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a b s t r a c t

New limit theory is developed for co-moving systems with explosive processes, connecting continuous
and discrete time formulations. The theory uses double asymptotics with infill (as the sampling interval
tends to zero) and large time span asymptotics. The limit theory explicitly involves initial conditions,
allows for drift in the system, is provided for single and multiple explosive regressors, and is feasible to
implement in practice. Simulations show that double asymptotics deliver a good approximation to the
finite sample distribution, with both finite sample and asymptotic distributions showing sensitivity to
initial conditions. Themethods are implemented in the US real estatemarket for an empirical application,
illustrating the usefulness of double asymptotics in practical work.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The recent global financial crisis hasmotivated econometricians
to study potentially explosive behavior in financial time series
and develop technologies for the detection of bubbles in financial
markets. For example, Phillips et al. (2011) and Phillips et al.
(2015a, b) use mildly explosive representations to capture market
exuberance in financial time series and recursive regressions to
provide dating algorithms. Both these studies use machinery that
draws on work of Phillips and Magdalinos (2007, PM hereafter)
on mildly explosive processes and the limit theory associated with
these processes, which have a growing number of applications
in economics and finance. Other recent research has focussed
on mechanisms for generating financial bubbles rather than re-
duced formmethods. Among hismanywide-ranging contributions
to econometrics and finance, Christian Gouriéroux has recently
explored newways of generating explosive bubbles via non-causal
forward-looking processes (Gouriéroux and Zakoian, 2017).

Long run equilibrium relationships among nonstationary vari-
ables are often modeled in terms of cointegrated systems. In a

✩ Phillips acknowledges support from the NSF under Grant No. SES 12-58258.
Yu acknowledges financial support by the Singapore Ministry of Education (MOE)
Academic Research Fund Tier 3 grant MOE2013-T3-1-009. We thank two referees,
the editors, and seminar participants at Peking University for helpful comments on
earlier versions of the paper.

* Corresponding author at: Yale University, United States.
E-mail address: peter.phillips@yale.edu (P.C.B. Phillips).

typical cointegrated system variables are assumed to be integrated
I (1) processes and the model is formulated in discrete time. How-
ever, financial applications often use continuous time representa-
tions, given the presence of high frequency observations, making
these representations popular in empirical work. Phillips (1991)
showed how to formulate a cointegrated system in continuous
time and proposed an inferential procedure for such systems based
on frequency domain techniques. That work maintained the usual
I(1) process assumption, thereby excluding episodes of exuberance
in the data.

Extending the framework of co-movement in data to mildly
explosive variables, Magdalinos and Phillips (2009, MP hereafter)
developed a generalized cointegrated system with multiple vari-
ables that may be mildly explosive, leading to mixed normal limit
theory and mildly explosive rates of convergence, just as in the
univariate autoregression studied in PM. Like autoregressive roots
that are local to unity,mildly explosive roots depend on the sample
size but deliver parameterizations that lie in a wider vicinity of
unity. The limit theory in such systems is independent of the initial
conditionwhen, as is often the case, the initialization is assumed to
be asymptotically negligible relative to the order of the sample ob-
servations. Other cases, where the initialization is non-negligible
and may figure in the limit theory in various ways are considered
in other work (Andrews and Guggenberger, 2012; Phillips and
Magdalinos, 2009).

In a recent study, Wang and Yu (2016, WY hereafter) devel-
oped a double asymptotic theory for an explosive continuous time
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model, where the sampling interval passes to zero and the time
span passes to infinity. In this double asymptotic setting, the explo-
sive continuous time model implies mildly explosive behavior in
discrete time but with an autoregressive parameter that depends
on the sampling frequency, not the sample size, by virtue of the dis-
crete time solution of the continuous system. In empirical work the
value of the autoregressive coefficient is also often taken to depend
on the frequency of observation. This is because the use of higher
frequency data typically leads to a more persistent autoregressive
coefficient estimate and expectations do not change over short
time horizons as much as they do over long horizons. For these
reasons dependence of the autoregressive parameter on sampling
frequency often provides greater realism in empirical work where
it is necessary tomodel near unit root phenomena in discrete time.
The limit theory in WY contains a term that explicitly depends
on initial conditions, thereby differing from the (large span) limit
theory in PM. This difference arises from the different order of
magnitude implied for the initial conditions in the two approaches.
Simulations inWY reveal that double asymptotics involving initial
condition dependencies typically outperform in finite samples the
asymptotics that are free of the initial condition. The changes in
the limit theory induced by these initial condition dependences are
sufficient to materially change conclusions in empirical work.

This paper extends work by Phillips (1991) on continuous
system cointegration by developing asymptotics for continuous
models where the variables aremildly explosive. Themodel differs
from MP’s mildly explosive system in three ways. First, our model
is formulated and parameterized in a way that relates to a contin-
uous time system whereas MP use a discrete time specification.
This difference is important because the implied (discrete time)
autoregressive parameter of the continuous system depends on
the known sampling frequency, not on the sample size in terms of
an unknown localizing coefficient. Pivotal limit theory is therefore
possible in the continuous time formulation. Second, the initial
conditions in the two models are different. Third, the continuous
time model allows for a drift in the regressor, which affects the
limit theory. In developing double asymptotics, we utilize the limit
theory of MPwhile adjusting for the initial condition, the drift, and
the autoregressive specification, all of which affect the resulting
limit distribution.

There are good reasons for extending discrete time cointegrated
systems to continuous time. Continuous time models now enjoy
a wide range of empirical applications both in macroeconomics
and financial economics. They provide for discrete sampling at
any frequency, including intermittent random sampling, and they
allow for convenient handling of both stock variables and flow
variables, the latter by simple time aggregation. Importantly in
the present setting, the use of a continuous time framework read-
ily accommodates initial condition and drift effects, with a limit
theory that is easy to implement in practice with no nuisance
parameters. In particular, the limit theory in the continuous system
here depends on a persistence parameter (κ) which is consistently
estimable. By contrast, discrete time models with local to unity
and mildly integrated or mildly explosive autoregressive param-
eters typically involve localizing coefficients that enter the limit
theory as nuisance parameters and are not generally consistently
estimable, thereby complicating inference.

The paper is organized as follows. Section 2 introduces the
model and gives our main results, providing connections between
the continuous time framework considered here and the discrete
time cointegrated systems in MP. The limit theory of MP is modi-
fied to allow for a discrete time model with initial condition and
drift induced by the continuous system, which assists in deliv-
ering double asymptotics for the least squares estimator in the
continuous system. Section 3 extends the limit results to the mul-
tivariate setting. Section 4 reports simulations studying the finite

sample performance of the methods. An empirical application of
the methodology to US real estate data is given in Section 4.
Section 5 concludes. Proofs of Theorem 2.1 and Corollary 2.2 are
given in Appendix A. Proofs of Theorem 3.1 and 3.2 are provided in
an online technical supplement.

2. Continuous systems with a mildly explosive regressor

We start our investigation with the following scalar continuous
time model in two variates y (t) and x (t). Here x (t) follows an
Ornstein–Uhlenbeck process and the stochastic process y (t) co-
moves with x (t) as1

y(t) = βx(t) + u0(t), (2.1)

dx (t) = κ (µ − x (t)) dt + dBx(t),
x (0) = x0 = Op (1) , κ < 0, (2.2)

where u0(t) is Gaussian pure noise – a generalized stochastic
process in continuous time (see Hannan, 1970 and Phillips, 1991).
Formally, we may write u0 (t) = DB0(t), where B0 (t) = σ00W0(t),
W0 is standard Brownianmotion, andD = d/dt is themean square
differential operator. While u0 (t) is unrealizable as a covariance
stationary stochastic process in continuous time, the correspond-
ing discrete time process is realizable and takes the form of a pure
noise process of independent identically distributed (iid)N

(
0, σ 2

00

)
errors. This formulation is convenient in that it corresponds to the
discrete time system (2.3) that follows and has been extensively
used inmodelingmicrostructure noise effects in themeasurement
of efficient financial asset prices, as discussed below.2 We write
Bx(t) = σxxWx (t) where Wx is a standard Brownian motion that
may be correlated withW0.

The parameter of central interest for inference is the coefficient
β which captures the co-movement between y(t) and x(t). The
driver process x(t) follows an Ornstein–Uhlenbeck equation with
persistence parameter κ . For κ > 0 the process x(t) is stationary,
for κ = 0 it is Brownian motion, and for κ < 0 it is explosive. For
data over a large time span several different regimes of κ might be
contemplated, possibly with break points separating the regimes.
The present paper focuses on the explosive case of κ < 0. The
scalar model is important particularly in financial applications and
leads to simple results that avoid some of the complications of
systems with multiple explosive regressors, which are considered
in the next section.

Suppose data are recorded at N equally spaced points, {th}Nt=1,
over a time interval [0, T ], with sampling interval h and overall
time span T so that N = T/h. To develop asymptotics we assume
that both h → 0 and T → ∞. The exact discrete time representa-
tion of (2.1)–(2.2) is (Phillips, 1972)

yth = βxth + u0,th, (2.3)

xth = ah (κ) x(t−1)h + gh + ux,th, x0h = x0 = Op (1) , (2.4)

where

ah (κ) = exp (−κh) ,

gh = µ
(
1 − e−κh) ,

1 Alternate specifications are possible. For example, as discussed in Remark 12
we might set u0 (t) =a.s.0, which corresponds to the limit form of a discrete
time cointegrated system. A more general model specification might allow for a
realizable covariance stationary error in (2.1). Extending the double limit theory
developed in the present paper to cover the case of dependent errors is beyond the
scope of the present work and will be explored later.
2 In such models, the standard formulation of an efficient price subject to un-

observed microstructure noise leads to a continuous system involving generalized
stochastic processes (see the discussion in Phillips and Yu, (2006).
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ux,th = σxx

∫ th

(t−1)h
e−κ(th−s)dBx (s) d

= N
(
0,

σ 2
xx

2κ

(
1 − e−2κh)) ,

u0,th
d
= N

(
0, σ 2

00

)
.

Unlike the variance of the discrete time error ux,th for the process
xth, the variance of u0,th does not depend on the sampling interval
h and, as implied in the above discussion,

{
u0,th

}N
t=1 therefore cor-

responds to an iid Gaussian sequence in discrete time that is asso-
ciated with the generalized stochastic process u0 (t) in continuous
time. The autoregressive parameter ah (κ) depends directly on the
sampling frequency h. Indirectly, h and ah (κ) are both related to
the sample size N. When T is fixed, h = T/N = O

(
N−1

)
→ 0,

and when T → ∞, h = O (T/N) → 0. Gaussianity follows from
the Brownian motion driver processes in (2.1)–(2.2). The standard
error of ux,th is λh ∼ σxx

√
h → 0, concordant with the sample path

continuity of x (t).
Re-standardizing Eq. (2.4) by λh we have

yth = βxth + u0,th, (2.5)

x̃th = ah (κ) x̃(t−1)h + g̃h + ũx,th, x̃0h = x0h/λh,

ũx,th
iid
∼ N (0, 1) , (2.6)

where x̃th = xth/λh, g̃h = gh/λh as h → 0. When T → ∞ and
h → 0, we have
1
Nh

=
1
T

→ 0, ah (κ) = 1 − κh + O
(
h2)

→ 1.

