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Random Mechanism Design on Multidimensional Domains∗

Shurojit Chatterji† and Huaxia Zeng‡

October 24, 2017

Abstract

We study random mechanism design in an environment where the set of alternatives has

a Cartesian product structure. We first show that all generalized random dictatorships

are strategy-proof on a minimally rich domain if and only if the domain is a top-separable

domain. We next generalize the notion of connectedness (Monjardet, 2009) to establish a

particular class of top-separable domains: connected+ domains, and show that in the class of

minimally rich and connected+ domains, the multidimensional single-peakedness restriction

is necessary and sufficient for the design of a flexible random social choice function that is

unanimous and strategy-proof. Such a flexible function is distinct from generalized random

dictatorships in that it allows for a systematic notion of compromise. Our characterization

remains valid (under an additional hypothesis) for a problem of voting with constraints where

not all alternatives are feasible (Barberà et al., 1997).

Keywords: Generalized random dictatorships; Top-separable domains; Connected+ domains;

Multidimensional single-peaked domains; Constrained voting

JEL Classification: D71.

1 Introduction

Multidimensional models arise very naturally in economic environments as it is often the case

that the object of choice consists of several attributes or components (commodities in consumer

theory, positions in political economy, different levels of provision of distinct public goods, etc),

with no dependence across choices in different components.1 The set of alternatives thus has

the structure of a Cartesian product set, i.e., A ≡ ×s∈MAs where s is a component and As is

a component set.2 The underlying Cartesian product structure on the set of alternatives allows

for a richer description of available alternatives and introduces furthermore the possibility of

∗The research reported here was supported by the Ministry of Education, Singapore under the grant MOE2016-

T2-1-168. We are grateful to the participants of the Asian meeting of the Econometric Society, 2017, Hong Kong

and the Conference of Economic Design, 2017, York, for helpful comments.
†School of Economics, Singapore Management University, Singapore.
‡Lingnan (University) College, Sun Yat-sen University, Guangzhou, China.
1See for instance, legislative, political and club-member elections (e.g., Border and Jordan, 1983; Barberà et al.,

1991, 1993, 1999, 2005; Aswal et al., 2003) and public goods location and provision problems (e.g., Zhou, 1991;

Peters et al., 1992; Chichilnisky and Heal, 1997; Le Breton and Sen, 1999; Le Breton and Weymark, 1999; Ehlers,

2002; Svensson and Torstensson, 2008; Reffgen and Svensson, 2012).
2We pick an element in each component set of the Cartesian product structure, and assemble these selected

elements to form an alternative.
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defining domains of restricted preferences which take cognizance of the multidimensional struc-

ture and allow positive results for aggregation and economic design. We explore the theoretical

underpinnings of such multidimensional preference domains from the perspective of mechanism

design. We first identify a particular condition, top-separability, which turns out to be funda-

mental in formulating multidimensional preferences that admit new possibilities for mechanism

design.3 Our principal finding is that within the class of top-separable preferences, multidimen-

sional single-peaked domains (introduced by Barberà et al., 1993), a particular generalization

of the notion of single-peakedness to a multidimensional setting, emerge as the unique pref-

erence domains that allow for the design of attractive random mechanisms. Thus the notion

of single-peakedness, which is well-studied and prominent in aggregation theory, voting the-

ory and political economy, turns out to be a particularly distinguished one in the context of

multidimensional random mechanism design.

We focus on probabilistic mechanisms in multidimensional settings in the absence of mone-

tary transfers where the set of alternatives is assumed to be finite.4 We impose a strong version

of the incentive compatibility requirement by requiring that truth-telling first order stochasti-

cally dominate every possible manipulation of preferences. We thus study Random Social Choice

Functions (RSCFs) that satisfy the ordinal version of strategy-proofness formulated by Gibbard

(1977).5 We also impose throughout the assumption that RSCFs satisfy unanimity, which says

that if an alternative is top ranked for every agent at a particular profile of preferences, then it

receives probability one under the RSCFs at that profile.

An important class of RSCFs is the class of random dictatorships. These are defined by fixing

a probability distribution over agents; the probability assigned to an alternative at a preference

profile is then the sum of the weights of the agents who have this particular alternative as

their top ranked alternative. Random dictatorships are strategy-proof and ex-post efficient (a

strengthening of unanimity), and allow for a equitable distribution of power among agents which

is precluded by a deterministic dictatorship. These are however not entirely satisfactory from

the design point of view as they lack flexibility ; indeed any alternative that is not top ranked for

some agent at the profile in question, can never get strictly positive probability. In particular,

such an alternative may be second ranked for all agents in a profile where agents disagree on

peaks; we refer to such an alternative as a compromise alternative and suggest that it is desirable

to design RSCFs that have the flexibility to give positive probability to such an alternative. 6

Under a Cartesian product structure, random dictatorships can be naturally generalized to

3In a top-separable preference, when we compare two alternatives which disagree on one component but agree

on all other components, the alternative that inherits the element of the top ranked alternative in that particular

disagreed component is always preferred. Throughout the paper, the term multidimensional preference will refer

to a preference which satisfies top-separability (and possibly some other restrictions).
4We focus on the classic voting model which we hope will be useful in formulating more general models where

some of the dimensions include private goods or monetary transfers. Recent work (e.g., Morimoto and Serizawa,

2015; Kazumura et al., 2017) studies formulations with monetary transfers under non-quasi-linear preferences.
5This is equivalent to requiring that the expected utility of truth-telling be at least as large as the expected

utility of manipulating, for every possible utility representation of the primitive ordinal preference.
6Gibbard (1977) proved that on the domain of unrestricted preferences, the only strategy-proof and unanimous

RSCFs are random dictatorships. Recent literature has examined restricted preference domains where one may

design more flexible RSCFs that are strategy-proof and unanimous. See for instance, almost random dictatorships

(Chatterji et al., 2014), fixed probabilistic ballots rules (Ehlers et al., 2002) and probabilistic generalized median

voter schemes (Peters et al., 2014).
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accord with the multidimensional setting in the following way. Instead of fixing a probability

distribution over agents, we fix a probability over voter sequences, where a voter sequence is an

|M |-tuple of agents, and where each component is associated with an agent who can be viewed

as the dictator of that component (and one agent can be associated to multiple components).

At a preference profile, we can assemble, according to a voter sequence a unique alternative

whose k − th component is the k − th component of the peak of the dictator for the k − th
component as specified by the voter sequence. The probability assigned to an alternative at a

preference profile is then the sum of the weights of the voter sequences which can assemble this

particular alternative. These random mechanisms are called generalized random dictatorships

and were introduced by Chatterji et al. (2012). Generalized random dictatorships recognize the

Cartesian product structure and allow for greater flexibility than do random dictatorships as

at some preference profile, some non-peak alternatives can be assembled and receive strictly

positive probability. In contrast to random dictatorships, certain preference restrictions must

however be imposed to ensure strategy-proofness of a generalized random dictatorship. We show

in Proposition 1 that top-separability is necessary and sufficient for the strategy-proofness of all

generalized random dictatorships. However, due to the somewhat limited assembling capability

of voter sequences, generalized random dictatorships sometimes ignore compromise alternatives.

This paper examines restricted domains of multidimensional preferences that allow us to con-

struct strategy-proof RSCFs which are flexible in that they systematically admit compromise.

The preference domains we study satisfy a particular “richness” property that is based on the

idea of connectedness initially proposed by Grandmont (1978) and Monjardet (2009), and has

been recently adopted to explore various issues which include the equivalence of local strategy-

proofness and strategy-proofness (e.g., Sato, 2013; Cho, 2016; Mishra, 2016), the extent to which

RSCFs can depend on agents’ preferences (Chatterji and Zeng, 2017), and the characterization

of preference restrictions that allow one to design attractive RSCFs (Chatterji et al., 2016). The

notion of connectedness requires that one be able to reconcile the differences in two preferences

via a sequence of preferences in the domain where each successive pair of preferences involves a

“local switch”of two contiguously ranked alternatives. This richness condition restricts the prob-

abilities received by alternatives that do not switch between two successive pairs of preferences,

and plays a fundamental methodological role in deriving the results mentioned above.

However, this notion of connectedness does not apply to domains of multidimensional pref-

erences, e.g., the top-separable domain, as it is often the case that multiple pairs of alternatives

have to be switched simultaneously across two successive preferences. We introduce a new no-

tion of a connectedness which permits the requisite simultaneous local switches and allows us

to investigate systematically domains of multidimensional preferences that permit the design of

nice strategy-proof RSCFs. The domains we consider are termed connected+ domains; these

are subsets of the top-separable domain, and include the well studied instances of separable

preferences (Barberà et al., 1991; Le Breton and Sen, 1999), multidimensional single-peaked

preferences (Barberà et al., 1993), and their intersection and unions. Connected+ domains also

possess the requisite generality and structure that would in principle allow one to investigate

other issues being studied in the literature (like the equivalence of local strategy-proofness and

strategy-proofness, etc, alluded to above) and can presumably be exploited beyond this paper.

In the class of connected+ domains, multidimensional single-peaked domains are an impor-

tant and well studied class. These are a particular generalization of the idea of single-peaked
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preferences to a multidimensional setting using the Cartesian product structure and the city

block metric. Our first theorem characterizes multidimensional single-peaked domains as the

unique domains that permit the design of strategy-proof and unanimous RSCFs that systemat-

ically depart from random dictatorships/generalized random dictatorships, in that they admit

compromises, wherein compromise alternatives necessarily receive strictly positive probability

whenever they appear (see Theorem 1). Our version of multidimensional single-peaked do-

mains allows elements of each component set to be arranged on a tree which is a generalization

of multidimensional single-peakedness initiated by Barberà et al. (1993).7 In the special case

where the connected+ domain contains two complete reversals preferences, we refine the domain

characterization to the more familiar formulation of Barberà et al. (1993). We next provide

a characterization result for multidimensional single-peaked domains using deterministic social

choice functions (see Theorem 2). We do so by replacing the compromise property by the familiar

axiom of anonymity.8

We finally turn to the setup of voting under constraints originally proposed by Barberà et al.

(1997). Here, not all alternatives in the underlying Cartesian product structure are feasible. We

investigate what structure on the set of feasible alternatives and preferences (applicable now only

to the restriction of the original preferences to the feasible alternatives) would allow us to define

RSCFs which satisfy our requirements of strategy-proofness, compromise, etc on connected+

domains. We deduce that the set of feasible alternatives must be factorizable as a Cartesian

product of trees and the preferences must satisfy a particular version of multidimensional single-

peakedness w.r.t. the peak of the set of feasible alternatives (see Theorem 3). Our results are

therefore robust to restrictions on feasibility.

The rest of the paper is organized as follows. The remainder of the Introduction explains

in greater detail the relation of this paper to the literature. Section 2 describes the model and

introduces generalized random dictatorships. Section 3 presents the domain characterization

results for multidimensional single-peaked preferences, while Section 4 concludes. The Appendix

gathers proofs, examples and verifications not included in the main text.

1.1 Related Literature

Much of the literature on multidimensional models has focused on deterministic social choice

functions (DSCFs). The early literature proved impossibility results for various generalizations

of single-peakedness to cases where the set of alternatives are a convex subset of RM (e.g., Border

and Jordan, 1983; Bordes et al., 1990; Zhou, 1991; Peters et al., 1992). The case of separable

preferences over a convex subset of alternatives was analyzed by Le Breton and Weymark (1999)

while general results on formulations where the set of alternatives is a subset of a metric space

were presented by Weymark (2008). Barberà et al. (1991) provide a possibility result of voting by

committees when the number of elements in each component set is two, while in the general case

with finitely many elements in each component studied by Le Breton and Sen (1999), strategy-

proof DSCFs degenerate to generalized dictatorships which are the deterministic counterparts

of generalized random dictatorships. Positive characterization results for generalized median

7In the formulation of multidimensional single-peakedness of Barberà et al. (1993), all elements of each com-

ponent set are located on a line.
8Anonymity implies that the social choice is immune to the identities of agents.
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voter schemes have been introduced by Barberà et al. (1993) who proposed the restriction of

multidimensional single-peakedness, and by Barberà et al. (1997) who introduced the intersection

property on generalized median voter schemes to accord with voting under constraints. A

comprehensive survey of these results is provided by Sprumont (1995) and Barberà (2010).

