2} is identified in the first
step and as mentioned above, in the second step our algorithm ensures that ̂2 ∈ S1 and {N1} is identified
w.p.a.1. When ̂1 ∈ S1 and Case 1c is in effect, we can follow Bai (1997) and show that each of {N1} and
{N1 +N2} can be identified in the first step with probability 1

2 , and the other point will be identified in the
second step w.p.a.1.

Since K0 = 3 is known, the algorithm stops here and the proof in Case 1 is completed.

Case 2: ̂1 ∈ S2. W.l.o.g., we consider α0
1,j = α0

2,j < α0
3,j for ̂1 = j ∈ S2. In this case, it is impossible

to distinguish elements from Group 1 from those from Group 2 according to the regressor-j-based ranking
relation in (B.1). Now based on (B.1) and the fact that max1≤i≤N ‖ui‖ = OP (T−1/2(lnT )3), we have the
following homogeneity property

β0
πj(i),j

=

{
α0

1,j = α0
2,j 1 ≤ i ≤ N1 +N2,

α0
3,j N1 +N2 + 1 ≤ i ≤ N.
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Recall that m̂1 = arg min1≤m<N S1,N (j,m) where we suppress the dependence of m̂1 on j. As in Case 1,
we want to show as (N,T ) → ∞, P (m̂1 = N1 + N2) → 1 for any j ∈ S2 by showing that (i1) P (m̂1 <

N1 +N2)→ 0 and (i2) P (m̂1 > N1 +N2)→ 0.
First, we consider the case where m < N1 +N2. Note that β̄1,m(j) = α0

1,j + ū1,m(j) and β̄m+1,N (j) =
N1+N2−m
N−m α0

1,j + N3

N−mα
0
3,j + ūm+1,N (j). It follows that for i = 1, . . . ,m, β̃πj(i),j − β̄1,m(j) = uπj(i),j −

ūm+1,N (j) , and
m∑
i=1

|β̃πj(i),j − β̄1,m(j)|2 =

m∑
i=1

|uπj(i),j − ū1,m(j)|2.

Similarly for i = m+ 1, . . . , N, we have

β̃πj(i),j − β̄m+1,N (j) =

{
c1m + uπj(i),j − ūm+1,N (j) if πj(i) ∈ G0

1 ∪G0
2,

c2m + uπj(i),j − ūm+1,N (j) if πj(i) ∈ G0
3,

where c1m = N3

N−m (α0
1,j − α0

3,j) and c2m = N1+N2−m
N−m (α0

3,j − α0
1,j). Note that c1m and c2m are each O (1)

uniformly in m < N1 +N2. Then

N∑
i=m+1

|β̃πj(i),j − β̄m+1,N (j)|2 = (N1 +N2 −m)|c1m|2 +N3|c2m|2 + 2c1m

N1+N2∑
i=m+1

[uπj(i),j − ūm+1,N (j)]

+ 2c2m

N∑
i=N1+N2+1

[uπj(i),j − ūm+1,N (j)] +

N∑
i=m+1

[uπj(i),j − ūm+1,N (j)]2.

Combining the expressions above yields S1,N (j,m) = M3j(m) + r3j(m), where M3j(m) = N1+N2−m
N |c1m|2+

N3

N |c2m|
2, and

r3j(m) =
1

N

m∑
i=1

|uπj(i),j − ū1,m(j)|2 +
1

N

N∑
i=m+1

|uπj(i),j − ūm+1,N (j)|2

+
2c1m
N

N1+N2∑
i=m+1

[uπj(i),j − ūm+1,N (j)] +
2c2m
N

N∑
i=N1+N2+1

[uπj(i),j − ūm+1,N (j)].

Now for m < N1 + N2, we have S1,N (j,m) − S1,N (j,N1 + N2) = [M3j(m)−M3j(N1 +N2)] + [r3j(m) −
r3j(N1 +N2)]. Noting that c2,N1+N2 = 0, we have

∆M3j(m) ≡M3j(m)−M3j(N1 +N2) =
N1 +N2 −m

N
|c1m|2 +

N3

N
|c2m|2

=

[
N1 +N2 −m

N

(
N3

N −m

)2

+
N3

N

(
N1 +N2 −m

N −m

)2
]

(α0
1,j − α0

3,j)
2

=
N3 (N1 +N2 −m)

N (N −m)
(α0

1,j − α0
3,j)