Hence, x̃th in (2.6) is a mildly explosive process as in PM. Further-
more, since κ < 0, when h → 0 we have x̃0h = x0h/λh =

Op
(
h−1/2

)
, (ah (κ))−N

= o (1/T ) , and g̃h ∼ O
(√

h
)
. Thus, in the

standardized discrete system (2.5)-(2.6) the order of magnitude of
the initial condition is x̃0h ∼ Op

(
h−1/2

)
while in the original system

(2.1)–(2.2) it is x0 ∼ Op(1). In addition, the order of magnitude of
the drift is O

(√
h
)
in model (2.6) but is Op(1) in (2.2).

The continuous time system (2.1)–(2.2) is formulated in a man-
ner similar tomodels used in themarket microstructure literature,
where the observed transaction price is often assumed to differ
from the efficient price by an iid noise component—see Zhang et
al. (2005), Aït-Sahalia et al. (2005, AMZ hereafter) and Bandi and
Russell (2006). In AMZ, the logarithmic efficient price of a security
follows

dX(t) = µ (X(t)) dt + σ (X(t)) dW (t), (2.7)

where W (t) is a standard Brownian motion, and the logarithmic
price is observed with an iid error, namely,

X̃ (th) = X (th) + U (th) , (2.8)

where U (th) is iid noise with mean zero and a finite variance
σ 2
u that is independent of the sampling interval h, and U (th) is

independent of X(th). The formulation (2.8) therefore corresponds
to (2.3) and is a discrete time version of the continuous process
co-movement X̃ (t) = X (t) + U (t) with a generalized stochastic
process error U (t) . Issues of formulating such systems in continu-
ous time have been discussed in this market microstructure noise
literature to which readers are referred (e.g. Hansen and Lunde,
2006; Phillips and Yu, 2006).

The continuous time system here also relates to the model
in Phillips (1991), who studied the system

y1 (t) = By2 (t) + u1 (t) ,

Dy2 (t) = u2 (t) ,

where D = d/dt denotes the mean square differential operator
and u (t) = [u1 (t) , u2 (t)]′ is a stationary time series. In Phillips

(1991), both y1 (t) and y2 (t) are I (1) processes and co-movement
is a form of continuous time cointegration. In contrast, our focus of
attention in the present paper is co-movement among potentially
explosive processes.

The standardized discrete system (2.5)-(2.6) is related to MP.
MP analyzed the triangular system

yt = Axt + u0t , (2.9)

xt = RNxt−1 + uxt , x0 = op(Nα/2), (2.10)

where Rn = IK +
C
Nα , α ∈ (0, 1), C = diag (c1, . . . , cK ), and dis-

crete observations {yt , xt} N
t=0 are available. In this system, A is the

matrix of cointegrating (or, more specifically in the development
below, co-mildly explosive) coefficients; RN represents moderate
deviations from a unit root in the sense of PM; xt is a moderately
integrated time series as Nα

→ ∞ when N → ∞. If C > 0, xt is a
mildly explosive time series. The vector (u0t , uxt) is a sequence of
zero mean, weakly dependent linear process errors which satisfy
certain standard regularity conditions. The analysis of MP covers
both cases C > 0 and C < 0, our focus here is on asymptotics for
the mildly explosive case C > 0.

The formulation of moderate deviations from a unit root with
the setting RN = 1 + c/Nα , α ∈ (0, 1) , can be justified from
the double asymptotic (h → 0 and T → ∞) point of view in
continuous time systems, as argued in WY. This justification is
similar to that in Boswijk (2001) who justified the block-local-to-
unity concept introduced by Phillips et al. (2001, PMX hereafter)
in continuous time systems. In PMX, the block-local-to-unity is
formulated as 1 + c/m where the full sample consists of M blocks
of m observations so that N = Mm. In PMX and Boswijk (2001),
two kinds of asymptotics were considered, namely, (1) M is fixed
and m → ∞; (2) m → ∞ and then M → ∞. In case (1), the
autoregressive coefficient parameter 1 +

c
m has the same order of

magnitude as the standard local-to-unitymodel. In case (2), the au-
toregressive coefficient parameter is further away from unity than
that implied by the standard local-to-unity model. An interesting
example in case (2) that was considered in PMX is m = Nγ and
M = N1−γ , γ ∈ (0, 1). In this case, both m and M are determined
by N .

To formalize the link of the notations (i.e. m,M,N) in Boswijk
(2001) and those in our paper (i.e. h, T ,N ) we have h =

1
m , T =

M . Clearly our double asymptotics (T → ∞ and h → 0) corre-
spond to case (2) in PMX and Boswijk (2001). However, we do not
choose N as in PMX and Boswijk (2001) because N is determined
after h and T are chosen in our setup.

There are some common features in model (2.5)–(2.6) and
the MP model (2.9)–(2.10): both systems imply co-movement be-
tween y and x, and in both models xt may be mildly explosive. But
there are also important differences between these discrete time
systems. First, the moderate deviations from unity in the autore-
gressive coefficient take different forms: in (2.6) the autoregressive
coefficient is a function of the sampling interval h, whereas in
(2.10) it is formulated as a function of the overall sample size N .
A second difference is that, while in (2.10) the initial condition for
xt is assumed to be op(Nα/2) = op

(
h−1/2

)
, in (2.6) it is Op

(
h−1/2

)
,

which translates to x0 = Op(1) in the original continuous time
system (2.1)–(2.2). So, the initial condition in (2.6) has the larger
order of magnitude Op

(
h−1/2

)
, which corresponds to a distant past

initialization in the terminology of Phillips andMagdalinos (2009),
where it is shown that such initializations do affect the limit theory.
The third difference in the models occurs in the drift. In (2.10)
there is no intercept, and if a constant intercept were present it
would typically dominate the asymptotics. By contrast, in (2.6) the
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intercept

g̃h = gh/λh = µ
(
1 − e−κh) /λh =

µ
(
1 − e−κh

)
σxx

√(
1 − e−2κh

)
/2κ

=
µκh

σxxh1/2
{1 + o (h)} = O

(√
h
)

is asymptotically negligible as h → 0, so the intercept does not
affect the double asymptotics. The limit theory of MP is readily
modified to take into account this new initial condition and drift.

To fix ideas, consider the modified MP model

yt = Axt + u0t , (2.11)

xt = µ + RNxt−1 + uxt , x0 = x0N = Op
(
Nα/2) ,

µ = Op
(
N−α/2) . (2.12)

Let x̃0 = x0NN−α/2
⇒ X∗ and µ̃ = Nα/2µ ⇒ µ∗. The error

ut = [u0t , uxt ]′ is an iid sequence with mean zero and covariance[
σ 2
00 σ0x

σ0x σ 2
xx

]
. This model extends (2.9)–(2.10) by allowing for a larger

initial condition and a (local-to-zero) drift. The following theorem
gives the limit theory for the LS estimator of A in (2.11) for the case
of a single scalar regressor xt .

Theorem 2.1. For the discrete time system (2.11)– (2.12) with RN =

1 +
c
Nα , α ∈ (0, 1), and c > 0, when N → ∞, we have

(i)
(
RN
NN

α
)−1∑N

t=1xtu0t ⇒
σ00
2c U0

(
σxxUx + (2c)1/2D

)
,

(ii)
(
RN
NN

α
)−2∑N

t=1x
2
t ⇒

( 1
2c

)2(
σxxUx + (2c)1/2D

)2
,

where (U0,Ux)
d
= N (0, I2) , D = X∗

+
µ∗

c , and so

RN
NN

α
(̂
A − A

)
⇒ 2c

σ00U0

σxxUx + (2c)1/2D
. (2.13)

Remark 1. The limit result in Theorem 2.1 can be extended to the
case where the errors are weakly dependent. Let u0t in the discrete
time system (2.11)–(2.12) be a sequence of zero mean and weakly
dependent errors, satisfying Assumption LP as defined in MP, so
that

N−1/2
N∑

t=1

u0t ⇒ N
(
0, ω2

00

)
.

where the long-run variance ω2
00 can be decomposed as

ω2
00 = σ 2

00 + 2λ00, (2.14)

with variance component σ 2
00 and one-sided long-run variance

λ00 :=

∞∑
h=1

E (u0tu0t−h) .

Using the limit results from Theorem 4.1 in MP and Theorem 2.1,
we obtain

RN
NN

α
(̂
A − A

)
⇒ 2c

ω00U0

σxxUx + (2c)1/2D
. (2.15)

Remark 2. If x̃0 = −
µ̃

c , then D = 0 and the limit (2.13) is simply

RN
NN

α
(̂
A − A

)
⇒ 2c

σ00U0

σxxUx
= 2c

σ00

σxx
C, (2.16)

where C is a standard Cauchy variate. This limit distribution is
the same as that given by MP (2009, p. 496) and depends on the
localizing coefficient c , although the standardized estimation error
satisfies

RN
N

R2
N − 1

(̂
A − A

)
⇒

σ00

σxx
C, (2.17)

when D = 0 and this limit does not depend on c. In the general
case where D ̸= 0

RN
N

R2
N − 1

(̂
A − A

)
⇒

σ00U0

σxxUx + (2c)1/2D
. (2.18)

Remark 3. The limit distribution of µ̂, the LS estimator of the
intercept parameterµ, follows simply as given in Box I. This result
is useful in testing for µ = 0 in the modified MP model.

Remark 4. Self normalized statistics based on Â have a much
simpler limit theory that is convenient for inference. For instance,
defining the regression residuals û0t = yt − Âxt and noting that
the residual variance estimate s20 = N−1∑N

t=1û
2
0t

p
→ σ 2

00, it follows
immediately from Theorem 2.1 that the usual t statistic for testing
H0 : A = A0 satisfies

tA =
Â − A0

sA
=

RN
NN

α
(̂
A − A0

){
s20
(

1
R2NN N2α

∑N
t=1 x

2
t

)−1
}1/2

⇒

2c σ00U0
σxxUx+(2c)1/2D

σ00

{( 1
2c

)2(
σxxUx + (2c)1/2D

)2}−1/2

= U0
d
= N (0, 1) , (2.19)

and standard methods of inference apply.