Besides the characterizations of strategy-proof DSCFs on multidimensional domains, several

papers also verify the necessity of separable preferences (see Hatsumi et al., 2014), and various

versions of multidimensional single-peaked preferences for the existence of particular generalized

median voter schemes (e.g., Barberà et al., 1993, 1999) or strategy-proof DSCFs satisfying

various well-behavedness criteria (e.g., neutrality and anonymity in Nehring and Puppe, 2007,

and tops-only property and anonymity in Chatterji and Massó, 2016).9

The literature on random mechanism design on restricted domains arising from multidimen-

sional models is not as large. An early paper by Dutta et al. (2002) studies lotteries defined on a

convex subset of RM where preferences are convex, continuous and single-peaked, and establishes

a random dictatorship result. More recently, Chatterji et al. (2012) characterize generalized ran-

dom dictatorships on the lexicographically separable domain, which is a particular subset of the

separable domain (and is excluded by the class of connected+ domains), while Chatterji and

Zeng (2017) characterize random dictatorships using strategy-proofness and ex-post efficiency

on the multidimensional single-peaked domain. Recently, Chatterji et al. (2016) characterize

single-peaked preferences on a tree in the class of connected domains. The characterization of

the multidimensional single-peaked domain in this paper differs from their result in two im-

portant ways. First, Chatterji et al. (2016) uses an extra tops-only axiom on the RSCFs and

secondly, as mentioned earlier, their connectedness assumption excludes the multidimensional

domains studied in this paper. In the present paper, the tops-only property emerges endoge-

nously (Proposition 3) from our richness condition. Our richness condition is a strengthening of

the“Interior and Exterior”properties of Chatterji and Zeng (2017) that was shown to precipitate

the tops-only property. Their results do not apply for the connected+ domains we study in this

paper. We extend their tops-only result to our setting by postulating the existence of sufficiently

many separable preferences that allow the sort of multiple switches of alternatives we alluded

to earlier. This strengthening is critical for establishing that the alternatives of the Cartesian

product structure be embedded in a product of trees and that preferences be multidimensional

single-peaked as stated in Theorem 1. Similarly, our characterization result for multidimen-

sional single-peaked domains using deterministic social choice functions extends the analysis of

Chatterji et al. (2013) to multidimensional domains (which were excluded by their hypothesis

of connected domains) and does so by endogenizing the tops-only property (which was imposed

as an axiom in their paper). For the set up of voting under constraints, Barberà et al. (1997)

characterized all unanimous and strategy-proof DSCFs on the multidimensional single-peaked

domain for arbitrary feasible sets. We investigate and provide an answer to the converse question

for RSCFs: What can be inferred about the structure of the set of feasible alternatives and the

preferences from the existence of a well-behaved strategy-proof RSCF satisfying the properties

of compromise, tops-onlyness, etc, on a connected+ domain?

9Neutrality implies that the social choice is immune to relabelings of alternatives. The tops-only property

implies that when each agent has the same preference peak across two preference profiles, the social choices

remain identical at two profiles.
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2 Preliminaries

Let A be a finite set of alternatives with |A| ≥ 3. We assume that the alternative set can be

represented as a Cartesian product of a finite number of sets, each of which contains finitely

many elements. Formally, let A = ×s∈MAs where M = {1, 2, . . . ,m}, m ≥ 2 is an integer; and

|As| ≥ 2 is an integer for each s ∈ M .10 Each s ∈ M is called a component; As is referred

to as a component set, and an element in As is denoted as as. Accordingly, an alternative is

represented by a m-tuple, i.e., a ≡ (a1, a2, . . . , am) ≡ (as)s∈M . Given a nonempty strict subset

S ⊂ M , let AS = ×s∈SAS , aS ≡ (as)s∈S ∈ AS ; A−S ≡ ×s/∈SAs and a−S ≡ (as)s/∈S ∈ A−S .11

Therefore, we also write alternative a ≡ (as, a−s) ≡ (aS , a−S). In particular, we say a pair of

alternatives a, b ∈ A is similar if they disagree on exactly one component, i.e., as 6= bs and

a−s = b−s for some s ∈M . For notational convenience, given non-empty S ⊂M , XS ⊆ AS and

Y −S ⊆ A−S , let (XS , Y −S) = {a ∈ A|aS ∈ XS and a−S ∈ Y −S}.12 Let ∆(A) denote the space

of lotteries over A. An element of ∆(A) is thus a lottery or probability distribution over A. In

particular, ea ∈ ∆(A) is a degenerate lottery where alternative a is chosen with probability one.

Let I = {1, . . . , N} be a finite set of voters with N ≥ 2. Each voter i has a preference

order Pi over A which is complete, antisymmetric and transitive, i.e., a linear order. For any

a, b ∈ A, aPib is interpreted as “a is strictly preferred to b according to Pi”.
13 Two preferences

Pi, P
′
i are complete reversals if [aPib]⇔ [bP ′ia] for all a, b ∈ A. We use aPi!b to denote that

a is contiguously ranked above b in Pi, i.e., aPib and there exists no c ∈ A such that aPic and

cPib. Given a preference Pi, let rk(Pi) denote the kth ranked alternative in Pi, 1 ≤ k ≤ |A|.
Let P denote the set containing all linear orders over A. The set of all admissible preferences

is a set D ⊆ P, referred to as a preference domain. We call P the complete domain. When

D 6= P, D is referred to as a restricted domain. For notational convenience, given a ∈ A, let

Da = {Pi ∈ D|r1(Pi) = a} denote a preference subdomain where each preference’s peak is a.

Correspondingly, a domain D is minimally rich if Da 6= ∅ for every a ∈ A.

Each voter presents a preference, and all reported preferences are collected to formulate

a preference profile P ≡ (P1, P2, . . . , PN ) ≡ (Pi, P−i) ∈ DN . A Random Social Choice

Function (or RSCF) is a map ϕ : DN → ∆(A), which associates each preference profile P ∈ DN

to a “socially desirable” lottery ϕ(P ). For any a ∈ A, ϕa(P ) is the probability with which the

alternative a will be chosen in ϕ(P ). Thus, ϕa(P ) ≥ 0 for all a ∈ A and
∑

a∈A ϕa(P ) = 1. A

Deterministic Social Choice Function (or DSCF) is a particular RSCF where a degenerate

lottery is specified under each preference profile, i.e., ϕ(P ) = ea for some a ∈ A at profile P .14 An

RSCF satisfies unanimity if it assigns probability one to an alternative that is top ranked by all

voters, i.e., an RSCF ϕ : DN → ∆(A) is unanimous if [r1(Pi) = a for all i ∈ I]⇒ [ϕa(P ) = 1]

for all a ∈ A and P ∈ DN . Next, an RSCF ϕ : DN → ∆(A) is strategy-proof if for all

i ∈ I, Pi, P
′
i ∈ D and P−i ∈ DN−1, the lottery ϕ(Pi, P−i) first-order stochastically dominates

ϕ(P ′i , P−i) according to Pi, i.e.,
∑t

k=1 ϕrk(Pi)(Pi, P−i) ≥
∑t

k=1 ϕrk(Pi)(P
′
i , P−i), t = 1, . . . , |A|.

10To make sure all components indispensable, we assume |As| ≥ 2 for every s ∈M .
11In this paper, ⊆ and ⊂ denote the weak inclusion relation and the strict inclusion relation respectively.
12For instance, (xs, A−s) ≡ {a ∈ A|as = xs} and (As, x−s) ≡ {a ∈ A|a−s = x−s} are frequently used henceforth.
13In a table, we specify a preference “vertically”. In a sentence, we specify a preference “horizontally”. For

instance, preference Pi: a⇀b⇀c⇀ · · · represents that a is at the top, b is the second best, c is the third ranked

alternative while the rest of rankings in Pi are arbitrary.
14We sometimes simply write a DSCF as f : DN → A.
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A prominent class of unanimous and strategy-proof RSCFs is the class of random dictator-

ships (Gibbard, 1977). Each voter is assigned a non-negative weight such that the sum of the

weights accross the voters add up to one. In a random dictatorship, at each preference profile, the

probability received by an alternative is determined by the set of voters who prefer this alterna-

tive the most and equals the sum of these voters’ weights. Formally, an RSCF ϕ : DN → ∆(A)

is a random dictatorship if there exists εi ≥ 0 for each i ∈ I with
∑

i∈I εi = 1 such that

for all P ∈ DN and a ∈ A, ϕa(P ) =
∑

i∈I: r1(Pi)=a
εi.

15 Note that a random dictatorship is

strategy-proof on any arbitrary preference domain.

2.1 Generalized random dictatorships

Under the Cartesian product setting, one may consider the following generalization of a random

dictatorship. We associate each component s ∈ M to a voter is ∈ I. Thus, a m-tuple of voters

i = (is)s∈M ∈ Im forms a voter sequence. A voter sequence can be viewed as a combination of

m dictators (one voter may appear multiple times); on each component s ∈ M , voter is is the

dictator over the component set As. Given a profile P ∈ DN , for notational convenience, assume

r1(Pi) = xi ≡ (xsi )s∈M , i ∈ I. We say that an alternative a ≡ (as)s∈M is assembled by a voter

sequence i ≡ (is)s∈M at profile P , if as = xsis ≡ r1(Pis)
s for all s ∈ M . Analogously to random

dictatorships, we associate a non-negative weight to each voter sequence, denoted γ(i) ≥ 0,

i ∈ Im, and let the sum of all voter sequences’ weights equal to one, i.e.,
∑

i∈Im γ(i) = 1.

Last, at a preference profile, the probability assigned to an alternative is determined by the

set of voter sequences who can assemble this alternative. Such an RSCF is referred to as a

generalized random dictatorship (Chatterji et al., 2012). Formally, an RSCF ϕ : DN → ∆(A) is

a generalized random dictatorship, if there exists γ(i) ≥ 0 for each i ∈ Im with
∑

i∈Im γ(i) =

1, such that for all P ∈ DN and a ∈ A, ϕa(P ) =
∑

i≡(is)s∈M∈Im: a=(r1(Pis )s)s∈M

γ(i).

Evidently, every generalized random dictatorship satisfies unanimity. If only identity voter

sequences (i.e., one voter dictates all components) receive positive weights, a generalized random

dictatorship degenerates to a random dictatorship, while on the other hand, if every voter se-

quence receives a strictly positive weight, we have a strict generalized random dictatorship, which

prescribes a maximal support for the social lottery under each preference profile compared to

other generalized random dictatorships. The characterization of random dictatorships Gibbard

(1977) implies that a generalized random dictatorship where some voter sequence other than an

identity voter sequence receives strictly positive weight fails to be strategy-proof.

Definition 1 A preference Pi is top-separable if given s ∈M and bs ∈ As, we have[
r1(Pi)

s ≡ as 6= bs
]
⇒
[
(as, y−s)Pi(b

s, y−s) for all y−s ∈ A−s
]
.

Let DTS denote the top-separable domain which contains all top-separable preferences.

Henceforth, we use the term “multidimensional domains” to refer to subdomains of DTS .16

15In particular, if εi = 1 for some i ∈ I, the random dictatorship degenerates to a dictatorship.
16The Cartesian product structure would be redundant if it is not involved in establishing preference restrictions.

The restriction of top-separability is indeed formulated w.r.t. the Cartesian product structure, and therefore

distinguishes our model from the one-dimensional models in the literature (e.g., Gibbard, 1977). The tops-

separable domain includes all restricted domains studied in this paper.
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Note that the restriction of top-separability applies only to particular pairs of similar alter-

natives where one of the two disagreed elements is inherited from the preference peak. For a

pair of similar alternatives where neither of the two disagreed elements coincides with the peak

of the preference, their relative ranking in a top-separable preference is arbitrary. A signifi-

cant strengthening of top-separability is separability which imposes restrictions on every pair of

similar alternatives.

Definition 2 A preference Pi is separable if given s ∈M and as, bs ∈ As, we have[
(as, x−s)Pi(b

s, x−s) for some x−s ∈ A−s
]
⇒
[
(as, y−s)Pi(b

s, y−s) for all y−s ∈ A−s
]
.

The domain of separable preferences which includes all separable preferences is referred to

as the separable domain, denoted DS . Evidently, DS = DTS if |As| = 2 for all s ∈ M , and

DS ⊂ DTS if |As| > 2 for some s ∈M . Given a separable preference Pi, we can induce a marginal

preference on each component set, denoted [Pi]
s over As, s ∈M .17

The top-separable domain includes many multidimensional domains widely studied in the

literature. We use Figure 1 below to summarize the relations across some important multidimen-

sional domains: The top-separable domain includes the separable domain, the lexicographically

separable domain (Chatterji et al., 2012)18, and two multidimensional single-peaked domains

(Barberà et al., 1993).19

The complete domain

The multidimensional

single-peaked domain I

The multidimensional

single-peaked domain II

The lexicographically

separable domain

The top-separable domain

The separable domain

Figure 1: The relations among several domains

The proposition below implies that the top-separable domain is the maximal minimally rich

domain for the strategy-proofness of all generalized random dictatorships.

Proposition 1 Let D be a minimally rich domain. All generalized random dictatorships are

strategy-proof on D if and only if D ⊆ DTS.

17For more detailed studies on separable preferences, please refer to Le Breton and Sen (1999), Barberà et al.

(2005) and Reffgen and Svensson (2012).
18A preference Pi ∈ DS is lexicographically separable if there exists a lexicographic order (a linear order)

� over M such that for all x, y ∈ A, we have [xs[Pi]
sys and xτ = yτ for all τ ∈M with τ � s]⇒ [xPiy]. Let DLS

denote the lexicographically separable domain which contains merely but all lexicographically separable

preferences. Evidently, DLS ⊂ DS .
19For instance, see two different multidimensional single-peaked domains of Examples 1 and 4 in Section 3

below. We will discuss multidimensional single-peaked preferences in Section 3 in detail.
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Proof : Let D ⊆ DTS , and ϕ : DN → ∆(A) be a generalized random dictatorship, i.e., there

exists γ(i) ≥ 0 for each i ∈ Im with
∑

i∈Im γ(i) = 1, such that for all P ∈ DN and a ∈ A, ϕa(P ) =∑
i≡(is)s∈M∈Im: a=(r1(Pis )s)s∈M

γ(i). Given a voter sequence i ≡ (is)s∈M ∈ Im, let f i : DN → A be a

DSCF called a generalized dictatorship such that for all P ∈ DN , f i(P ) =
(
r1(Pis)

s
)
s∈M . Then,

ϕ can be re-expressed as a convex combination of generalized dictatorships, i.e., for all P ∈ DN ,

ϕ(P ) =
∑

i∈Im γ(i) f i(P ). Therefore, to verify the strategy-proofness of ϕ, it suffices to show

that every generalized dictatorship f i is strategy-proof.