2 � µ3mN ,

where µ3mN = (N1 +N2 −m)/N . Following the analysis of r1j(m)− r1j(N1), we can show that r3j(m)−
r3j(N1 + N2) = oP (µ3mN ) uniformly in m < N1 + N2. It follows that as (N,T ) → ∞, for any j ∈ S2 we
must have

P (m̂1 < N1 +N2) = P (∃m < N1 +N2 s.t. S1,N (j,m)− S1,N (j,N1 +N2) < 0)→ 0. (B.2)

By mere symmetry, we can prove that as (N,T )→∞,

P (m̂1 > N1 +N2) = P (∃m > N1 +N2 s.t. S1,N (j,m)− S1,N (j,N1 +N2) < 0)→ 0. (B.3)
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Combining (B.2) and (B.3), we have as (N,T )→∞, P (m̂1 (j) = N1 +N2)→ 1 and

P
(
Ĝ1 (2) = {πj(1), . . . , πj(N1 +N2)} and Ĝ2 (2) = {πj(N1 +N2 + 1), . . . , πj(N)}

)
→ 1.

Recall here regressor j is a representative element in set S2.

The above proof applies when ̂1 ∈ S2. In the second step, our algorithm ensures ̂2 ∈ S1 because the
segment S1,N1+N2

(j) contains no break point for any j ∈ S2. Following the analysis in Case 1a, we can
readily show that for any j ∈ S1, we can identify the second break point {N1} in the second step through
our SBSA. As a result, we have P (m̂1 = N1 +N2, m̂2 = N1)→ 1 and P (Ĝ (3) = G0)→ 1 as (N,T )→∞.
That is, we can identify all three groups w.p.a.1. This completes the proof of the theorem for the case
K0 = 3. When K0 > 3, we need to deal with extra terms. But by similar arguments as that of Bai (1997)
and KLZ, the proof strategy is essentially the same and the two break points case doesn’t lose generality. �

Proof of Theorem 3.3: By Theorem 3.2 and Assumption A3,

2QNT (β̂(K0), θ̂(K0)) = 2QNT (β̂(K0), θ̂(K0))[1{Ĝ
(
K0
)

= G0}+ 1{Ĝ
(
K0
)
6= G0}]

= 2QNT (β̂(K0), θ̂(K0))1{Ĝ
(
K0
)

= G0}+ oP (1)

→ σ2
0 as (N,T )→∞.

Then IC1(K0) = 2QNT (β̂(K0), θ̂(K0)) + pK0 · ρNT → σ2
0 by Assumption A3(iii).

When 1 ≤ K < K0, by Assumption A3(ii) we have

IC1(K) = 2QNT (β̂(K), θ̂(K)) + pK · ρNT ≥ 2 min
1≤K<K0

min
G(K)

σ̂2
G(K) + pK · ρNT

→ σ̄2 > σ2
0 as (N,T )→∞.

So we have
P (K̂ < K0) = P (∃1 ≤ K < K0, IC1(K) < IC1(K0))→ 0 as (N,T )→∞. (B.4)

Next, we consider the case where K0 < K ≤ Kmax. By Theorem 3.2, the true group structure will
be identified w.p.a.1 when K0 is known. When K > K0, so we get a further unnecessary refinement
of the true group structure. Following the analysis of Lemma S1.14 in SSPb, we can readily show that
T maxK0<K≤Kmax(σ̂2

Ĝ(K)
− σ̂2
Ĝ(K0)

) = OP (1). It follows that by Assumption A3(iii)

P (K̂ > K0) = P (∃K0 < K ≤ Kmax, IC1(K) < IC1(K0))

= P (∃K0 < K ≤ Kmax, T (σ̂2
Ĝ(K)

− σ̂2
Ĝ(K0)

) > (K −K0)TρNT )

→ 0 as (N,T )→∞. (B.5)

Combining (B.4) and (B.5), we have P (K̂ = K0)→ 1 as (N,T )→∞. �

Proof of Theorem 3.4: LetDNT = diag(
√
N1TIp, . . . ,

√
NK0TIp,

√
NTIq), ENT = {Ĝ(K̂) = G0}, ΞNT =

DNT ((α̂1 − α0
1)>, . . . , (α̂K0 − α0

K0)>, (θ̂ − θ0)>)>, and Ξ∗NT = DNT ((α̂∗1 − α0
1)>, . . . , (α̂∗K0 − α0

K0)>, (θ̂∗ −
θ0)>)>. Then P (ENT )→ 1 as (N,T )→∞ by Theorems 3.2 and 3.3 and

P (ΞNT ∈ C) = P (ΞNT ∈ C and ENT ) + P (ΞNT ∈ C and EcNT )