Remark 5. Let R̂N be the LS estimator of RN and ĉ = Nα
(̂
RN − 1

)
.

The limit theory for R̂N and ĉ follows from the proof of Theorem 2.1
and Remark 3. Defining the regression residuals ûxt = xt −

R̂Nxt−1 − µ̂ and noting that the residual variance estimate s2x =

N−1∑N
t=1û

2
xt

p
→ σ 2

xx, we have the following result for the t statistic
for testing H0 : RN = R0

N ,

tRN =
R̂N − R0

N

sRN

=
RN
NN

α
(̂
RN − R0

N

){
s2x

(
1

R2NN N2α

∑N
t=1 x

2
t−1 −

1
N

(
1

RNNNα

∑N
t=1 xt−1

)2)−1
}1/2

⇒

2c σxxUx
σxxUx+(2c)1/2D

σxx

{( 1
2c

)2(
σxxUx + (2c)1/2D

)2}−1/2 = Ux
d
= N (0, 1) .

Similarly, given RN = 1 +
c
Nα , we have sc = NαsRN and ĉ − c0 =(̂

RN − R0
N

)
Nα . Hence, if α is known, the t statistic for testing H0 :

c = c0 is

tc =
ĉ − c0

sc
=
(̂
RN − R0

N

)
NαN−αs−1

RN
⇒ Ux

d
= N (0, 1) .

However, if α is unknown, then both the estimate ĉ and the stan-
dard error sc = NαsRN are unavailable and inference using this limit
theory for ĉ is infeasible. As discussed below, this infeasible feature
of the discrete time case is quite different in continuous time.

Remark 6. The limit distribution (2.13) is a ratio of two indepen-
dent Gaussian variates and has heavy tails, just as the Cauchy limit
in the special case (2.17) where D = 0. Observe that

RN
NN

α
(̂
A − A

)
⇒ 2c

σ00U0

σxxUx + (2c)1/2D
= b

U0

Ux + d
,

b =
2cσ00

σxx
, d =

(2c)1/2

σxx
D.
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√
N (µ̂ − µ)

=
√
N

(
RN
NN

α
)−2∑N

t=1 x
2
t−1

(
1
N

∑N
t=1 uxt

)
−

1
N

{(
RN
NN

α
)−1∑N

t=1 xt−1

}{(
RN
NN

α
)−1∑N

t=1 xt−1uxt

}
N
N

{(
RN
NNα

)−2∑N
t=1 x

2
t−1

}
−

1
N

{(
RN
NNα

)−1∑N
t=1 xt−1

}2
=

1
√
N

N∑
t=1

uxt + op (1) ⇒ N
(
0, σ 2

xx

)
.

Box I.

When D ≥ 0, the density of U =
U0

Ux+d is

pU (u) =
e−

1
2 d

2

π
(
1 + u2

) [1 +
q

ϕ (q)

∫ q

0
ϕ (y) dy

]
,

ϕ (y) =
e−y2/2

√
2π

, q =
d

√
1 + u2

,

(e.g., see Marsaglia, 1965) and has Cauchy-like tails.

We have the following expression for the LS estimator β̂ of the
slope coefficient in the continuous timemodel (2.1), which is given
by

β̂ − β =

(
N∑

t=1

x2th

)−1 ( N∑
t=1

xthu0,th

)

=
1
λh

(
N∑

t=1

x̃2th

)−1 ( N∑
t=1

x̃thu0,th

)
. (2.20)

The associated limit theory is given in the following corollary.

Corollary 2.2. Let h = N−α . For the continuous time system (2.1)–
(2.2) with κ < 0, assume that there exists α ∈ (0, 1), such that
h1−αTα

→ 1 as T → ∞, we have

aNh
√
h

(̂
β − β

)
⇒ (−2κ)

σ00U0

σxxUx + (−2κ)1/2 (x0 − µ)
. (2.21)

Remark 7. The limit result in Corollary 2.2 can be extended to
the case where u0(t) is weakly dependent in (2.1). Using the limit
results from Remark 1, we obtain

aNh
√
h

(̂
β − β

)
⇒ (−2κ)

ω00U0

σxxUx + (−2κ)1/2 (x0 − µ)
. (2.22)

Remark 8. After multiplying
√
h on both sides of (2.13), the limit

distribution (2.21) follows directly from (2.13) by replacingσxx, and
D in Theorem 2.1 with 1, and D∗

=
x0−µ

σxx
, respectively, giving the

stated result.

Remark 9. The continuous time counterpart of Nα is 1/h which is
known for any given data, so there is no need to estimate the rate
parameterα. The continuous time counterpart of c is−κ which can
be consistently estimated by the least squares method as long as
T → ∞. Analogous to (2.19), self normalized statistics are free of
nuisance parameters and hypothesis testing about β can be con-
ducted using the residual variance estimate s20 = N−1∑N

t=1̂u
2
0,th,

which satisfies s20
p

→ σ 2
00. Corollary 2.2 and results (A.11) and

(A.12) in Appendix A then give the following double asymptotics
for the usual t statistic for testing H0 : β = β0

tβ =
β̂ − β0

sβ
=

(̂
β − β0

)
aNh /

√
h{

s20
(
a−2N
h h

∑N
t=1 x̃

2
thσ

2
xxh
)−1

}1/2

⇒

(−2κ)
σ00U0

σxxUx+(−2κ)1/2(x0−µ)

σ00

{( 1
−2κ

)2(
Ux + (−2κ)1/2D∗

)2
σ 2
xx

}−1/2

= U0
d
= N (0, 1) ,

which leads to feasible inference concerning the slope coefficient
β in continuous time, just as in (2.19) for the coefficient A in the
modified MP model.

Remark 10. Following Remark 9, we can obtain the double asymp-
totic distributions for âh and κ̂ . Defining s2x = N−1∑N

t=1̂u
2
x,th,which

satisfies h−1s2x
p

→ σ 2
xx, the t statistic for âh is as follows:

tah =
âh − a0h

sah

=

aNh /h
(̂
ah − a0h

)
{
s2x

(
a−2N
h h2

∑N
t=1 x̃2

(t−1)hσ
2
xxh −

1
N

(
a−N
h h

∑N
t=1 x̃(t−1)hσxx

√
h
)2)−1

}1/2

⇒

−2κ σxxUx
σxxUx+(−2κ)1/2D

σxx

{(
1

−2κ

)2(
σxxUx + (−2κ)1/2D

)2}−1/2 = Ux
d
= N (0, 1) .

Similarly, given ah = exp (−kh), we have hsκ = sah + op (h).
Following WY, we have

aNh
(̂
κ − κ0)

⇒ 2κ
σxxUx

σxxUx + (−2κ)1/2D
,

and

tκ =
κ̂ − κ0

sκ

=
aNh
(̂
κ − κ0

)⎧⎨⎩s2x

(
1

a2Nh /h2
∑N

t=1 x
2
(t−1)h −

1
N

(
1

aNh /h

∑N
t=1 x(t−1)h

)2
)−1

⎫⎬⎭
1/2

⇒

−2κ σxxUx
σxxUx+(−2κ)1/2D

σxx

{( 1
−2κ

)2(
σxxUx + (−2κ)1/2D

)2}−1/2 = Ux
d
= N (0, 1) .

Clearly, tκ is a feasible statistic for testing H0 : κ = κ0 in contrast
to the discrete time case where the test statistic relies on the
unknown rate parameter α.

Remark 11. If x0 = µ, we have D∗
= 0 and

aNh
√
h

(̂
β − β

)
⇒ (−2κ)

σ00U0

σxxUx
= (−2κ)

σ00

σxx
C. (2.23)
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Remark 12. An alternate formulation of (2.1) is to set u0(t)
a.s.
= 0.

This formulation corresponds to a discrete system (2.5) in which
u0,th

iid
∼ N

(
0, σ 2

00h
)
so that the error variance depends on the

sampling interval, just as the error ux,th, in (2.4). In this case, in
view of the scaling effect in the discrete time error, it follows that
there is a faster rate of convergence in estimation ofβ and the limit
distribution of β̂ is given by

aNh
h

(̂
β − β

)
⇒ (−2κ)

σ00U0

σxxUx + (−2κ)1/2 (x0 − µ)
, (2.24)

when h → 0 and T → ∞. In this alternate model, the relationship
between x(t) and y(t) is exact in the limit, analogous to the relation-
ship of limit Brownian motion processes

(
By, Bx

)
of cointegrated

discrete series (yt , xt)where xt = xt−1+uxt and yt = βxt+u0t with
(u0t , uxt) stationary and limiting linear relation By (t) = βBx (t).

3. Continuous systems with multiple explosive regressors

This section extends the results above to continuous time sys-
tems with more than one mildly explosive regressor. We allow
for regressors with multiple forms of explosive behavior using the
approach developed in MP for discrete systems. As above, we es-
tablish the limit theory for a modified MP model that incorporates
an intercept term and allows for a larger initial condition. This
theory is applied to the continuous system by assuming T → ∞

and h → 0. Following MP, two different cases will be examined
which lead to somewhat different limit behaviors: (i) when all
the regressors have distinct explosive roots; and (ii) when all the
regressors share the same explosive root.

3.1. Limit results in the discrete time framework

We start with the following systemwithmultiple mildly explo-
sive regressors, based on MP,

yt = Axt + u0t , (3.1)

xt = µ + RNxt−1 + uxt , with x0 = x0N = Op
(
Nα/2)

and µ = Op
(
N−α/2) . (3.2)

In this case, yt and xt arem× 1 and K × 1 vectors respectively, and
A is am×K matrix of coefficients. In addition, RN = IK +C/Nα is a
K × K matrix with C = diag (c1, c2, . . . , cK ) > 0. We assume that
the errors satisfy

ut =
[
u′

0t , u′

xt

]′ iid
∼ (0, Ω) with Ω =

[
Ω00 Ω0x
Ω0x Ωxx

]
.

Let the standardized initialization and intercept satisfy x̃0 =

x0NN−α/2
⇒ X∗ and µ̃ = Nα/2µ ⇒ µ∗. The model now modifies

MP in twoways: (i) the initial value for x isOp
(
Nα/2

)
which is larger

than the op
(
Nα/2

)
initialization in MP; (ii) a non-zero drift term

of order Op
(
N−α/2

)
is included. Following closely the approach of

MP, we obtain the limit theory for the LS estimator Â under two
scenarios: (i) where C has distinct diagonal elements, i.e., ci ̸= cj
for i ̸= j; (ii) where C is a scalar matrix and does not have distinct
diagonal elements, so that ci = cj, for all i, j. Inwhat followswewill
frequently use a zero affix to denote the true value of the associated
element or matrix.