Fix a voter sequence i ≡ (is)s∈M ∈ Im and i ∈ I. Given Pi, P
′
i ∈ D and P−i ∈ DN−1,

assume f i(Pi, P−i) = x ≡ (xs)s∈M and f i(P ′i , P−i) = y ≡ (ys)s∈M . We show either x = y or

xPiy. Assume r1(Pi) = a ≡ (as)s∈M and r1(P ′i ) = b ≡ (bs)s∈M . Furthermore, in the voter

sequence i ≡ (is)s∈M , we assume that there exists S ⊆ M such that is = i for all s ∈ S

and iτ 6= i for all τ /∈ S. Consequently, xs = as and ys = bs for all s ∈ S and x−S = y−S .

Evidently, if S = ∅, x = y. Similarly, if S 6= ∅ and xs = ys for all s ∈ S, we also have x = y.

Last, we assume that S 6= ∅, and there exists a non-empty S+ ⊆ S such that as 6= bs for all

s ∈ S+ and aτ = bτ for all τ ∈ S\S+. Consequently, xs = as and ys = bs for all s ∈ S+

and x−S
+

= y−S
+ ≡ z−S

+
. For notational simplicity, assume S+ = {1, . . . , s}. We identify

alternatives ak = (a1, . . . , ak, bk+1, . . . , bs, z−S
+

), k = 0, 1, . . . , s. Thus, a0 = b and as = a. Since

D ⊆ DTS , top-separability implies akPiak−1, k = 1, . . . , s. Consequently, aPib by transitivity.

This completes the verification of strategy-proofness of f i, as required.

Conversely, let all generalized random dictatorships be strategy-proof on domain D. We show

D ⊆ DTS . Suppose that it is not true. Thus, there exist P̄i ∈ D, s ∈M , bs ∈ As and z−s ∈ A−s

such that as = r1(P̄i)
s and (bs, z−s)P̄i(a

s, z−s). We pick a strict generalized random dictatorship

ϕ : DN → ∆(A) and construct a particular preference profile (P̄i, P−i) where r1(Pj) = (bs, z−s)

for all j 6= i. Given a voter sequence i with is = i and iτ 6= i for all τ 6= s, we know that (as, z−s)

can be assembled by the voter sequence i. Consequently, ϕ(as,z−s)(P̄i, P−i) ≥ γ(i) > 0. Given

P ′i ∈ D(bs,z−s), it is evident that ϕ(bs,z−s)(P
′
i , P−i) = 1. Since (bs, z−s)P̄i(a

s, z−s), voter i will

manipulate at (P̄i, P−i) via P ′i . Therefore, D ⊆ DTS . �

3 Main results

As mentioned earlier, random dictatorships never admit compromise as probabilities are assigned

only to peak alternatives in every preference profile. Generalized random dictatorships improve

upon random dictatorships in this respect by diversifying social lotteries. However, they do not

systematically admit compromise since not every compromise alternative can be assembled by

the peaks of some preference profile, and hence such an alternative is ignored by generalized

random dictatorships.

For instance, two voters may disagree strongly on each other’s most preferred alternatives

but may nonetheless have a common second best alternative, e.g., r1(Pi) = (a1, a2) 6= (b1, b2) =

r1(Pj) and r2(Pi) = (a1, b2) = r2(Pj) or r2(Pi) = (b1, a2) = r2(Pj) where a1 6= b1 and a2 6= b2.

This commonly second best alternative (a1, b2) or (b1, a2) can naturally be viewed as a compro-

mise alternative at profile (Pi, Pj); it is however ignored by a random dictatorship. Next, assume

{as, bs, cs} ⊆ As for some s ∈ M , and consider a two-voter strict generalized random dictator-

ship ϕ. Given two groups of three alternatives: (1) a ≡ (as, aτ , z−{s,τ}), b ≡ (bs, bτ , z−{s,τ}) and

9



c ≡ (as, bτ , z−{s,τ}); and (2) a′ ≡ (as, z−s), b′ ≡ (bs, z−s) and c′ ≡ (cs, z−s), we identify two

profiles of separable preferences: (Pi, Pj) where Pi ∈ DaS , Pj ∈ DbS and r2(Pi) = r2(Pj) = c,

and (P ′i , P
′
j) where P ′i ∈ Da′S , P ′j ∈ Db′S and r2(P ′i ) = r2(P ′j) = c′. At profile (Pi, Pj), since the

compromise alternative c can be assembled by the voter sequence (is, iτ , i−{s,τ}) ≡ (i, j, i, . . . , i),

we have ϕc(Pi, Pj) > 0. However, the compromise alternative c′ cannot be assembled by any

voter sequence at (P ′i , P
′
j), and therefore ϕc′(P

′
i , P

′
j) = 0.

We are interested in identifying a class of unanimous and strategy-proof RSCFs which differ

from random dictatorships in a “minimal” but significant degree by systematically admitting

compromise. Recently, Chatterji et al. (2016) have introduced the compromise property on an

RSCF which guarantees that a compromise alternative receives a strictly positive probability

whenever it appears.

Definition 3 An RSCF ϕ : DN → ∆(A) satisfies the compromise property if there exists

Î ⊆ I with |Î| = N
2 if N is even and |Î| = N+1

2 if N is odd, such that for all Pi, Pj ∈ D with

r1(Pi) 6= r1(Pj) and r2(Pi) = r2(Pj) ≡ a, we have ϕa

(
Pi
Î
,
Pj

I\Î

)
> 0.20

We ask what multidimensional domains admit unanimous and strategy-proof RSCFs satis-

fying the compromise property. To address this question, we restricting attention to a broad

class of multidimensional domains: connected+ domains. We show that the existence of a unan-

imous and strategy-proof RSCF satisfying the compromise property on a connected+ domain

implies that the domain must be a multidimensional single-peaked domain, and conversely, we

construct a particular RSCF, a mixed multidimensional projection rule, satisfying unanimity,

strategy-proofness and the compromise property on an arbitrary multidimensional single-peaked

domain. Finally we generalize our analysis to the case of voting under constraints.

3.1 Connected+ domains

We start the investigation with two particular preferences Pi and P ′i where every pair of oppo-

sitely ranked alternatives is also contiguously ranked, i.e., for all a, b ∈ A, we have [aPib and bP ′ia]⇒
[aPi!b and bP ′i !a]. Then the relation between Pi and P ′i can be elaborated further: We can iden-

tify t ≥ 1 pair(s) of distinct alternatives {ak, a′k}, k = 1, . . . , t, and t integers 1 ≤ l(1) < · · · <
l(k) < l(k + 1) < · · · < l(t) ≤ |A|, such that the following three conditions hold:

(i) {ak, a′k} ∩ {al, a′l} = ∅ for all k 6= l.

(ii) ak = rl(k)(Pi) = rl(k)+1(P ′i ) and a′k = rl(k)+1(Pi) = rl(k)(P
′
i ), k = 1, . . . , t.

(iii)
[
a /∈ ∪tk=1{ak, a′k}

]
⇒
[
a = rq(Pi) = rq(P

′
i ) for some 1 ≤ q ≤ |A|

]
.

Observe here that every pair {ak, a′k} is locally switched, and hence, the relative rankings of an

alternative in {ak, a′k} and every alternative not in {ak, a′k} remain identical in both Pi and P ′i .

Thus, each pair {ak, a′k} is referred to as a local switching pair, and preferences Pi and P ′i
are referred to as a pair of t-adjacent preferences and denoted Pi ∼t P ′i .21 To be consistent

20The notation
(
Pi
Î
,
Pj

I\Î

)
denotes a preference profile where all voters of Î report preference Pi while all voters

not in Î report preference Pj .
21Henceforth, to avoid confusion, when we say {a, b} is a local switching pair in some t-adjacent preferences Pi

and P ′i , we also presume that aPi!b and bP ′i !a.
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with the literature (e.g., Sato, 2013), the notion 1-adjacency here is simply called adjacency,

and the notation ∼1 is simplified to ∼.

Given two distinct preferences Pi and P ′i , a sequence of preferences {P ki }
q
k=1, q ≥ 2, is

referred to as a (general) path connecting Pi and P ′i if (i) Pi = P 1
i and P ′i = P qi , and (ii) given

1 ≤ k ≤ q − 1, there exists an integer t ≥ 1 such that P ki ∼t P
k+1
i . This indicates that the

differences between the two preferences Pi and P ′i can be reconciled via a sequence of one-pair

or multiple-pair local switchings. In particular, if every consecutive pair of preferences in a path

is adjacent, this path is referred to as a simple path.

In multidimensional domains however, differences in preferences cannot always be reconciled

via simple paths, and one may have to resort to paths where successive preferences are t-adjacent,

t > 1. Note that the notion of t-adjacency is in fact independent of the Cartesian product

setting. Since we have introduced a Cartesian product structure on the alternative set, we now

turn to a way of systematically describing relations among all local switching pairs by imposing

separability on some particular t-adjacent preferences.

Consider two particular separable preferences Pi and P ′i which are t-adjacent in a particular

way: There exist s ∈ M and as, bs ∈ As such that the local switching pairs in Pi and P ′i are{
(as, z−s), (bs, z−s)

}
z−s∈A−s . Thus, Pi and P ′i are in fact

∣∣A−s∣∣-adjacent.

Henceforth, we say that a pair of preferences Pi and P ′i is adjacent+, denoted Pi ∼+ P ′i , if

the following two conditions are satisfied: (i) Pi and P ′i are separable preferences, and (ii) Pi and

P ′i are |A−s|-adjacent for some s ∈ M . Note that in the adjacent+ preferences Pi and P ′i , their

marginal preferences on component set As are adjacent while all other marginal preferences are

identical, i.e., [Pi]
s ∼ [P ′i ]

s and [Pi]
τ = [P ′i ]

τ for all τ 6= s.

We make two observations regarding a pair of adjacent+ preferences. First, the multiple local

switchings in Pi and P ′i are driven by the restriction of separability. Second, each local switching

pair here is a pair of similar alternatives. More importantly, due to separability, after observing

one pair of similar alternatives locally switched in Pi and P ′i , we obtain information on all local

switching pairs. Therefore, similarly to adjacency, adjacency+ maintains the feature that the

transition from one separable preference to another involves a minimal number of switches.

In a strategy-proof RSCF, if one voter unilaterally changes her preference to an adjacent

or adjacent+ preference, the probability associated to an alternative in a local switching pair

whose ranking is lifted up from one preference to the other, might increase, while the sum of

two probabilities in each local switching pair, and the probability received by every alternative

excluded from the set of local switching pairs remain fixed (see Lemma 1 below). This makes

the variation of two corresponding social lotteries in a strategy-proof RSCF more tractable.

Lemma 1 Let ϕ : DN → ∆(A) be a strategy-proof RSCF. Fix i ∈ I, Pi, P
′
i ∈ D and P−i ∈ DN−1.

The following two statements hold.

1. If Pi ∼ P ′i and {a, b} is the corresponding local switching pair, then we have

(i) ϕa(Pi, P−i) ≥ ϕa(P ′i , P−i) and ϕb(Pi, P−i) ≤ ϕb(P ′i , P−i);

(ii) ϕa(Pi, P−i) + ϕb(Pi, P−i) = ϕa(P
′
i , P−i) + ϕb(P

′
i , P−i);

(iii) ϕz(Pi, P−i) = ϕz(P
′
i , P−i) for all z /∈ {a, b}.
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2. If Pi ∼+ P ′i and
{

(as, z−s), (bs, z−s)
}
z−s∈A−s are the corresponding local switching pairs,

then for all cs /∈ {as, bs} and z−s ∈ A−s, we have

(i) ϕ(as,z−s)(Pi, P−i) ≥ ϕ(as,z−s)(P
′
i , P−i) and ϕ(bs,z−s)(Pi, P−i) ≤ ϕ(bs,z−s)(P

′
i , P−i);

(ii) ϕ(as,z−s)(Pi, P−i) + ϕ(bs,z−s)(Pi, P−i) = ϕ(as,z−s)(P
′
i , P−i) + ϕ(bs,z−s)(P

′
i , P−i);

(iii) ϕ(cs,z−s)(Pi, P−i) = ϕ(cs,z−s)(P
′
i , P−i).

The verification of Lemma 1 is routine and we hence omit it.

If one confines attention to simple paths, especially the adjacency of two preferences with

distinct peaks, multidimensional domains stand excluded,22 and the model degenerates to a one

dimensional setting. To avoid this, we require the presence of adjacency+ (correspondingly, the

presence of separable preferences) in a path whenever a consecutive pair of preferences differs in

peaks. To simplify the structure, we only allow the appearance of either adjacency or adjacency+.