= P (Ξ∗NT ∈ C) + o (1) ,

where EcNT denote the complement of ENT and C ⊂ RK
0p+q. That is, it suffi ces to consider the asymptotic

distribution of the oracle estimators α̂∗1, . . . , α̂
∗
K0 , and θ̂∗.
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Consider the minimization of the profile log-likelihood function in (2.10) with Ĝ(K̂) being replaced by
G0. By the envelope theorem, the first order conditions with respect to αk and θ are respectively by

1

NkT

∑
i∈G0

k

T∑
t=1

U(wit; α̂
∗
k, µ̂i(α̂

∗
k, θ̂
∗), θ̂∗) = 0p×1 for k = 1, . . . ,K0, and (B.6)

1

NT

N∑
i=1

T∑
t=1

W (wit; α̂
∗
k, µ̂i(α̂

∗
k, θ̂
∗), θ̂∗) = 0q×1. (B.7)

By Taylor expansions, we have

−


H̆11 · · · 0 H̆1θ

...
. . .

...
...

0 · · · H̆K0K0 H̆K0θ

H̆θ1 · · · H̆θK0 H̆θθ




α̂∗1 − α0
1

...
α̂∗K0 − α0

K0

θ̂∗ − θ0

 =


1

NkT

∑
i∈G0

1

∑T
t=1 U(wit;α

0
1, µ̂i(α

0
1, θ

0), θ0)
...

1
NkT

∑
i∈G0

K0

∑T
t=1 U(wit;α

0
K0 , µ̂i(α

0
K0 , θ0), θ0)

1
NT

∑N
i=1

∑T
t=1W (wit;α

0
k, µ̂i(α

0
k, θ

0), θ0)

 , (B.8)

where for k = 1, . . . ,K0,

H̆kk ≡
1

Nk

∑
i∈G0

k

Ĥi,ββ(ᾰk, θ̆), H̆kθ ≡
1

Nk

∑
i∈G0

k

Ĥi,βθ(ᾰk, θ̆),

H̆θk ≡
1

N

N∑
i=1

Ĥi,θβ(ᾰk, θ̆), H̆θθ ≡
1

N

N∑
i=1

Ĥi,θθ(ᾰk, θ̆),

Ĥi,ββ (αk, θ) , Ĥi,βθ (αk, θ) , Ĥi,θβ (αk, θ) , and Ĥi,θθ (αk, θ) are defined analogously to Hi,ββ (βi, θ) , Hi,βθ(βi,

θ), Hi,θβ (βi, θ) , and Hi,θθ (βi, θ) below (3.2) with µi (βi, θ) being replaced by µ̂i (αk, θ), ᾰk lies between α̂∗k
and α0

k elementwise, and θ̆ lies between θ̂
∗ and θ0 elementwise. Following the analysis of Theorem 3.1, we

can show the consistency of α̂∗k and θ̂
∗. With this result, we can follow the proof of Lemma S1.13 in SSPb

(see also the proof of Lemma A.2) and show that

H̆kk = Hkk + oP (1), H̆kθ = Hkθ + oP (1), H̆θk = Hθk + oP (1), and H̆θθ = Hθθ + oP (1),

where, e.g., Hkk = 1
Nk

∑
i∈G0

k
E
[
Hi,ββ

(
β0
i , θ

0
)]
, Hkθ, Hθk, and Hθθ are analogously defined.

Let SkNT = 1√
NkT

∑
i∈G0

k

∑T
t=1 U(wit;α

0
k, µ̂i(α

0
k, θ

0), θ0) for k = 1, . . . ,K0 and SθNT = 1√
NT

∑N
i=1∑T

t=1W (wit;β
0
i , µ̂i(β

0
i , θ

0), θ0). As in the proof of Lemma S1.12 in SSPb, we apply the second order Taylor
expansion to obtain

SkNT =
1√
NkT

∑
i∈G0

k

T∑
t=1

Uit +
1√
NkT

∑
i∈G0

k

T∑
t=1

Uµit[µ̂i(α
0
k, θ

0)− µ0
i ] +

1

2
√
NkT

∑
i∈G0

k

T∑
t=1

ŝit,U

≡ SkNT,1 + SkNT,2 + SkNT,3, (B.9)

