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Abstract

This paper studies a continuous time dynamic system with a random persistence
parameter. The exact discrete time representation is obtained and related to several
discrete time random coefficient models currently in the literature. The model dis-
tinguishes various forms of unstable and explosive behaviour according to specific
regions of the parameter space that open up the potential for testing these forms
of extreme behaviour. A two-stage approach that employs realized volatility is pro-
posed for the continuous system estimation, asymptotic theory is developed, and
test statistics to identify the different forms of extreme sample path behaviour are
proposed. Simulations show that the proposed estimators work well in empirically
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realistic settings and that the tests have good size and power properties in dis-
criminating characteristics in the data that differ from typical unit root behaviour.
The theory is extended to cover models where the random persistence parameter is
endogenously determined. An empirical application based on daily real S&P 500 in-
dex data over 1964-2015 reveals strong evidence against parameter constancy after
early 1980, which strengthens after July 1997, leading to a long duration of what
the model characterizes as extreme behaviour in real stock prices.

JEL Classification: C13, C22, G13.

Keywords: Continuous time models; Explosive path; Extreme behaviour; Random
coefficient autoregression; Infill asymptotics; Bubble testing.

1 Introduction

Many macroeconomic and financial time series are well described by autoregressive pro-

cesses with roots that are close to unity but not necessarily constant over time. Moti-

vated by this empirical characteristic, various strands of the literature have sought to

extend pure unit root models to more flexible dynamic systems. One approach allows for

structural breaks in which the autoregressive coefficient takes a constant value in each

regime but changes value in different regimes (e.g. Chong, 2001; Pang et al., 2014; Jiang

et al., 2017). Another assumes that the autoregressive coefficient is a continuous random

variable or evolves according to a stochastic process (e.g. Granger and Swanson, 1997;

Lieberman and Phillips, 2014, 2017b). Yet another allows for a time varying autoregres-

sive parameter to capture evolution in the stochastic process, introduce flexibility, and

enhance forecasting capability (Bykhovskaya and Phillips, 2017a,b; Giraitis et al., 2014;

Kristensen, 2012).

Complementary to this literature on autoregressive specification is a growing interest

in modelling explosive behaviour and collapse, particularly since the events leading up

to and following the global financial crisis, where strong upward movements and subse-

quent major downturns in asset prices have occurred in various markets (Phillips and Yu,

2011). Empirical methods used to model these events have made extensive use of the

concepts of mildly explosive and mildly integrated autoregressive processes (see Phillips

and Magdalinos, 2007). Thus, Phillips et al. (2011, PWY hereafter), Phillips and Yu

(2011), Phillips et al. (2015a,b, PSY hereafter) assume data are generated according to

unit root processes in one regime and as mildly explosive processes in another regime; and

methods of date-stamping such regime changes have been developed (Phillips et al., 2011,

2015a,b) stimulating new empirical research and improvements in test methodology (e.g.

Cavaliere et al., 2016; Phillips and Shi, 2017). Developments in random autoregressive

coefficient approaches have also been pursued, with work by Aue (2008), who analyzed
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a near-integrated random coefficient autoregressive model, and by Banerjee et al. (2017)

who studied a near-explosive random coefficient autoregressive model.

The present paper contributes to this literature by working with a continuous time

model in which the parameter that measures persistence is randomized. A novel advan-

tage arising from this formulation is that extreme sample path behaviour can be classified

into distinct scenarios that represent various forms of instability and explosiveness. These

scenarios are distinguished parametrically and corresponding hypotheses are formulated

to facilitate empirical testing. Continuous time specification also enables the localizing

coefficients that appear in mildly integrated and mildly explosive processes to be repre-

sented in terms of sampling frequency, which facilitates econometric estimation. These

parameters are of great importance empirically because they control distance from mar-

tingale and unit root behaviour in discrete time models (Banerjee et al. (2017)). This

advantage of continuous systems has been used in other recent work by Chen et al. (2017)

and Wang and Yu (2016) in developing the discrete time methodology of Phillips and

Magdalinos (2007).

Continuous system formulation and high frequency data open up the opportunity to

employ methods such as realized volatility in estimating parameters that are identified in

the quadratic variation process using in-fill asymptotic methods. The two-stage realized

volatility approach employed here naturally accommodates heteroskedasticity in the pro-

cess and allows for consistent estimation of the parameters in the diffusion function under

both stationarity and explosiveness. The approach therefore offers potential for a unified

in-fill limit theory of consistent parameter estimation in random coefficient autoregression.

A further well-known feature of continuous system formulations is that the effects of

initial conditions are naturally incorporated by in-fill asymptotics (as in Phillips , 1987)

without having to specify orders of magnitude or use distant past representations (as in

Phillips and Magdalinos, 2009) which involve additional unknown parameters. Moreover,

continuous systems readily accommodate endogeneity by allowing for dependence between

the random coefficient elements and system shocks. In this respect the present research

relates to recent work on generalized random coefficient autoregressive models in (Hwang

and Basawa, 1998) and localized endogenous stochastic unit root models in (Lieberman

and Phillips, 2017a). Initial condition effects appear directly in the asymptotic theory

and, as is shown in the paper, the endogeneity parameter can be consistently estimated

using realized volatility.

The remainder of the paper is organized as follows. Section 2 introduces a continuous

system with randomized persistence and relates this system to several discrete time models

already used in the literature. The multiple forms of behaviour induced by this system are
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described and characterized parametrically. Section 3 proposes a novel two-stage approach

to parameter estimation using realized volatility. Asymptotic theory is developed and test

statistics for distinguishing different forms of explosive behaviour are proposed in Section

4. Section 5 extends the methodology to the case of endogenous persistence. Section 6

gives the results of Monte Carlo simulations that explore the finite sample performance

of the estimators and test statistics. Empirical applications of the model are reported

in Section 7 using daily real S&P 500 index data from January 1964 to December 2015.

Some empirical applications of the extended model using 5-minute real S&P 500 index

data over the period from November 1, 1997 to October 31, 2013 are also discussed.

Section 8 concludes. Proofs and other technical material are given in the Appendix.

2 The Model

The model used here is a modified version of the Ornstein-Uhlenbeck process

dy(t) = y(t)µ̃dt+ σdBε(t), y(0) = y0. (2.1)

where Bε is standard Brownian motion and the sign of the drift parameter µ̃ determines

stationary (< 0), nonstationary (= 0), and explosive (> 0) behaviour in y(t), the latter

corresponding to a discrete time autoregression with a root that exceeds unity and whose

variance grows exponentially with t. In (2.1), the drift parameter µ̃ is taken as constant,

an assumption that may not be well supported by data over extended periods of time.

The model considered in the present paper extends (2.1) by introducing random shocks

to the drift component of (2.1) so that

dy(t) = y(t) [µ̃dt+ σ̃dBu(t)] + σdBε(t), y(0) = y0, (2.2)

whereBu(t) andBε(t) are both standard Brownian motions, and y0 is independent ofBu(t)

and Bε(t). When σ̃2 6= 0, model (2.2) may be viewed as an Ornstein-Uhlenbeck process

with randomized drift or persistence. Initially, we focus on the case of independent noise

processes Bu(t) and Bε(t), and later consider the endogenous case where these processes

are dependent.

Model (2.2) is a special case of a general model introduced by Föllmer and Schweizer

(1993),

dy(t) = y(t) [µ̃(t)dt+ σ̃(t)dBu(t)] + µ(t)dt+ σ(t)dBε(t), y(0) = y0, (2.3)

called an Ornstein-Uhlenbeck process in a random environment. Föllmer and Schweizer

(1993) developed a discrete time version of this process in a market equilibrium setting
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that involved both information traders and noise traders and then derived its continuous-

time limit given by the process in (2.3). Persistence in the dynamic model is determined

by the relative proportions of the two types of traders, so random proportions lead to a

randomized degree of persistence in the solution. Information traders contribute nega-

tively to persistence while noise traders contribute positively.

Föllmer and Schweizer (1993) derived the strong solution of (2.2) which takes the

explicit form

y(t) = exp

(
σ̃Bu(t) +

(
µ̃− 1

2
σ̃2

)
t

)(
y(0) + σ

∫ t

0

exp

(
−σ̃Bu(s)− µ̃s+

1

2
σ̃2s

)
dBε(s)

)
= exp

(
σ̃Bu(t) +

(
µ̃− 1

2
σ̃2

)
t

)
y(0) +K(t), (2.4)

where

K(t) = σ

∫ t

0

exp

(
σ̃ (Bu(t)−Bu(s)) +

(
µ̃− 1

2
σ̃2

)
(t− s)

)
dBε(s)

∼ MN

0, σ2

∫ t

0

e
2σ̃(Bu(t)−Bu(s))+2

µ̃−1

2
σ̃2

(t−s)

ds

 (2.5)

under independence of Bu and Bε and with

E
{
K(t)2

}
= σ2E


∫ t

0

e
2σ̃(Bu(t)−Bu(s))+2

µ̃−1

2
σ̃2

(t−s)

ds

 =
σ2

2

e
2

µ̃+
1

2
σ̃2

t
− 1(

µ̃+
1

2
σ̃2

) . (2.6)

Notably, E {K(t)2} diverges exponentially when µ̃+
1

2
σ̃2 > 0.

The exact discrete time model corresponding to (2.2) follows directly from the strong

solution and has the explicit form

yt∆ = exp

{(
µ̃− 1

2
σ̃2

)
∆ + σ̃

[
Bu,t∆ −Bu,(t−1)∆

]}
y(t−1)∆ (2.7)

+ σ

∫ t∆

(t−1)∆

exp

{(
µ̃− 1

2
σ̃2

)
(t∆− s) + σ̃ [Bu,t∆ −Bu (s)]

}
dBε(s),

where t = 1, ..., T/∆ and where we write discrete time data in subscripted form. This

model is a random coefficient autoregression (RCAR) of the type considered by Nicholls

and Quinn (1980) in which the autoregressive (AR) coefficient is

ρt∆ = exp

{(
µ̃− 1

2
σ̃2

)
∆ + σ̃

[
Bu,t∆ −Bu,(t−1)∆

]}
,
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and is random when σ̃2 > 0.

For the ensuing development it will be helpful to fix the following simpler notation for

the discrete system

φ := µ̃− 1

2
σ̃2, κ := µ̃+

1

2
σ̃2, ut∆ :=

Bu,t∆ −Bu,(t−1)∆√
∆

∼ N (0, 1) ,

ρt∆ := exp

{(
µ̃− 1

2
σ̃2

)
∆ + σ̃

[
Bu,t∆ −Bu,(t−1)∆

]}
= exp

{
φ∆ + σ̃

√
∆ut∆

}
,

ηt∆ :=

∫ t∆

(t−1)∆

exp

{(
µ̃− 1

2
σ̃2

)
(t∆− s) + σ̃ [Bu,t∆ −Bu,s]

}
dBε,s ∼ N

(
0, γ2

∆

)
,

where γ∆ =
√

(e2κ∆ − 1) /2κ. Model (2.7) is then

yt∆ = exp
{
φ∆ + σ̃

√
∆ut∆

}
y(t−1)∆ + σηt∆ = ρt∆y(t−1)∆ + σηt∆, (2.8)

where yt is initiated at y0.

Importantly, when the driver Wiener processes Bu and Bε are independent, data

generated from (2.2) is observationally equivalent to data from the continuous system

dy(t) = y(t)µ̃dt+
√
σ̃2y2(t) + σ2dBv(t), y(0) = y0, (2.9)

where Bv(t) is another standard Brownian motion. In the same way, model (2.7) is

observationally equivalent to the discrete system

yt∆ = exp {µ̃∆} y(t−1)∆ +
√
σ̃2y2

(t−1)∆ + σ2vt∆, (2.10)

where vt∆ ∼ N (0, 1) and yt∆ exhibits conditional heteroskedasticity. Notably, the condi-

tional variance of the process is σ̃2y2
(t−1)∆ + σ2, so that large realizations of the process

magnify its variability. This dependence has a substantial bearing on the properties of

yt∆ and the form of its trajectories. Moreover, yt∆ has a submartingale property when

eµ̃∆ > 1 and given y(t−1)∆ > 0 because in that case E(t−1)∆(yt∆) = eµ̃∆y(t−1)∆ > y(t−1)∆.

Assuming σ̃2 > 0, models (2.8) and (2.2) have the following properties: (1) E(ρt∆) =

eµ̃∆, which is unity if and only if µ̃ = 0 and exceeds unity if and only if µ̃ > 0; (2)

E(ρ2
t∆) = exp (2µ̃∆ + σ̃2∆) = exp(2κ∆), which exceeds unity if and only if κ > 0; (3)

V ar(ρt∆) = e2µ̃∆
(
eσ̃

2∆ − 1
)
> 0; (4) E(ρkt∆) = exp

(
k∆

[
µ̃+

1

2
(k − 1) σ̃2

])
→ ∞

when k → ∞; (5) As shown in Föllmer and Schweizer (1993), when φ = µ̃ − 1

2
σ̃2 < 0,

the process is asymptotically stationary but may not have finite second moments. To

ensure the existence of second moments, we should impose a stronger condition that

κ = µ̃+
1

2
σ̃2 < 0. From (2.5), when κ < 0, it is apparent that the variance of K(t) exists
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and converges to −0.5σ2/κ < ∞ as t → ∞. It then follows that (2.2) is asymptotically

covariance stationary; (6) If κ = 0, the variance of K(t) equals to σ2t that diverges as

t → ∞, which means (2.2) is not asymptotically covariance stationary. Since κ = 0

implies µ̃ < 0 and φ < 0, (2.2) is asymptotic stationarity; (7) If φ = µ̃− 1

2
σ̃2 ≥ 0, y(t) is

no longer asymptotically stationary as shown in Föllmer and Schweizer (1993).

Table 1: Properties of Proposed Model Under Different Scenarios

Scenario
Asymptotically

Stationary
Asym. Covariance

Stationary
E(ρt∆) E(ρ2

t∆)

µ̃+ σ̃2/2 < 0 Yes Yes < 1 < 1

µ̃+ σ̃2/2 = 0 Yes No < 1 = 1

µ̃+ σ̃2/2 > 0 & µ̃ < 0 Yes No < 1 > 1

µ̃ = 0 Yes No = 1 > 1

µ̃ > 0 & µ̃− σ̃2/2 < 0 Yes No > 1 > 1

µ̃− σ̃2/2 ≥ 0 No No > 1 > 1

Table 1 summarizes the stationarity properties mentioned above and the respective

values of E(ρt∆), and E(ρ2
t∆) under different regions of the parameter space depending

on the values of µ̃ and σ̃2. When µ̃ + σ̃2/2 < 0, the model is asymptotically covariance

stationary with both E(ρt∆) < 1 and E(ρ2
t∆) < 1. Figure 1(a) plots a simulated time series

in this case with µ̃ = −5, σ̃2 = 0.5 and µ̃ + σ̃2/2 = −4.75 where stationary behavioural

features of the data are apparent. When µ̃ + σ̃2/2 = 0, the model retains asymptotic

stationarity but is no longer covariance stationary with E(ρt∆) < 1 and E(ρ2
t∆) = 1.