Formally, a path {P ki }
q
k=1 is referred to as a simple+ path if for all 1 ≤ k ≤ q−1, (i) either

P ki ∼ P
k+1
i or P ki ∼+ P k+1

i , and (ii)
[
r1(P ki ) 6= r1(P k+1

i )
]
⇒ [P ki ∼+ P k+1

i ].23

Now, we use simple+ paths to specify the class of domains studied in this paper. Our domain

has two properties: the Interior+ Property and the Exterior+ property. First, we partition

the domain into several subdomains of preferences according to the peaks of the preferences.

The Interior+ property is established on each subdomain, and requires two preferences in one

subdomain be connected via a simple+ path in this subdomain. The Exterior+ property imposes

conditions on two preferences in two distinct subdomains. When these two preferences share

the same relative ranking of some pair of alternatives, we can construct a simple+ path in

the domain connecting them, while preserving the relative ranking of this particular pair of

alternatives along this simple+ path. In particular, when the two preferences have similar

peaks, say (as, z−s) and (bs, z−s), an additional condition is imposed so that the peak of each

preference in the corresponding simple+ path lies in the set (As, z−s).

Definition 4 Domain D satisfies the Interior+ property if given distinct Pi, P
′
i ∈ D with

r1(Pi) = r1(P ′i ) ≡ a, there exists a simple+ path {P ki }
q
k=1 ⊆ Da connecting Pi and P ′i .

Definition 5 Domain D satisfies the Exterior+ property if given Pi, P
′
i ∈ D with r1(Pi) 6=

r1(P ′i ), and a, b ∈ A with aPib and aP ′i b, there exists a simple+ path {P ki }
q
k=1 ⊆ D connecting

Pi and P ′i such that aP ki b, k = 1, . . . , q. In addition, when r1(Pi) and r1(P ′i ) are similar, the

simple+ path {P ki }
q
k=1 satisfies the no-detour property, i.e.,

[
r1(Pi) = (as, z−s) and r1(P ′i ) =

(bs, z−s)
]
⇒
[
r1(P ki ) ∈ (As, z−s) for all 1 ≤ k ≤ q

]
.24

A domain satisfying the Interior+ property and the Exterior+ property is referred to as a

connected+ domain. It turns out that every minimally rich and connected+ domain is a

subset of the top-separable domain, and therefore a multidimensional domain.

22If two preferences are adjacent and disagree on peaks, one of them must violate top-separability.
23The co-existence of adjacency and adjacency+ is critical in the construction of a simple+ path. We first use

adjacency to adjust preferences to reach an appropriate separable preference where then we can make simultaneous

multiple local switchings required by an adjacency+ (see Example 5 in Appendix D.3).
24Appendix D.1 provides two examples of simple+ paths which satisfy and violate the no-detour property

respectively.
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Proposition 2 Let D be a minimally rich and connected+ domain. Then, D ⊆ DTS.

Proof : Suppose that D * DTS . Thus, there exists Pi ∈ D\DTS such that r1(Pi)
s = as and

(bs, z−s)Pi(a
s, z−s) for some s ∈ M , bs ∈ As\{as} and z−s ∈ A−s. Pick another preference

P ′i ∈ D(bs,z−s) by minimal richness. The Exterior+ property implies that there exists a simple+

path {P ki }
q
k=1 ⊆ D connecting Pi and P ′i such that (bs, z−s)P ki (as, z−s) for all 1 ≤ k ≤ q.

Since r1(P 1
i ) = a 6= (bs, z−s) = r1(P ′i ), there must exist 1 ≤ k < q such that r1(P ki ) = a 6=

r1(P k+1
i ). Consequently, P ki ∼+ P k+1

i , and hence, P ki is a separable preference which implies

(as, z−s)P ki (bs, z−s) for all z−s ∈ A−s. Contradiction! �

Remark 1 The top-separable domain, the separable domain, multidimensional single-peaked

domains and their intersection and unions are all included in the class of connected+ domains.

The detailed verifications are available in Appendices D.3 - D.7. The lexicographically separable

domain however fails connectedness+ due to the non-existence of preferences that deliver adja-

cency.25 The class of connected+ domains also excludes domains studied in the one-dimensional

setting (e.g., Gibbard, 1977; Moulin, 1980; Saporiti, 2009; Sato, 2013; Chatterji et al., 2016). �

We next turn to an important property of unanimous and strategy-proof RSCFs on connected+

domains which plays a critical role in the subsequent analysis: The social lottery at every pref-

erence profile depends only on voters’ peaks. We say that such an RSCF satisfies the tops-only

property. Formally, an RSCF ϕ : DN → ∆(A) satisfies the tops-only property if for every pair

of tops-equivalent profiles P, P ′ ∈ DN , i.e., r1(Pi) = r1(P ′i ) for all i ∈ I, we have ϕ(P ) = ϕ(P ′).

Proposition 3 Every unanimous and strategy-proof RSCF on a connected+ domain satisfies

the tops-only property.

The proof of Proposition 3 is available in Appendix A.

Remark 2 We add the superscript “+” to highlight the role of simple+ paths in our two prop-

erties, and thereby distinguish our two properties from the Interior and Exterior properties of

Chatterji and Zeng (2017). The connected+ domains here fail to satisfy their Interior and Ex-

terior properties: The Interior property is a strengthening of the Interior+ property since it is

established by using simple paths which cannot be generally applied to multidimensional do-

mains, like the separable domain (see Example 5 of Appendix D.3), while the Exterior property

is significantly weaker than the Exterior+ property as it is defined by using the notion of isolation

which is weaker than both adjacency and adjacency+. The verification of Proposition 3 is similar

to the proof of the Theorem of Chatterji and Zeng (2017), but requires an additional step that

specifically applies to adjacent+ preferences (Lemma 10 of Appendix A). Finally, we note that

Proposition 3 still holds even when the no-detour property fails. We believe that Proposition 3

is of some independent interest for the study RSCFs’ in the voting model. �

We next use Proposition 3 is to generalize an existing characterization result of generalized

random dictatorships on all connected+ supersets of the lexicographically separable domain

(recall footnote 18), like the separable domain and the top-separable domain.

25In the lexicographically separable domain, we know that (i) there exists no pair of adjacent preferences, (ii)

even though adjaceny+ exists, every pair of adjacent+ preferences shares the same lexicographic order, and (iii)

therefore, the difference in a pair of lexicographically separable preferences with distinct lexicographic orders can

never be reconciled via a simple+ path in the lexicographically separable domain.
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Corollary 1 Let |As| ≥ 3 for each s ∈ M , and D be a connected+ domain that includes the

lexicographically separable domain. A unanimous RSCF ϕ : DN → ∆(A) is strategy-proof if and

only if it is a generalized random dictatorship.

Proof : Since the lexicographically separable domain is minimally rich and included in D, we

know that D is also minimally rich and hence D ⊆ DTS by Proposition 2. The sufficiency part

of Corollary 1 thus is implied by Proposition 1. We show the necessity part. First, recall that

Theorem 3 of Chatterji et al. (2012) shows that every unanimous and strategy-proof RSCF on the

lexicographically separable domain is a generalized random dictatorship. Next, by Proposition

3, RSCF ϕ satisfies the tops-only property. Last, since the lexicographically separable domain

is included in D, tops-onlyness implies that ϕ must be a generalized random dictatorship. �

We conclude this section with an implication of Proposition 3 that will play in important

role in our analysis. Since the tops-only property emerges endogenously, every unanimous and

strategy-proof RSCF ϕ : DN → ∆(A) simplifies to a random voting rule ϕ : AN → ∆(A). We

hence simplify the notation of a preference profile (P1, . . . , PN ) to (x1, . . . , xN ), where r1(Pi) =

xi, i = 1, . . . , N . We also mix the notation of alternatives and preferences, e.g., (a, Pj) represents

a two-voter preference profile where the peak of voter i’s preference is a and voter j’s preference

is Pj . More importantly, henceforth, we can simply focus on the peaks in each pair of adjacent+

preferences with distinct peaks since the peaks determine the social lotteries because of the

tops-only property. Accordingly, we induce an adjacency+ relation between alternatives from

the adjacency+ relation between preferences as follows. We say that a pair of alternatives a, b ∈ A
is adjacent+, denoted a ∼+ b, if there exist Pi ∈ Da and P ′i ∈ Db such that Pi ∼+ P ′i . Given

distinct a, b ∈ A, let {xk}tk=1 denote an adjacent+ path (of alternatives) connecting a and b if

x1 = a, xt = b and xk ∼+ xk+1, k = 1, . . . , t− 1. Consequently, we can now specify a geometric

relation on all alternatives that will be useful in the subsequent analysis.

3.2 Multidimensional single-peakedness

Corollary 1 shows that connected+ domains that contain the domain of lexicographically separa-

ble preferences, like for instance, the separable domain, do not allow us to construct unanimous

and strategy-proof RSCFs satisfying the compromise property. In this section we prove that if

a minimally rich and connected+ domain admits an RSCF which satisfies the aforementioned

properties, then it must be a multidimensional single-peaked domain.

The version of multidimensional single-peakedness we derive is a generalization of the one

studied by Barberà et al. (1993). We first introduce our notion of multidimensional single-

peakedness. Besides the Cartesian product setting, we impose an additional condition on the

alternative set: for each s ∈ M , all elements in As are located on a tree, denoted G(As).26 Let

〈as, bs〉 denote the unique graph path between as and bs in G(As).27 Combining all trees G(As),

s ∈ M , we generate a product of trees ×s∈MG(As) where the set of vertices is A, and two

alternatives a and b form an edge if and only if a and b are similar, say a−s = b−s for some

s ∈M , and moreover, as and bs form an edge in G(As). Given a, b ∈ A, let 〈a, b〉 = {x ∈ A|xs ∈
26A graph is a combination of vertices and edges. A graph path is a sequence of vertices with each consecutive

pair forming an edge. A tree is a graph where each pair of vertices is connected via a unique graph path.
27If as = bs, 〈as, bs〉 = {as} is a singleton set.
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〈as, bs〉 for each s ∈M} denote the minimal box containing all alternatives located between a

and b in each component.

Definition 6 A preference Pi is multidimensional single-peaked on a product of trees

×s∈MG(As) if for all distinct a, b ∈ A, we have
[
a ∈ 〈r1(Pi), b〉

]
⇒ [aPib].

Therefore, a domain is multidimensional single-peaked if there exists a product of trees on

which every preference in the domain is multidimensional single-peaked. Given a product of

trees ×s∈MG(As), a multi-dimensional domain on ×s∈MG(As) containing all admissible multi-

dimensional single-peaked preferences is referred to as the multidimensional single-peaked

domain, denoted DMSP .28 We provide the following example to illustrate.

Example 1 Let A = A1 × A2, A1 = {a1, b1, c1, d1} and A2 = {0, 1}. Let G(A1) be a tree in

part (i) of Figure 2, and G(A2) be a line in part (ii) of Figure 2. Then, we have a product of

trees G(A1)×G(A2) specified in part (iii) of Figure 2.

r r r
r









a1 d1 b1

c1

(i)

r
r

0

1

(ii)

r r r
r









(a1, 0) (d1, 0) (b1, 0)

(c1, 0)r r r
r









(a1, 1)
(d1, 1)

(b1, 1)

(c1, 1)

(iii)

Figure 2: A tree, a line and a product of trees

Let domain DMSP be the multidimensional single-peaked domain on G(A1)×G(A2). Con-

sider a multidimensional single-peaked preference Pi with r1(Pi) = (a1, 0). For instance, since

(d1, 0) ∈ 〈(a1, 0), (c1, 1)〉 = {(a1, 0), (a1, 1), (d1, 0), (d1, 1), (c1, 0), (c1, 1)}, we have (d1, 0)Pi(c
1, 1);

and since (d1, 0) /∈ 〈(a1, 0), (a1, 1)〉 = {(a1, 0), (a1, 1)}, we may have (a1, 1)Pi(d
1, 0). For instance,

we have Pi : (a1, 0)⇀(a1, 1)⇀(d1, 0)⇀(d1, 1)⇀(b1, 0)⇀(c1, 0)⇀(b1, 1)⇀(c1, 1). �

Remark 3 In the multidimensional single-peaked domain, some preferences are separable and

some preferences are not separable. Note that a separable preference Pi ∈ DS is multi-dimensional

single-peaked on a product of trees ×s∈MG(As) if and only if for every s ∈ M , the marginal

preference [Pi]
s is single-peaked on the tree G(As), i.e., for all distinct as, bs ∈ As, we have[

as ∈ 〈r1 ([Pi]
s) , bs〉

]
⇒
[
as[Pi]

sbs
]
.29 �

Now, we formally state the main result.

28Throughout this paper, any strict subset of the multidimensional single-peaked domain is just referred to

as “a multi-dimensional single-peaked domain”. Two distinct product graphs of trees induces two distinct the

multidimensional single-peaked domains.
29To show the necessity part, according to as, bs ∈ As, pick arbitrary x−s ∈ A−s. Thus, (as, x−s) ∈
〈r1(Pi), (b

s, x−s)〉 and multidimensional single-peakedness of Pi implies (as, x−s)Pi(b
s, x−s). Furthermore, sepa-

rability of Pi implies as[Pi]
sbs. For the sufficiency part, we assume r1(Pi) = x and pick a, b ∈ A with a ∈ 〈x, b〉.