SθNT =
1√
NT

N∑
i=1

T∑
t=1

Wit +
1√
NT

N∑
i=1

T∑
t=1

Wµ
it [µ̂i(β

0
i , θ

0)− µ0
i ] +

1

2
√
NT

N∑
i=1

T∑
t=1

ŝit,W

≡ SθNT,1 + SθNT,2 + SθNT,3, (B.10)

where [ŝit,U ]j ≡ [µ̂i(α
0
k, θ

0)−µ0
i ]
>Uµµj (wit;α

0
k, µ̆i, θ

0)[µ̂i(α
0
k, θ

0)−µ0
i ], [ŝit,W ]j ≡ [µ̂i(β

0
i , θ

0)−µ0
i ]
>Wµµ

j (wit;

β0
i , µ̌i, θ

0)[µ̂i(β
0
i , θ

0)−µ0
i ], U

µµ
j (wit;αk, µi, θ) denotes the second order partial derivatives of the jth element

of U (wit;αk, µi, θ) with respect to µi, W
µµ
j (wit;βi, µi, θ) is similarly defined, and both µ̆i and µ̌i lie between

µ̂i(β
0
i , θ

0) and µ0
i elementwise.
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To study SkNT,3 and SθNT,3, we consider the first order Taylor expansion:

0 =
1

T

T∑
t=1

V
(
wit;α

0
k, µ̂i(α

0
k, θ

0), θ0
)

=
1

T

T∑
t=1

Vit +
1

T

T∑
t=1

V µ
(
wit;α

0
k, µ̄i(α

0
k, θ

0), θ0
) [
µ̂i(α

0
k, θ

0)− µ0
i

]
,

where µ̄i(α0
k, θ

0) lies between µ̂i(α0
k, θ

0) and µ0
i . Solving for µ̂i(α

0
k, θ

0)−µ0
i and following the proof of Lemma

S1.12 in SSPb, we can show that

[SkNT,3]j =
1

2
√
NkT

∑
i∈G0

k

T∑
t=1

(
1

T

T∑
t=1

Vit

)>(
1

T

T∑
t=1

V µit

)−1

Uµµit,j

(
1

T

T∑
t=1

V µit

)−1(
1

T

T∑
t=1

Vit

)
+ oP (1)

=
1

2
√
NkT

∑
i∈G0

k

(
1√
T

T∑
t=1

Vit

)>
S−1
iV SiU2,jS

−1
iV

(
1√
T

T∑
t=1

Vit

)
+ oP (1) , (B.11)

[SθNT,3]j =
1

2
√
NT

N∑
i=1

T∑
t=1

(
1

T

T∑
t=1

Vit

)>(
1

T

T∑
t=1

V µit

)−1

Wµµ
it,j

(
1

T

T∑
t=1

V µit

)−1(
1

T

T∑
t=1

Vit

)
+ oP (1)

=
1

2
√
NT

N∑
i=1

(
1√
T

T∑
t=1

Vit

)>
S−1
iV SiW2,jS

−1
iV

(
1√
T

T∑
t=1

Vit

)
+ oP (1) . (B.12)

To study SkNT,2 and SθNT,2, we need to consider the second order Taylor expansion:

0 =
1

T

T∑
t=1

V
(
wit;α

0
k, µ̂i(α

0
k, θ

0), θ0
)

=
1

T

T∑
t=1

Vit +
1

T

T∑
t=1

V µit
[
µ̂i(α

0
k, θ

0)− µ0
i

]
+

1

2T

T∑
t=1

ŝit,V ,

where [ŝit,V ]j ≡
[
µ̂i(α

0
k, θ

0)− µ0
i

]>
V µµj

(
wit;α

0
k, ~µi(α

0
k, θ

0), θ0
) [
µ̂i(α

0
k, θ

0)− µ0
i

]
and ~µi(α0

k, θ
0) lies between

µ̂i(α
0
k, θ

0) and µ0
i . Then using Assumption A1 and Lemma A.1, we can show that uniformly in i,

µ̂i(α
0
k, θ

0)− µ0
i = −

(
1

T

T∑
t=1

V µit

)−1{
1

T

T∑
t=1

Vit +
1

2T

T∑
t=1

ŝit,V

}

= −
(

1

T

T∑
t=1

V µit

)−1{
1

T

T∑
t=1

Vit +
1

2T

T∑
t=1

sit,V

}
+OP (T−3/2(lnT )9),

where [sit,V ]j = ( 1
T

∑T
t=1 Vit)