3.1.1. ci ̸= cj for i ̸= j

Theorem 3.1. For the discrete time system (3.1)– (3.2) with RN =

IK + C/Nα , α ∈ (0, 1), C = diag (c1, c2, . . . , cK ) > 0 and ci ̸= cj for
i ̸= j, when N → ∞, we have

(i) vec
(

1
Nα

∑N
t=1u0tx

′

tR
−N
N

)
⇒

( ∫
∞

0 e−pC
(
D + Ũx

) (
D + Ũx

)′
e−pCdp ⊗ Ω00

)
1/2W0,

(ii) 1
N2α

∑N
t=1R

−N
N xtx

′

tR
−N
N =

∫
∞

0 e−pC
(
D + Ũx

) (
D + Ũx

)′
e−pCdp

+ op (1),
(iii)

vec
{
Nα
(̂
A − A

)
RN
N

}
⇒

{(∫
∞

0
e−pC (D + Ũx

) (
D + Ũx

)′
e−pCdp

)−1/2

⊗ Ω
1/2
00

}
W0

d
= MN

(
0,
(∫

∞

0
e−pC (D + Ũx

) (
D + Ũx

)′
e−pCdp

)−1

⊗ Ω00

)
, (3.3)

where W0
d
= N (0, ImK ), Ũx =

(∫
∞

0 e−pCΩxxe−pCdp
)1/2Ux, Ux

d
=

N (0, IK ), D = X∗
+ C−1µ∗, MN represents a mixed normal distri-

bution.

Remark 13. Again, we can extend the limit result in Theorem 3.1
to the case where u0t is weakly dependent. Let u0t in the discrete
time system (3.1)–(3.2) be a sequence of zero mean and weakly
dependent errors, satisfying Assumption LP as defined in MP. In
particular,

N−1/2
N∑
i=1

u0t ⇒ N (0, Ω00) ,

with long-run variance matrix Ω00 decomposed as

Ω00 = Σ00 + Λ00 + Λ′

00. (3.4)

where

Σ =

[
Σ00 Σ0x
Σ0x Σxx

]
,

and the one-sided long-run covariance is

Λ00 :=

∞∑
h=1

E
(
u0tu′

0t−h

)
.

Using the limit results from Theorem 3.1 and Theorem 4.1 in MP,
we obtain

vec
{
Nα
(̂
A − A

)
RN
N

}
⇒

{(∫
∞

0
e−pC (D + Ũx

) (
D + Ũx

)′
e−pCdp

)−1/2

⊗ Ω
1/2
00

}
W0

d
= MN

(
0,
(∫

∞

0
e−pC (D + Ũx

) (
D + Ũx

)′
e−pCdp

)−1

⊗ Ω00

)
.

(3.5)

Remark 14. If x̃0 = −C−1µ̃, then D = 0 and the limit (3.3)
becomes

vec
{
Nα
(̂
A − A

)
RN
N

}
⇒ MN

(
0,
(∫

∞

0
e−pC ŨxŨ ′

xe
−pCdp

)−1

⊗ Ω00

)
.

This limit distribution corresponds to that in Theorem 4.1 of
MP (2009, p. 496).
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Remark 15. The limit distribution of µ̂ is
√
N (µ̂ − µ)

=
√
N

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
N

N∑
t=1

uxt −
1
N

(
1
Nα

N∑
t=1

uxtx′

t−1R
−N
N

)
(

1
N2α

N∑
t=1

R−N
N xt−1x′

t−1R
−N
N

)−1 (
1
Nα

N∑
t=1

R−N
N xt−1

)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭⎧⎨⎩N

N
−

1
N

(
1
Nα

N∑
t=1

x′

t−1R
−N
N

)(
1

N2α

N∑
t=1

R−N
N xt−1x′

t−1R
−N
N

)−1

×

(
1
Nα

N∑
t=1

R−N
N xt−1

)}−1

=
1

√
N

N∑
t=1

uxt + op (1) ⇒ N (0, Ωxx) .

Remark 16. Let Aj and Âj denote the jth m × 1 column of A and Â,
and xjt the jth element of xt . Define the equation residuals û0t =

yt − Âxt , the error variance matrix estimate

S00 = N−1
N∑

t=1

û0t û′

0t
p

→ Ω00,

and the corresponding estimate of the variance matrix of Âj

SAjAj =

(
N∑

t=1

x2jt

)−1

S00.

The limit distribution of Âj is given by

Nα
(̂
Aj − Aj

)
ρN
j ⇒ MN

(
0,
(∫

∞

0
e−2pcj

(
Dj + Ũxj

)2
dp
)−1

Ω00

)
d
= MN

(
0,

2cjΩ00(
Dj + Ũxj

)2
)

,

where ρj = 1+
cj
Nα , and Dj and Ũjx are the jth element of D and Ũx

for j = 1, . . . , K . Using Theorem 3.1, we obtain the following limit
distribution for theWald statistic for testingH0 : QjAj = QjA0

j = qj,
where Qj is a g × m restriction matrix of full row rank g ≤ m and
qj is a given g × 1 vector,

WAj :=
{
QĵAj − qj

}′(
QjSAjAjQ

′

j

)−1 {QĵAj − qj
}

=
{
QjNα

(̂
Aj − Aj

)
ρN
j

}′

⎛⎝(N−2αρ−2N
j

N∑
t=1

x2jt

)−1

QjS00Q ′

j

⎞⎠−1

×
{
QjNα

(̂
Aj − Aj

)
ρN
j

}
⇒ χ2

g ,

whereχ2
g denotes a chi-squared variatewith g degrees of freedom.

Remark 17. Let RjN and R̂jN denote the jth K × 1 column of RN
and R̂N , and define Ĉj =

(̂
Rj − ej

)
Nα, where ej is the jth unit

vector with unity in the jth position and zeros elsewhere. Setting
ûxt = xt − R̂Nxt−1 − µ̂, the residual second moment matrix is

Sxx = N−1
N∑

t=1

ûxt û′

xt
p

→ Ωxx,

and the corresponding estimate of the variance matrix of R̂jN is

SRjRj =

⎛⎝ N∑
t=1

x2jt−1 −
1
N

(
N∑

t=1

xjt−1

)2
⎞⎠−1

Sxx.

The Wald statistic for testing the (full rank) restrictions H0 :

QjRjN = QjR0
jN = qj, where Qj is a g × K restriction matrix of full

row rank g ≤ K and qj is a given g × 1 vector, is

WRjN :=
{
QĵRjN − qj

}′
(
QjSRjRjQ

′

j

)−1 {
QĵRjN − qj

}
⇒ χ2

g ,

under the null. Similarly, given RN = IK + C/Nα , we can set SCjCj =

N2αSRjRj where Cj is the jth column of C , SCjCj is the covariance
matrix of Ĉj. Further Ĉj−C0

j =
(̂
RjN − R0

jN

)
Nα leads to the following

limit theory for Ĉj(
Ĉj − C0

j

)
ρN
j ⇒ MN

(
0,
(∫

∞

0
e−2pcj

(
Dj + Ũxj

)2
dp
)−1

Ωxx

)
d
= MN

(
0,

2cjΩxx(
Dj + Ũxj

)2
)

.

Hence, if α is known, we have the corresponding feasible Wald
statistic for testing the restrictions H0 : QjCj = QjC0

j = qj,

WCj :=
{
QjĈj − qj

}′
(
QjSCjCjQ

′

j

)−1 {
QjĈj − qj

}
⇒ χ2

g ,

under the null and with full row rank Qj. If α is unknown, just as in
the scalar model, the estimated variance matrix SCjCj = N2αSRjRj is
unavailable and inference using this limit theory for Ĉj is infeasible.
Note that under the null C0

j = c0j ej. Imposing this (maintained)
restriction on the form of C0

j implies that the null can be rewritten
as H0 : cj = c0j and a test analogous to the scalar case can
be mounted using the jth diagonal element of the (unrestricted)
estimate Ĉ or a similar estimate obtained by imposing the main-
tained restriction on Cj and estimating the system as a seemingly
unrelated regression (SUR). Similar constraints on inference due to
the infeasibility of the tests apply in each of these cases.

3.1.2. ci = cj for all i, j
When ci = cj = c , for all i, j, the limiting standardized form of

the signal matrix
∑N

i=1xtx
′

t is singular due to commonality in the
explosive behavior of the components of xt . Let RN = ρN IK with
ρN = 1+ c/Nα . Following MP, we rotate regression coordinates to
address the singularity using an orthogonal random matrix HN =

[HcN ,H⊥N ] where HcN =
xN

(x′N xN)
1/2 and H⊥N is a K × (K − 1)

orthogonal complement matrix such that H ′

⊥NHcN
a.s.
= 0. Then,

H ′

⊥NH⊥N = IK−1 and H⊥NH ′

⊥N
a.s.
= IK − HcNH ′

cN . The limit of H⊥N
is denoted as H⊥, which satisfies H⊥H ′

⊥
= IK − XcX ′

c where Xc is
defined in (3.6) in Theorem 3.2. Next, rotate the regressor xt by
HN and transform to the variate zt = H ′

Nxt =
[
H ′

cNxt ,H
′

⊥Nxt
]

=:

[z ′

1t , z
′

2t ]
′. The following result gives the required limit theory for

the LS estimator Â in this case.

Theorem3.2. For the discrete time system (3.1)– (3.2)with RN = IK+

C/Nα , C = diag (c1, c2, . . . , cK ) with ci = c > 0 for i = 1, . . . , K,
when N → ∞, we have

(i) 1
N1+α

∑N
t=1z2tz

′

2t ⇒ M, with M = H ′

⊥

(
µ∗

c
µ∗′

c +
1
2c Ωxx

)
H⊥,

(ii) 1
N(1+α)/2 vec

(∑N
t=1u0tz

′

2t

)
⇒ {M ⊗ Ω00}

1/2
× N

(
0, Im(K−1)

)
, where H⊥ is a K × (K − 1) random matrix that is an orthogonal
complement to

Xc =

(
D + Ũx

)
/

{(
D + Ũx

)′ (
D + Ũx

)}1/2

, (3.6)
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satisfying H⊥H ′

⊥
= IK − XcX ′

c and with

Ũx ≡

(∫
∞

0
e−pcΩxxe−pcdp

)1/2

Ux = Ω1/2
xx Ux/(2c)1/2, and

D = X∗
+ µ∗/c,

(iii)

N (1+α)/2vec
(̂
A − A

)
⇒

(
H⊥M−1/2

⊗ Ω
1/2
00

)
× N (0, ImK )

d
= MN

(
0,H⊥M−1H ′

⊥
⊗ Ω00

)
. (3.7)

Remark 18. When u0t is weakly dependent and satisfies the con-
ditions discussed in earlier remarks, the limit result again follows
MP and has the form

N (1+α)/2vec
(̂
A − A

)
⇒

(
H⊥M−1/2

⊗ Ω
1/2
00

)
× N (0, ImK )

d
= MN

(
0,H⊥M−1H ′

⊥
⊗ Ω00

)
, (3.8)

where Ω00 is given by (3.4).