Figure 1(b) plots a simulated time series in this case with µ̃ = −2, σ̃2 = 4 and µ̃ +

σ̃2/2 = 0 where stationarity is again apparent but with more evidence of persistence in

the trajectory than in Figure 1(a). It was suggested in Granger and Swanson (1997) that

the unit root hypothesis in a STUR random environment might be represented by the

expectation E(ρ2
t∆) = 1. However, the stationary properties of the time series in this case

suggest stable and mean recursive trajectories that have greater persistence than when

E(ρ2
t∆) < 1.

When µ̃ + σ̃2/2 > 0 and µ̃ < 0, the model is asymptotically stationary but is not

covariance stationary and E(ρ2
t∆) > 1. Figure 1(c) plots a simulated time series in this

case with µ̃ = −1, σ̃2 = 3.5 and µ̃+ σ̃2/2 = 0.75. Whereas the expectation E(ρt∆) is still

less than unity, unstable behaviour is evident in the simulated time series. In particular,

the unstable subperiod of growth and collapse in the trajectory mimics bubble phenomena

that are observed in actual data, such as that in Figure 6 in the empirical section of the
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present paper and in Figure 1 of PWY (2011). If µ̃ = 0, the model continues to be

asymptotically stationary but is not covariance stationary and E(ρt∆) = 1, so the model

reduces to the stochastic unit root (STUR) model of Granger and Swanson (1997). Figure

1(d) plots a simulated time series in this case with µ̃ = 0, σ̃2 = 2 and µ̃ + σ̃2/2 = 1.

Compared to the traditional (nonstochastic) unit root model, unstable behaviour with

bubble-like phenomenon in a subperiod of the simulated trajectory is now more evident.

When µ̃ > 0, E(ρt∆) > 1 and Pr(ρt∆ > 1) > 0.5, giving greater probability to

the realization of an explosive root than a unit or stationary root. However, unlike the

traditional (nonstochastic) explosive AR(1) model which is nonstationary, this model is

still asymptotically stationary although not covariance stationary. Figure 1(e) plots a

simulated time series in this case with µ̃ = 0.5, σ̃2 = 2, µ̃+ σ̃2/2 = 1.5, µ̃− σ̃2/2 = −0.5.

Although the trajectory in Figure 1(e) appears similar to those of Figure 1(c) and Figure

1(d), the process exhibits larger variation, as is apparent from the vertical scale of the

figure. When µ̃− σ̃2/2 > 0, the model is asymptotically nonstationary and both moments

E(ρt∆) and E(ρ2
t∆) exceed unity. Figure 1(f) plots a simulated time series in this case

with µ̃ = 1, σ̃2 = 0.5 and µ̃ − σ̃2/2 = 1.25. The explosive growth behaviour is clearly

evident in the plotted trajectory.
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Figure 1: Simulated paths from the proposed model (2.2) when µ̃ and σ̃2 are in different
regions.

The exact discrete time representation of our model is closely related to the near ex-
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plosive random coefficient (NERC) model proposed recently in Banerjee et al. (2017) and

to the multivariate local STUR model that is studied in Lieberman and Phillips (2017c)

which combines deterministic local unit root (LUR) and random STUR component de-

partures from unity. In particular, if ∆ is chosen as 1/Tα and y0 = 0, then model (2.8)

is the same as model (1) in Banerjee et al. (2017); and if ∆ is chosen as 1/T and y0 = 0,

then our (2.8) has the same form as equation (4) in Lieberman and Phillips (2017c). As

discussed in Phillips and Magdalinos (2007), the power rate α in the fraction 1/Tα con-

trols the degree of mild deviation from a unit root and is typically assumed to lie strictly

between zero and unity, which assures that such deviations are localized to unity and

exceed the usual local to unity departure of O (T−1) .

In the standard discrete time modeling framework, the localizing rate parameter α

is difficult to estimate, although it is possible to do so at a slowly varying rate (Phillips

, 2012). Following the argument used in Wang and Yu (2016) with double asymptotics

(i.e., both large span and infill schemes), the discrete time model (2.8), or equivalently

(2.10), implies mild deviations from a unit root in which the localizing rate is determined

by the sampling frequency ∆, and so there is no need to estimate a separate parameter

α. This distinction implies an important advantage of the underlying continuous system

framework when it is appropriate in practical work to employ this model using discrete

time observations. A further useful difference is that the continuous system allows for

flexible initial condition assumptions.

The model reduces to a simple autoregression with a time-invariant coefficient when

σ̃2 = 0, in which case κ = φ = µ̃ and then explosive behaviour applies when φ > 0.

Conventional tests for a unit versus an explosive root therefore reduce to testing φ = 0

against φ > 0. This formulation explains the focus on right-tailed unit root testing (Diba

and Grossman, 1988), including the recursive methodology used in PWY (2011), Phillips

and Yu (2011), PSY (2015a, b) and related work.

In the extended model (2.8), a wider set of dynamic patterns are possible for studying

various types of extreme behaviour in realized sample trajectories. More specifically, we

consider three cases distinguished by the following typology.

1. Unstable trajectory: κ = µ̃ + σ̃2/2 > 0 which is equivalent to E(ρ2
t∆) > 1. In

this case, the model is covariance nonstationary asymptotically and is capable of

generating trajectories with explosive and collapse behaviour;

2. Locally Explosive trajectory: µ̃ > 0 which is equivalent to E(ρt∆) > 1. In this case,

there is greater probability for an explosive root to be realized in the sample than

a unit or stationary root and the model is covariance nonstationary asymptotically.

The model is capable of generating both explosive and collapsing behaviour;

9



3. Explosive trajectory: φ = µ̃ − σ̃2/2 > 0. Here the model is nonstationary asymp-

totically and generates explosive behaviour.

According to this terminology explosiveness implies local explosiveness which implies

instability. We characterize all of these cases as various forms of extreme behaviour. Figure

2 shows regions of the parameter space (µ̃, σ̃2) that accord with these classifications of

sample behaviour.

µ̃− 1

2
σ̃2 = 0µ̃+

1

2
σ̃2 = 0

µ̃

σ̃2 Sun
Sle
Se

Figure 2: Various explosive regions of {yt} characterized by different parameter combi-
nations of (µ̃, σ̃2) ∈ R × R+. Sun is the region for instability. Sle is the region for local
explosiveness. Se is the region for explosiveness.

It is helpful to link the above concepts of instability, local explosiveness and explo-

siveness to some well-known concepts in the stochastic process literature and to those

used recently in Kim and Park (2016). Note first that the observational equivalent model

(2.10) is a special case of generalized Höpfner and Kutoyants (GHK) diffusion (Höpfner

and Kutoyants, 2003):1

dXt =
µ̃Xt

(σ̃2X2
t + σ2)

1−ddt+
(
σ̃2X2

t + σ2
)d/2

dWt

with d = 1. In this case, we can easily calculate the scale density (s′(x)) and the speed

density (m(x)) of the model (2.10) as follows:

s′(x) = (σ2 + σ̃2x2)−µ̃/σ̃
2

and m(x) = (σ2 + σ̃2x2)(µ̃/σ̃2−1). (2.11)

Thus, the model (2.10) is recurrent if µ̃/σ̃2 ≤ 1/2, i.e., φ ≤ 0. It is positive recurrent

(PR) if µ̃/σ̃2 < 1/2, i.e., φ < 0. Thus, it is null recurrent (NR) when φ = 0 and transient

1The diffusion process studied here is a generalization of Example 2.1 in Kim and Park (2016) by
adding a coefficient in front of X2

t .
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(TR) when φ > 0. Therefore, our definition of explosiveness corresponds to the transient

property, which typically applies to processes that trend upwards or downwards and may

be rendered recurrent after suitable detrending techniques as discussed by Kim and Park

(2016) who considered various notions of mean reversion for financial time series. These

authors related the mean-reversion property to the following three conditions:

(ST): the speed measure m is either integrable or barely nonintegrable2;

(DD): The inverse of the scale density 1/s′ is either integrable or barely nonintegrable;

(SI): square of identity function, ι2, is either m-integrable3 or m-barely nonintegrable.

Kim and Park (2016) showed that when both ST and DD hold, the process has strong

mean reversion (SMR) and if only one of ST and DD holds the process has weak mean

reversion (WMR). By checking these conditions, we find that model (2.10) satisfies: DD

if and only if µ̃/σ̃2 ≤ −1/2, i.e., κ ≤ 0; ST if and only if µ̃/σ̃2 ≤ 1/2, i.e., φ ≤ 0; and SI

if µ̃/σ̃2 ≤ −1/2, i.e., κ ≤ 0. So in our model the condition that ensures ST is the same

as that which ensures SI, and is stronger than that which ensures DD. Thus, if κ ≤ 0,

our model has strong mean reversion; if φ ≤ 0 but κ > 0, our model has weak mean

reversion; and if φ > 0, our model does not imply mean reversion. Hence, our definition

of explosiveness is the same as no mean reversion in Kim and Park (2016). Figure 3

summarizes the mean reversion properties of the process, viz., strong mean reversion

(SMR), weak mean reversion (WMR), and no mean reversion (NMR) of the diffusion

process (2.10) in different regions of the respective parameter spaces.

3 Model Estimation using Realized Volatility

To estimate the continuous-time model (2.2) based on discretely sampled data, we employ

the two-stage estimation procedure proposed by Phillips and Yu (2009). In the first stage

we make use of the feasible central limit theory for realized volatility to set up a regression

model for estimating σ̃2 and σ2. In the second stage the in-fill likelihood function is

maximized to estimate µ̃. Consistency and asymptotic distribution theory are established

for all estimates.

To explain the estimation method and to establish the large sample theory of the

estimators, we assume the time interval [0, T ] with span length T can be split into N

2A function m is defined to be barely nonintegrable if there exists some slowly varying function ` such
that m` is integrable.

3The square of the identity function ι2 is defined by ι2(x) = x2; and a function f is defined to be
m-integrable if fm is integrable.
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NR (φ = 0)

PR
TR

µ̃

σ̃2

(a) Recurrence Properties

STDD & SI

NMRSMR

WMR

µ̃

σ̃2

(b) Mean Reversion Properties

Figure 3: Subfigures (a) and (b) characterize the recurrence properties and the mean
reversion properties of {yt} under different combinations of (µ̃, σ̃2) ∈ R×R+. PR=positive
recurrent, NR= null recurrent, TR=transient; SMR=strong mean reversion, WMR=weak
mean reversion, NMR=no mean reversion.

equispaced blocks. The time span of each block is h := T/N and we assume there are M

observations of yt within each block. So in total M ×N observations on yt are available

over [0, T ] and M×N = T/∆. Further assume that as ∆→ 0, M →∞ and M×N →∞.

Figure 4 illustrates this notation and the sampling scheme.

0 h 2h · · · Nh = T

0∆ 1∆ 2∆ · · · M∆ · · · 2M∆ · · · NM∆

Figure 4: Notational schematic for individual observations, block divisions, and full sample
span

The quadratic variation process [y]t of y(t) in (2.2) satisfies d[y]t = (σ̃2y2
t + σ2) dt,

giving

[y]t =

∫ t

0

(
σ̃2y2

s + σ2
)
ds. (3.1)

Barndorff-Nielsen and Shephard (2002) showed that quadratic variation may be consis-

tently estimated using realized variance (RV) when ∆→ 0. Realized variance and realized

quarticity (RQ) are computed using increments y(n−1)h+i∆−y(n−1)h+(i−1)∆ in the observed
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process by means of the following formulae calculated over the nth block

RVn =
M∑
i=1

[
y(n−1)h+i∆ − y(n−1)h+(i−1)∆

]2
, n = 1, 2, · · · , N,

RQn =
1

3∆

M∑
i=1

[
y(n−1)h+i∆ − y(n−1)h+(i−1)∆

]4
, n = 1, 2, · · · , N.

From Barndorff-Nielsen (2002) realized variance has the following asymptotic distribution

for large M within each block

√
M
(
[y]nh(n−1)h −RVn

) L→MN
(

0, 2h

∫ nh

(n−1)h

(
σ̃2y2

s + σ2
)2
ds

)
, (3.2)

where MN signifies mixed normal and [y]nh(n−1)h =
∫ nh

(n−1)h
(σ̃2y2

s + σ2) ds.

Following the algorithm of Phillips and Yu (2009), the first-stage estimation step aims

to estimate θ := (σ̃2, σ2)′ by least squares using the criterion

θ̂ = arg min
θ∈Θ

Q∆(θ), (3.3)

where

Q∆(θ) = ∆
N∑
n=1

(
logRVn − log[y]nh(n−1)h +

1

2
s2
n

)2

s2
n

,

with

sn = max

{√
2∆

RQn

RV 2
n

,

√
2

M

}
,

and where Θ is a compact subset of R2
+ containing the true value θ0 = (σ̃2

0, σ
2
0)
′

as an

interior point. The term s2
n/2 in the numerator of Q∆(θ) is a finite sample correction on

the asymptotic theory. In practice, the quadratic variation element [y]nh(n−1)h in Q∆(θ) can

be approximated by Riemann sums as follows

[y]nh(n−1)h =

∫ nh

(n−1)h

(σ̃2y2
s + σ2)ds ≈ ∆

M∑
t=1

{
σ̃2y2

(n−1)h+t∆ + σ2
}
.

In the second stage, µ̃ is estimated by maximizing the approximate log-likelihood

function, viz.,

̂̃µ = arg max
µ̃

1

MN
log `ALF (µ̃), (3.4)

`ALF (µ̃) =
M×N∑
t=1

µ̃y(t−1)∆̂̃σ2y2
(t−1)∆ + σ̂2

(
yt∆ − y(t−1)∆

)
− ∆

2

M×N∑
t=1

µ̃2y2
(t−1)∆̂̃σ2y2

(t−1)∆ + σ̂2
., (3.5)
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giving

̂̃µ = ∆−1 ÂN

B̂N

= ∆−1

M×N∑
t=1

y(t−1)∆

(
yt∆ − y(t−1)∆

)
̂̃σ2y2

(t−1)∆ + σ̂2

M×N∑
t=1

y2
(t−1)∆̂̃σ2y2

(t−1)∆ + σ̂2

. (3.6)

This estimator of µ̃ has the same form as the weighted least squares estimator used by

Hwang and Basawa (2005) in the context of a discrete time RCAR.

4 Asymptotic Theory

This section derives asymptotic theory for the estimates ̂̃σ2 and σ̂2 by assuming ∆ → 0

in an infill asymptotic scheme. Let {yt}MN∆
t=∆ be a discrete sample generated from (2.2)

where the true parameter values for µ̃, σ̃2, σ2 are denoted µ̃0, σ̃
2
0, σ

2
0. Assume that θ0 =

(σ̃2
0, σ

2
0)
′ ∈ Int(Θ) where Θ is a compact set in R2

+. Let ρ0 = exp (µ̃0∆) = E (ρt∆), and

ρ̂ = exp
(̂̃µ∆

)
. The following result provides within block infill asymptotics as ∆→ 0.