>S−1
iV V

µµ
it,jS

−1
iV ( 1

T

∑T
t=1 Vit). With this expression, we can readily show that

SkNT,2 = − 1√
NkT

∑
i∈G0

k

T∑
t=1

Uµit

(
1

T

T∑
t=1

V µit

)−1{
1

T

T∑
t=1

Vit +
1

2T

T∑
t=1

sit,V

}
+ oP (1)

= −SkNT,2 (1)− SkNT,2 (2) + oP (1) ,
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where

SkNT,2 (1) =
1√
NkT

∑
i∈G0

k

T∑
t=1

Uµit

(
1

T

T∑
t=1

V µit

)−1

1

T

T∑
t=1

Vit

=
1√
NkT

∑
i∈G0

k

T∑
t=1

SiUS
−1
iV Vit +

1√
NkT

∑
i∈G0

k

T∑
t=1

[Uµit − E (Uµit)]S
−1
iV

1

T

T∑
t=1

Vit

+
1√
NkT

∑
i∈G0

k

SiU

( 1

T

T∑
t=1

V µit

)−1

− S−1
iV

 T∑
t=1

Vit + oP (1)

=
1√
NkT

∑
i∈G0

k

T∑
t=1

SiUS
−1
iV Vit +

1√
NkT 3

∑
i∈G0

k

T∑
s=1

T∑
t=1

[Uµit − E (Uµit)]S
−1
iV Vis

− 1√
NkT 3

∑
i∈G0

k

T∑
s=1

T∑
t=1

SiUS
−1
iV (V µit − SiV )S−1

iV Vis + oP (1)

=
1√
NkT

∑
i∈G0

k

T∑
t=1

SiUS
−1
iV Vit +

1√
NkT 3

∑
i∈G0

k

T∑
s=1

T∑
t=1

UµitS
−1
iV Vis + oP (1)

and

SkNT,2 (2) =
1

2
√
NkT

∑
i∈G0

k

T∑
t=1

Uµit

(
1

T

T∑
t=1

V µit

)−1

1

T

T∑
t=1

sit,V =
1

2
√
NkT

∑
i∈G0

k

SiUS
−1
iV RiV + oP (1) .

where [RiV ]j = ( 1√
T

∑T
t=1 Vit)

>S−1
iV SiV 2,jS

−1
iV ( 1√

T

∑T
t=1 Vit). It follows that

SkNT,2 = − 1√
NkT

∑
i∈G0

k

T∑
t=1

SiUS
−1
iV Vit −

1√
NkT 3

∑
i∈G0

k

T∑
s=1

T∑
t=1

UµitS
−1
iV Vis

− 1

2
√
NkT

∑
i∈G0

k

SiUS
−1
iV RiV + oP (1) . (B.13)

Similarly we have

SθNT,2 = − 1√
NT

N∑
i=1

T∑
t=1

SiWS
−1
iV Vit −

1√
NT 3

N∑
i=1

T∑
s=1

T∑
t=1

Wµ
itS
−1
iV Vis

− 1

2
√
NT

N∑
i=1

SiWS
−1
iV RiW + oP (1) , (B.14)

where [RiW ]j = ( 1√
T

∑T
t=1 Vit)

>S−1
iV SiW2,jS

−1
iV ( 1√

T

∑T
t=1 Vit). Combining (B.9)—(B.14) yields

SkNT =
1√
NkT

∑
i∈G0

k

T∑
t=1

Uit − BkNT + oP (1) and SθNT =
1√
NT

N∑
i=1

T∑
t=1

Wit − BθNT + oP (1) .

By the Cramér-Wold device and Lindeberg-Feller central limit theorem, we can readily show that ((S1NT +

B1NT )>, . . . , (SK0NT +BK0NT )>, (SθNT +BθNT )>)> is asymptotically normally distributed with mean zero

and variance-covariance matrix Ω. It follows that Ξ∗NT +H−1
NTBNT

D→ N
(
0,H−1ΩH−1

)
. This completes the

proof of the theorem. �
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Proof of Lemma 4.1: By the spectral decompositions of A and DN , we have A = uΛu> and DN =

UNΣNU
>
N = U1,NΣ1,NU

>
1,N . It follows that for any nonsingular matrix S, we have

DN = N−1ZNAZ
>
N = N−1ZNuΛu>Z>N

= N−1ZNuSS
−1Λ(S−1)>S>u>Z>N = U1,NΣ1,NU

>
1,N .