Remark 19. The limit distribution of µ̂ is obtained as follows:
√
N (µ̂ − µ)

=
√
N

⎧⎪⎨⎪⎩ 1
N

N∑
t=1

uxt −
1
N

(
1

N (1+α)/2

N∑
t=1

uxtz ′

t−1

)

×

(
1

N (1+α)

N∑
t=1

zt−1z ′

t−1

)−1 (
1

N (1+α)/2

N∑
t=1

zt−1

)⎫⎬⎭⎧⎨⎩N
N

−
1
N

(
1

N (1+α)/2

N∑
t=1

uxtz ′

t−1

)(
1

N (1+α)

N∑
t=1

zt−1z ′

t−1

)−1

×

(
1

N (1+α)/2

N∑
t=1

zt−1

)}−1

=
1

√
N

N∑
t=1

uxt + op (1) ⇒ N (0, Ωxx) .

Remark 20. Define û0t = yt − Âxt and let the estimate of the error
variance matrix be

S00 = N−1
N∑

t=1

û0t û′

0t
p

→ Ω00,

and the estimated variance matrix of Âj be

SAjAj =

(
N∑

t=1

x2jt

)−1

S00.

Following Theorem 3.2, we have the following limit theory for the
Wald statistic for testing H0 : QjAj = QjA0

= qj

WAj :=
{
QĵAj − qj

}′(
QjSAjAjQ

′

j

)−1 {QĵAj − qj
}

⇒ χ2
g .

Remark 21. Let ûxt = xt − R̂Nxt−1 − µ̂, giving the error variance
matrix estimate

Sxx = N−1
N∑

t=1

ûxt û′

xt
p

→ Ωxx,

and the corresponding estimate of the variance matrix of R̂N (in
column vector form)

SRR =

⎛⎝ N∑
t=1

xt−1x′

t−1 −
1
N

(
N∑

t=1

xt−1

)(
N∑

t=1

xt−1

)′
⎞⎠−1

⊗ Sxx.

Then the Wald statistic for testing H0 : Qvec (RN) = Qvec
(
R0
N

)
=

r, where Q is a g ×mK restriction matrix of full row rank g ≤ mK ,
is

WRN :=
{
Qvec

(̂
RN − R0

N

)}′
(
QSRRQ

′
)−1 {

Qvec
(̂
RN − R0

N

)}
⇒ χ2

g ,

since

N (1+α)/2Qvec
(̂
RN − R0

N

)
⇒ MN

(
0,QH⊥M−1H ′

⊥
⊗ ΩxxQ

′
)

,

and

N1+αQSRRQ
′

= Q

⎛⎝ 1
N1+α

N∑
t=1

xt−1x′

t−1

−
1

N2+α

(
N∑

t=1

xt−1

)(
N∑

t=1

xt−1

)′
⎞⎠−1

⊗ SxxQ
′

= QHN

(
1

N1+α

N∑
t=1

zt−1z ′

t−1

)−1

H
′

N ⊗ SxxQ
′

+ op (1)

⇒ Q
(
H⊥M−1H ′

⊥
⊗ Ωxx

)
Q

′

.

Similarly, given RN = 1 +
C
Nα , we have SCC = N2αSRR and

vec
(̂
C − C0)N 1−α

2 ⇒ MN
(
0,H⊥M−1H

′

⊥
⊗ Ωxx

)
.

Hence, given α, we have the following feasible Wald test,

WC :=
{
Qvec

(̂
C − C0)}′

(
QSCCQ

′
)−1 {

Qvec
(̂
C − C0)}

⇒ χ2
g .

Again as in the scalar model, if α is unknown (which is the usual
situation in practical work), the estimated variance matrix SCC =

N2αSRR is unavailable and inference using this limit theory for Ĉ is
infeasible.

Importantly, for the common explosive root case when α is
known, we are able to perform statistical inference concerning the
full matrix coefficients RN and C usingWald tests because the nor-
malization factor N1+α is common and thereby commutable with
the restriction matrix Q . However, for the distinct explosive roots
case,we canonly performstatistical inference about individual col-
umn vectors of RN and C , as demonstrated in Remark 17. The same
phenomenon applies for tests involving the matrix A. As shown
below, these features carry over to inference in the continuous time
system although in this case the sampling frequency is known so
there is no difficulty relating to an unknown rate parameter α.

3.2. Limit results in the continuous time framework

The above results apply to the multivariate continuous time
system

y(t) = βx(t) + u0(t), (3.9)

dx (t) = κ (µ − x (t)) dt + Ω1/2
xx dBx(t),

x (0) = x0 = Op (1) , κ < 0, (3.10)

where u0(t) ∼ N (0, Ω00) is a Gaussian noise. Let Bx(t) =

Ω
1/2
xx Wx (t) where Wx is standard vector Brownian motion that

may be correlated with W0. The driver process x(t) then follows a



408 Y. Chen et al. / Journal of Econometrics 201 (2017) 400–416

multivariate Ornstein–Uhlenbeck process with persistence matrix
κ , where κ = diag (κ1, κ2, . . . κK ) is a K × K diagonal matrix. We
focus on the explosive case where κi < 0 for i = 1, . . . , K . As in
the discrete time case, we are interested in β , an m × K matrix of
coefficients which captures co-movement between y(t) and x(t).

The exact discrete time representation of (3.9)–(3.10) is given
by (see Phillips, 1972)

yth = βxth + u0,th, (3.11)
xth = ah (κ) x(t−1)h + gh + ux,th, x0h = x0 = Op (1) ,

where

ah (κ) = exp (−κh) ,

gh = κ−1 (IK − e−κh) κµ,

ux,th =

∫ th

(t−1)h
e−κ(th−s)ΩxxdBx (s) d

= N (0, Ωxxh) ,

u0,th
d
= N (0, Ω00) ,

since

E
(
ux,thu′

x,th

)
=

∫ th

(t−1)h
e−2κ(th−s)Ωxxds =

1
2
κ−1 (IK − e−2κh)Ωxx.

Thus, upon restandardization by
√
h, the system becomes

yth = βxth + u0,th, (3.12)

x̃th = ah (κ) x̃(t−1)h + g̃h + ũx,th, x̃0h = h−1/2x0h,

ũx,th
iid
∼ N (0, Ωxx) , (3.13)

where x̃th = h−1/2xth, g̃h = h−1/2gh and ũx,th = h−1/2ux,th
d
=

N (0, Ωxx). As in the univariate case, the order of the initial value
x̃0h = h−1/2x0h is Op

(
h−1/2

)
, and the order for the drift term g̃h is

Op
(
h1/2

)
.

For the continuous time system (3.12)–(3.13), the double
asymptotic theory for the LS estimator of the coefficient matrix β
when κ has distinct diagonal elements (i.e., κi ̸= κj for i ̸= j) is
given in the following corollary.

Corollary 3.3. Let h = N−α . For the continuous time system (3.12)–
(3.13) with κ = diag (κ1, κ2, . . . , κK ) with κi ̸= κj, for i ̸= j, and
κi < 0 for i = 1, . . . , K , assuming that there exists α ∈ (0, 1), such
that h1−αTα

→ 1 as T → ∞, we have

vec
{

1
√
h

(̂
β − β

)
aNh

}
⇒

[(∫
∞

0
epκ
(
D + Ũx

) (
D + Ũx

)′
epκdp

)−1

⊗ Ω00

]1/2

× N (0, ImK ) . (3.14)

Remark 22. By multiplying both sides of (3.3) by
√
h, the double

asymptotic distribution (3.14) follows directly from (3.3) with
µ∗

= κµ, C = −κ andD = x0−µ. To enhance readability in terms
of the relationship between the systems, we provide in Table 1 the
correspondence between the models, variables and parameters in
the discrete and continuous time cases.

Remark 23. The LS estimator of κ is consistent since h is known.
Let S00 = N−1∑N

t=1̂u0,tĥu′

0,th, which satisfies

S00
p

→ Ω00,

and the corresponding estimate of the covariance matrix of β̂j is

Sβjβj =

(
N∑

t=1

x2jth

)−1

S00.

Table 1
Correspondence between systems (3.1) –(3.2) and (3.12)–(3.13).

Discrete time Continuous time

yt = Axt + u0t ỹth = β̃xth + ũ0,th
xt = µ + RNxt−1 + uxt x̃th = ah (κ) x̃(t−1)h + g̃h + ũx,th
x0 = x0N = Op

(
Nα/2

)
x̃0h = h−1/2x0h = Op

(
h−1/2

)
µ = Op

(
N−α/2

)
g̃h = Op

(
h1/2

)
C −κ

µ with Nα/2µ → µ∗ g̃h with h−1/2g̃h → κµ

X∗
+ C−1µ∗ x0 − µ

The Wald statistic for testing the full rank restrictions H0 : Qjβj =

Qjβ
0
j = rj is then

Wβj =
{
Qj
(̂
βj − β0

j

)}′
(
QjSβjβjQ

′

j

)−1 {
Qj
(̂
βj − β0

j

)}
⇒ χ2

g ,

leading to feasible inference aboutβj in the continuous time frame-
work.

Remark 24. Let aj be the jth column of ah(κ). TheWald statistic for
testing the full rank restrictions H0 : Qjaj = Qja0j = qj for given(
Qj, qj

)
has the following chi-squared limit

Waj :=
{
Qj
(̂
aj − a0j

)}′(
QjSajajQ

′

j

)−1 {Qj
(̂
aj − a0j

)}
⇒ χ2

g ,

where Sajaj =

(∑N
t=1x

2
j(t−1)h −

1
N

(∑N
t=1xj(t−1)h

)2)−1

Sxx and Sxx =

N−1∑N
t=1̂ux,tĥu′

x,th satisfying h−1Sxx
p

→ Ωxx where ûx,th = xth −

âhx(t−1)h − ĝh are regression residuals. Let κ j denote the jth column
of κ . Given thematrix exponential relation, we have the covariance
matrix of κ̂ j which satisfies h2Sκ jκ j = Sajaj + o (h) and so

(̂
κ j

− κ j0) e−kjN ⇒ MN

(
0,
(∫

∞

0
e2pκj

(
Dj + Ũjx

)2
dp
)−1

Ωxx

)
d
= MN

(
0,

−2κjΩxx(
Dj + Ũjx

)2
)

.

Then the Wald statistic for testing the (full rank) restrictions H0 :

Qjκ
j
= Qjκ

j0
= qj satisfies

Wκ j :=
{
Qĵκ

j
− qj

}′
(
QjSκjκjQ

′

j

)−1 {
Qĵκ

j
− qj

}
⇒ χ2

g .