Theorem 4.1. If θ0 ∈ Int(Θ) and ∆→ 0,

1√
∆

(
θ̂ − θ0

)
L→


N∑

n=1

∫ nh

(n−1)h

∂σ̆2(ys;θ0)

∂θ
· ∂σ̆

2(ys;θ0)

∂θ′
ds∫ nh

(n−1)h
σ̆4(ys;θ0)ds


−1

N∑
n=1

√
2

∫ nh

(n−1)h

∂σ̆2(ys;θ0)

∂θ
σ̆2(ys;θ0)dBs∫ nh

(n−1)h
σ̆4(ys;θ0)ds

 ,

where σ̆2(yt;θ0) = σ̃2
0y

2
t + σ2

0 is the spot variance of y(t).

Remark 4.1. In discrete time modeling, it is common for the parameters σ̃2 and σ2 to be

estimated by MLE or QMLE by imposing ARCH-type innovations, see for example Jensen

and Rahbek (2004); Ling and Li (2008); Francq and Zaköıan (2012); Chen et al. (2014).

This approach provides consistent estimates and associated asymptotics for σ̃2 rather than

σ2 when yt is nonstationary. The explanation is that as T →∞, the log-likelihood function

becomes flat because of the dominating scale effects of yT that occur in the direction where

σ̃2 is fixed and σ2 varies. Unlike previous work, our approach applies an infill asymptotic

scheme which fixes the time span (T ) and shrinks the sampling interval (∆) to 0. These

asymptotics ensure that yT is measurable and finite, so that σ2 continues to play a role

in the limit as ∆ → 0. With this approach it is possible to consistently estimate both

variance parameters and establish their asymptotic properties as in Theorem 4.1.
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Corollary 4.1. When σ̃2
0 = 0, we have

1√
∆
̂̃σ2 L→

(
N∑
n=1

∫ nh

(n−1)h

y4
sds

)−1(√
2σ2

0

N∑
n=1

∫ nh

(n−1)h

y2
sdBs

)
.

It is interesting in practical applications to test the null hypothesis σ̃2 = 0, which

corresponds to the special case of no randomness in the persistence properties of y(t). To

test this boundary condition hypothesis we apply a modified version of the locally best

invariant test (LBI -test) by Lee (1998) for σ̃2 = 0, viz.,

Z̃N :=

M×N∑
t=1

(
ε̃2
t∆ −

(
1

MN

M×N∑
t=1

ε̃2
t∆

))
ỹ2

(t−1)∆√√√√ 1

MN

M×N∑
t=1

ε̃4
t∆ −

(
1

MN

M×N∑
t=1

ε̃2
t∆

)2
√√√√ 1

MN

M×N∑
t=1

ỹ4
(t−1)∆ −

(
1

MN

M×N∑
t=1

ỹ2
(t−1)∆

)2

where ỹt∆ =
yt∆√

1 + y2
t∆

, ε̃t∆ = yt∆−ρ̃y(t−1)∆ and ρ̃ =

(
M×N∑
t=1

ỹ(t−1)∆y(t−1)∆

)−1 M×N∑
i=1

ỹ(t−1)∆yt∆.

Then, as N →∞,

(MN)−1/2Z̃N
L→ N (0, 1), under H0 : σ̃2 = 0,

and

|(MN)−1/2Z̃N |
p→∞, under H1 : σ̃2 > 0.

Remark 4.2. Note first that we use the self-normalized variable ỹt∆ for constructing the

test statistic. This is because the normalization ensures that ỹt∆ is stationary when yt∆ is

nonstationary, which is crucial for Z̃N to converge under the null hypothesis (Lee, 1998;

Nagakura, 2009). In fact, the weighting function 1 + y2
t∆ can be replaced by any function

g(x) where g : [0,∞) → (0,∞) is a Borel function satisfying x2/g(x) → 1 as |x| → ∞.

In practice, we follow the usual convention by setting the weighting function to be 1 + y2
t∆

as in Hill and Peng (2014) and Horváth and Trapani (2016).

Remark 4.3. The second important component worth noticing is the use of the IV esti-

mate ρ̃ here. Following Chan et al. (2012), the IV estimate

ρ̃ =
M×N∑
t=1

y(t−1)∆yt∆√
δ + y2

(t−1)∆

/
M×N∑
t=1

y2
(t−1)∆√

δ + y2
(t−1)∆

is uniformly asymptotically normally distributed for both stationary and nonstationary

yt∆. Further, the IV estimate ρ̃ includes the Cauchy estimator (So and Shin, 1999) as
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a special case (δ = 0), which is known to be asymptotically median-unbiased. This helps

improve the finite sample performance of the test statistic which depends explicitly on the

residuals.

Remark 4.4. The above test for coefficient constancy remains valid in the presence of

correlation between the random coefficient and innovations. When the random coeffi-

cients are endogenous the quadratic covariation 〈Bu, Bε〉t =
∫ t

0
γsds and the conditional

variance of ε̃t∆ under the null is Var(ε̃t∆|y(t−1)∆) = σ2, whereas under the alternative

Var(ε̃t∆|y(t−1)∆) = σ̃2y2
(t−1)∆ + 2γtσ̃σy(t−1)∆ +σ2. The test may therefore be interpreted as

examining evidence for the presence of a relationship between ε̃2
t∆ and y2

(t−1)∆ and y(t−1)∆

– in other words, a test for conditional heteroscedasticity.

Theorem 4.2. In model (2.2), assume σ̃2
0 > 0. When T → ∞ and ∆ → 0, µ̃

p→ µ̃0.

Additionally, if T∆2 → 0, the asymptotic distribution of ̂̃µ is given by

√
T
(̂̃µ− µ̃0

)
L→ N

(
0, V −1

)
, (4.1)

where

V =


E

(
y2
t

σ̃2
0y

2
t + σ2

0

)
, if κ = µ̃+

1

2
σ̃2 < 0;

σ̃−2
0 , if κ = µ̃+

1

2
σ̃2 ≥ 0.

Remark 4.5. The asymptotics (4.1) hold regardless of the value of µ̃0 + σ̃2
0/2, which may

be less than zero, equal zero, or greater than zero. By contrast, it is well-known that in

the case of the pure AR(1) model, the asymptotic theory for the least squares estimator

of the autoregressive coefficient depends critically on the true value of the coefficient.

However, in the RCAR model asymptotic normality may hold in both the stationary and

explosive cases under certain conditions, as discussed in Hwang and Basawa (2005). The

above result reinforces this finding and extends applicability to the continuous-time random

coefficient model examined here.

The asymptotic theory given in (4.1) suggests that consistent estimation of µ̃ requires

T → ∞. In practical work, however, the time span is often short making large span

asymptotics less relevant. The following theorem provides infill asymptotics for estimating

ρ = exp{µ̃∆}, which is useful for testing nonstationarity in a finite time span setting.

Theorem 4.3. In model (2.2), assume σ̃2
0 > 0. When T is fixed and ∆→ 0, ρ̂

p→ ρ0 = 1

and the asymptotic distribution of ρ̂ is given by

1

∆
(ρ̂− ρ0)

L→ N
(
0, (TV )−1

)
. (4.2)
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where

ρ̂ = 1 +
ÂN

B̂N

=

M×N∑
t=1

y(t−1)∆yt∆̂̃σ2y2
(t−1)∆ + σ̂2

M×N∑
t=1

y2
(t−1)∆̂̃σ2y2

(t−1)∆ + σ̂2

. (4.3)

Remark 4.6. Although the above result does not deliver a consistent estimate of µ̃ with

a finite T , the asymptotic theory in (4.2) shows that consistent estimation of ρ is possible

when ∆ → 0. This result motivates estimation of βκ := exp {(µ̃+ σ̃2/2) ∆} and βφ :=

exp {(µ̃− σ̃2/2) ∆} instead of the continuous time parameters κ and φ when the time span

of the data is short.

Proposition 4.1. For model (2.2) with T fixed and ∆→ 0

1

∆

(
β̂κ − βκ

)
L→ N

(
0, (TV )−1

)
,

1

∆

(
β̂φ − βφ

)
L→ N

(
0, (TV )−1

)
.

where

β̂κ = exp

{(̂̃µ+
1

2
̂̃σ2

)
∆

}
and β̂φ = exp

{(̂̃µ− 1

2
̂̃σ2

)
∆

}
. (4.4)

Remark 4.7. To test different forms of unstable/explosive behaviour, we need to test

whether κ = µ̃ + σ̃2/2 = 0, or µ̃ = 0, or φ = µ̃ − σ̃2/2 = 0. Testing these restrictions

corresponds to testing the hypotheses βκ = 1, or ρ = 1, or βφ = 1. In the spirit of

Theorem 4.3 and Proposition 4.1 we can construct the following test statistics and derive

their asymptotic distributions as detailed below:

tκ =

(
1

∆

M×N∑
t=1

y2
(t−1)∆̂̃σ2y2

(t−1)∆ + σ̂2

)1/2 (
β̂κ − β0

κ

)
L→ N (0, 1), (4.5)

tµ̃ =

(
1

∆

M×N∑
t=1

y2
(t−1)∆̂̃σ2y2

(t−1)∆ + σ̂2

)1/2

(ρ̂− ρ0)
L→ N (0, 1), (4.6)

tφ =

(
1

∆

M×N∑
t=1

y2
(t−1)∆̂̃σ2y2

(t−1)∆ + σ̂2

)1/2 (
β̂φ − β0

φ

)
L→ N (0, 1). (4.7)

These three t-test statistics can be calculated sequentially and compared with the

right-tailed critical value of the asymptotic distributions, giving a real-time testing strat-

egy of empirical evidence of instability/explosiveness in the data. Accordingly, the orig-

ination and termination dates of different types of extreme behaviour may be estimated
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in the same fashion as Phillips et al. (2015a). More specifically, date estimates can be

determined from first crossing times as follows

r̂iewe = inf
s∈[r̂

(i−1)f
we ,1]

{s : tκ(s) > Z0.95} and r̂ifwe = inf
s∈[r̂iewe,1]

{s : tκ(s) < Z0.95} ,

r̂iesse = inf
s∈[r̂

(i−1)f
sse ,1]

{s : tµ̃(s) > Z0.95} and r̂ifsse = inf
s∈[r̂iesse,1]

{s : tµ̃(s) < Z0.95} ,

r̂iese = inf
s∈[r̂

(i−1)f
se ,1]

{s : tφ(s) > Z0.95} and r̂ifse = inf
s∈[r̂iese,1]

{s : tφ(s) < Z0.95} ,

where: Z0.95 = 1.645 is the 95% critical value of the standard normal distribution;

r̂iewe/r̂
ie
sse/r̂

ie
se represent estimates of the origination date of the ith explosive period; and

r̂iewe/r̂
ie
sse/r̂

ie
se represent estimates of the termination date of the ith explosive period. To

identify the first unstable/explosive period in the sample, a minimum window is needed

to start the recursion. The time-stamping strategy used here is based on the standard

normal distribution whereas the PWY and PSY algorithms rely on non-standard unit

root and sup unit root distributions.

5 The Model with Endogeneity

This section extends the base model (2.3) by allowing for endogeneity, quantified by the

correlation between the random coefficient and the equation innovation. In the discrete

time literature Hwang and Basawa (1997, 1998) described this framework as a general-

ized random coefficient autoregressive model. With stationarity imposed they studied the

local asymptotic normality of the maximum likelihood estimator and the weighted least

squares estimator of the autoregressive coefficient. Zhao and Wang (2012) considered

empirical likelihood estimation of the stationary model and proposed a likelihood ratio

test for testing stationary/ergodicity. Lieberman and Phillips (2017b) studied the effects

of endogeneity in a multivariate context and derived the asymptotic distribution for the

non-linear least squares (NLLS) estimator for the autoregressive coefficient, showing that

NLLS is inconsistent for the autoregressive coefficient under endogeneity. To address the

inconsistency of NLLS, Lieberman and Phillips (2017a) proposed a non-linear instrumen-

tal variable technique and a GMM approach, establishing consistency and deriving the

asymptotic distribution for the IV estimator of the autoregressive coefficient.

To incorporate endogeneity in a continuous time random coefficient setting, we rewrite
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the model (2.3) as the following continuous time system

dy(t) = y(t)dZ̃(t) + dZ(t), y(0) = y0, (5.1)

dZ̃(t) = µ̃dt+ σ̃dBu(t),

dZ(t) = σdBε(t),

where (Bu, Bε) is two dimensional Brownian motion with covariance parameter γ so that

the quadratic covariation process satisfies d〈Bu, Bε〉t = γdt. Then, d〈Z̃, Z〉t = γσ̃σdt :=

ωdt, where ω = γσ̃σ is the covariance parameter of (Z̃, Z). According to Föllmer et al.

(1994), the strong solution to this continuous system is

y(t) = exp

(
Z̃(t)− 1

2
〈Z̃〉t

){
y(0) +

∫ t

0

exp

(
−
(
Z̃(s)− 1

2
〈Z̃〉s

))
d
(
Z(s)− 〈Z̃, Z〉s

)}
= exp

((
µ̃− 1

2
σ̃2

)
t+ σ̃Bu(t)

)
y(0) + J(t), (5.2)

where

J(t) = σ

∫ t

0

exp

{(
µ̃− 1

2
σ̃2

)
(t− s) + σ̃ (Bu(t)−Bu(s))

}
dBε(s)

− ω
∫ t

0

exp

{(
µ̃− 1

2
σ̃2

)
(t− s) + σ̃ (Bu(t)−Bu(s))

}
ds

= K(t)− L(t).

Compared to the model without endogeneity in (2.4), the dynamics of the process are

now driven by the process J(t) instead of K(t). J(t) has two components, one being K(t)

and the other depending on the covariance of the random coefficient and the innovation,

ω. The model specified in the system (5.1) is the continuous time limit of the endogenous

stochastic unit root (STUR) model of Lieberman and Phillips (2017b) and the covariance

parameter ω corresponds to the one-sided long-run covariance in the STUR model.

The following proposition shows that the given characterization of instability/explosiveness

in the model without endogeneity remains valid for the model with endogeneity.

Proposition 5.1. The sample path characteristics of the process (5.2) may be classified

into the following three types,

1. unstable: κ = µ̃+
1

2
σ̃2 > 0;

2. locally explosive: µ̃ > 0;

3. explosive: φ = µ̃− 1

2
σ̃2 > 0.
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The fact that sample path characteristics of (5.2) are unaffected by endogeneity may

be explained intuitively by noting that the model (5.1) is observationally equivalent to

the following continuous system

dyt = µ̃ytdt+
√
σ̃2y2

t + 2ωyt + σ2dBv(t), (5.3)

where Bv(t) is another standard Brownian motion in an expanded probability space.

Note that when the variance of yt goes to infinity as t increases, the dominant term in the

diffusion function σ̃2y2
t + 2ωyt + σ2 is σ̃2y2

t , which explains why σ̃2 is the key parameter

in determining long-run volatility.

Remark 5.1. From the perspective of diffusion process asymptotics, the recurrence and

mean reversion characterizations given in Figure 3 also remain valid. This robustness is

evident by checking the limit of the scale index function:

p = lim
y→∞

v(y) = lim
y→∞

−2µ̃y2

σ2 + 2ωy + σ̃2y2
= −2µ̃

σ̃2
,

which is apparently unaffected by endogeneity in the limit.