Our goal is to find a nonsingular matrix S such that U1,N = N−1/2ZNuS and Σ1,N = S−1Λ(S−1)>,

which requires that N−1(ZNuS)>(ZNuS) = IK∗ and S
−1Λ(S−1)> should be diagonal. If such a matrix

S exists, we must have
IK∗ = U>1,NU1,N = N−1/2U>1,NZNuS,

yielding that S = (N−1/2U>1,NZNu)−1 provided that U>1,NZNu is nonsingular. By construction, when
S = (N−1/2U>1,NZNu)−1, N−1(ZNuS)>(ZNuS) = IK∗ . In addition, we have

S−1Λ(S−1)> = N−1U>1,NZN
(
uΛu>

)
Z>NU1,N = U>1,N

(
N−1ZNAZ

>
N

)
U1,N

= U>1,NDNU1,N = Σ1,N ,

where the last equality follows from the fact that DN = U1,NΣ1,NU
>
1,N and U>1,NU1,N = IK∗ . So

S−1Λ(S−1)> is diagonal and given by Σ1,N when S = (N−1/2U>1,NZNu)−1. The nonsingularity ofU>1,NZNu
follows from the fact that u>u = IK∗ , U

>
1,NU1,N = IK∗ , and that the membership matrix ZN is of full

rank. This shows part (i)—(iii) of the lemma.
To prove (iv), we first show that the rows of u are distinct from each other. Suppose u has two

identical rows, which are denoted as row k and row k′. We consider rows k, k′ and columns k, k′ of
A ≡ α0α0> = uΛu>:

[
c1J2 · · · cK∗J2

]
λ1 · · · 0
...
. . .

...
0 · · · λK∗



c1J
>
2
...

cK∗J
>
2

 =

(
K∗∑
k=1

λkc
2
k

)
J2J

>
2 ,

where J2 = (1, 1)> and ck’s are arbitrary scalars as long as u>u = IK∗ is ensured. The last display has
identical elements, which implies α0>

k α0
k = α0>

k α0
k′ = α0>

k′ α
0
k = α0>

k′ α
0
k′ . This further implies that

‖α0
k − α0

k′‖2 = (α0
k − α0

k′)
> (α0

k − α0
k′
)

= 0,

i.e., α0
k = α0

k′ for k 6= k′, violating Assumption A2(i). Hence, we can conclude that the rows of u are distinct
from each other. Since S is nonsingular, this further ensures that uS has rows that are distinct from each
other. Note that if zi contains 1 in its kth element, then z>i uS is given by the kth row of uS. As a result,
z>i uS = z>j uS if and only zi = zj for i, j = 1, 2, . . . , N because uS has distinct rows. �

Proof of Theorem 4.2: (i) We first prove that KN = K∗ w.p.a.1. Noting that D̃N −DN = N−1β̃β̃
> −

N−1β0β0> = N−1[(β̃ − β0)β0> + β0(β̃ − β0)> + (β̃ − β0)(β̃ − β0)>], we can readily show that

‖D̃N −DN‖2 = OP (N−1‖β̃ − β0‖2) = OP
(
T−1

)
. (B.15)

By the perturbation theory for eigenvalue problems (e.g., Stewart and Sun (1990, p. 203), we have

max
1≤`≤N

|µ̃`,N − µ`,N | ≤ ‖D̃N −DN‖ = OP (T−1/2),

where µ̃`,N and µ`,N denote the `th largest eigenvalues of D̃N and DN , respectively. Since DN has rank
K∗, µ`,N = 0 and µ̃`,N = OP (T−1/2) for ` ≥ K∗+ 1. This implies that P (KN > K∗)→ 0. By Assumptions
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A5 and A2 and (4.3), µ̃KN > µK∗N/2 ≥ cmin1≤k≤K0 τk/4 > 0 w.p.a.1, implying that P (KN < K∗) → 0.

Consequently, we have P (KN = K∗)→ 1 as (N,T )→ 1.

(ii) We now prove the second part of the theorem. We find it is easy to consider the following singular
value decompositions (SVDs) of N−1/2β0 and N−1/2β̃:

N−1/2β0 = UNΣ
1/2
N V >N and N−1/2β̃ = ŨN Σ̃

1/2
N Ṽ >N ,

where UN ,ΣN ŨN and Σ̃N are as defined in Section 4.1, VN is a p × p matrix such that V >N VN = Ip, ṼN
is a p × p matrix such that Ṽ >N ṼN = Ip. Note that the (K∗ + 1)th, . . . , pth diagonal elements of ΣN are
all zero, and the (K∗ + 1)th, . . . , pth diagonal elements of Σ̃N are all OP