Remark 25. The LS estimates, âh and κ̂ , do not take account of
the diagonal structure of ah and κ . If the known diagonal structure
is imposed, we can use either SUR estimation or restricted LS (in
which only the diagonal elements of the original LS estimates
are employed). The simulation section below explores the finite
sample performance of these three estimates.

Now we consider the case where the localizing explosive coef-
ficients are identical, so that κi = κ for i = 1, . . . , K .

Corollary 3.4. Let h = N−α . For the continuous time system (3.12)–
(3.13) with κ = diag (κ1, κ2, . . . , κK ) and κi = κ < 0 for i =

1, . . . , K, assume that there exists α ∈ (0, 1), such that h1−αTα
→

1 as T → ∞, we have

vec
{√

N
(̂
β − β

)}
⇒

[
H⊥

{
H ′

⊥

(
µµ′

+
1

−2κ
Ωxx

)
H⊥

}−1/2

⊗ Ω
1/2
00

]
× N (0, ImK ) . (3.15)
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Remark 26. Both Corollaries 3.3 and 3.4 can be extended in the
sameway as before to cover the case where u0(t) is weakly depen-
dent.

Remark 27. The double asymptotic distribution (3.15) follows
directly from (3.7) with µ∗

= κµ and c = −k.

Remark 28. The Wald statistic for testing H0 : Qvec (β) = Qvec(
β0
)

= q for full row rank (Q , q) is then

Wβ :=
{
Q β̂ − q

}′(QSββQ ′
)−1 {Q β̂ − q

}
⇒ χ2

g ,

leading to feasible inference about the matrix coefficient β in
the continuous time framework. Inference about the full matrix
β is possible in this case because of the common factorization
convergence rate in (3.15).

Remark 29. The Wald statistics for testing full rank restrictions
on ah and κ such as H0 : Qvec (ah) = Qvec

(
a0h
)

= q and
H0 : Qvec (κ) = Qvec

(
κ0
)

= q are defined in a similar way and
have the following chi-squared limits:

Wah := {Qvec (̂ah) − q}′
(
QSaaQ ′

)−1
{Qvec (̂ah) − q} ⇒ χ2

g ,

and

Wκ := {Qvec (̂κ) − q}′
(
QSκκQ ′

)−1
{Qvec (̂κ) − q} ⇒ χ2

g ,

again leading to feasible inference on ah and κ because of the
common factorization convergence rate.

Remark 30. When xt has a common explosive root, LS estimation
by âh and κ̂ produces biased estimates due to endogeneity in
the regressor, as shown in Phillips and Magdalinos (2013). The
bias distorts the Wald test statistics and the distortion will be
demonstrated in the Monte Carlo simulation below.

4. Monte Carlo studies

This section examines the performance of the double asymp-
totic limit theory in simulations. We generate data from model
(2.3)-(2.4) with κ = −2, σ00 = σxx = 1, µ = 0, and consider
three sampling intervals, h = 1/12, 1/52, 1/252, corresponding to
monthly, weekly and daily frequencies. The initial value x0 is set at
(0, 3, 10) and time spans of T = 4 and T = 10years are considered.
We report percentiles at levels {1%, 2.5%, 10%, 90%, 97.5%, 99%}

in the limit distribution (2.21) and the finite sample distribu-
tion of the coefficient based test (called the C test hereafter)

aN

−2κ
√
h

(̂
β − β

)
and tβ from Remark 9. In addition, we provide

comparisons of the densities of the limit distributions and finite
sample distributions of the C test statistic and tβ statistic. The
number of replications is set at 10,000.

Tables 2–4 report the percentiles when x0 = 0, 3, 10 by
using the true values of κ and µ. It can be seen that both the
double asymptotic distribution and the finite sample distribution
are sensitive to changes in the initial condition for the C test. The
C test is recommended for empirical studies since it provides a
tighter confidence interval than the t test as demonstrated in our
empirical study. In all cases the new limit distribution provides a
good approximation to the finite sample distribution.

Figs. 1 and 2, and 3 plot the densities of the C test statistic and t
test statisticwhen T = 4. The result is similar to the case of T = 10,
which is not reported. These plots show the limit distribution well
approximates the finite sample distribution for both tests.

To examine the performance of the limit theory in the multi-
variate setup, we consider a bivariate model using monthly data

(h =
1
12 ) with time span T = 20. Data are generated from the

continuous time system (3.11), with β = [1, 1]′, x (0) = [3, 1]′,

Ω =

[ 1.5 −0.9 −0.8
−0.9 2 0.8
−0.8 0.8 1

]
,

µ = [1, 1]′, vec (κ) = [κ1, 0, 0, κ2]′ with κ1 = −0.2 and κ2 =

−0.4 in the first case and κ1 = κ2 = −0.2 in the second case.
Therefore, a1 = exp (−κ1h) = 1.0168 and a2 = 1.0339 in the
first case and a1 = a2 = 1.0168 in the second case. In Table 5, we
report the percentiles of the finite sample distribution with those
of the limit distribution for Wβ , WOLS

κ , W ReOLS
κ , and W SUR

κ , where
W indicates the Wald test statistic for the parameter of interest,
rβ = [1, 1]′, rah = [1.0168, 1.0339]′, rκ = [−0.2, −0.4]′ in the first
case, rah = [1.0168, 1.0168]′, rκ = [−0.2, −0.2]′ in the second
case. In addition, LS corresponds to the LS estimates, ReOLS to the
estimates based on the diagonal elements of LS estimates, and SUR
to the estimates based on the seemingly unrelated regressions.

Several conclusions can be drawn from this Monte Carlo study.
First, for β , our limit distribution well approximates the finite
sample distribution in both cases. Second, for κ , the limit distri-
bution is closer to the finite sample distribution based on SUR than
those based on LS or ReOLS. While in Case 1 where the explosive
roots are distinct, the finite sample distributions based on LS and
SUR are very close to each other, in Case 2where there is a common
explosive root, the limit distribution is much closer to the finite
sample distribution based on SUR than to those based on OLS. But
in neither case was there any evidence to support the use of ReOLS.
The result in Table 5 suggests that it is preferable to use the limit
distribution for inference about κ based on SUR.

To understand why SUR provides much better results than LS
for testing hypotheses about κ in Case 2, Table 6 reports the mean
and variance of the two sets of estimates of κ in both cases. While
SUR produces slightly better estimates than LS in Case 1, it yields
much better estimates of κ in Case 2. As shown in Phillips andMag-
dalinos (2013), due to the endogeneity problem in the VARmodels
when there is a common explosive root, the LS estimate of the
common explosive autoregression parameter is biased downward,
suggesting that the estimate of κ is biased upward. Naturally this
bias distorts the asymptotic approximation of the Wald statistic.

5. Empirical illustration for the US real estate market

This section illustrates use of the limit theory in an empirical
study of the relationship between the US nationwide real estate
market and metropolitan real estate markets, respectively, be-
tween January 2000 and April 2006. We apply the limit theory
for univariate co-moving system (2.1)–(2.2) to real estate data
using the S&P/Case–Shiller home price composite 20-city index
and metropolitan area indices. The S&P/Case–Shiller home price
indices are the leading measures of the US residential real estate
prices, tracking changes in the value of residential real estate
nationwide. Monthly data for the composite 20-city index and
20 metropolitan area indices between February 2000 and August
2014 were downloaded from the St. Louis Fed.3

Similar to the capital asset pricing model CAPM, we use the
composite 20 index to measure the overall market movements.
A multi-equation continuous time system (2.1)–(2.2) is estimated
with xt as the logarithmic composite 20 index (called the coun-
trywide index in the present paper) and each yt being one of
the logarithmic metropolitan area indices that is found to be
explosive. The coefficient β then measures the co-movement of
each metropolitan area index with the countrywide index. With
monthly data, the sampling interval is set to h = 1/12. The initial

3 http://research.stlouisfed.org/fred2/release?rid=199.

http://research.stlouisfed.org/fred2/release%3Frid%3D199
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Fig. 1. Density comparison between the C test and t test for both finite sample and limit distributions, when the initial value is x0 = 0.

Fig. 2. Density comparison between the C test and t test for both finite sample and limit distributions, when the initial value is x0 = 3.
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Table 2
Comparison of the finite sample and double asymptotic distributions of β̂ , when the initial value is x0 = 0.

Time Span T = 4 T = 10

Frequency C test 1% 2.50% 10% 90% 97.50% 99% 1% 2.50% 10% 90% 97.50% 99%

Daily New −32.233 −13.222 −3.027 3.063 12.063 29.452 −32.233 −13.222 −3.027 3.063 12.063 29.452
(h = 1/252) Finite Sample −36.346 −13.501 −3.271 2.870 11.647 30.428 −28.528 −12.100 −2.889 3.166 13.304 32.007

Weekly New −32.233 −13.222 −3.027 3.063 12.063 29.452 −32.233 −13.222 −3.027 3.063 12.063 29.452
(h = 1/52) Finite Sample −31.973 −11.329 −3.006 2.973 11.752 27.031 −32.775 −12.919 −3.145 3.018 12.735 35.756

Monthly New −32.233 −13.222 −3.027 3.063 12.063 29.452 −32.233 −13.222 −3.027 3.063 12.063 29.452
(h = 1/12) Finite Sample −34.772 −12.327 −2.889 2.793 12.284 27.255 −31.209 −11.698 −2.922 2.842 11.947 32.185

t test

Daily New −2.326 −1.960 −1.282 1.282 1.960 2.326 −2.326 −1.960 −1.282 1.282 1.960 2.326
(h = 1/252) Finite Sample −2.305 −1.950 −1.271 1.253 1.915 2.256 −2.380 −1.976 −1.277 1.301 2.015 2.359

Weekly New −2.326 −1.960 −1.282 1.282 1.960 2.326 −2.326 −1.960 −1.282 1.282 1.960 2.326
(h = 1/52) Finite Sample −2.334 −2.004 −1.292 1.318 1.956 2.340 −2.375 −2.000 −1.286 1.248 1.936 2.285

Monthly New −2.326 −1.960 −1.282 1.282 1.960 2.326 −2.326 −1.960 −1.282 1.282 1.960 2.326
(h = 1/12) Finite Sample −2.452 −2.072 −1.326 1.331 2.057 2.463 −2.434 −1.977 −1.301 1.306 1.969 2.301

Table 3
Comparison of the finite sample and double asymptotic distributions of β̂ , when the initial value is x0 = 3.