We can rewrite the discrete time model in AR(1) format as

yt∆ = exp

((
µ̃− 1

2
σ̃2

)
∆ + σ̃

√
∆ut

)
y(t−1)∆ + J∆(t)

= ρt∆y(t−1)∆ + Jt∆, (5.4)

where ut
i.i.d∼ N (0, 1), and

Jt∆ = σ

∫ t∆

(t−1)∆

exp

{(
µ̃− 1

2
σ̃2

)
(t∆− s) + σ̃ (Bu,t∆ −Bu,s)

}
dBε,s

− ω
∫ t∆

(t−1)∆

exp

{(
µ̃− 1

2
σ̃2

)
(t∆− s) + σ̃ (Bu,t∆ −Bu,s)

}
ds.

From earlier derivations we know that

E (J∆(t)) =
ω

µ̃
(1− exp(µ̃∆)) = −ω∆ +O(∆2), (5.5)

Var(J∆(t)) = O(∆). (5.6)

Therefore, when standardizing the model by the factor 1/
√

∆, the expectation of the

correspondingly standardized error process J∆(t)/
√

∆ in (5.4) has order O(
√

∆) as ∆→ 0.

This means that under infill asymptotics we can consistently estimate the expectation of
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the random coefficient, ρ0 = Eρt∆ = exp (µ̃∆). This result is naturally achieved in the

continuous time setup with infill asymptotics and contrasts with the inconsistency of least

squares estimation in discrete time models with endogeneity (Lieberman and Phillips,

2017b).

As before, we continue to apply the two stage estimation procedure of Phillips and Yu

(2009) to estimate the model under endogeneity. Note that the quadratic variation of yt

now satisfies

d[y]t = (σ̃2y2
t + 2ωyt + σ2)dt. (5.7)

In light of the argument of Remark 4.1 we cannot consistently estimate ω and σ2 in

explosive cases under long-span sampling because the signal of y2
t is so strong that it

drowns information in the linear and constant terms (i.e., 2ωyt and σ2). However, infill

asymptotics for θ̂∗ :=
( ̂̃σ2, γ̂, σ̂2

)′
can be developed in the same way as before and the

results are summarized in the following theorem.

Theorem 5.1. Assume θ∗
0 ∈ Int(Θ∗)where Θ∗ is a compact set in R+ × [−1, 1] × R+.

As T is fixed and ∆→ 0, we have

1√
∆

(
θ̂∗ − θ∗

0

)
L→


N∑

n=1

∫ nh

(n−1)h

∂σ̌2(ys;θ
∗
0)

∂θ∗ · ∂σ̌
2(ys;θ

∗
0)

∂θ∗′ ds∫ nh

(n−1)h
σ̌4(ys;θ

∗
0)ds


−1

N∑
n=1

√
2

∫ nh

(n−1)h

∂σ̌2(ys;θ
∗
0)

∂θ∗ σ̌2(ys;θ
∗
0)dBs∫ nh

(n−1)h
σ̌4(ys;θ

∗
0)ds

 ,

where σ̌2(yt;θ
∗
0) = σ̃2

0y
2
t + 2ω0yt + σ2

0 is the spot variance of y(t).

Remark 5.2. In principle at least, this limit theory enables us to construct a test for

endogeneity based on the asymptotic distribution of γ̂. However, the limit theory above

is hard to implement as this distribution is non-standard and non-pivotal and γ̂ is biased

when the frequency is low. Instead, to test the most relevant hypothesis of interest H0 :

γ0 = 0 we propose the likelihood ratio test based on the objective function Q∆(θ∗):

LR = ∆−1 (Qr
∆ −Qur

∆ ) ∼ χ2(1), under H0 : γ0 = 0. (5.8)

For consistent estimation of µ̃, as in the base model, we maximize the following ap-

proximated likelihood

`ALF (µ̃) =
M×N∑
t=1

µ̃y(t−1)∆

(
yt∆ − y(t−1)∆

)
̂̃σ2y2

(t−1)∆ + 2ω̂y(t−1)∆ + σ̂2
− ∆

2

M×N∑
t=1

µ̃2y2
(t−1)∆̂̃σ2y2

(t−1)∆ + 2ω̂y(t−1)∆ + σ̂2
, (5.9)
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where ω̂ = γ̂
√ ̂̃σ2σ̂2, which gives

̂̃µ = ∆−1 Â
∗
N

B̂∗N
= ∆−1

M×N∑
t=1

y(t−1)∆

(
yt∆ − y(t−1)∆

)
̂̃σ2y2

(t−1)∆ + 2ω̂y(t−1)∆ + σ̂2

M×N∑
t=1

y2
(t−1)∆̂̃σ2y2

(t−1)∆ + 2ω̂y(t−1)∆ + σ̂2

. (5.10)

The following theorem provides asymptotic theory for ̂̃µ and ρ̂ := exp
(̂̃µ∆

)
.

Theorem 5.2. In model (5.1) assume σ̃2
0 > 0. When T → ∞ and ∆ → 0, we have

µ̃
p→ µ̃0. Additionally, if T∆2 → 0, we have,

√
T
(̂̃µ− µ̃0

)
L→ N

(
0, V −1

)
, (5.11)

where

V =


E

(
y2
t

σ̃2
0y

2
t + 2ωyt + σ2

0

)
if κ = µ̃+

1

2
σ̃2 < 0

σ̃−2
0 if κ = µ̃+

1

2
σ̃2 ≥ 0

.

Theorem 5.3. In model (5.1), assume σ̃2
0 > 0. When T is fixed and ∆ → 0, we have

ρ̂
p−→ ρ0 and its asymptotic distribution is

1

∆
(ρ̂− ρ0)

L→ N
(
0, (TV )−1

)
, (5.12)

where

ρ̂ = 1 +
Â∗N

B̂∗N
=

M×N∑
t=1

y(t−1)∆yt∆̂̃σ2y2
(t−1)∆ + 2ω̂y(t−1)∆ + σ̂2

M×N∑
t=1

y2
(t−1)∆̂̃σ2y2

(t−1)∆ + 2ω̂y(t−1)∆ + σ̂2

.

According to Theorems 5.2 and 5.3 the estimates ̂̃µ and ρ̂ continue to have asymptotic

normal distributions under infill asymptotics. This convenient feature allows us to apply

the testing procedures proposed in the previous section after making a minor change in

the variance of the limit distribution to accommodate endogeneity.

6 Simulations

This section reports the results of Monte Carlo simulations designed to evaluate the

performance of the two-stage estimator. We also examine the finite sample adequacy of

the asymptotic theory for the test statistics developed in Sections 4 and 5.
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The simulations involved 10,000 replications of sample paths generated from model

(2.2) under explosiveness with parameter values µ̃ = 1, σ̃ = 1, σ = 1, and with initial

condition y0 = 10.4 Since φ > 0 this generating process leads to explosiveness. In the

first experiment, we set the time span T = 5, but varied ∆ from 1/252 to 1/19656 and

varied M from 21, 63 to 252. ∆ = 1/252 corresponds to daily observations whereas

∆ = 1/19656 corresponds to 5-minute (high frequency) observations. When ∆ = 1/252,

M = 21, 63 and 252 implies a corresponding block size that is monthly, quarterly, and

annual, respectively. When ∆ = 1/19656, we report the estimation bias and standard

errors by holding the number of observations for calculating the realized volatilities (M)

constant as in a daily frequency. In panel A of Table 2, we report the bias and the

standard errors of the two-stage estimates when there is no endogeneity in the model,

i.e. when γ = 0, and in panel B, we report the corresponding results for the model with

endogeneity, specifically with γ = 0.8. The bias and the standard errors are computed

using 5,000 replications.

Table 2: Bias and standard errors of the two-stage estimates for different ∆ and M and
a fixed T (= 5). The parameter values are µ̃ = 1, σ̃2 = 1, σ2 = 1. y0 = 10.

∆ = 1/252 ∆ = 1/19656

Panel A M = 21 M = 63 M = 252 M = 21 M = 63 M = 252

Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E.

µ̃ -0.0328 0.4942 -0.0347 0.4946 -0.0455 0.4938 -0.0279 0.5173 -0.0279 0.5173 -0.0279 0.5173

σ̃2 -0.0093 0.0471 -0.0135 0.0493 -0.0190 0.0611 0.0014 0.0056 4.7e-04 0.0055 -8.3e-05 0.0055

σ2 4.6415 13.0303 6.1285 18.5101 28.7040 138.7416 0.2518 1.3496 0.2385 1.3241 0.2414 1.3443

κ -0.0375 0.4952 -0.0414 0.4958 -0.0549 0.4962 -0.0272 0.5172 -0.0276 0.5172 -0.0279 0.5172

ρ -1.3e-04 0.0020 -1.4e-04 0.0020 -1.8e-04 0.0020 -1.4e-06 2.6e-05 -1.4e-06 2.6e-05 -1.4e-06 2.6e-05

φ -0.0282 0.4943 -0.0279 0.4945 -0.0360 0.4933 -0.0285 0.5174 -0.0281 0.5174 -0.0278 0.5174

∆ = 1/252 ∆ = 1/19656

Panel B M = 21 M = 63 M = 252 M = 21 M = 63 M = 252

Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E.

µ̃ -0.0487 0.5213 -0.0511 0.5214 0.0208 1.5405 -0.0368 0.5194 -0.0368 0.5194 -0.0368 0.5194

σ̃2 0.0326 0.0974 0.0350 0.1119 0.0776 0.2239 0.0037 0.0105 0.0028 0.0119 0.0028 0.0104

σ2 19.2645 45.3508 28.3990 76.9436 193.6521 1.1e+03 1.4455 3.7584 1.4215 3.6797 1.4215 3.7170

γ -0.4179 0.6293 -0.4519 0.6521 -0.6296 0.7499 -0.0884 0.1778 -0.0874 0.1750 -0.0874 0.1762

κ -0.0324 0.5208 -0.0336 0.5199 0.0596 1.5431 -0.0349 0.5193 -0.0354 0.5193 -0.0354 0.5193

ρ -1.9e-04 0.0021 -2.0e-04 0.0021 9.9e-05 0.0064 -4.9e-05 1.1e-05 -4.1e-05 2.4e-05 -4.1e-05 2.4e-05

φ -0.0650 0.5262 -0.0686 0.5289 -0.0180 1.5461 -0.0386 0.5196 -0.0382 0.5196 -0.0382 0.5196

First, from Table 2 it is apparent that when the sampling frequency increases the

parameters σ̃2, γ and σ2 are all better estimated in terms of bias and standard error. On

4We also report bias and standard errors under stationary, unstable, and locally explosive cases in
Appendix B
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the other hand, there is little improvement in the estimation of µ̃ because the time span

does not change. This finding corroborates the asymptotic theory for µ̃ given in Theorem

4.2 and also supports results found in Yu (2012). Furthermore, due to the difference in

the convergence rates shown in Theorems 4.1 and 4.2, the bias and the standard errors of

κ̂ and φ̂ are mainly determined by those of ̂̃µ, which explains why estimation performance

of κ̂ and φ̂ does not improve as sampling frequency increases. Finally, bias and standard

errors both appear reasonably robust across different values of M .

In the second experiment, we fix ∆ = 1/252, but vary T from 30 to 60 and M from 21,

63 to 252. In Panel A of Table 3, we report the bias and the standard errors of the two-

stage estimators across 5,000 simulated samples for the model without endogeneity. The

same experiment is repeated for the model with endogeneity and the results are reported

in Panel B. Several findings are evident from Table 3. First, as the time span enlarges,

sharp reductions occur in the bias and standard error of ̂̃µ. Combined with the results

of Table 2, this finding suggests that time span, not sampling frequency, is the primary

influence on performance of ̂̃µ. Second, the bias and standard errors of ̂̃σ2, γ̂ and σ̂2 do

not change significantly as T increases. Finally, both bias and standard errors are again

robust with respect to M .

Table 3: Bias and standard error of the two-stage estimates for different T and M and
fixed ∆(= 1/252). The parameter values are µ̃ = 1, σ̃2 = 1, σ2 = 1. y0 = 10.

T = 30 T = 60

Panel A M = 21 M = 63 M = 252 M = 21 M = 63 M = 252

Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E.

µ̃ -0.0058 0.1861 -0.0060 0.1861 -0.0075 0.1860 -0.0014 0.1301 -0.0015 0.1301 -0.0023 0.1302

σ̃2 -0.0031 0.0175 -0.0066 0.0179 -0.0077 0.0208 -0.0023 0.0123 -0.0058 0.0126 -0.0068 0.0147

σ2 3.8582 11.6119 5.1172 16.6821 24.0530 136.4710 3.8333 11.6501 5.0750 16.5899 24.4001 137.0690

κ -0.0073 0.1864 -0.0093 0.1862 -0.0113 0.1860 -0.0026 0.1304 -0.0044 0.1303 -0.0057 0.1303

ρ -2.3e-05 7.4e-04 -2.4e-05 7.4e-04 -2.9e-05 7.4e-04 -5.6e-06 5.2e-04 -6.0e-06 5.2e-04 -9.0e-06 5.2e-04

φ -0.0042 0.1862 -0.0027 0.1864 -0.0036 0.1866 -2.7e-04 0.1302 0.0013 0.1303 0.0011 0.1304

T = 30 T = 60

Panel B M = 21 M = 63 M = 252 M = 21 M = 63 M = 252

Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E.

µ̃ -9.7e-04 0.1796 -0.0013 0.1796 0.0045 0.6583 0.0016 0.1277 0.0014 0.1277 0.0127 0.5476

σ̃2 -1.6e-04 0.0188 -0.0035 0.0193 -0.0034 0.0225 -0.0010 0.0126 -0.0043 0.0130 -0.0048 0.0153

σ2 12.4166 32.3889 17.3784 53.4253 81.2221 396.9127 12.1161 31.6064 16.9538 52.3937 80.3542 393.2385

γ -0.2879 0.5323 -0.3136 0.5496 -0.3924 0.6223 -0.2768 -0.5228 -0.3011 0.5417 -0.3848 0.6138

κ -0.0010 0.1799 -0.0030 0.1798 0.0028 0.6584 0.0011 0.1279 -7.8e-04 0.1278 0.0103 0.5475

ρ -3.6e-06 7.2e-04 5.0e-06 7.2e-04 2.2e-05 0.0027 6.4e-06 5.1e-04 5.7e-06 5.1e-04 5.3e-05 0.0022

φ -8.9e-04 0.1797 4.2e-04 0.1800 0.0063 0.6584 0.0021 0.1278 0.0036 0.1279 0.0151 0.5477

From Table 2 and Table 3, it is evident that the proposed two-stage method is ef-
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fective in estimating µ̃, γ, σ̃2, κ, ρ, φ even in the presence of endogeneity. While the

estimate of σ2 is less satisfactory, this outcome is unsurprising because when κ > 0, y2
t

grows exponentially with t. Hence, estimates of γ and σ2 are dominated by the com-

ponent σ̃2y2
t in σ̃2y2

t + 2ωyt + σ2 when t is large. More importantly, the three forms of

explosive behaviour do not depend on γ and σ2 in that case. Hence, it is expected that

the performance of γ̂ and σ̂2 will have little impact on the performance of the proposed

t-tests and the time-stamping strategy.

The third experiment is designed to evaluate performance of the test statistics pro-

posed in Remark 4.7. To do so, we simulate 5,000 sample paths from model (2.2) and

(5.1) with γ = 0.8, and calculate the power and size of the three tests. We set the nominal

size to 5%, M = 21 and ∆ = 1/252, but vary the time span T . Results for power and

size are reported in Table 4.