Thus, for every s ∈ M , either as = bs or as 6= bs and as ∈ 〈xs, bs〉. Then, single-peakedness of marginal prefer-

ences implies that for every component which a and b disagree on, alternative a always has the element marginally

preferred to that of b, i.e., [as 6= bs]⇒
[
as[Pi]

sbs
]
. Therefore, it must be the case aPib, as required.
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Theorem 1 Let D be a minimally rich and connected+ domain. If it admits a unanimous and

strategy-proof RSCF satisfying the compromise property, it is multidimensional single-peaked.

Conversely, a multidimensional single-peaked domain admits a unanimous and strategy-proof

RSCF satisfying the compromise property.

Proof : We start from the verification of the necessity part. Let φ : DN → ∆(A) be a unanimous

and strategy-proof RSCF satisfying the compromise property. First, Proposition 3 implies that

φ satisfies the tops-only property. Since φ satisfies the compromise property, we can separate

voters into two groups Î and I\Î with |Î| = N
2 if N is even, and |Î| = N+1

2 if N is odd. We

induce a two-voter RSCF: For all Pi, Pj ∈ D, ϕ(Pi, Pj) = φ
(
Pi
Î
,
Pj

I\Î

)
. It is easy to verify that ϕ

is unanimous, tops-only and strategy-proof, and satisfies the compromise property.

In Lemma 2 below, we show that every pair of preferences with similar peaks cannot be

complete reversals (recall the definition in Section 2). Therefore, every pair of similar alternatives

(as, x−s) and (bs, x−s) is connected via an adjacent+ path in (As, x−s).

Lemma 2 Given s ∈ M , as, bs ∈ As and x−s ∈ A−s, there exists an adjacent+ path {xk}qk=1 ⊆
(As, x−s) connecting (as, x−s) and (bs, x−s).

Proof : Since D(as,x−s) 6= ∅ and D(bs,x−s) 6= ∅ by minimal richness, there are two exclusive

situations to consider: (i) There exist Pi ∈ D(as,x−s) and P ′i ∈ D(bs,x−s) such that they agree

on the relative ranking of some pair of alternatives, and (ii) both D(as,x−s) and D(bs,x−s) are

singleton sets, and Pi ∈ D(as,x−s) and P ′i ∈ D(bs,x−s) are complete reversals.

In the first situation, the no-detour property in the Exterior+ Property implies that there

exists a simple+ path {P ki }
q
k=1 ⊆ D connecting Pi and P ′i such that r1(P ki ) ∈ (As, x−s) for

all 1 ≤ k ≤ q . By sorting all preferences of {P ki }
q
k=1 according to the peaks of preferences,

and removing those repetitions of top alternatives, we can elicit an adjacent+ path {xk}qk=1 ⊆
(As, x−s) such that x1 = (as, x−s), xq = (bs, x−s) and xk ∼+ xk+1, k = 1, . . . , q − 1.

We next show that the second situation is invalid. Suppose that it is not true. Thus, the

worst alternative in Pi is (bs, x−s). Pick an arbitrary τ ∈ M\{s} and zτ ∈ Aτ\{xτ}. We have

an alternative (as, zτ , x−{s,τ}) and P̄i ∈ D(as,zτ ,x−{s,τ}) by minimal richness. Since Pi and P ′i are

complete reversals and P ′i 6= P̄i, preferences Pi and P̄i must agree on the relative ranking of some

pair of alternatives. Thus, the no-detour property in the Exterior+ property implies that there

exists a simple+ path {P ki }
q
k=1 ⊆ D connecting Pi and P̄i such that r1(P ki ) ∈ (as, Aτ , x−{s,τ})

for all 1 ≤ k ≤ q. Since D(as,x−s) is singleton and r1(P 1
i ) 6= r1(P qi ), preferences P 1

i and P 2
i

must disagree on peaks. Therefore, P 1
i ∼+ P 2

i and hence, Pi = P 1
i is a separable preference.

Consequently, by separability, r1(Pi) = (as, xτ , x−{s,τ}) implies (bs, xτ , x−{s,τ})Pi(b
s, zτ , x−{s,τ}).

This implies that (bs, x−s) is not the worst alternative in Pi. Contradiction! �

Lemma 3 Given s ∈ M and x−s ∈ A−s, let {xk}qk=1 ⊆ (As, x−s) be an adjacent+ path. There

exist 0 ≤ α1 < · · · < αq−1 ≤ 1 such that for all 1 ≤ k < k′ ≤ q, ϕ(xk, xk′) = αkexk+
∑k′−1

l=k+1(αl−
αl−1)exl + (1− αk′−1)exk′ . Moreover, for every Pi ∈ Dx1, xkPixk+1, k = 1, . . . , q − 1.

Proof : Given 1 ≤ k ≤ q − 1, since xk ∼+ xk+1, we have Pi ∈ Dxk and Pj ∈ Dxk+1 with

Pi ∼+ Pj . Thus, r1(Pi) = r2(Pj) = xk and r2(Pi) = r1(Pj) = xk+1. Then, by tops-onlyness,

item 2(ii) of Lemma 1 and unanimity, we have ϕxk(xk, xk+1) + ϕxk+1
(xk, xk+1) = ϕxk(Pi, Pj) +
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ϕxk+1
(Pi, Pj) = ϕxk(Pi, Pi) + ϕxk+1

(Pi, Pi) = ϕxk(Pi, Pi) = 1. Let ϕxk(xk, xk+1) = αk and

ϕxk+1
(xk, xk+1) = 1− αk where 0 ≤ αk ≤ 1. Thus, ϕ(xk, xk+1) = αk exk + (1− αk)exk+1

. Next,

we adopt an induction argument.

Induction Hypothesis: Given l ≥ 2, for all 1 ≤ k < k′ ≤ q with 0 < k′ − k < l, we have

ϕ(xk, xk′) = αkexk +
∑k′−1

ν=k+1(αν − αν−1)exν + (1− αk′−1)exk′ .

Let k′−k = l. We show ϕ(xk, xk′) = αkexk +
∑k′−1

ν=k+1(αν−αν−1)exν + (1−αk′−1)exk′ . Since

xk ∼+ xk+1, we have Pi ∈ Dxk and P ′i ∈ Dxk+1 with Pi ∼+ P ′i . Then, according to the induction

hypothesis, the following equalities hold.

(i) ϕxk(Pi, xk′)+ϕxk+1
(Pi, xk′) = ϕxk(P ′i , xk′)+ϕxk+1

(P ′i , xk′) = αk+1 by item 2(ii) of Lemma 1;

(ii) ϕxν (Pi, xk′) = ϕxν (P ′i , xk′) = αν − αν−1, ν = k + 2, . . . , k′ − 1 by item 2(iii) of Lemma 1;

(iii) ϕxk′ (Pi, xk′) = ϕxk′ (P
′
i , xk′) = 1− αk′−1 by item 2(iii) of Lemma 1.

Similarly, since xk′ ∼+ xk′−1, we have Pj ∈ Dxk′ and P ′j ∈ Dxk′−1 such that Pj ∼+ P ′j .

Then, item 2(iii) of Lemma 1 and induction hypothesis imply ϕxk(xk, Pj) = ϕxk(xk, P
′
j) = αk.

Thus, ϕxk+1
(xk, xk′) = ϕxk(Pi, xk′) + ϕxk+1

(Pi, xk′) − ϕxk(xk, Pj) = αk+1 − αk. Therefore,

ϕ(xk, xk′) = αkexk +
∑k′−1

ν=k+1(αν − αν−1)exν + (1 − αk′−1)exk′ . This completes the verification

of the induction hypothesis.

Next, we show αk < αk+1, k = 1, . . . , q − 2. Given 1 ≤ k ≤ t − 2, since xk ∼+ xk+1 and

xk+1 ∼+ xk+2, we have Pi ∈ Dxk and Pj ∈ Dxk+2 such that r2(Pi) = r2(Pj) = xk+1. Thus,

αk+1 − αk = ϕxk+1
(Pi, Pj) > 0 by the compromise property.

Last, given Pi ∈ Dx1 , we show xkPixk+1, k = 1, . . . , q − 1. Given 1 ≤ k ≤ q − 1, suppose

xk+1Pixk. Evidently, 1 < k < q. At the profile (Pi, xk+1), we have ϕxk(Pi, xk+1) = αk −αk−1 >

0. Assume ak+1 = rη(Pi). Consequently,
∑η

t=1 ϕrt(Pi)(Pi, xk+1) ≤ 1 − ϕxk(Pi, xk+1) < 1 =

ϕxk+1
(xk+1, xk+1) =

∑η
t=1 ϕrt(Pi)(xk+1, xk+1). Thus, voter i will manipulate at (Pi, xk+1) via a

preference with peak xk+1. Therefore, xkPixk+1, k = 1, . . . , q − 1. �

Given s ∈ M and x−s ∈ A−s, we induce a graph G∼+

(
(As, x−s)

)
where (As, x−s) is the set

of vertices, and two alternatives form an edge if they are adjacent+. By Lemma 2, we know that

in G∼+

(
(As, x−s)

)
, there exists a graph path between any pair of vertices.

Lemma 4 Given s ∈M and x−s ∈ A−s, G∼+

(
(As, x−s)

)
is a tree.

Proof : Suppose not, i.e., there exists a cycle {xk}tk=1 ⊆ (As, x−s), t ≥ 3, such that xk ∼+ xk+1,

k = 1, . . . , t, where xt+1 = x1. According to the sequence {xk}tk=1, Lemma 3 implies ϕx1(x1, xt)+

ϕxt(x1, xt) < 1. However, x1 ∼+ xt implies ϕx1(x1, xt) + ϕxt(x1, xt) = 1. Contradiction!

Therefore, G∼+

(
(As, x−s)

)
is a tree. �

We are going to show that two trees G∼+

(
(As, x−s)

)
and G∼+

(
(As, y−s)

)
are “identical” in

the sense that for all as, bs ∈ As, (as, x−s) and (bs, x−s) form an edge in G∼+

(
(As, x−s)

)
if and

only if (as, y−s) and (bs, y−s) form an edge in G∼+

(
(As, y−s)

)
. With this result, we can generate

a tree G(As) on the component set As.

For the next lemma, we fix the following four alternatives: a = (xs, xτ , z−{s,τ}), b =

(ys, yτ , z−{s,τ}), c = (xs, yτ , z−{s,τ}) and d = (ys, xτ , z−{s,τ}) where xs 6= ys and xτ 6= yτ .
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Lemma 5 If a ∼+ c and a ∼+ d, then b ∼+ c and b ∼+ d.

Proof : Since b, c ∈ (As, yτ , z−{s,τ}) and b, d ∈ (ys, As, z−{s,τ}), Lemma 4 implies that there

exists a unique adjacent+ path {xk}pk=1 ⊆ (ys, Aτ , z−{s,τ}) connecting b and d, and a unique

adjacent+ path {yk}qk=1 ⊆ (As, yτ , z−{s,τ}) connecting b and c. We use the following diagram to

illustrate the geometric relations among a, b, c and d.

r r
r r

r r
a =

(
xs, xτ , z−{s,τ}

)
c =

(
xs, yτ , z−{s,τ}

)

b =
(
ys, yτ , z−{s,τ}

)
d =

(
ys, xτ , z−{s,τ}

)
xk =

(
ys, xτk, z

−{s,τ})
yk =

(
ysk, y

τ , z−{s,τ}
)

Figure 3: The geometric relations among a, b, c and d 30

To verify this lemma, we show q = 2 and p = 2 (equivalently, b ∼+ c and b ∼+ d). Suppose

not, i.e., either q > 2 or p > 2. Assume q > 2. The verification related to p > 2 is symmetric

and we hence omit it. Thus, y2 ≡ (ys2, y
τ , z−{s,τ}), y2 /∈ {b, c} and ys2 /∈ {xs, ys}.

Since a ∼+ c, we have Pi ∈ Da and P ′i ∈ Dc with Pi ∼+ P ′i . According to {yk}qk=1,

ϕy2(P ′i , b) = ϕy2(yq, y1) > 0 by Lemma 3. Let z2 ≡ (ys2, x
τ , z−{s,τ}). Thus, {z2, y2} is a local

switching pair of Pi and P ′i , and hence item 2(ii) of Lemma 1 implies ϕz2(Pi, b) + ϕy2(Pi, b) =

ϕz2(P ′i , b) +ϕy2(P ′i , b) > 0. On the other hand, since a ∼+ d, we have P̄i ∈ Da and P̄ ′i ∈ Dd with

P̄i ∼+ P̄ ′i . Since y2, z2 /∈ {xk}pk=1 ⊆ (ys, Aτ , z−{s,τ}), Lemma 3 implies ϕy2(P̄ ′i , b) = ϕy2(xp, x1) =

0 and ϕz2(P̄ ′i , b) = ϕz2(xp, x1) = 0. Furthermore, since y2, z2 /∈ (xs, A−s) ∪ (ys, A−s), item

2(iii) of Lemma 1 implies ϕy2(P̄i, b) = ϕy2(P̄ ′i , b) = 0 and ϕz2(P̄i, b) = ϕz2(P̄ ′i , b) = 0. Thus,

ϕz2(P̄i, b) + ϕy2(P̄i, b) = 0. Consequently, ϕ(Pi, b) 6= ϕ(P̄i, b) which contradicts the tops-only

property. Therefore, q = 2. By a similar argument, p = 2. �

Lemma 6 Given s ∈ M and as, bs ∈ As, if (as, x−s) ∼+ (bs, x−s) for some x−s ∈ A−s, then

(as, y−s) ∼+ (bs, y−s) for all y−s ∈ A−s.