Time Span T = 4 T = 10

Frequency C test 1% 2.50% 10% 90% 97.50% 99% 1% 2.50% 10% 90% 97.50% 99%

Daily New −0.427 −0.348 −0.220 0.219 0.347 0.426 −0.427 −0.348 −0.220 0.219 0.347 0.426
(h = 1/252) Finite Sample −0.416 −0.338 −0.215 0.215 0.341 0.412 −0.426 −0.350 −0.220 0.218 0.346 0.418

Weekly New −0.427 −0.348 −0.220 0.219 0.347 0.426 −0.427 −0.348 −0.220 0.219 0.347 0.426
(h = 1/52) Finite Sample −0.413 −0.338 −0.215 0.215 0.337 0.414 −0.411 −0.341 −0.218 0.212 0.336 0.413

Monthly New −0.427 −0.348 −0.220 0.219 0.347 0.426 −0.427 −0.348 −0.220 0.219 0.347 0.426
(h = 1/12) Finite Sample −0.385 −0.324 −0.204 0.205 0.321 0.386 −0.391 −0.318 −0.200 0.207 0.322 0.391

t test

Daily New −2.326 −1.960 −1.282 1.282 1.960 2.326 −2.326 −1.960 −1.282 1.282 1.960 2.326
(h = 1/252) Finite Sample −2.275 −1.924 −1.271 1.249 1.947 2.283 −2.369 −1.989 −1.290 1.285 1.993 2.358

Weekly New −2.326 −1.960 −1.282 1.282 1.960 2.326 −2.326 −1.960 −1.282 1.282 1.960 2.326
(h = 1/52) Finite Sample −2.331 −1.976 −1.309 1.300 1.985 2.340 −2.352 −1.965 −1.285 1.249 1.950 2.320

Monthly New −2.326 −1.960 −1.282 1.282 1.960 2.326 −2.326 −1.960 −1.282 1.282 1.960 2.326
(h = 1/12) Finite Sample −2.439 −2.072 −1.325 1.327 2.050 2.469 −2.397 −1.986 −1.293 1.311 1.963 2.364

Table 4
Comparison of the finite sample and double asymptotic distributions of β̂ , when the initial value is x0 = 10.

Time Span T = 4 T = 10

C test 1% 2.50% 10% 90% 97.50% 99% 1% 2.50% 10% 90% 97.50% 99%

Daily New −0.118 −0.099 −0.064 0.064 0.099 0.117 −0.118 −0.099 −0.064 0.064 0.099 0.117
(h = 1/252) Finite Sample −0.114 −0.096 −0.063 0.063 0.098 0.115 −0.119 −0.100 −0.064 0.064 0.099 0.117

Weekly New −0.118 −0.099 −0.064 0.064 0.099 0.117 −0.118 −0.099 −0.064 0.064 0.099 0.117
(h = 1/52) Finite Sample −0.114 −0.097 −0.064 0.063 0.097 0.116 −0.116 −0.096 −0.063 0.061 0.094 0.115

Monthly New −0.118 −0.099 −0.064 0.064 0.099 0.117 −0.118 −0.099 −0.064 0.064 0.099 0.117
(h = 1/12) Finite Sample −0.109 −0.092 −0.059 0.060 0.092 0.108 −0.110 −0.091 −0.059 0.060 0.090 0.110

t test

Daily New −2.326 −1.960 −1.282 1.282 1.960 2.326 −2.326 −1.960 −1.282 1.282 1.960 2.326
(h = 1/252) Finite Sample −2.274 −1.924 −1.271 1.249 1.947 2.283 −2.369 −1.989 −1.290 1.285 1.993 2.358

Weekly New −2.326 −1.960 −1.282 1.282 1.960 2.326 −2.326 −1.960 −1.282 1.282 1.960 2.326
(h = 1/52) Finite Sample −2.331 −1.976 −1.309 1.300 1.985 2.340 −2.352 −1.965 −1.285 1.249 1.950 2.320

Monthly New −2.326 −1.960 −1.282 1.282 1.960 2.326 −2.326 −1.960 −1.282 1.282 1.960 2.326
(h = 1/12) Finite Sample −2.439 −2.072 −1.325 1.327 2.050 2.469 −2.397 −1.986 −1.293 1.311 1.963 2.364

Table 5
Comparison of the finite sample and double asymptotic distributions of the Wald tests related to β̂2×1 and κ̂2×1 .

Wald test Percentile Case 1: κ1 = −0.2, κ2 = −0.4 Case 2: κ1 = −0.2, κ2 = −0.2

1% 2.50% 10% 90% 97.50% 99% 1% 2.50% 10% 90% 97.50% 99%

Asymptotic χ2
g 0.020 0.051 0.211 4.605 7.378 9.210 0.020 0.051 0.211 4.605 7.378 9.210

Wβ Finite 0.023 0.057 0.206 4.626 7.373 9.354 0.021 0.055 0.226 4.831 7.871 9.760
WOLS

κ Finite 0.020 0.048 0.209 5.264 9.215 12.752 7.645 8.953 11.391 20.142 24.165 26.482
W ReOLS

κ Finite 0.000 0.000 0.000 0.044 1.466 7.980 5.035 6.104 8.082 17.906 22.410 24.899
W SUR

κ Finite 0.020 0.050 0.201 4.589 7.509 9.688 0.021 0.050 0.225 5.087 8.215 10.347
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Fig. 3. Density comparison between the C test and t test for both finite sample and limit distributions, when the initial value is x0 = 10.

Table 6
Finite sample comparison of β̂2×1 and κ̂2×1 for the OLS and SUR estimates.

Case 1: κ1 = −0.2, κ2 = −0.4 Case 2: κ1 = −0.2, κ2 = −0.2

Method OLS SUR OLS SUR

Parameter TRUE Mean VAR Mean VAR TRUE Mean VAR Mean VAR

κ1 −0.200 −0.187 4.60E−03 −0.197 7.16E−04 −0.200 0.042 9.03E−02 −0.197 7.50E−04
κ2 −0.400 −0.400 1.38E−05 −0.400 2.17E−07 −0.200 0.200 1.05E−01 −0.195 1.12E−03

value in each equation of the system is set to the composite 20
index in January 2000, i.e., x0 = log (100.59) = 4.61.

We focus on the sample period between January 2000 and April
2006 (in this case T = 6.25). The choice of the sample period is
guided by recent work in Phillips and Yu, (2011) that documents
the presence of the explosive behavior in the US real estate market
over much of this period. Before estimating the main model (2.1),
we first explore the presence of explosive behavior in the market
index (xth) and in the individual area indices (yth) by estimating
κ and κy and obtaining the standard errors, the t-statistics, and
the 99% and 90% confidence intervals based on the C test and
the t test using the double asymptotic theory developed in WY.
Results are reported in Table 7. For the countrywide index, the
LS estimate of κ is −0.0467, with the estimated standard error of
0.0002 and the t statistic of −2.3538. Its 90% confidence interval is
[−0.0486, −-0.0449] based on the C test and [−0.0793, −0.0141]
based on the t test. All the results confirm the explosive behavior
in xth over this period. For 11 out of 20 individual area indices,
we find explosive behavior based on both the 90% and the 99%
confidence intervals by the C test. Moreover, upon comparison of
the confidence intervals reported in Table 7, it is apparent that the
C test produces tighter confidence intervals than the t test.

For the 11 areas that exhibit explosive behavior, we further
study possible co-movementwith themarket index.We report the

LS estimate of β , the estimated standard error, the t-statistic, and
the 99% and 90% confidence intervals based on the C test and the
t test in Table 8. Allowing for possible weak dependence in u0t
and following Remark 7 we estimate the variance and long-run
variances of u0t by

σ̂ 2
00 =

1
N

N∑
h=1

û0t û′

0t , ϖ̂ 2
00 = σ̂ 2

00 + 2̂λ2
00,

λ̂2
00 =

1
N

Mn∑
h=1

(
1 −

h
Mn + 1

) N∑
t=h+1

û0t û′

0t−h

with truncation lag Mn = N1/3. Evidently, the 90% confidence
intervals are quite tight and comfortably reject the null hypothesis
H0 : β = 0 in all cases. The confidence intervals can also be used
to assess whether β = 1 versus β < 1 or β > 1. If β > 1
(respectively, β < 1) the index of the associated metropolitan
area moves faster (slower) than the countrywide index, giving a
useful perspective on the relationship of different metropolitan
area indices to the national index. The results show that LA, Miami,
DC, and NY have more ‘‘aggressive’’ real estate markets in the US
than the whole market, in the sense that the index for these cities
moves more than the countrywide index.
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Table 7
The estimated persistence parameter in yth and xth , the confidence intervals for persistence parameter in the US logarithmic real estate market.

Place κ or κy Std Err t-stat C test 99% CI C test 90% CI t test 99% CI t test 90% CI

Market −0.0467 1.9843E−02 −2.3538 −0.0496 −0.0438 −0.0486 −0.0449 −0.0978 0.0044 −0.0793 −0.0141
SF 0.0669 6.8910E−02 0.9705 0.0753 0.0584 0.0723 0.0615 −0.1106 0.2444 −0.0465 0.1802
LA −0.0871 2.5867E−02 −3.3658 −0.0913 −0.0829 −0.0897 −0.0844 −0.1537 −0.0204 −0.1296 −0.0445
LasVegas −0.1072 5.9086E−02 −1.8146 −0.1118 −0.1027 −0.1101 −0.1043 −0.2594 0.0450 −0.2044 −0.0100
Miami −0.1605 1.8272E−02 −8.7839 −0.1654 −0.1556 −0.1636 −0.1574 −0.2076 −0.1134 −0.1906 −0.1304
Phoenix −0.3464 4.9243E−02 −7.0355 −0.3497 −0.3431 −0.3486 −0.3443 −0.4733 −0.2196 −0.4274 −0.2655
SanDiego 0.0526 3.3438E−02 1.5729 0.0587 0.0465 0.0565 0.0487 −0.0335 0.1387 −0.0024 0.1076
Denver 0.4462 5.7549E−02 7.7529 1.0475 −0.1569 0.8304 0.0617 0.2979 0.5944 0.3515 0.5408
DC −0.0536 2.3675E−02 −2.2647 −0.0568 −0.0504 −0.0556 −0.0516 −0.1146 0.0074 −0.0926 −0.0147
Chicago −0.0199 2.8680E−02 −0.6929 −0.0213 −0.0184 −0.0208 −0.0189 −0.0937 0.0540 −0.0670 0.0273
Boston 0.2315 3.2179E−02 7.1950 0.3131 0.1497 0.2837 0.1794 0.1486 0.3144 0.1786 0.2845
Charlotte −0.1667 1.2529E−01 −1.3307 −0.1716 −0.1618 −0.1698 −0.1636 −0.4894 0.1560 −0.3728 0.0394
Portland −0.3691 3.2029E−02 −11.5238 −0.3721 −0.3660 −0.3710 −0.3671 −0.4516 −0.2866 −0.4218 −0.3164
Dallas 0.2945 1.1385E−01 2.5866 0.4483 0.1402 0.3928 0.1962 0.0012 0.5878 0.1072 0.4818
Detroit 0.2508 7.3621E−02 3.4072 0.3506 0.1508 0.3146 0.1871 0.0612 0.4405 0.1297 0.3719
Atlanta 0.0453 4.3169E−02 1.0486 0.0502 0.0403 0.0484 0.0421 −0.0659 0.1565 −0.0257 0.1163
Seattle −0.2937 2.8503E−02 −10.3035 −0.2976 −0.2898 −0.2962 −0.2912 −0.3671 −0.2203 −0.3406 −0.2468
Minneapolis 0.1418 2.6267E−02 5.4002 0.1704 0.1132 0.1601 0.1236 0.0742 0.2095 0.0986 0.1850
Tampa −0.2111 2.9201E−02 −7.2302 −0.2158 −0.2064 −0.2141 −0.2081 −0.2863 −0.1359 −0.2592 −0.1631
Cleveland 0.1000 6.5902E−02 1.5175 0.1155 0.0845 0.1099 0.0901 −0.0697 0.2698 −0.0084 0.2084
NY −0.0005 1.9307E−02 −0.0242 −0.0005 −0.0004 −0.0005 −0.0004 −0.0502 0.0493 −0.0322 0.0313

Table 8
The estimated β coefficients and the confidence intervals for β in the US logarithmic real estate market.