Table 4: Power and size of the t tests under different forms of unstable/explosive be-
haviour.

T tκ tµ̃ tφ

γ = 0 Size κ = 0.5 κ = 1 κ = 2 Size µ̃ = 0.5 µ̃ = 1 µ̃ = 2 Size φ = 0.5 φ = 1 φ = 2

5 0.0388 0.2564 0.6580 0.9948 0.0436 0.2812 0.7062 0.9974 0.0472 0.2924 0.7170 0.9976

10 0.0342 0.3304 0.8066 1.0000 0.0394 0.4406 0.9116 1.0000 0.0470 0.4680 0.9328 1.0000

15 0.0366 0.4094 0.8946 1.0000 0.0376 0.5472 0.9664 1.0000 0.0472 0.6002 0.9836 1.0000

30 0.0384 0.5804 0.9840 1.0000 0.0380 0.7468 0.9990 1.0000 0.0484 0.8528 1.0000 1.0000

T tκ tµ̃ tφ

γ = 0.8 Size κ = 0.5 κ = 1 κ = 2 Size µ̃ = 0.5 µ̃ = 1 µ̃ = 2 Size φ = 0.5 φ = 1 φ = 2

5 0.0448 0.2608 0.6340 0.9860 0.0452 0.2732 0.6690 0.9942 0.0436 0.2700 0.6816 0.9964

10 0.0410 0.4384 0.8898 0.9998 0.0464 0.4818 0.9154 1.0000 0.0436 0.4532 0.9176 1.0000

15 0.0414 0.5830 0.9750 1.0000 0.0538 0.6650 0.9814 1.0000 0.0458 0.5928 0.9810 1.0000

30 0.0404 0.8382 0.9994 1.0000 0.0532 0.9260 1.0000 1.0000 0.0466 0.8614 1.0000 1.0000

The simulation results show that size distortion of the proposed tests for different

types of explosive behaviour are very small, and local power rises rapidly as the sample

size increases and for greater departures of the true parameters from the null.

Next, we check size and power of the tests under endogeneity. Simulations are gen-

erated by setting σ̃2 = 1 and σ2 = 100 with y0 = 10 under the sampling scheme

∆ = 1/252, M = 21 and T = {5, 10, 15, 30}. Sample paths are generated in 1000

replications for parameter values µ̃ = {−1,−0.5, 0.5, 1} and for correlation coefficients

γ = {0, 0.04, 0.08, 0.4, 0.8}. The results in Table 5 show that size distortion is very small

under all parameter scenarios and that test power grows more slowly as the process be-

comes more unstable. This phenomenon is due to the structure of the quadratic variation

σ̃2y2
t + 2ωyt + σ2 under endogeneity. When the process yt is more unstable, the signal
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from y2
t is stronger and a much larger value of ω is needed for the component 2ωyt in the

quadratic variation to enhance the probability of rejecting the null. Also, as expected,

the power of the test increases with the increase in sample size.

Table 5: Power and size of the LR test for endogeneity.

T
Stationary (µ̃ = −1) Unstable (µ̃ = −0.5)

γ = 0 0.04 0.08 0.4 0.8 γ = 0 0.04 0.08 0.4 0.8

5 0.0470 0.0780 0.1950 0.9510 0.9940 0.0500 0.0810 0.1920 0.9210 0.9850

10 0.0440 0.1290 0.4110 0.9990 1.0000 0.0490 0.1200 0.4030 0.9970 1.0000

15 0.0540 0.1960 0.6000 1.0000 1.0000 0.0560 0.2160 0.5970 1.0000 1.0000

30 0.0490 0.3820 0.8790 1.0000 1.0000 0.0540 0.3990 0.8920 1.0000 1.0000

T
Locally Explosive (µ̃ = 0.5) Explosive (µ̃ = 1)

γ = 0 0.04 0.08 0.4 0.8 γ = 0 0.04 0.08 0.4 0.8

5 0.0600 0.0880 0.1580 0.7260 0.8710 0.0460 0.0580 0.1070 0.5940 0.7850

10 0.0460 0.1120 0.2770 0.8650 0.9490 0.0530 0.0690 0.1640 0.7120 0.8800

15 0.0540 0.1210 0.3680 0.9090 0.9690 0.0540 0.0870 0.1780 0.7310 0.9020

30 0.0520 0.1910 0.5270 0.9480 0.9860 0.0540 0.0810 0.1900 0.7530 0.9130

The final experiment checks performance of the proposed tests of coefficient constancy,

i.e. H0 : σ̃2 = 0. To do so, we simulate 10,000 sample paths from model (5.1) with

different parameter values to cover the various explosive scenarios. Both size and power are

calculated. More specifically, we vary µ̃ from -0.1 to 0.1, σ̃ from 0 to 0.2 and γ ∈ {0, 0.8}
holding σ = 1, which covers all explosive scenarios. In these experiments, we set nominal

size to 5%, M = 21 and ∆ = 1/252, but vary the time span T to control for sample sizes.

Test size and power are reported in Table 6.

Table 6: Power and size of the modified LBI -test for different null models.

T
µ̃ = −0.1 µ̃ = 0 µ̃ = 0.1

σ̃ = 0 0.04 0.10 0.20 σ̃ = 0 0.04 0.10 0.20 σ̃ = 0 0.04 0.10 0.20

Panel A: γ = 0

5 0.0490 0.1727 0.8675 0.9977 0.0468 0.1551 0.7868 0.9977 0.0501 0.4940 0.9251 0.9977

10 0.0472 0.2845 0.9929 1.0000 0.0495 0.3377 0.9838 1.0000 0.0497 0.9659 0.9985 1.0000

15 0.0489 0.3449 0.9980 1.0000 0.0458 0.5043 0.9982 1.0000 0.0457 0.9980 0.9998 1.0000

30 0.0467 0.3908 0.9998 1.0000 0.0472 0.7936 1.0000 1.0000 0.0534 1.0000 1.0000 1.0000

Panel B : γ = 0.8

5 0.0490 0.5755 0.9435 0.9989 0.0468 0.4338 0.9134 0.9990 0.0501 0.7190 0.9499 0.9989

10 0.0472 0.9262 0.9993 1.0000 0.0495 0.7996 0.9980 1.0000 0.0497 0.9819 0.9995 1.0000

15 0.0489 0.9861 1.0000 1.0000 0.0458 0.9438 0.9998 1.0000 0.0457 0.9993 1.0000 1.0000

30 0.0467 0.9895 0.9982 0.9990 0.0472 0.9968 0.9973 0.9975 0.0534 1.0000 0.9996 0.9996

We also plot the power function of the above tests under different sample sizes in

Figure 5, and the performance of the tests can be observed directly in these figures.
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Figure 5: Power functions of the tests.
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7 Empirical Studies

7.1 Daily data

For practical illustration of our methods with real data, we first used daily S&P 500 real

prices over January 2, 1964 to December 31, 2015. Raw data were processed so that

each month contained exactly 21 observations, thereby requiring some interpolation and

deletion. With this preprocessing, the data amounted to 52-years of the daily S&P 500

real prices with 252 data points within each year and 21 data points within each month.

We then set ∆ = 1/252, M = 21, and T = 52 in estimation and testing.

We first applied our estimation, testing, and time-stamping strategies to S&P 500

real prices based on the model with no endogeneity.5 Following PWY (2011), the initial

window is taken as the first 5-year segment of the full sample. For comparison purposes,

we also implement the BADF test of PWY and the BSADF test of PSY. The empirical

results are shown in Figure 6, where we plot the test statistic sequences under the three

forms of explosiveness and the test statistic sequences under the assumption of time-

invariant coefficients. We also plot the 95% critical values and the data in each panel.

The last panel in Figure 6 plots the recursive test statistic sequence for testing a time-

invariant autoregressive coefficient. The test results suggest that over the initial period

of observation the data are well described by a model without time varying coefficients.

The test statistic rises as the time period expands and crosses the test critical value in

the early 1980s, suggesting mild evidence for time varying coefficients over the 1980s

and into the 1990s. Evidence for time variation becomes much stronger from January

1997. This dating coincides well with the estimated origination dates of the three forms

of explosive behaviour indicated by the other three panels in Figure 6. For example, the

first panel in Figure 6 indicates that real stock prices are not unstable or explosive over the

period from January 1964 to January 1997, at which point unstable behaviour is detected

which continues until the end of the sample (with a minor break in February 2009). The

second panel in Figure 6 indicates that the real prices are not locally explosive between

January 1964 to May 1997, at which point locally explosive (submartingale) behaviour is

detected. This behaviour is interrupted 3 times over the succeeding period to the end of

the sample. Interestingly, three periods of major price escalation in the sample (namely,

the second half of 1990s, the pre global financial crisis period, the recovery from the global

5We used model (2.3) largely because the bias in estimation of ω is relatively large in long-span,
low-frequency samples and the bias becomes severe when the process is explosive (c.f., Lieberman and
Phillips (2017c)). The methods of the present paper are more relevant in models without endogeneity
when high-frequency data are unavailable.
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Figure 6: Date-stamping Explosive Periods in the S&P500 Real Price Index with Time-
Varying Coefficient Model without Endogeneity.

financial crisis) are all deemed to have local explosiveness which seems to be a reasonable

empirical finding. The third panel in Figure 6 indicates that the real price index does

not experience explosive behaviour between January 1964 and June 1997, at which point

explosive behaviour is detected. Explosive behaviour then lasts for a few years and ends in

July 2001, corresponding to the termination of the tech bubble. This panel interestingly

suggests a further explosive episode starting in June 2014 and continuing to the end of the

sample period. These time horizons for different types of unstable and explosive behaviour

are summarized in Table 7.

Table 7: Time Horizons of Unstable and Explosive Episodes Detected by Random Coef-
ficient Autoregressive Models assuming No Endogeneity.

Unstable Locally Explosive Explosive

Jan. 1997 – Jan. 2009 May. 1997 – May. 2002 Jun. 1997 – Jul. 2001

Mar. 2009 – Dec. 2015 Oct. 2003 – Aug. 2008 Jun. 2014 – Dec. 2015

— Dec. 2010 – Jul. 2011 —

— Oct. 2011 – Dec. 2015 —

For comparison purposes, Figure 7 plots the recursive BADF statistic (used in PWY),
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the recursive BSADF statistic (used in PSY), and corresponding 95% critical values to-

gether with the sample data in each panel. It is clear that both PWY and PSY tests

identify explosive behaviour in the second half of the 1990s earlier than the method pro-

posed in the present paper. This early origination date identification is achieved by using

a more restrictive reduced form autoregressive model. Interestingly, the PSY test recur-

sion indicates two similar pronounced periods of explosive behaviour, one in the second

half of the 1990s and the other at the end of the sample, both matching those identified

by methods of the present paper using a more complex modeling framework.
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Figure 7: Date-stamping Explosive Periods in the S&P500 Real Price Index with Fixed
Coefficient Model.
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To address the possible presence of endogeneity, we estimate the more general model

in which endogeneity effects are permitted. The results are summarized by the recursions

plotted in Figure 8. The period preceding the black solid line in this Figure may be ig-

nored in the analysis because this period is tested to have a fixed autoregressive coefficient

for which there is necessarily no endogeneity. First, from the test for endogeneity, it is

apparent that the null of exogeneity is rejected almost everywhere throughout the entire

sample period, confirming that endogeneity is important in the generating mechanism for

this data. From the plotted realized variance graphic in Figure 8 it is apparent that the

rejection of exogeneity is closely associated with the behaviour of the quadratic variation

of the process. This is explained by the fact that the likelihood ratio statistic is based

on an objective function that is constructed using a central limit theorem (CLT) for the

realized variance time series. Therefore, the test statistic for endogeneity captures dif-

ferences in the realized variance estimates using different models, as is shown in Figure

9. Further, from the date calculations shown in Table 8 the horizons of instability and

local explosiveness are almost identical to those estimated from the model without en-

dogeneity, which shows the robustness of the empirical results obtained from the fitted

model without endogeneity. However, empirical evidence for explosiveness disappears in

the fitted model where endogeneity effects are incorporated in the autoregressive response

mechanism. These findings indicate that endogeneity feedbacks in the random coeffi-

cient autoregressive model framework can play an important role in assessing evidence for

various types of instability and explosiveness in the data.

Table 8: Horizons of Unstable and Explosive Behaviour Detected by Random Coefficient
Autoregressive Models with Endogeneity.

Unstable Locally Explosive Explosive

Jan. 1997 – Dec. 2015 May. 1997 – Jul. 2001 —

— Jan. 2006 – May. 2008 —

— Oct. 2010 – Aug. 2011 —

— Oct. 2011 – Dec. 2015 —

7.2 Intra-day data

To further assess evidence for endogeneity and to reduce bias in the estimation of γ, we

estimate the same model using 5-minute high-frequency data for S&P 500 real prices over

the period from November 1, 1997 to October 31, 2013. Use of this high frequency intra-

day data leads to a substantial increase in sample size, accords more closely with infill
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Figure 9: Realized Variance and Likelihood Values for Random Coefficient Autoregression.

asymptotic theory, but has the limitation that the model itself abstracts from possible

intra-day effects that are known to be present in ultra high frequency data. On the

other hand, use of 5-minute data (rather than even higher frequency observations) helps

to mitigate some of these intra-day effects and gives the benefit of bias reduction in

estimation of the correlation between the equation errors and the random autoregressive

coefficient, thereby improving estimation of the degree of endogeneity in the random

coefficient driver variables.

A similar preprocessing procedure to that used earlier gives 16-years of S&P 500 real

prices with 252 data points within each year, 21 data points within each month and 78

data points within each day (6.5 trading hours per trading day). The corresponding

settings in the model for this data configuration are ∆ = 1/19656, M = 1638, and T = 16

(with 192 months in total). The model is fitted recursively with high frequency data in

this framework allowing for possible endogeneity with an initial window size of 5 years.

The empirical results are summarized in Figure 10 on monthly basis.

The recursive test statistic graphics in Figure 10 indicate that, over this sample pe-

riod and allowing for high frequency fluctuations, the data are unstable but not locally

explosive or explosive. Based on the simulation findings in the previous section, estimates

of the endogeneity parameter γ can be expected to have reasonably small bias at this
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Figure 10: Testing Explosiveness and Endogeneity in the high-frequency S&P 500 Real
Price Index with Time-varying Coefficient Model.

frequency and the t-tests to have good size and power. From the second panel in Figure

10, the t-statistic test for endogeneity always exceeds the 5% critical value of the χ2
1 distri-

bution, which reinforces from the 5-minute high-frequency data the evidence in support of

endogenous effects on the autoregressive coefficient found in the daily-frequency sample.

8 Summary and Conclusions

This paper introduces a continuous time model for financial data where the persistence

parameter is allowed to be random and time varying. The model has an analytical solution

and an exact discrete time representation which make analysis convenient for studying the

properties of the system that are associated with extreme sample path behavior. The dis-

crete time model relates to some models already in the literature, including the stochastic

unit root model (Granger and Swanson (1997); Lieberman and Phillips (2014); Lieber-

man and Phillips (2017b)) and the near-explosive random coefficient model of Banerjee

et al. (2017). The statistical properties of our model reveal three different forms of po-

tential extreme behaviour in generated sample paths: instability, local explosiveness, and

explosiveness. These forms of extreme behaviour depend directly on the values of model

parameters, including the possible presence of endogeneity in the random autoregressive

coefficient.