Proof : Given y−s ∈ A−s\{x−s} and τ ∈ M\{s} with xτ 6= yτ , we show (as, yτ , x−{s,τ}) ∼+

(bs, yτ , x−{s,τ}). By switching x−{s,τ} to y−{s,τ} component by component and applying the

symmetric argument, we can complete the verification of the lemma.

Since G∼+

(
(as, Aτ , x−{s,τ})

)
is a tree, there exists a unique adjacent+ path {ak}qk=1 ⊆

(as, Aτ , x−{s,τ}) such that a1 = (as, xτ , x−{s,τ}), aq = (as, yτ , x−{s,τ}) and ak ∼+ ak+1, k =

1, . . . , q − 1. Accordingly, we construct another sequence {bk}qk=1 ⊆ (bs, Aτ , x−{s,τ}) such that

bk = (bs, aτk, x
−{s,τ}), k = 1, . . . , q. Thus, b1 = (bs, xτ , x−{s,τ}) and bq = (bs, yτ , x−{s,τ}). Note

that the sequence {bk}qk=1 is not necessarily an adjacent+ path in (bs, Aτ , x−{s,τ}) so far.

Since a1 = (as, xτ , x−{s,τ}) = (as, x−s) ∼+ (bs, x−s) = (bs, xτ , x−{s,τ}) = b1 by hypothesis,

and a1 ∼+ a2, Lemma 5 implies b2 ∼+ b1 and b2 ∼+ a2. Following the adjacent+ path {ak}tk=1

and repeatedly applying Lemma 5, we have bk ∼+ bk−1 and bk ∼+ ak, k = 2, . . . , q. Eventually,

(as, yτ , x−{s,τ}) = aq ∼+ bq = (bs, yτ , x−{s,τ}). �

By Lemmas 4 and 6, we can induce a tree G(As) over As for each s ∈ M such that for all

as, bs ∈ As, (as, bs) is an edge in G(As) if and only if (as, x−s) ∼+ (bs, x−s) for all x−s ∈ A−s.
30The dash line represents an adjacency+ path connecting two alternatives.
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Thus, we have a product of trees ×s∈MG(As). According to ×s∈MG(As), we know that a pair

of alternatives a and b is adjacent+ if and only if they are similar, i.e., as 6= bs and a−s = b−s

for some s ∈M , and moreover, as and bs form an edge in G(As).

Lemma 7 Given Pi ∈ D, if Pi is separable, it is multidimensional single-peaked on ×s∈MG(As).

Proof : Assume r1(Pi) = a ≡ (as)s∈M . To verify this lemma, it suffices to show that for every

s ∈M , the marginal preference [Pi]
s is single-peaked on the tree G(As) (recall Remark 3).

Suppose that Pi ∈ D is not multidimensional single-peaked on ×s∈MG(As). Thus, there

exist s ∈M and xs, ys ∈ As such that xs ∈ 〈as, ys〉 but ys[Pi]
sxs. Let 〈as, ys〉 = {xsk}

q
k=1 where

xs1 = as and xsq = ys. Thus, xs = xsl for some 1 < l < q. Pick arbitrary x−s ∈ A−s, and let

xk = (xsk, x
−s), k = 1, . . . , q. Thus, {xk}qk=1 is a graph path in G∼+

(
(As, x−s)

)
. By separability,

ys[Pi]
sxs implies xqPixl. Accordingly, assume xq = rν(Pi) and xl = rν′(Pi) where ν < ν ′.

According to {xk}qk=1, Lemma 3 implies ϕxl(Pi, xq) > 0. Consequently,
∑ν

t=1 ϕrt(Pi)(Pi, xq) <

1 =
∑ν

t=1 ϕrt(Pi)(xq, xq), and hence voter i manipulates at (Pi, xq) via a preference with peak

xq. Therefore, Pi is multidimensional single-peaked on ×s∈MG(As). �

Lemma 8 Domain D is multidimensional single-peaked on ×s∈MG(As).

Proof : Given Pi ∈ D, suppose that it is not multidimensional single-peaked on ×s∈MG(As).

Assume r1(Pi) = a ≡ (as)s∈M . Thus, there exist distinct x, y ∈ A such that x ∈ 〈a, y〉 but yPix.

Evidently, a 6= y. Since D is minimally rich, we have P ′i ∈ Dy. Thus, Pi and P ′i differ on peaks

but agree on the relative ranking of y and x. Then, the Exterior+ implies that there exists a

simple+ path {P ki }
q
k=1 ⊆ D connecting Pi and P ′i such that yP ki x for all k = 1, . . . , q. Note that

since r1(P 1
i ) = a 6= y = r1(P qi ), there must exist 1 ≤ k < q such that r1(P ki ) = a 6= r1(P k+1

i ).

Consequently, it is true that P ki ∼+ P k+1
i and P ki is a separable preference. Then, Lemma 7

implies that P ki is multidimensional single-peaked on ×s∈MG(As), and hence x ∈ 〈a, y〉 implies

xP ki y. Contradiction! This completes the verification of the necessity part of Theorem 1. �

Now, we turn to the sufficiency part of Theorem 1. Given a product of trees ×s∈MG(As),

let D be a multidimensional single-peaked domain, and DMSP be the multidimensional single-

peaked domain. Evidently, D ⊆ DMSP . For notational convenience, let D̄MSP = DS ∩ DMSP

denote the intersection of the separable domain and the multidimensional single-peaked domain,

and D̄sMSP = {[Pi]s : Pi ∈ D̄MSP } denote the induced marginal domain on As for each s ∈ M .

Evidently, given s ∈ M , D̄sMSP is the single-peaked (marginal) domain on the tree G(As). We

will construct an RSCF on DMSP by three steps.

Step 1. We introduce a class of DSCFs on each marginal domain. Fix s ∈ M . Given a N -

tuple of elements (xs1, . . . , x
s
N ) ∈ [As]N , let G(xs1, . . . , x

s
N ) denote the minimal subgraph

of G(As) containing xs1, . . . , x
s
N as vertices.31 Given as ∈ As, we have the projection of

as on G(xs1, . . . , x
s
N ), denoted πs

(
as, G(xs1, . . . , x

s
N )
)
, which is unique.32 Thus, we have a

particular marginal function πs : [As]N → As.

31For details of minimal subgraph, please refer to Chatterji et al. (2013).
32Fix a tree G, a subtree G′ ⊆ G and a vertex a. If a belongs to the vertex set of G′, the projection of a on G′

is a itself. If a does not belong to the vertex set of G′, there exists an unique vertex a′ in G′ which lies in every

path connecting a and every vertex of G′. Thus, a′ is referred to as the projection of a on G′. Let π(a,G′) denote

the projection of a on G′.
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Step 2. We assemble all marginal functions (πs)s∈M to construct a DSCF on DMSP . Fixing a ≡
(as)s∈M ∈ A, given P ≡ (P1, . . . , PN ) ∈ DNMSP , assuming r1(Pi) = xi ≡ (xsi )s∈M , i ∈ I,

for notational convenience, let fa(P1, . . . , PN ) =
(
πs
(
as, G(xs1, . . . , x

s
N )
))
s∈M . DSCF fa

is called a multidimensional projection rule, and the alternative a is referred to as the

projector of fa.

Step 3. Last, we construct an RSCF on DMSP by a mixture of all multidimensional projection rules.

We associate each alternative/projector to a strictly positive real weight, i.e., λa > 0 for

all a ∈ A, and let
∑

a∈A λa = 1. Then, for all P ∈ DN , let ϕ(P ) =
∑

a∈A λaf
a(P ). RSCF

ϕ is called a mixed multidimensional projection rule. Evidently, RSCF ϕ is well-defined

and satisfies unanimity.

Claim 1: RSCF ϕ is strategy-proof.

According to the construction, we know that if all multidimensional projection rules are

strategy-proof, then RSCF ϕ is strategy-proof on DMSP .

To show strategy-proofness of all multidimensional projection rules, we first recall an impor-

tant characterization result established by Barberà et al. (1993) and Le Breton and Sen (1999):

Every unanimous DSCF f : DNMSP → A is strategy-proof on DMSP if and only if the following

two conditions are satisfied.

(i) DSCF f is decomposable, i.e., for each s ∈M , there exists a marginal function fs : [As]N →
As such that for all P ∈ DNMSP , assuming r1(Pi) = xi ≡ (xsi )s∈M , i ∈ I, for notational

convenience, we have f(P ) =
(
f s(xs1, . . . , x

s
N )
)
s∈M .

(ii) For each s ∈ M , according to the marginal function fs, inducing a marginal DSCF f̄ s :

[D̄sMSP ]N → As such that for every ([P1]s, . . . , [PN ]s) ∈ [D̄sMSP ]N , f̄ s([P1]s, . . . , [PN ]s) =

fs
(
r1([P1]s), . . . , r1([PN ]s)

)
, we know that f̄s is strategy-proof.

According to the construction in Step 2, we know that every multidimensional projections

rule fa, a ∈ A, is decomposable. Next, fixing a multidimensional projection rule fa, ac-

cording to each marginal function πs constructed in Step 1, we induce a marginal DSCF

fa
s

: [D̄sMSP ]N → As such that for all ([P̄1]s, . . . , [P̄N ]s) ∈ [D̄sMSP ]N , fa
s (

[P̄1]s, . . . , [P̄N ]s
)

=

πs
(
r1([P1]s), . . . , r1([PN ]s)

)
. Furthermore, according to the proof of the sufficiency part of

the Theorem of Chatterji et al. (2013), we know that each marginal DSCF fa
s
, s ∈ M , is

strategy-proof on the marginal domain D̄sMSP . Therefore, all multidimensional projection rules

are strategy-proof, as required. This completes the verification of the claim.

Claim 2: RSCF ϕ satisfies the compromise property.

Let Î ⊆ I be a subset of voters with |Î| = N
2 if N is even, and |Î| = N+1

2 if N is odd. Given

Pi, Pj ∈ D, assume r1(Pi) = x 6= y = r1(Pj) and r2(Pi) = r2(Pj) = a. We claim a ∈ 〈x, y〉. Since

r2(Pi) = a, it is true that x and a are similar, e.g., xs 6= as and x−s = a−s for some s ∈M , and

moreover, xs and as form an edge in G(As). Similarly, y and a are similar too, e.g., yτ 6= aτ and

y−τ = a−τ for some τ ∈ M , and moreover, yτ and aτ form an edge in G(Aτ ). If s = τ , it must

be the case that xs 6= ys and as ∈ 〈as, bs〉\{xs, ys}. Thus, x−s = a−s = y−s and hence a ∈ 〈x, y〉.
If s 6= τ , it must be the case that as = ys, aτ = xτ and x−{s,τ} = a−{s,τ} = y−{s,τ}. Thus,

a ∈ 〈x, y〉, and hence, fa
(
Pi
Î
,
Pj

I\Î

)
=
(
πs(as, 〈xs, ys〉)

)
s∈M = a. Consequently, ϕa

(
Pi
Î
,
Pj

I\Î

)
=
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∑
z∈A λzf

z
a

(
Pi
Î
,
Pj

I\Î

)
≥ λa > 0. This completes the verification of the claim, and hence proves

the sufficiency part of Theorem 1. �

Remark 4 The Theorem of Chatterji et al. (2016) shows that in the class of minimally rich and

connected domains (i.e., the difference of two preferences can be reconciled via a simple path

of the domain), the existence of a unanimous, tops-only and strategy-proof RSCF satisfying

the compromise property implies that the domain must be single-peaked on a tree. Theorem

1 significantly generalizes their result in two ways. First, all the multidimensional domains

studied here (and in particular the multidimensional single-peakedness we induce) are excluded

by their domain richness condition. Second, we endogenize the tops-only property in the class

of connected+ domains. Even though the Interior and Exterior properties of Chatterji and

Zeng (2017) include multidimensional single-peaked domains, the characterization in Theorem

1 cannot be achieved in their model. In their Interior and Exterior properties, the boundary for

distinguishing the one-dimensional models and the multidimensional models is not clear. On the

contrary, the key notion of this paper, adjacency+, brings sufficiently many separable preferences

into consideration which not only clearly separate domains in question from the one-dimensional

setting (see Proposition 2), but also create the basis for embodying the restriction of multidi-

mensional single-peakedness (see Lemma 7) and spreading the restriction to other preferences

(see the proof of Lemma 8) in establishing the necessity part of Theorem 1. More importantly,

in a connected+ domain, we utilize the notion of adjacency+ between preferences with distinct

peaks to induce a general geometric relation among alternatives which is eventually refined (via

Lemmas 5 and 6) to be a product of trees, a necessary step for establishing multidimensional

single-peakedness in Theorem 1. �

If the minimally rich and connected+ domain happens to include two complete reversals

preferences (recall the definition in Section 2), we refine the necessity part of Theorem 1 by

showing that the domain is multidimensional single-peaked on a product of lines.33

Corollary 2 Let D be a minimally rich and connected+ domain. If it contains two complete

reversals preferences and admits a unanimous and strategy-proof RSCF satisfying the compro-

mise property, it is multidimensional single-peaked on a product of lines.