City β S.E(β) t (β) C test 99% CI C test 90% CI t test 99% CI t test 90% CI

LA 1.0223 0.0052 4.3232 1.0046 1.0401 1.0110 1.0337 1.0090 1.0357 1.0138 1.0308
LasVegas 1.0009 0.0053 0.1796 0.9828 1.0191 0.9894 1.0125 0.9873 1.0146 0.9923 1.0096
Miami 1.0163 0.0045 3.6168 1.0008 1.0318 1.0064 1.0261 1.0047 1.0279 1.0089 1.0237
Phoenix 0.9832 0.0042 −4.0050 0.9688 0.9976 0.9740 0.9924 0.9724 0.9940 0.9763 0.9901
DC 1.0190 0.0034 5.6085 1.0074 1.0307 1.0116 1.0264 1.0103 1.0277 1.0134 1.0246
Chicago 0.9806 0.0033 −5.8713 0.9693 0.9920 0.9734 0.9879 0.9722 0.9891 0.9752 0.9861
Charlotte 0.9456 0.0075 −7.2537 0.9199 0.9714 0.9292 0.9621 0.9263 0.9649 0.9333 0.9580
Portland 0.9670 0.0035 −9.5031 0.9551 0.9790 0.9594 0.9746 0.9581 0.9760 0.9613 0.9727
Seattle 0.9713 0.0036 −7.9975 0.9590 0.9837 0.9635 0.9792 0.9621 0.9806 0.9654 0.9772
Tampa 1.0000 0.0021 0.0089 0.9927 1.0074 0.9953 1.0047 0.9945 1.0055 0.9965 1.0035
NY 1.0083 0.0013 6.5547 1.0039 1.0126 1.0055 1.0111 1.0050 1.0115 1.0062 1.0104

6. Conclusion

This paper studies co-moving systems with explosive regres-
sors in a continuous time framework. The exact discretized model
corresponds to amodified version of the discrete timemodel ofMP
but allows for larger initial condition effects and an asymptotically
negligible intercept. The limit theory is developed for thismodified
model, enabling us to obtain double asymptotic limit theory for
a continuous time system in which the span T → ∞ and the
sampling interval h → 0. The extensions have some important
implications for practicalwork. First, the limit distributiondepends
explicitly on the initial condition. This dependence mimics a cor-
responding property in the finite sample distribution and thereby
improves the quality of the double asymptotic limit theory as
a finite sample approximation. Second, the localized coefficient
c , whose counterpart in continuous time is −κ , is consistently
estimable in continuous time using the LS estimator, facilitating a
coefficient based test for mildly explosive behavior. Finally, pivotal
inference is facilitated in the continuous time case because the
sampling interval is known whereas in discrete time system the
corresponding localizing rate parameter is unknown.

The double asymptotic limit theory is developed for univari-
ate and multivariate discrete time systems that relate to systems
formulated in continuous time. Simulations suggest that for the
coefficient based test and the t test statistics, these asymptotics
well approximate the finite sample distributions. An empirical
illustration with US real estate prices at national and various
metropolitan areas shows how the methods assist in identifying
regionswhere real estatemarkets aremore aggressive than others.

Appendix A

A.1. Proof of Theorem 2.1

Proof. The arguments here and in much of what follows closely
mirror those of MP in the mildly explosive case. We therefore
provide only themain new details here. The limit theory of

∑N
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2
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and
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)
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(i) Start by writing xt in (2.9) as follows:
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For the first term on the right hand side of (A.3), since x̃0 =
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where we assume the probability space is expanded in such a way
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The third term on the right hand side of (A.3) is

R−N
N

√
Nα

⎛⎝ mN∑
t=1

+

N∑
t=mN+1

⎞⎠ u0t

⎛⎝ 1
√
Nα

t∑
j=1

Rt−j
N uxj

⎞⎠
=

1
√
Nα

mN∑
t=1

R−(N−t)
N u0t

⎛⎝ 1
√
Nα

t∑
j=1

R−j
N uxj

⎞⎠
+

1
√
Nα

N∑
t=mN+1

R−(N−t)
N u0t

⎛⎝ 1
√
Nα

t∑
j=1

R−j
N uxt

⎞⎠
=

1
√
Nα

N∑
t=mN+1

R−(N−t)
N u0t

⎛⎝ 1
√
Nα

mN∑
j=1

R−j
N uxj

⎞⎠+ op (1) ,

where we use the fact that N−α/2∑mN
t=1R

−(N−t)
N u0t = op (1) from

(A.6). We now use a joint MCLT for the components

(U0N ,UxN) =

⎛⎝ 1
√
Nα

N∑
t=mN+1

R−(N−t)
N u0t ,

1
√
Nα

mN∑
j=1

R−j
N uxj

⎞⎠
=

⎛⎝ 1
√
Nα

N∑
t=1

R−(N−t)
N u0t ,

1
√
Nα

N∑
j=1

R−j
N uxj

⎞⎠+ op (1)

⇒

(
σ00

(2c)1/2
U0,

σxx

(2c)1/2
Ux

)
with

(
U ′

0,U
′

x

)′
∼ N (0, I2) ,

just as in PM and MP, using the fact that the limit variates (U0,Ux)
are independent because

E

⎧⎨⎩
(

1
√
Nα

N∑
t=1

R−(N−t)
N u0t

)⎛⎝ 1
√
Nα

N∑
j=1

R−j
N uxj

⎞⎠⎫⎬⎭
=

N1−α

RN
N

σ0x → 0.

Hence

R−N
N

√
Nα

⎛⎝ mN∑
t=1

+

N∑
t=mN+1

⎞⎠ u0t

⎛⎝ 1
√
Nα

t∑
j=1

Rt−j
N uxj

⎞⎠
=

1
√
Nα

N∑
t=mN+1

R−(N−t)
N u0t

⎛⎝ 1
√
Nα

mN∑
j=1

R−j
N uxj

⎞⎠+ op (1)

⇒

(
σ00

(2c)1/2
U0

)(
σxx

(2c)1/2
Ux

)
=

σ00σxx

2c
U0Ux.

Combining the above results and using (A.4) we obtain(
RN
NN

α
)−1

N∑
t=1

xtu0t



Y. Chen et al. / Journal of Econometrics 201 (2017) 400–416 415

=
(
RN
NN

α
)−1

N∑
t=1

Rt
Nu0t

(
x0 −

µ

1 − RN

)

+
(
RN
NN

α
)−1

N∑
t=1

u0t
µ

1 − RN

+
R−N
N

√
Nα

N∑
t=mN+1

u0t

⎛⎝ 1
√
Nα

t∑
j=1

Rt−j
N uxj

⎞⎠+ op (1)

=
(
RN
NN

α
)−1

N∑
t=1

Rt
Nu0t

(
x0 −

µ

1 − RN

)

+
R−N
N

√
Nα

N∑
t=mN+1

u0t

⎛⎝ 1
√
Nα

t∑
j=1

Rt−j
N uxj

⎞⎠+ op (1)

⇒
Dσ00

(2c)1/2
U0 +

σ00σxx

2c
U0Ux

=
σ00

(2c)1/2
U0

(
D +

σxx

(2c)1/2
Ux

)
, (A.8)

giving the limit of the numerator.
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R2N−1

)
R2NN Nα

∑N
t=1 x

2
t

∼

(
RN
NN

α
)−1∑N

t=1 xtu0t

2c
R2NN N2α

∑N
t=1 x

2
t

⇒

σ00
(2c)1/2

U0

(
D +

σxx
(2c)1/2

Ux

)
(

σxx
(2c)1/2

Ux + D
)2

=

σ00
(2c)1/2

U0

σxx
(2c)1/2

Ux + D
=

σ00U0

σxxUx + (2c)1/2D
.

Therefore,

RN
NN

α
(̂
A − A

)
=

(
RN
NN

α
)−1∑N

t=1 xtu0t(
R2N
N N2α

)−1∑N
t=1 x

2
t

⇒ 2c
σ00U0

σxxUx + (2c)1/2D
,

giving the stated result. ■

A.2. Proof of Corollary 2.2

Proof. The proof follows from Theorem2.1 by noting themappings

σ 2
00 ↦→ σ 2

00, σ
2
xx ↦→ 1, RN ↦→ ah = e−κh, X∗

↦→
x0
σxx

,

µ ↦→
µκ

σxx
h1/2, µ∗

↦→
µκ

σxx
,

DN ↦→ Dh = x̃0hh1/2
−

h−1/2g̃h
κ

→ D∗
=

x0
σxx

−
µ

σxx
,

with h = 1/Nα. It follows that

a−N
h h

N∑
t=1

x̃thu0,th ⇒
σ00

−2κ
U0
(
Ux + (−2κ)1/2D∗

)
, (A.11)

a−2N
h h2

N∑
t=1

x̃2th ⇒

(
1

−2κ

)2(
Ux + (−2κ)1/2D∗

)2
, (A.12)
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and hence

aNh
√
h

(̂
β − β

)
⇒ (−2κ)

σ00
σxx

U0

Ux + (−2κ)1/2D∗

= (−2κ)
σ00U0

σxxUx + (−2κ)1/2 (x0 − µ)
. ■

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jeconom.2017.08.016.
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