A novel two-stage estimation method that relies on empirical quadratic variation is

developed to estimate the model parameters. Limit theory is developed using an infill

asymptotic scheme that provides a convenient basis for testing parameter constancy and

the various forms of extreme sample path behaviour. The test statistics all have asymp-

totically pivotal standard normal distributions which makes implementation of the tests

straightforward in practical work. Similar to other recent work in the literature on bub-

bles, a time-stamping strategy is proposed to detect origination and termination dates of
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extreme behavior.

In an empirical application to daily S&P 500 real prices between January 2, 1964 and

December 31, 2015. Strong evidence against parameter constancy is found from early

1980 onwards and this evidence strengthens after July 1997, leading to a finding of long

durations of parameter instability in the model. Three periods of explosive instability

in the data match well with observed periods of major price escalation in the data and

these largely overlap with the periods of price exuberance identified in earlier work. Tests

for endogeneity in these data provide strong evidence in support of endogenous feedbacks

in the random coefficient model framework that materially influence quadratic variation

and hence recursive estimates of realized variation in the data. The empirical findings of

extreme sample path behaviour in real S&P 500 stock prices are broadly in line with the

conclusions of other recent work on stock price exuberance but now provide new evidence

against parameter constancy and in support of the role of endogenous feedbacks that

influence autoregressive behaviour and the time forms of extreme sample paths.

A Appendix

The proofs of Theorem 4.1, 5.1 and Corollary 4.1 follow directly from Phillips and Yu

(2009) and are omitted.

A.1 Proof of Theorem 4.2

Proof. To show the consistency of ̂̃µ, by (2.8) we have

AN =
M×N∑
t=1

y(t−1)∆

(
yt∆ − y(t−1)∆

)
σ̃2y2

(t−1)∆ + σ2
=

M×N∑
t=1

y2
(t−1)∆ (ρt∆ − 1)

σ̃2y2
(t−1)∆ + σ2

+ σ
M×N∑
t=1

y(t−1)∆ηt∆
σ̃2y2

(t−1)∆ + σ2
.

Note that

ρt∆ − 1 = exp{φ∆ + σ̃
√

∆ut∆} − 1 = φ∆ +
1

2
σ̃2u2

t∆∆ + σ̃
√

∆ut∆ + o(∆).

Then

AN = µ̃∆BN + AN(1) + AN(2) + AN(3) + o(T ), (A.1)
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where

AN(1) ≡ ∆

2
σ̃2

M×N∑
t=1

y2
(t−1)∆ (u2

t∆ − 1)

σ̃2y2
(t−1)∆ + σ2

,

AN(2) ≡ σ̃
√

∆
M×N∑
t=1

y2
(t−1)∆ut∆

σ̃2y2
(t−1)∆ + σ2

,

AN(3) ≡ σ
M×N∑
t=1

y(t−1)∆ηt∆
σ̃2y2

(t−1)∆ + σ2
.

By independence of Bu and Bε, we know that (ut∆, ηt∆) is independent of y(t−1)∆. This

implies that

EAN(1) = EAN(2) = EAN(3) = 0. (A.2)

Furthermore, we have

EA2
N(1) =

∆2

4
σ̃4

M×N∑
t=1

E
(
u2
t∆ − 1

)2
E

[
y2

(t−1)∆

σ̃2y2
(t−1)∆ + σ2

]2

∼ O (T∆) , (A.3)

EA2
N(2) = σ̃2∆

M×N∑
t=1

E
(
u2
t∆

)
E

[
y2

(t−1)∆

σ̃2y2
(t−1)∆ + σ2

]2

∼ O (T ) (A.4)

EA2
N(3) = σ2

M×N∑
t=1

E
(
η2
t∆

)
E

[
y(t−1)∆

σ̃2y2
(t−1)∆ + σ2

]2

∼ o (T ) , (A.5)

EB2
N = E

[
M×N∑
t=1

y2
(t−1)∆

σ̃2y2
(t−1)∆ + σ2

]2

∼ O

(
T 2

∆2

)
. (A.6)

Therefore, as ∆→ 0 and T →∞,

̂̃µ = ∆−1AN
BN

= µ̃0 +
AN(1)

∆ ·BN

+
AN(2)

∆ ·BN

+
AN(3)

∆ ·BN

+ op(1) = µ̃0 +O

(
1√
T

)
p→ µ̃0.

From the proof of consistency, we know that

√
T
(̂̃µ− µ̃0

)
=

√
TAN(2)

∆ ·BN

+

√
TAN(3)

∆ ·BN

+O(
√

∆) =

1√
MN

M×N∑
t=1

σ̃y2
(t−1)∆ut∆

σ̃2y2
(t−1)∆ + σ2

1

MN

M×N∑
t=1

y2
(t−1)∆

σ̃2y2
(t−1)∆ + σ2

+ op(1).

Note that
y2

(t−1)∆

σ̃2y2
(t−1)∆ + σ2

is bounded above by σ̃−2. By the ergodic theorem, we know

1

MN

M×N∑
t=1

y2
(t−1)∆

σ̃2y2
(t−1)∆ + σ2

a.s.−−→ V,
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where

V =


E

(
y2
t

σ̃2y2
t + σ2

)
, if κ = µ̃+

1

2
σ̃2 < 0;

σ̃−2, if κ = µ̃+
1

2
σ̃2 ≥ 0.

Further, denote

ξt :=
σ̃y2

(t−1)∆ut∆

σ̃2y2
(t−1)∆ + σ2

,

and observe that ξt is a martingale difference sequence with respect to the filtration

Ft := σ(Bu(t), Bε(t) : t ≥ 0) as

E (ξt|Ft−1) = E

(
σ̃y2

(t−1)∆ut∆

σ̃2y2
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∣∣∣∣∣Ft−1
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σ̃y2
(t−1)∆

σ̃2y2
(t−1)∆ + σ2

E (ut∆| Ft−1) = 0.

To apply the martingale CLT, we check the stability condition and the Lindeberg

condition. First, for the stability condition, the conditional variance of the standardized

martingale is〈
1√
MN

M×N∑
t=1

ξt

〉
=

1

MN

M×N∑
t=1

E
(
ξ2
t |Ft−1

)
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E

(
y2

(t−1)∆

σ̃2y2
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∣∣∣∣∣Ft−1

)
a.s.→ V.

For the Lindeberg condition, we have for any δ > 0,

1
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E
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ξ2
t 1
(
|ξi| >

√
MNδ

)∣∣∣Ft−1

}

=
1
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E

ξ2
t 1


(

σ̃y2
(t−1)∆ut∆

σ̃2y2
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)2

> MNδ2
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t 1
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)2 > MNδ2


∣∣∣∣∣∣∣Ft−1


→ 0,

where the limit result comes from the fact that u2
1∆ is integrable and MN → ∞. The

martingale CLT follows and so as T →∞,

√
T
(̂̃µ− µ̃0

)
L→ N

(
0, V −1

)
.
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A.2 Proof of Theorem 4.3

Proof. Similar to the previous proof, by equation (2.10) and the consistency of θ̂, we have

ρ̂ = ρ+

T/∆∑
t=1

y(t−1)∆(yt∆ − ρy(t−1)∆)

σ̃2y2
(t−1)∆ + σ2

T/∆∑
t=1

y2
(t−1)∆

σ̃2y2
(t−1)∆ + σ2

(A.7)

= ρ+

T/∆∑
t=1

y2
(t−1)∆(ρt∆ − ρ)

σ̃2y2
(t−1)∆ + σ2

T/∆∑
t=1

y2
(t−1)∆

σ̃2y2
(t−1)∆ + σ2

+
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σy(t−1)∆ηt∆
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T/∆∑
t=1

y2
(t−1)∆

σ̃2y2
(t−1)∆ + σ2

(A.8)

Note that

ρt∆ − ρ = exp{φ∆ + σ̃
√

∆ut∆} − exp{µ̃∆} = φ∆− µ̃∆ +
1

2
σ̃2u2

t∆∆ + σ̃
√

∆ut∆ + o(∆)

=
1

2
σ̃2(u2

t∆ − 1)∆ + σ̃
√

∆ut∆ + o(∆), (A.9)

which leads to the decomposition

1

∆
(ρ̂− ρ) =

AN(1)

∆ ·BN

+
AN(2)

∆ ·BN

+
AN(3)

∆ ·BN

+ o(∆−1B−1
N ) (A.10)

where the quantities AN(·) are defined in the proof of Theorem 4.2.

By the ergodic theorem

∆

T
BN =

∆

T

T/∆∑
t=1

y2
(t−1)∆

σ̃2y2
(t−1)∆ + σ2

a.s.−−→ V, i.e. ∆BN
a.s.−−→ TV , (A.11)

where

V =


E

(
y2
t

σ̃2y2
t + σ2

)
, if κ = µ̃+

1

2
σ̃2 < 0;

σ̃−2, if κ = µ̃+
1

2
σ̃2 ≥ 0.

Further, from the previous proof, we know by the martingale CLT,

T−1/2AN(2) = σ̃

√
∆

T

T/∆∑
t=1

y2
(t−1)∆ut∆

σ̃2y2
(t−1)∆ + σ2

L−→ N (0, V ), (A.12)

when ∆→ 0. This is equivalent to AN(2)
L−→ N (0, TV ). Combining these results gives

1

∆
(ρ̂− ρ) =

AN(2)

∆ ·BN

+ op(1)
L−→ N (0, (TV )−1).

37



A.3 Proof of Proposition 4.1

Proof. Under the assumption that T →∞ and ∆→ 0 with T∆→ 0, we have

(
β̂κ − βκ

)
= exp

(̂̃µ∆ +
̂̃σ2∆

2

)
− exp

(
µ̃∆ +
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2
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1

2

( ̂̃σ2∆− σ̃2∆
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=
(̂̃µ∆− µ̃∆

)
+

∆3/2

2

{
1√
∆

( ̂̃σ2 − σ̃2
)}

+O(∆2) =
(̂̃µ∆− µ̃∆

)
+O(∆3/2).

By Theorem 4.3
1

∆
(ρ̂− ρ)

L−→ N (0, (TV )−1). (A.13)

Then, by Taylor expansion, we obtain

ρ̂− ρ = ̂̃µ∆− µ̃∆ + (∗). (A.14)

where (∗) denotes the remainder term in the Taylor expansion which has order O(∆2).

Therefore, by Theorem 4.1 and 4.3 we have

1

∆

(
β̂κ − βκ

)
=

1

∆
(ρ̂− ρ) +O(

√
∆)

L−→ N (0, (TV )−1). (A.15)

The same argument yields the asymptotic result for β̂φ and details of the proof are omitted.

A.4 Proof of Modified LBI Test Statistic Z̃N

Proof. Under the null, by Chan et al. (2012), we firstly have the following asymptotic

distribution result for ρ̃,(
M×N∑
t=1

y2
(t−1)∆

δ + y2
(t−1)∆

)−1/2(M×N∑
t=1

y2
(t−1)∆

(δ + y2
(t−1)∆)1/2

)
× (ρ̃− ρ)

L−→ N (0,Var(εt∆)) . (A.16)

Then, we know for y(t−1)∆, no matter it is stationary or nonstationary, we have

ε̃t∆ − εt∆ = (ρ̃− ρ)y(t−1)∆ = op(1).

Note ỹt∆ is always stationary, by WLLN and ergodic theorem, we can easily show

that, for any p ∈ Z+ such that p ≤ 4,

1

MN

M×N∑
t=1

ε̃pt∆
p−→ E(εpt∆),

1

MN

M×N∑
t=1

ỹpt∆
a.s.−−→ E(ỹpt∆).
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Therefore, for the denominator, we have√√√√ 1

MN

M×N∑
t=1

ε̃4
t∆ −

(
1

MN

M×N∑
t=1

ε̃2
t∆

)2

p−→
√
E(ε4

t∆)− E(ε2
t∆)2 = Std(ε2

t∆),√√√√ 1

MN

M×N∑
t=1

ỹ4
t∆ −

(
1

MN

M×N∑
t=1

ỹ2
t∆

)2

a.s.−−→
√
E(ỹ4

t∆)− E(ỹ2
t∆)2 = Std(ỹ2

t∆).

For numerator, first denote ξ̃t∆ = ε̃2
t∆−

(
1

MN

M×N∑
t=1

ε̃2
t∆

)
and ξt∆ = ε2

t∆−
(

1

MN

M×N∑
t=1

ε2
t∆

)
,

then we know E(ξ̃t∆) = 0 = E(ξt∆) and Var(ξ̃t∆) = Var(ε̃2
t∆)

p−→ Var(ε2
t∆).

1√
MN

M×N∑
t=1

ỹ2
(t−1)∆ξ̃t∆ =

1√
MN

M×N∑
t=1

ỹ2
(t−1)∆(ξ̃t∆ − ξt∆) +

1√
MN

M×N∑
t=1

ỹ2
(t−1)∆ξt∆.

By equation (3.3) in Lee (1998), one can easily show

1√
MN

M×N∑
t=1

ỹ2
(t−1)∆(ξ̃t∆ − ξt∆) = op(1),

and by applying martingale central limit theorem (cf. Hall and Heyde, 1980), we have

1√
MN

M×N∑
t=1

ỹ2
(t−1)∆ξt∆

L−→ N
(
0,Var(ỹ2

t∆)Var(ε2
t∆)
)
.

Then combine the results above, we can derive the asymptotic distribution of Z̃N under

H0 : σ̃2 = 0 to be
1√
MN

Z̃N
L−→ N (0, 1).

Lastly, under the alternative, one just need to realize that Cov(ε2
t∆, y

2
(t−1)∆) diverges

when σ̃2 6= 0, and this leads to the divergence of Z̃N in the end.