Proof : By Theorem 1, we know that domain D is multidimensional single-peaked on a product

of trees ×s∈MG(As). Let P i and P i be a pair of complete reversals preferences in D. Assume

r1(P i) = x and r1(P i) = x. Evidently, x 6= x. We show that ×s∈MG(As) is a product of lines.

Note that if ×s∈MG(As) is not a product of lines, there exists no pair of alternatives whose

induced minimal box contains the whole alternative set (for instance, recall Figure 2 of Example

1). Therefore, to complete the verification, it suffices to show 〈x, x〉 = A. Suppose not, i.e.,

there exists a /∈ 〈x, x〉. Thus, we have the projection of a on 〈x, x〉, say a′. Since a′ ∈ 〈x, a〉 and

a′ ∈ 〈x, a〉, multidimensional single-peakedness implies a′P ia and a′P ia. Contradiction! �

33Let ×s∈MG(As) be a product graph of lines, and DMSP be the multidimensional single-peaked domain on

×s∈MG(As). Given s ∈ M , according to G(As), we can arrange all elements in As on a linear order >s. Thus,

we have xs, xs ∈ As such that xs >s xs >s xs for all xs ∈ As\{xs, xs}. Then, we can identify Pi ∈ DMSP with

r1(Pi) = (xs)s∈M and P ′i ∈ DMSP with r1(Pi) = (xs)s∈M which are complete reversals.
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As all generalized random dictatorships are strategy-proof on the top-separable domain by

Proposition 1, the violation of the compromise property in generalized random dictatorships

explained in the beginning of this section demonstrates the indispensability of the compromise

property in Theorem 1. We provide two other examples below to illustrate the indispensable

role of our richness condition in Theorem 1.

Example 2 Let A = A1 ×A2 and A1 = A2 = {0, 1}. Let domain D be consist of the following

four preferences.

P1 P2 P3 P4

(0, 0) (1, 0) (0, 1) (1, 1)

(1, 0) (0, 0) (1, 1) (0, 1)

(1, 1) (1, 1) (0, 0) (1, 0)

(0, 1) (0, 1) (1, 0) (0, 0)

Table 1: Domain D

Domain D is not a connected+ domain, as we only have P1 ∼ P2 and P3 ∼+ P4. We

cannot construct any product of trees and show that domain D is correspondingly multidimen-

sional single-peaked.34 Every random dictatorship is unanimous and strategy-proof on D, and

moreover, satisfies the compromise property vacuously since no profile shares a compromise al-

ternative. This indicates that connectedness+ provides an appropriate environment and ensures

that the compromise property acts effectively. �

Example 3 Let A ≡ A1 × A2 × A3 and A1 = A2 = A3 = {0, 1}. Let I = {i, j}. Let

G(A1) ×G(A2) ×G(A3) be a product graph of three lines specified in the diagram below. Let

DMSP be the multidimensional single-peaked domain on on G(A1)×G(A2)×G(A3).

!!
!!

!

!!
!!

!

!!
!!

!

!!
!!

!

r r

r r

r r

r r
(0, 0, 0) (1, 0, 0)

(1, 1, 0)(0, 1, 0)

(0, 0, 1) (1, 0, 1)

(1, 1, 1)(0, 1, 1)

Figure 4: A product of lines G(A1)×G(A2)×G(A3)

We specify a particular preference below which is not included in DMSP :

P ∗i : (0, 0, 0)⇀(0, 0, 1)⇀(1, 0, 0)⇀(1, 0, 1)⇀(0, 1, 0)⇀(0, 1, 1)⇀(1, 1, 1)⇀(1, 1, 0).35

Note that P ∗i is not a top-separable preference either, e.g., r1(P ∗i ) = (0, 0, 0) but (1, 1, 1)P ∗i (1, 1, 0).

Thus, domain D = DMSP ∪ {P ∗i } is not a connected+ domain by Proposition 2.

We first identify six multidimensional projection rules fa, a /∈ {(1, 1, 0), (1, 1, 1)}. Next, we

highlight two voter sequences (j, i, i) and (i, j, j), and construct two generalized dictatorships

34In a multidimensional single-peaked domain, no pair of preferences with distinct peaks is adjacent. However,

in domain D of this example, P1 and P2 are adjacent and disagree on peaks.
35Since (1, 1, 0) ∈

〈
(0, 0, 0), (1, 1, 1)

〉
but (1, 1, 1)P ∗i (1, 1, 0), we know P ∗i /∈ DMSP .
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f (j,i,i) and f (i,j,j) (recall the proof of Proposition 1). Last, we construct an RSCF by a mixture

of these eight DSCFs: For all Pi, Pj ∈ D,

ϕ(Pi, Pj) =
1

8

∑
a/∈{(1,1,0),(1,1,1)}

fa(Pi, Pj) +
1

8
f (j,i,i)(Pi, Pj) +

1

8
f (i,j,j)(Pi, Pj).

We assert that RSCF ϕ is unanimous and strategy-proof, and satisfies the compromise property.

All detailed verifications are available in Appendix D.2. �

3.3 Deterministic voting

In this section we provide a characterization of multidimensional single-peaked domains using

deterministic social choice functions. The axiom of anonymity is appropriate for distinguishing

deterministic social choice functions from dictatorships, while in the random setting, requiring

an RSCF to satisfy anonymity does not help in distinguishing the RSCF from the class of random

dictatorships as the particular random dictatorship that gives equal weights to all voters satisfies

anonymity. We replace the compromise property by anonymity and obtain a characterization

result using deterministic social choice functions assuming an even number of voters.

Formally, an RSCF ϕ : DN → A is anonymous if for all (P1, . . . , PN ) ∈ DN and every

permutation σ : N → N , we have ϕ(P1, . . . , PN ) = ϕ
(
Pσ(1), . . . , Pσ(N)

)
.

Theorem 2 Let D be a minimally rich and connected+ domain. If it admits an unanimous,

anonymous and strategy-proof DSCF for an even number of voters, it is multidimensional single-

peaked. Conversely, a multidimensional single-peaked domain admits an unanimous, anonymous

and strategy-proof DSCF for an arbitrary number of voters.

The proof of Theorem 2 is available in Appendix B.

Remark 5 Theorem 2 generalizes the Theorem of Chatterji et al. (2013) to the multidimen-

sional setting and does so without imposing the axiom of tops-onlyness on the DSCF, since

this property emerges endogenously in our set up as mentioned in Remark 4 above. This char-

acterization of single-peakedness in the multidimensional setting can be interpreted as further

evidence in favour of the Gul conjecture (see Section 6.5.2 of Barberà, 2010).36 In comparing

Theorems 1 and 2, we realize that randomization helps us avoid the restriction on the number

of voters, and moreover, significantly simplifies the proof. In particular, the 4 situations (Figure

6) considered in Appendix B are simultaneously covered in the random setting. For instance,

loosely speaking, we can view ϕc(a, c)×ϕa(a, d) as the probability of Situation 1 in Figure 6. �

3.4 Random voting under constraints

Barberà et al. (1997) first studied the model where not all alternatives are feasible. Thus, the

feasible alternative set becomes a strict subset of the Cartesian product structure. In such a

36Chatterji et al. (2013) investigate the same class of rich domains as Chatterji et al. (2016), and show that the

existence of a unanimous, anonymous, tops-only and strategy-proof DSCF for an even number of voters implies

that the domain must be semi-single-peaked on a tree, which is weaker than the restriction of single-peakedness.

Here we characterize full single-peakedness.
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setup, our result is not valid. In particular, the necessity part of Theorem 1 fails once invalid

alternative appears,37 while the sufficiency part of Theorem 1 may not hold as the multidimen-

sional projection rule may select infeasible alternatives.

In this section, we adapt our model to accord with the infeasible alternatives problem in the

following three ways: (1) Modify RSCFs to constrained RSCFs which only specify probabilities

to feasible alternatives, (2) adjust the axioms of unanimity and the compromise property w.r.t.

feasible alternatives, (3) strengthen the well-behavedness of the strategy-proof RSCF in question

by exogenously imposing the tops-only property. Then, we show that without any change of the

domain richness condition: minimal richness and connectedness+, the existence of a unanimous,

tops-only and strategy-proof constrained RSCF satisfying the compromise property implies that

the domain must be multidimensional single-peaked w.r.t. feasible alternatives, i.e., (i) the set of

feasible alternatives is factorizable (in other words, the feasible set itself is a Cartesian product)

and moreover, located on a product of trees, (ii) every pair of preferences with an identical peak

must have a same most preferred feasible alternative, and (iii) for each preference over A, the

induced preference over the feasible alternatives is multidimensional single-peaked on the product

of trees consisting of feasible alternatives. With these modifications, every multidimensional

projection rule with a projector of feasible alternative (recall the proof of the sufficiency part of

Theorem 1) is well-defined, and the mixture of these particular multidimensional projection rules

satisfies the requirements of unanimity, tops-onlyness, strategy-proofness and the compromise

property. This indicates that our characterization of the restriction of multidimensional single-

peakedness is robust w.r.t. voting under constraints.

Let Ā ⊂ A ≡ ×s∈MAs denote the set of feasible alternatives. Given a preference Pi over A,

let Pi|Ā denote the induced preference over Ā which preserves the relative rankings of feasible

alternatives in preference Pi. Accordingly, let D|Ā = ∪Pi∈D{Pi|Ā} denote the domain of induced

preferences over Ā. Note that if there exists s ∈ M such that as = bs for all a, b ∈ Ā, then

the component set s becomes redundant and hence can be eliminated. Hence, we impose an

assumption to make all components indispensable.

Assumption 1 For each s ∈M , there exist a, b ∈ Ā such that as 6= bs.

Under Assumption 1, we say that the feasible set Ā is factorizable if there exists Ās ⊆ As

for each s ∈M such that Ā = ×s∈M Ās.
A constrained RSCF is a map ϕ : DN → ∆(Ā) which assigns positive probabilities only

to feasible alternatives. We modify the axioms of unanimity and the compromise property to

accord with feasibility. Formally, a constrained RSCF ϕ : DN → ∆(Ā) is unanimous (w.r.t.

feasibility) if for all a ∈ Ā and P ∈ DN , [r1(Pi|Ā) = a for all i ∈ I] ⇒ [ϕa(P ) = 1]. Next,

a constrained RSCF ϕ : DN → ∆(Ā) satisfies the compromise property (w.r.t. feasibility)

if there exists Î ⊆ I with |Î| = N
2 if N is even, and |Î| = N+1

2 if N is odd, such that for all

Pi, Pj ∈ D with r1(Pi) 6= r1(Pj) and r2(Pi) = r2(Pj) ≡ a ∈ Ā, we have ϕa

(
Pi
Î
,
Pj

I\Î

)
> 0. The

definition of strategy-proofness is not affected by the feasibility issue.

For voting under constraints, the definition of multidimensional single-peaked domain is

modified as follows.

37For instance, the verification of Lemma 5 relies on the feasibility of the four alternatives a, b, c and d.
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Definition 7 A domain D is multidimensional single-peaked w.r.t. Ā if D|Ā is multidi-

mensional single-peaked, i.e., the following two conditions are satisfied:

(i) The feasible set Ā is factorizable, i.e., Ā = ×s∈M Ās.

(ii) There exists a product of trees ×s∈MG(Ās) such that for every Pi ∈ D, the induced

preference Pi|Ā is multidimensional single-peaked, i.e., given distinct x, y ∈ Ā,
[
x ∈〈

r1(Pi|Ā), y
〉]
⇒ [xPiy].38

We provide an example to illustrate multidimensional single-peakedness w.r.t. feasibility.

Example 4 Let A = A1 × A2, A1 = {a1, b1, c1, d1} and A2 = {0, 1}. We specify a product of

two lines G(A1)×G(A2), induce the multidimensional single-peaked domain D̂MSP and consider

three cases of the feasible set (see Figure 5 below).

r r b
b
A
A
A
A

(a1, 0) (d1, 0) (b1, 0)

(c1, 0)r r b
b
A
A
A
A

(a1, 1)
(d1, 1)

(b1, 1)

(c1, 1)

(1)

r b r
b
A
A
A
A

(a1, 0) (d1, 0) (b1, 0)

(c1, 0)r b r
b
A
A
A
A

(a1, 1)
(d1, 1)

(b1, 1)

(c1, 1)

(2)

b r b
r
A
A
A
A

(a1, 0) (d1, 0) (b1, 0)

(c1, 0)r b r
b
A
A
A
A

(a1, 1)
(d1, 1)

(b1, 1)

(c1, 1)

(3)

Figure 5: Three cases of feasible alternatives

In the first case, the feasible set Ā ≡
{

(a1, 0), (d1, 0), (a1, 1), (d1, 1)
}

= {a1, d1} × {0, 1} is

factorizable (see diagram (1)), and located on a product of lines G
(
{a1, d1}

)
× G ({0, 1}). To

verify the second condition of Definition 7, we consider for instance preferences Pi ∈ D̂MSP

with r1(Pi) = (b1, 1). The induced preference Pi|Ā is either (d1, 1)⇀(a1, 1)⇀(d1, 0)⇀(a1, 0) or

(d1, 1)⇀(d1, 0)⇀(a1, 1)⇀(a1, 0), as required.