(
T−1/2

)
. We can decompose ŨN ,

Σ̃N , and ṼN as follows: ŨN = (Ũ1,N , Ũ2,N ), Σ̃N = diag(Σ̃1,N , Σ̃2,N ), and ṼN = (Ṽ1,N , Ṽ2,N ), where Ũ1,N

is an N ×K∗ matrix, Σ̃1,N is a K∗ ×K∗ diagonal matrix, and Ṽ1,N is a p×K∗ matrix. Analogously, write
UN = (U1,N ,U2,N ), Σ =diag(Σ1,N ,Σ2,N ), and VN = (V1,N , V2,N ), where Σ2,N is a matrix of zeros. Then

N−1/2β0 = UNΣ
1/2
N V >N = U1,NΣ

1/2
1,NV

>
1,N (B.16)

and
N−1/2β̃ = ŨN Σ̃

1/2
N Ṽ >N = Ũ1,N Σ̃

1/2
1,N Ṽ

>
1,N + Ũ2,N Σ̃

1/2
2,N Ṽ

>
2,N , (B.17)

where Σ̃
1/2
1,N − Σ

1/2
1,N = OP (T−1/2), and Σ̃

1/2
2,N = OP (T−1/2). We consider the SVDs of Ũ

>
1,NU1,N and

Ṽ >1,NV1,N :

Ũ
>
1,NU1,N = A1NΘ1NA

>
2N and Ṽ >1,NV1,N = B1NΘ2NB

>
2N ,

where A1N , A2N , B1N and B2N are all orthogonal matrices, Θ1N = diag (cos θ1,1, . . . , cos θ1,K∗) , Θ2N =

diag( cos θ2,1, . . . , cos θ2,K∗), θ1,1, . . . , and θ1,K∗ are the principal angles between the column spaces of Ũ1,N

and U1,N , and θ2,1, . . . , and θ2,K∗ are the principal angles between the column spaces of Ṽ1,N and V1,N . Let
ON = A2NA

>
1N and Õ = B2NB

>
1N . Note that both ON and Õ are orthogonal matrices. Then by Theorem

4 in Yu, Wang, and Samworth (2015),

‖Ũ1,N −U1,NON‖ = OP (N−1/2‖β̃ − β0‖) = OP (T−1/2), (B.18)

and
‖Ṽ1,N − V1,N Õ‖ = OP (N−1/2‖β̃ − β0‖) = OP (T−1/2). (B.19)

To proceed, we first establish the connection betweenON and Õ through Σ
1/2
1,N .Noting that ‖Ũ2,N Σ̃

1/2
2,N Ṽ

>
2,N‖

= OP (‖Σ̃1/2
2,N‖) = OP (T−1/2), and by Theorem 3.1, the triangle inequality, the fact that ON and Õ are or-

thogonal matrices, equations (B.16)—(B.19), and the fact that U>1,NU1,N = IK∗ and that V >1,NV1,N = IK∗ ,

we have

OP (T−1/2) = N−1/2‖β̃ − β0‖ = ‖Ũ1,N Σ̃
1/2
1,N Ṽ

>
1,N −U1,NΣ

1/2
1,NV

>
1,N + Ũ2,N Σ̃

1/2
2,N Ṽ

>
2,N‖

≥ ‖Ũ1,NΣ
1/2
1,N Ṽ

>
1,N −U1,NΣ

1/2
1,NV

>
1,N‖ −OP (T−1/2)

= ‖Ũ1,NO
>
NONΣ

1/2
1,N Õ

>ÕṼ >1,N −U1,NΣ
1/2
1,NV

>
1,N‖+OP (T−1/2)

= ‖U1,NONΣ
1/2
1,N Õ

>V >1,N −U1,NΣ
1/2
1,N ÕÕ

>V >1,N‖+OP (T−1/2)

= ‖U1,N (ONΣ
1/2
1,N − Σ

1/2
1,N Õ)Õ>V >1,N‖+OP (T−1/2)

=
[
tr
(
U1,N (ONΣ

1/2
1,N − Σ

1/2
1,N Õ)Õ>V >1,NV1,N Õ(ONΣ

1/2
1,N − Σ

1/2
1,N Õ)>U>1,N

)]1/2
+OP (T−1/2)

=
[
tr
(

(ONΣ
1/2
1,N − Σ

1/2
1,N Õ)(ONΣ

1/2
1,N − Σ

1/2
1,N Õ)>

)]1/2
+OP (T−1/2)

= ‖ONΣ
1/2
1,N − Σ

1/2
1,N Õ‖+OP (T−1/2).
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It follows that ‖ONΣ
1/2
1,N − Σ

1/2
1,N Õ‖ = OP (T−1/2).