A.5 Proof of Proposition 5.1

Proof. It has been proved in Föllmer et al. (1994) that yt is strictly stationary and ergodic

when µ̃ − 1

2
σ̃2 < 0. This means that we can still characterize strong explosiveness using

φ ≡ µ̃ − 1

2
σ̃2. However, for characterizing weak explosiveness, we need to calculate the

second moment of yt.
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The expectation of J(t) is

EJ(t) = −ω
∫ t

0

E

(
exp

{(
µ̃− 1

2
σ̃2

)
(t− s) + σ̃ (Bu(t)−Bu(s))

})
ds

= −ω
∫ t

0

exp {µ̃(t− s)} ds

=
ω

µ̃
(1− exp(µ̃t)) (A.17)

and so EJ(t) is finite as t→∞ if and only if µ̃ < 0. Further, to bound the behaviour of

Var(J(t)), we apply the Cauchy-Schwartz inequality and Hölder’s inequality to EJ(t)2,

giving

EJ(t)2 = E[K(t)− L(t)]2 ≤ 2EK(t)2 + 2EL(t)2, (A.18)

EJ(t)2 = EK(t)2 + EL(t)2 − 2E (K(t) · L(t))

≥ EK(t)2 + EL(t)2 − 2E (|K(t) · L(t)|)

≥ EK(t)2 + EL(t)2 − 2
(
EK(t)2

)1/2 (
EL(t)2

)1/2

=
[(
EK(t)2

)1/2 −
(
EL(t)2

)1/2
]2

. (A.19)

These two inequalities indicate that we only need to calculate EK(t)2 and EL(t)2 to

evaluate the upper bound and the lower bound of EJ(t)2. By Itō’s isometry

EK(t)2 = σ2

∫ t

0

E
(
exp

{(
2µ̃− σ̃2

)
(t− s) + 2σ̃ (Bu(t)−Bu(s))

})
ds = σ2 e

2κt − 1

2κ
,

and

EL(t)2 = ω2E

(∫ t

0

exp

{(
µ̃− 1

2
σ̃2

)
(t− s) + σ̃ (Bu(t)−Bu(s))

}
ds

)2

= ω2E

(∫ t

0

∫ t

0

exp

{(
µ̃− 1

2
σ̃2

)
(2t− s− r) + σ̃ (2Bu(t)−Bu(s)−Bu(r))

}
dsdr

)
= ω2

∫ t

0

∫ t

0

exp

{(
µ̃− 1

2
σ̃2

)
(2t− s− r) +

1

2
σ̃2 (2t− s− r + 2 min{t− s, t− r})

}
dsdr

= ω2

∫ t

0

∫ r

0

exp

{(
µ̃− 1

2
σ̃2

)
(2t− s− r) +

1

2
σ̃2 (4t− s− 3r)

}
dsdr

+ ω2

∫ t

0

∫ t

r

exp

{(
µ̃− 1

2
σ̃2

)
(2t− s− r) +

1

2
σ̃2 (4t− 3s− r)

}
dsdr

= ω2

{
µ̃e2κt − 2κeµ̃t + µ̃+ σ̃2

2κµ̃ (µ̃+ σ̃2)
+

1− eµ̃t

µ̃ (µ̃+ σ̃2)
+

e2κt − 1

2κ (µ̃+ σ̃2)

}
= σ2 e

2κt − 1

2κ

{
γ2σ̃2 2µ̃e2κt − 4κeµ̃t + 2µ̃+ 2σ̃2

µ̃ (µ̃+ σ̃2) (e2κt − 1)

}
.
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Note that for κ < 0

EJ(t)2 ≤ 2EK(t)2 + 2EL(t)2 t→∞−−−→ σ2

κ

(
2γσ̃2

µ̃
− 1

)
<∞, (A.20)

showing that, when κ < 0, J(t) has finite second-order moments as t→∞. Further, for

κ = 0, by L’Hôpital’s rule, we have

lim
κ→0

EK(t)2 = lim
κ→0

σ2 2te2κt

2
= σ2t

t→∞−−−→∞, (A.21)

and

lim
κ→0

EL(t)2 = lim
κ→0

σ2 e
2κt − 1

2κ

{
γ2σ̃2 2µ̃e2κt − 4κeµ̃t + 2µ̃+ 2σ̃2

µ̃ (µ̃+ σ̃2) (e2κt − 1)

}
= lim

κ→0
σ2 e

2κt − 1

2κ

{
γ2σ̃2 4κ

µ̃ (µ̃+ σ̃2) (e2κt − 1)

}
=

2ω2

µ̃ (µ̃+ σ̃2)
<∞. (A.22)

Combining results (A.21) and (A.22), we obtain

EJ(t)2 ≥
[(
EK(t)2

)1/2 −
(
EL(t)2

)1/2
]2 t→∞−−−→∞. (A.23)

Lastly, for κ > 0, we have

lim
t→∞

EL(t)2 = lim
t→∞

EK(t)2

{
γ2σ̃2 2µ̃e2κt − 4κeµ̃t + 2µ̃+ 2σ̃2

µ̃ (µ̃+ σ̃2) (e2κt − 1)

}
=

2γ2σ̃2

µ̃+ σ̃2
lim
t→∞

EK(t)2, (A.24)

and this leads to

lim
t→∞

EJ(t)2 ≥

1−

√
2γ2σ̃2

µ̃+ σ̃2

2

lim
t→∞

EK(t)2 →∞.

From the results above we know that EJ(t) is finite if and only if µ̃ < 0 and EJ(t)2 is

finite if and only if κ < 0. Further note that κ < 0 =⇒ µ̃ < 0, so then Var(J(t)) <∞ if

and only if κ < 0. We can now work out the first- and second-order moments of yt, viz.,

Eyt = E

[
exp

(
σ̃Bu(t) +

(
µ̃− 1

2
σ̃2

)
t

)]
y0 + EJ(t) = eµ̃ty0 +

ω

µ̃
(1− exp(µ̃t)) (A.25)
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and

Ey2
t = E

[
exp

(
2σ̃Bu(t) +

(
2µ̃− σ̃2

)
t
)]
Ey2

0 + 2Ey0E

[
exp

(
σ̃Bu(t) +

(
µ̃− 1

2
σ̃2

)
t

)
J(t)

]
+ EJ(t)2

= e2κtEy2
0 − 2Ey0E

(
ω

∫ t

0

exp

{(
µ̃− 1

2
σ̃2

)
(2t− s) + σ̃ (2Bu(t)−Bu(s))

}
ds

)
+ EJ(t)2

= e2κtEy2
0 − 2ω

∫ t

0

E

(
exp

{(
µ̃− 1

2
σ̃2

)
(2t− s) + σ̃ (2Bu(t)−Bu(s))

})
dsEy0 + EJ(t)2

= e2κty2
0 − 2ω

∫ t

0

exp
(
2κt−

(
µ̃+ σ̃2

)
s
)
dsEy0 + EJ(t)2

= e2κtEy2
0 − 2ω

e2κt − eµ̃t

µ̃+ σ̃2
Ey0 + EJ(t)2.

Evidently from these expressions Eyt is asymptotically finite if and only if µ̃ < 0 and Ey2
t

is asymptotically finite if and only if κ < 0. This indicates that Var(yt) <∞ if and only if

κ < 0. Therefore, we can still characterize weak explosiveness with κ ≥ 0 and semi-strong

explosiveness with µ̃ ≥ 0.

A.6 Proof of Remark 5.2

Proof. Denote Xn =
logRVn − log[y]nh(n−1)h +

1

2
s2
n

sn
, where sn = max

{√
2∆

RQn

RV 2
n

,

√
2

M

}
,

then according to Barndorff-Nielsen and Shephard (2005), we have {Xn}Nn=1
L→ N (0, 1),

as ∆ → 0. Note N =
T

M∆
, so when ∆ → 0 with T,M being finite, we have N → ∞.

Therefore, the log-likelihood function for θ = (σ̃2, γ, σ2) is given by

`ur(θ) = −N
2

log 2π − 1

2

N∑
n=1

Xn(θ)2 +O(∆). (A.26)

As `ur(θ) is based on the standard normal distribution, Wilks’s theorem applies in this

case, i.e. under H0 : γ0 = 0, as N →∞,

LR = −2 (`r − `ur) =
N∑
n=1

Xn(θ0)2−
N∑
n=1

Xn(θ)2+op(1) = ∆−1 (Q∆(θ0)−Q∆(θ))+op(1)
L→ χ2(1),

(A.27)

where θ0 = (σ̃2, γ0, σ
2).

A.7 Proof of Theorem 5.2

Proof. The dependence of Bu and Bε leads to a complex relationship between y(t−1)∆,

ρt∆ and Jt∆ in model (5.4). But with no loss of generality, we know that yt can also be
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generated from model (5.3) by virtue of the observational equivalence of these mechanisms.

Then, by Euler approximation, the discretized model of the process (5.3) is

yt∆ − y(t−1)∆ = µ̃y(t−1)∆ ·∆ +
√

(σ̃2y(t−1)∆ + 2ωy(t−1)∆ + σ2)∆ · vt∆ + o(∆), (A.28)

where vt∆
i.i.d∼ N (0, 1) due to the nature of the process Bv.

According to (5.10), we have

A∗N =
M×N∑
t=1

y(t−1)∆

(
yt∆ − y(t−1)∆

)
σ̃2y2

(t−1)∆ + 2ωy(t−1)∆ + σ2

= µ̃

M×N∑
t=1

y2
(t−1)∆ ·∆

σ̃2y2
(t−1)∆ + 2ωy(t−1) + σ2

+
M×N∑
t=1

y(t−1)∆vt∆ ·
√

∆√
σ̃2y2

(t−1)∆ + 2ωy(t−1)∆ + σ2
+ op(1)

= µ̃∆B∗N +
√

∆CN + op(1),

where CN =
M×N∑
t=1

y(t−1)∆vt∆√
σ̃2y2

(t−1)∆ + 2ωy(t−1)∆ + σ2
, and this leads to

̂̃µ = µ̃+
CN√
∆BN

+ op(1). (A.29)

Next note that E(CN) = 0 by virtue of the independence between y(t−1)∆ and vt∆,

and the variance CN is

E(C2
N) =

M×N∑
t=1

E
(
v2
t∆

)
E

[
y2

(t−1)∆

σ̃2y2
(t−1)∆ + 2ωy(t−1)∆ + σ2

]2

∼ O

(
T

∆

)
. (A.30)

Also note that

E(B∗N
2) = E

[
M×N∑
t=1

y2
(t−1)∆

σ̃2y2
(t−1)∆ + 2ωy(t−1)∆ + σ2

]2

∼ O

(
T 2

∆2

)
, (A.31)

and then it follows that ̂̃µ = µ̃+O

(
1√
T

)
p→ µ̃. (A.32)

Rewrite equation (A.29) as

√
T
(̂̃µ− µ̃) =

1√
MN

M×N∑
t=1

y(t−1)∆vt∆
σ̃2y2

(t−1)∆ + 2ωy(t−1)∆ + σ2

1

MN

M×N∑
t=1

y2
(t−1)∆√

σ̃2y2
(t−1)∆ + 2ωy(t−1)∆ + σ2

+ op(1). (A.33)

43



and note that
y2

(t−1)∆

σ̃2y2
(t−1)∆ + 2ωy(t−1)∆ + σ2

is bounded above by σ̃−2. By the ergodic theo-

rem, we have

1

MN

M×N∑
t=1

y2
(t−1)∆

σ̃2y2
(t−1)∆ + 2ωy(t−1)∆ + σ2

a.s.−−→ V,

where

V =


E

(
y2
t

σ̃2y2
t + 2ωyt + σ2

)
if κ = µ̃+

1

2
σ̃2 < 0

σ̃−2 if κ = µ̃+
1

2
σ̃2 ≥ 0

.

Further, denote

ξt :=
y(t−1)∆vt∆√

σ̃2y2
(t−1)∆ + 2ωy(t−1)∆ + σ2

and observe that ξt is a martingale difference sequence with respect to the filtration

Ft := σ(Bv(t) : t ≥ 0) as

E (ξt|Ft−1) = E

 y(t−1)∆vt∆√
σ̃2y2

(t−1)∆ + 2ωy(t−1)∆ + σ2

∣∣∣∣∣∣Ft−1


=

y(t−1)∆√
σ̃2y2

(t−1)∆ + 2ωy(t−1)∆ + σ2
E (vt∆| Ft−1) = 0.

To apply the martingale CLT, we check the stability condition and the Lindeberg con-

dition. For the stability condition, the conditional variance of the standardized martingale

is〈
1√
MN

M×N∑
t=1

ξt

〉
=

1

MN

M×N∑
t=1

E
(
ξ2
t |Ft−1

)
=

1

MN

M×N∑
t=1

E

(
y2

(t−1)∆

σ̃2y2
(t−1)∆ + 2ωy(t−1)∆ + σ2

∣∣∣∣∣Ft−1

)
→ V.

For the Lindeberg condition, we have for any δ > 0

1

MN

M×N∑
t=1

E
{
ξ2
t 1
(
|ξi| >

√
MNδ

)∣∣∣Ft−1

}
=

1

MN

M×N∑
t=1

E

{
ξ2
t 1

{
y2

(t−1)∆v
2
t∆

σ̃2y2
(t−1)∆ + 2ωy(t−1)∆ + σ2

> MNδ2

}∣∣∣∣∣Ft−1

}

≤ E

{
ξ2
t 1

{
y2

(t−1)∆v
2
1∆

σ̃2y2
(t−1)∆ + 2ωy(t−1)∆ + σ2

> MNδ2

}∣∣∣∣∣Ft−1

}
→ 0,
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where the limit result comes from the fact that v2
1∆ is integrable and MN → ∞. From

the martingale CLT it follows that as T →∞,

√
T
(̂̃µ− µ̃0

)
L→ N

(
0, V −1

)
.

A.8 Proof of Theorem 5.3

Proof. Similar to the proof of Theorem 4.3 by substituting equation (A.28) into ρ̂, we

obtain

ρ̂− ρ = ̂̃µ∆− µ̃∆ +O(∆2) =
A∗N
B∗N
− µ̃∆ +O(∆2) =

√
∆CN
B∗N

+O(∆2). (A.34)

Then, by the ergodic theorem, we have

∆

T
B∗N =

∆

T

T/∆∑
t=1

y2
(t−1)∆

σ̃2y2
(t−1)∆ + 2ωy(t−1)∆ + σ2

a.s.−−→ V, i.e. ∆B∗N
a.s.−−→ TV ,

where

V =


E

(
y2
t

σ̃2y2
t + 2ωyt + σ2

)
if κ = µ̃+

1

2
σ̃2 < 0

σ̃−2 if κ = µ̃+
1

2
σ̃2 ≥ 0

.

Further, as proved in the previous section,
√

∆/TCN
L−→ N (0, V ) by the martingale

CLT, which gives
√

∆CN
L−→ N (0, TV ). Combining these results gives

1

∆
(ρ̂− ρ) =

√
∆CN

∆B∗N
+O(∆)

L−→ N (0, (TV )−1). (A.35)
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B Supplementary Simulations

B.1 Performance of Two-stage Estimation: Infill Sampling

Table 9: Bias and standard errors of the two-stage estimates for different ∆ and M and
a fixed T (= 5). The parameter values are µ̃ = −1, σ̃2 = 1, σ2 = 1. y0 = 10.

∆ = 1/252 ∆ = 1/19656

Panel A M = 21 M = 63 M = 252 M = 21 M = 63 M = 252

Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E.

µ̃ -0.2020 0.7148 -0.2021 0.7150 -0.2001 0.7174 -0.1961 0.7189 -0.1961 0.7189 -0.1961 0.7189

σ̃2 0.0133 0.0856 0.0097 0.0879 0.1100 0.0693 0.0017 0.0092 7.9e-04 0.0090 2.6e-04 0.0089

σ2 0.0019 0.0926 0.0030 0.1140 0.0079 0.3065 0.0016 0.0124 7.6e-04 0.0122 2.3e-04 0.0119

κ -0.1953 0.7115 -0.1972 0.7123 -0.1941 0.7153 -0.1952 0.7189 -0.1957 0.7189 -0.1959 0.7189

ρ -7.9e-04 0.0028 -7.9e-04 0.0028 -7.9e-04 0.0028 -3.9e-05 2.9e-05 -1.0e-05 3.7e-05 -1.0e-05 3.7e-05

φ -0.2086 0.7206 -0.2069 0.7204 -0.2060 0.7237 -0.1969 0.7188 -0.1965 0.7188 -0.1962 0.7188

∆ = 1/252 ∆ = 1/19656

Panel B M = 21 M = 63 M = 252 M = 21 M = 63 M = 252

Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E.

µ̃ -0.2018 0.7469 -0.2033 0.7482 -0.2332 1.2467 -0.1913 0.7425 -0.1913 0.7425 -0.1913 0.7425

σ̃2 0.0233 0.1160 0.0212 0.1246 0.0438 0.1935 0.0018 0.0123 8.6e-04 0.0120 3.3e-04 0.0120

σ2 0.0342 0.5280 0.0395 0.8242 0.4420 21.7866 0.0027 0.0399 0.0018 0.0394 0.0012 0.0387

γ -0.0146 0.1177 -0.0160 0.1313 -0.0495 0.2450 -3.1e-04 0.0217 -2.5e-04 0.0212 -2.2e-04 0.0211

κ -0.1901 0.7462 -0.1927 0.7493 -0.2113 1.2508 -0.1904 0.7426 -0.1909 0.7426 -0.1911 0.7426

ρ -7.9e-04 0.0029 -8.0e-04 0.0030 -9.1e-04 0.0048 4.8e-05 1.5e-05 3.9e-05 2.9e-05 3.9e-05 2.9e-05

φ -0.2134 0.7521 -0.2139 0.7522 -0.2551 1.2502 -0.1922 0.7424 -0.1917 0.7424 -0.1914 0.7424
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Table 10: Bias and standard errors of the two-stage estimates for different ∆ and M and
a fixed T (= 5). The parameter values are µ̃ = −0.5, σ̃2 = 1, σ2 = 1. y0 = 10.

∆ = 1/252 ∆ = 1/19656

Panel A M = 21 M = 63 M = 252 M = 21 M = 63 M = 252

Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E.

µ̃ -0.1916 0.6547 -0.1918 0.6546 -0.1913 0.6547 -0.1884 0.6646 -0.1884 0.6646 -0.1884 0.6646

σ̃2 0.0058 0.0728 0.0028 0.0746 0.0036 0.0915 0.0016 0.0080 7.0e-04 0.0079 1.7e-04 0.0078

σ2 0.0545 0.7225 0.0738 1.0822 0.1807 2.9377 0.0016 0.1027 9.7e-04 0.1000 3.0e-04 0.1056

κ -0.1887 0.6526 -0.1904 0.6526 -0.1896 0.6534 -0.1876 0.6647 -0.1880 0.6647 -0.1883 0.6647

ρ -7.6e-04 0.0026 -7.6e-04 0.0026 -7.5e-04 0.0026 1.9e-05 2.0e-05 -9.6e-06 3.4e-05 -9.6e-06 3.4e-05

φ -0.1945 0.6588 -0.1932 0.6586 -0.1931 0.6593 -0.1892 0.6645 -0.1887 0.6645 -0.1885 0.6645

∆ = 1/252 ∆ = 1/19656

Panel B M = 21 M = 63 M = 252 M = 21 M = 63 M = 252

Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E.

µ̃ -0.1764 0.6908 -0.1778 0.6921 -0.2401 1.8586 -0.1646 0.6779 -0.1646 0.6779 -0.1646 0.6779

σ̃2 0.0212 0.1091 0.0208 0.1179 0.0491 0.1940 0.0020 0.0118 9.8e-04 0.0116 4.4e-04 0.0115

σ2 0.4005 4.5552 0.5651 6.9179 1.4647 14.0834 0.0322 0.4455 0.0301 0.4253 0.0305 0.4646

γ -0.0418 0.2102 -0.0464 0.2301 -0.1047 0.3632 -0.0034 0.3632 -0.0030 0.3632 -0.0028 0.3632

κ -0.1658 0.6952 -0.1674 0.6987 -0.2155 1.8623 -0.1636 0.6783 -0.1641 0.6783 -0.1644 0.6783

ρ -6.9e-04 0.0027 -7.0e-04 0.0027 -9.2e-04 0.0068 2.4e-05 1.0e-05 1.9e-05 2.0e-05 1.9e-05 2.0e-05

φ -0.1869 0.6907 -0.1882 0.6904 -0.2646 1.8598 -0.1656 0.6776 -0.1651 0.6776 -0.1648 0.6776
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Table 11: Bias and standard errors of the two-stage estimates for different ∆ and M and
a fixed T (= 5). The parameter values are µ̃ = 0.5, σ̃2 = 1, σ2 = 1. y0 = 10.

∆ = 1/252 ∆ = 1/19656

Panel A M = 21 M = 63 M = 252 M = 21 M = 63 M = 252

Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E.

µ̃ -0.0847 0.5591 -0.0861 0.5586 -0.0960 0.5927 -0.0798 0.5786 -0.0817 0.5713 -0.0817 0.5713

σ̃2 -0.0064 0.0539 -0.0101 0.0561 -0.0161 0.0713 0.0015 0.0062 4.8e-04 0.0061 -6.1e-05 0.0061

σ2 1.9927 7.9678 2.6250 11.3631 11.5247 109.1634 0.1054 0.8897 0.1025 0.8561 0.1045 0.8704

κ -0.0880 0.5575 -0.0911 0.5570 -0.1041 0.5919 -0.0791 0.5785 -0.0815 0.5713 -0.0818 0.5713

ρ -3.3e-04 0.0022 -3.4e-04 0.0022 -3.8e-04 0.0023 -1.4e-05 2.4e-05 -4.2e-06 2.9e-05 -4.2e-05 2.9e-05

φ -0.0815 0.5620 -0.0810 0.5616 -0.0879 0.5956 -0.0806 0.5787 -0.0820 0.5714 -0.0817 0.5714

∆ = 1/252 ∆ = 1/19656

Panel B M = 21 M = 63 M = 252 M = 21 M = 63 M = 252

Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E.

µ̃ -0.0864 0.5695 -0.0887 0.5694 -0.1088 1.5743 -0.0747 0.5720 -0.0747 0.5720 -0.0747 0.5720

σ̃2 0.0399 0.1135 0.0434 0.1294 0.1069 0.3211 0.0037 0.0120 0.0028 0.0119 0.0022 0.0118

σ2 9.9413 32.2082 14.1995 59.1407 66.6901 364.0267 0.7251 2.5128 0.7103 2.4788 0.7149 2.5225

γ -0.2871 0.5485 -0.3113 0.5699 -0.4528 0.6906 -0.0531 0.2409 -0.0535 0.2394 -0.0519 0.2396

κ -0.0667 0.5769 -0.0670 0.5781 -0.1088 1.5758 -0.0728 0.5726 -0.0733 0.5727 -0.0736 0.5726

ρ -3.4e-04 0.0023 -3.5e-04 0.0023 -4.1e-04 0.0061 -2.5e-05 7.8e-06 -2.1e-05 1.6e-05 -2.1e-05 1.6e-05

φ -0.1063 0.5678 -0.1104 0.5680 -0.1622 1.5890 -0.0765 0.5714 -0.0761 0.5714 -0.0758 0.5714
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B.2 Performance of Two-stage Estimation: Long-span Sampling

Table 12: Bias and standard errors of the two-stage estimates for different T and M and
a fixed ∆(= 1/252). The parameter values are µ̃ = −1, σ̃2 = 1, σ2 = 1. y0 = 10.

T = 30 T = 60

Panel A M = 21 M = 63 M = 252 M = 21 M = 63 M = 252

Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E.

µ̃ -0.0567 0.3556 -0.0529 0.3556 -0.0570 0.3557 -0.0294 0.2555 -0.0295 0.2555 -0.0296 0.2555

σ̃2 0.0077 0.0482 0.0035 0.0495 -2.5e-05 0.0574 0.0070 0.0362 0.0026 0.0371 -0.0019 0.0425

σ2 -4.0e-07 0.0243 -3.5e-04 0.0250 4.0e-04 0.0297 1.7e-04 0.0173 -1.0e-04 0.0177 9.8e-04 0.0208

κ -0.0529 0.3549 -0.0551 0.3552 -0.0570 0.3561 -0.0259 0.2554 -0.0282 0.2556 -0.0305 0.2568

ρ -2.2e-04 0.0014 -2.2e-04 0.0014 -2.2e-04 0.0014 -1.2e-04 0.0010 -1.2e-04 0.0010 -1.2e-04 0.0010

φ -0.0606 0.3580 -0.0586 0.3578 -0.0570 0.3576 -0.0330 0.2570 -0.0308 0.2568 -0.0187 0.2564

T = 30 T = 60

Panel B M = 21 M = 63 M = 252 M = 21 M = 63 M = 252

Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E.

µ̃ -0.0495 0.2795 -0.0497 0.2796 -0.0499 0.2798 -0.0256 0.1928 -0.0256 0.1928 -0.0257 0.1928

σ̃2 0.0095 0.0517 0.0048 0.0538 0.0022 0.0668 0.0077 0.0374 0.0028 0.0387 -0.0011 0.0470

σ2 -3.9e-04 0.0225 -0.0024 0.0232 -0.0031 0.0211 -3.7e-04 0.0156 -0.0024 0.0160 -0.0028 0.0191

γ -0.0020 0.0129 -0.0023 0.0141 -0.0023 0.0286 -0.0018 0.0086 -0.0021 0.0091 -0.0020 0.0124

κ -0.0448 0.2793 -0.0473 0.2799 -0.0488 0.2815 -0.0217 0.1929 -0.0242 0.1933 -0.0263 0.1942

ρ -2.0e-04 0.0011 -2.0e-04 0.0011 -2.0e-04 0.0011 -1.0e-04 7.6e-04 -1.0e-04 7.6e-04 -1.0e-04 7.6e-04

φ -0.0543 0.2821 -0.0520 0.2818 -0.0510 0.2821 -0.0294 0.1945 -0.0270 0.1942 -0.0252 0.1943
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Table 13: Bias and standard errors of the two-stage estimates for different T and M and
a fixed ∆(= 1/252). The parameter values are µ̃ = −0.5, σ̃2 = 1, σ2 = 1. y0 = 10.

T = 30 T = 60

Panel A M = 21 M = 63 M = 252 M = 21 M = 63 M = 252

Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E.

µ̃ -0.0572 0.3125 -0.0573 0.3125 -0.0575 0.3125 -0.0300 0.2233 -0.0301 0.2233 -0.0302 0.2237

σ̃2 0.0024 0.0382 -0.0014 0.0391 -0.0035 0.0442 0.0024 0.0285 -0.0016 0.0291 -0.0044 0.0324

σ2 2.1e-04 0.0266 -1.2e-04 0.0272 2.7e-04 0.0322 1.2e-04 0.0186 -2.1e-04 0.0190 5.0e-04 0.0221

κ -0.0560 0.3122 -0.0581 0.3124 -0.0592 0.3129 -0.0288 0.2232 -0.0308 0.2234 -0.0324 0.2241

ρ -2.3e-04 0.0012 -2.3e-04 0.0012 -2.3e-04 0.0012 -1.2e-04 8.8e-04 -1.2e-04 8.8e-04 -1.2e-04 8.8e-04

φ -0.0584 0.3139 -0.0566 0.3138 -0.0557 0.3137 -0.0312 0.2243 -0.0293 0.2242 -0.0279 0.2237

T = 30 T = 60

Panel B M = 21 M = 63 M = 252 M = 21 M = 63 M = 252

Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E.

µ̃ -0.0440 0.2309 -0.0441 0.2310 -0.0442 0.2311 -0.0222 0.1553 -0.0222 0.1553 -0.0223 0.1553

σ̃2 0.0036 0.0405 -2.8e-04 0.0413 -0.0021 0.0487 0.0028 0.0292 -0.0012 0.0298 -0.0038 0.0342

σ2 -1.0e-04 0.0243 -0.0022 0.0248 -0.0029 0.0293 -2.7e-04 0.0168 -0.0024 0.0171 -0.0031 0.0193

γ -6.8e-04 0.0102 -0.0010 0.0108 -0.0011 0.0140 -5.6e-04 0.0067 -9.6e-04 0.0069 -0.0011 0.0082

κ -0.0422 0.2312 -0.0442 0.2315 0.0453 0.2323 -0.0208 0.1556 -0.0229 0.1558 -0.0242 0.1563

ρ -1.7e-04 9.1e-04 -1.7e-05 9.1e-04 -1.7e-04 9.1e-04 5.0e-05 6.1e-04 -8.8e-05 6.1e-04 -8.8e-05 6.1e-04

φ -0.0458 0.2325 -0.0439 0.2323 -0.0432 0.2325 -0.0236 0.1563 -0.0216 0.1561 -0.0204 0.1561
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Table 14: Bias and standard errors of the two-stage estimates for different T and M and
a fixed ∆(= 1/252). The parameter values are µ̃ = 0.5, σ̃2 = 1, σ2 = 1. y0 = 10.

T = 30 T = 60

Panel A M = 21 M = 63 M = 252 M = 21 M = 63 M = 252

Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E.

µ̃ -0.0329 0.2198 -0.0330 0.2198 -0.0336 0.2194 -0.0166 0.1501 -0.0166 0.1501 -0.0168 0.1500

σ̃2 -0.0021 0.0201 -0.0053 0.0206 -0.0059 0.0236 -0.0019 0.0139 -0.0051 0.0143 -0.0057 0.0163

σ2 0.6625 4.8403 0.8266 6.3235 2.7896 23.1726 0.4609 3.8037 0.5752 5.4461 2.0818 23.0396

κ -0.0340 0.2197 -0.0357 0.2196 -0.0366 0.2193 -0.0175 0.1502 -0.0191 0.1502 -0.0196 0.1501

ρ -1.3e-04 8.7e-04 -1.3e-04 8.7e-04 -1.3e-04 8.7e-04 -6.6e-05 6.0e-04 -6.6e-05 6.0e-04 -6.7e-05 6.0e-04

φ -0.0319 0.2204 -0.0304 0.2204 -0.0307 0.2202 -0.0156 0.1504 -0.0141 0.1504 -0.0139 0.1503

T = 30 T = 60

Panel B M = 21 M = 63 M = 252 M = 21 M = 63 M = 252

Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E. Bias S.E.

µ̃ 0.0150 0.1701 0.0149 0.1701 0.0142 0.1938 0.0122 0.1195 0.0122 0.1195 0.0142 0.1644

σ̃2 -1.8e-04 0.0214 -0.0034 0.0219 -0.0032 0.0255 -0.0012 0.0139 -0.0044 0.0143 -0.0048 0.0164

σ2 2.3272 12.1910 2.8084 15.2721 8.3717 83.5771 1.4188 8.9666 1.8492 12.4210 5.2935 58.9490

γ -0.0741 0.2808 -0.0760 0.2880 -0.1056 0.3503 -0.0478 0.2277 -0.0477 0.2277 -0.0614 0.2700

κ 0.0149 0.1710 0.0132 0.1710 0.0125 0.1949 0.0116 0.1198 0.0100 0.1198 0.0118 0.1647

ρ 6.0e-05 6.8e-04 6.0e-05 6.8e-04 5.7e-05 7.7e-04 4.9e-05 4.8e-04 4.9e-05 4.8e-04 5.7e-05 6.6e-04

φ 0.0151 0.1700 0.0165 0.1700 0.0158 0.1934 0.0129 0.1196 0.0144 0.1196 0.0166 0.1645
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