Recall that ũ>i =
(
ũ>1,i, ũ

>
2,i

)
and u>i =

(
u>1,i, u

>
2,i

)
denote the ith row of ŨN = (Ũ1,N , Ũ2,N ) and

UN = (U1,N ,U2,N ), respectively. Notice that uniformly in i

OP (N−1/2) = N−1/2β̃>i = ũ>1,iΣ̃
1/2
1,N Ṽ

>
1,N + ũ>2,iΣ̃

1/2
2,N Ṽ

>
2,N .

We post-multiply both sides of the above expression by Ṽ1,N and apply the fact that Ṽ >1,N Ṽ1,N = IK∗ and
that Ṽ >2,N Ṽ1,N = 0 to obtain

OP (N−1/2) = N−1/2β̃>i Ṽ1,N = ũ>1,iΣ̃
1/2
1,N .

It follows that uniformly in i we have ũ1,i = Σ̃
−1/2
1,N OP (N−1/2) = OP (N−1/2). That is, max1≤i≤N ‖ũ1,i‖ =

OP (N−1/2). Next, we compare ũ1,i and u1,i through β̃i and β0
i . By Theorem 3.1 and the fact that Σ̃

1/2
1,N −

Σ
1/2
1,N = OP

(
T−1/2

)
and that max1≤i≤N ‖ũ1,i‖ = OP (N−1/2), we have uniformly in i,

OP (T−1/2(lnT )3) = (β̃i − β0
i )>Ṽ1,N =

√
Nũ>1,iΣ̃

1/2
1,N −

√
Nu>1,iΣ

1/2
1,NV

>
1,N Ṽ1,N

=
√
Nũ>1,iΣ

1/2
1,N −

√
Nu>1,iΣ

1/2
1,NV

>
1,N Ṽ1,N +

√
Nũ>1,i(Σ̃

1/2
1,N − Σ

1/2
1,N )

=
√
N(ũ1,i −O>Nu1,i)

>Σ
1/2
1,N +

√
Nu>1,i(ONΣ

1/2
1,N − Σ

1/2
1,NV

>
1,N Ṽ1,N ) +OP (T−1/2).

It follows that uniformly in i,
√
N
∥∥ũ1,i −O>Nu1,i

∥∥ = ‖ − Σ
−1/2
1,N

√
N(ONΣ

1/2
1,N − Σ

1/2
1,NV

>
1,N Ṽ1,N )>u1,i +OP (T−1/2(lnT )3)‖

≤ ‖Σ−1/2
1,N (ONΣ

1/2
1,N − Σ

1/2
1,N Õ)>

√
Nu1,i‖

+ ‖Σ−1/2
1,N [Σ

1/2
1,NV

>
1,N (Ṽ1,N − V1,N Õ)]>

√
Nu1,i‖+OP (T−1/2(lnT )3)

≤ ‖Σ−1/2
1,N ‖ · ‖ONΣ

1/2
1,N − Σ

1/2
1,N Õ‖ · ‖

√
Nu1,i‖+OP (T−1/2(lnT )3)

= OP (1)OP (T−1/2(lnT )3)OP (1) +OP (T−1/2(lnT )3) = OP (T−1/2(lnT )3).

This completes the proof of the theorem. �

Proof of Theorem 4.3: The proof is similar to that of Theorem 3.2. The major difference is that we now
work in the eigenspace Ũ1,N instead of the preliminary estimate matrix β̃, and now each row of

√
NŨ1,N

is consistent with the corresponding row of
√
NU1,NO, which contains the group membership information.

Here O denotes the probability limit of ON . Now
√
Nũ1,i = OP (1) and

√
NO>u1,i = O (1) for each i,

and they play the roles of β̃i and β0
i in the proof of Theorem 3.2, respectively. Furthermore, the result in

Theorem 4.2(ii) implies the consistency of
√
Nũ1,i is uniform in all individuals, which is suffi cient for us to

identify all the individuals group membership. �

Proof of Theorem 4.4: Given the result in Theorem 4.3, the proof of the theorem follows that of Theorem
3.3 and thus omitted. �

Proof of Theorem 4.5: Given the consistency of G̃ with G0 by Theorems 4.3—4.4, the proof of the theorem
is completely analogous to that of Theorem 3.4 and thus omitted. �
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