In the second case, the feasible set Ā ≡
{

(a1, 0), (b1, 0), (a1, 1), (b1, 1)
}

= {a1, b1} × {0, 1}
is factorizable (see diagram (2)), and located on a product of lines G

(
{a1, b1}

)
× G ({0, 1}).

To verify the second condition of Definition 7, we consider for instance preferences Pi ∈ D̂MSP

with r1(Pi) = (d1, 1). The induced preference Pi|Ā is either (a1, 1)⇀(a1, 0)⇀(b1, 1)⇀(b1, 0), or

(a1, 1)⇀(b1, 1)⇀(a1, 0)⇀(b1, 0), or (b1, 1)⇀(b1, 0)⇀(a1, 1)⇀(a1, 0), or (b1, 1)⇀(a1, 1)⇀(b1, 0)⇀(a1, 0),

as required.

In either case (1) or case (2), we can still construct 4 multidimensional projection rules

fa :
[
D̂MSP |Ā

]N → Ā, a ∈ Ā. Then, the mixed multidimensional projection rule φ(P ) ≡∑
a∈Ā λaf

a(P ) for all P ∈
[
D̂MSP |Ā

]N
, where λa ≥ 0 for each a ∈ Ā and

∑
a∈Ā = 1, is unanimous

and strategy-proof on D̂MSP |Ā and satisfies the compromise property. Furthermore, we extend

φ to a constrained RSCF ϕ :
[
D̂MSP

]N → ∆(Ā) such that ϕ(P1, . . . , PN ) = φ
(
P1|Ā, . . . , PN |Ā

)
for all P ∈

[
D̂MSP

]N
. Thus, the constrained RSCF ϕ remains strategy-proof and satisfies

unanimity and the compromise property w.r.t. feasibility.

38In the product of trees ×s∈MG(Ās), the vertex set is Ā = ×s∈M Ās. Graph G(Ās), s ∈ M , is a tree on the

vertex set Ās.
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In the last case, the feasible set Ā ≡
{

(a1, 1), (b1, 1), (c1, 0), (d1, 0)
}

is not factorizable (see

diagram (3)). Thus, no product of trees can be elicited for Ā. Therefore, D̂MSP is not mul-

tidimensional single-peaked w.r.t. Ā. Indeed, the induced domain DMSP |Ā only admits ran-

dom dictatorships for unanimity and strategy-proofness.39 Consequently, no unanimous and

strategy-proof constrained RSCFs on D̂MSP other than constrained random dictatorships (i.e.,

the modification of random dictatorships w.r.t. the peaks of induced preferences over Ā) can be

constructed.

Last, observe that although domain D̂MSP is distinct to domain DMSP of Example 1, they

both multidimensional single-peaked w.r.t. Ā of the first case. Thus, the union D̂MSP ∪ DMSP

is multidimensional single-peaked w.r.t. Ā of the first case. �

Even though domain D̂MSP of Example 4 is multidimensional single-peaked w.r.t. the fea-

sible set of the first two cases, there is an important difference between the two cases: In case

(1), domain D̂MSP satisfies the unique feasible peaks condition, i.e., [r1(Pi) = r1(P ′i )] ⇒
[r1(Pi|Ā) = r1(P ′

i|Ā)], while in case (2), some preferences share the same top but disagree on the

peaks of feasible alternatives, e.g., preference Pi ∈ D̂MSP with r1(Pi) = (d1, 1) can have either

(a1, 1) or (b1, 1) as the peak of feasible alternatives. Due to this major difference, constrained

RSCFs on D̂MSP of Example 4 perform differently in both cases. For instance, fix (a1, 0) ∈ Ā, let

λ(a1,0) = 1, and consider the constrained RSCF ϕ :
[
D̂MSP

]2 → ∆(Ā) constructed in Example

4. In case (1), the constrained RSCF ϕ still satisfies the original tops-only property regard-

less whether the peaks of the preferences are feasible or not, while in case (2), it satisfies the

tops-only property w.r.t. feasibility, i.e., given P, P ′ ∈
[
D̂MSP

]2
, [r1(Pi|Ā) = r1(P ′

i|Ā) for all i ∈
I]⇒ [ϕ(P ) = ϕ(P )], but fails the original tops-only property, e.g., given Pi, P

′
i , Pj ∈ D̂MSP with

r1(Pi) = r1(P ′i ) = (d1, 1) /∈ Ā, r1(Pi|Ā) = (a1, 1) 6= (b1, 1) = r1(P ′
i|Ā) and r1(Pj) = (b1, 0) ∈ Ā,

we have ϕ(Pi, Pj) ≡ f (a1,1)
(
Pi|Ā, Pj|Ā

)
= e(a1,0) 6= e(b1,0) = f (a1,1)

(
P ′
i|Ā, Pj|Ā

)
≡ ϕ(P ′i , Pj). In

fact, the unique feasible peaks condition is required to be imposed on the multidimensional

single-peaked domain w.r.t. feasibility, so that we can ensure all constrained RSCFs generated

via the extension of mixed multidimensional projections rules satisfy the tops-only property.

We shall continue to restrict attention to the class of minimally rich and connected+ do-

mains. In particular, preferences whose peaks are infeasible have to be considered in our charac-

terization. The tops-only property still plays an important role in our domain characterization

analysis. However, under voting under constraints, we are unable to endogenously establish

the tops-only property on all unanimous and strategy-proof constrained RSCFs.40 Therefore,

we exogenously impose the tops-onlyness property without any modification on strategy-proof

constrained RSCFs.

39We note that D̂MSP |Ā is a linked domain (see Definition 3.3 of Aswal et al., 2003), i.e., (a1, 1) ∼+ (d1, 0),

(a1, 1) ∼+ (b1, 1), (d1, 0) ∼+ (b1, 1), (c1, 0) ∼+ (d1, 0) and (c1, 0) ∼+ (b1, 1). Moreover, D̂MSP |Ā satisfies Condition

H of Chatterji et al. (2014), i.e., both (d1, 0) and (b1, 1) are hubs. Consequently, Theorem 3 of Chatterji et al.

(2014) implies that every unanimous and strategy-proof on D̂MSP |Ā is a random dictatorship.
40We can modify the definition of connectedness+ to accord with feasibility: Both the Interior+ property and

the Exterior+ property are established w.r.t. the peaks of feasible alternatives in all preferences. Then, we can

endogenously establish the tops-only property w.r.t. feasibility. However, without the tops-only property, our

domain implication analysis fails. For instance, the validation of Lemma 23 requires the tops-only property, not

the tops-only property w.r.t feasibility. In a tops-only RSCF, even though infeasible alternatives never receive

probabilities at any preference profile, preferences whose peaks are infeasible alternatives still play an important

role in determining social lotteries.
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Now, we present the result.

Theorem 3 Let domain D be minimally rich and connected+. If it admits a unanimous, tops-

only and strategy-proof constrained RSCF satisfying the compromise property, then it is multi-

dimensional single-peaked w.r.t. Ā, and satisfies the unique feasible peaks condition.

Conversely, let domain D be multidimensional single-peaked w.r.t. Ā that satisfies the unique

feasible peaks condition. There exists a unanimous, tops-only and strategy-proof constrained

RSCF satisfying the compromise property.

The proof of Theorem 3 is available in Appendix C.

Remark 6 Barberà et al. (1997) considered a model where A is located on a product of lines, the

domain is the multidimensional single-peaked domain DMSP on the product of lines (Barberà

et al., 1993), and Ā is an arbitrary subset of A. They characterized the class of unanimous

and strategy-proof DSCFs that map to Ā: These are feasible generalized median voter schemes

satisfying the intersection property.41 The structure of the feasible set Ā determines the size of

the class of feasible generalized median voter schemes satisfying the intersection property. On

the one hand, if Ā is factorizable, then all feasible generalized median voter schemes satisfies

the intersection property automatically, the feasible set Ā is automatically located on a product

of lines ×s∈MG(Ās) (see cases (1) and (2) of Example 4), and therefore DMSP is obviously

multidimensional single-peaked w.r.t. Ā. Furthermore, one can construct a multidimensional

projection rule with a projector of feasible alternative on DMSP |Ā, and then extend it to a

feasible generalized median voter scheme on DMSP satisfying unanimity, anonymity, the tops-

only property (see case (1) of Example 4) or the tops-only property w.r.t. feasibility (see case

(2) of Example 4) and strategy-proofness. On the other hand, if Ā is not factorizable, in

particular see case (3) of Example 4, Section 4 of Aswal et al. (2003) or Theorem 2 of Barberà

et al. (2005), every feasible generalized median voter schemes satisfying the intersection property

degenerates to a constrained dictatorship. Then, a natural question arises: What structure on

Ā is implied by the existence of a “well-behaved” strategy-proof DSCF on DMSP whose range is

Ā? Our analysis in this section addresses a more general research question in the framework of

RSCFs, and shows that the existence of a unanimous, tops-only and strategy-proof constrained

RSCF satisfying the compromise property implies that Ā must be factorizable. Moreover, in

contrast to the model of Barberà et al. (1997) where domain DMSP was the primitive and

automatically multidimensional single-peaked w.r.t every factorizable feasible set, our domain

characterization analysis (i) takes a more general class of domains as the primitive, connected+

domains, (ii) establishes the factorizability of Ā and induces a product of trees ×s∈MG(Ās)

embedding Ā endogenously, and (iii) elicits the restriction of multidimensional single-peakedness

w.r.t. feasibility. Barberà et al. (1999) considered another model where A is located on a

product of lines, Ā is an arbitrary subset of A, and a feasible generalized median voter scheme

satisfying the intersection property is fixed. They induced preference restrictions to retrieve

strategy-proofness of the primitive generalized median voter scheme. However, the preference

41A feasible generalized median voter scheme is a generalized median voter scheme who always chooses a feasible

alternative at each preference profile. The formal definition of the intersection property can be found in Definition

9 of Barberà et al. (1997). An alternative formulation of the intersection property can be found in Section 3.3. of

Nehring and Puppe (2007).
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restrictions elicited by them depend on the specific form of the primitive generalized median

voter scheme. Our analysis does not rely on a specific RSCF, but only takes a general strategy-

proof constrained RSCF with“well-behavedness”axioms as the primitive. More importantly, our

characterization of multidimensional single-peakedness is independent of our primitive RSCF. �

4 Conclusion

We have proposed a class of multidimensional domains, connected+ domains. We first prove

that multidimensional single-peakedness is the necessary and sufficient condition in the class

of minimally rich and connected+ domain for the existence of a unanimous and strategy-proof

RSCF satisfying the compromise property. Next, we show that our characterization is robust

w.r.t. voting under constraints. The results for multidimensional models presented here are in

the spirit of earlier results (e.g., Nehring and Puppe, 2007; Chatterji et al., 2013; Chatterji and

Massó, 2016; Chatterji et al., 2016) that indicate that some form of single-peakedness is inherent

in preference domains that allow the construction of“well-behaved”rules that are strategy-proof.

We suggest that connected+ domains may be useful in resolving other open issues; one such

issue is the equivalence of strategy-proofness and local strategy-proofness where the latter is

formulated by requiring that only a manipulation via a preference adjacent or adjacent+ to the

sincere one is forbidden from being profitable.

The characterization of all well-behaved strategy-proof RSCFs on connected+ domains is not

attempted in this paper and is left for future work. It would also be of interest to extend the

analysis to situations where some of the dimensions include private goods or monetary transfers.
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Appendix

A Proof of Proposition 3

We first provide two general results which will be repeatedly applied in the proof of Proposition

3. Let ϕ : DN → ∆(A) be a strategy-proof RSCF.

Lemma 9 Let Pi ∼ P ′i and {a, b} be the local switching pair in Pi and P ′i . Let Pj ∼ P ′j or

Pj ∼+ P ′j. Assume that either aPjb and aP ′jb, or bPja and bP ′ja. We have[
ϕ(Pi, Pj , P−{i,j}) = ϕ(P ′i , Pj , P−{i,j})

]
⇒
[
ϕ(Pi, P

′
j , P−{i,j}) = ϕ(P ′i , P

′
j , P−{i,j})

]
.

Proof : Since Pj ∼ P ′j or Pj ∼+ P ′j , and either aPjb and aP ′jb, or bPja and bP ′ja, we can find

an integer 1 ≤ t ≤ |A| such that Bt(Pj) ≡ {rk(Pj)}tk=1 = {rk(P ′j)}tk=1 ≡ Bt(P ′j), a ∈ Bt(Pj)

and b /∈ Bt(Pj). Thus, a and b are referred to be isolated in Pj and P ′j . Then, the verification

of this lemma follows from Lemma 1 of Chatterji and Zeng (2017). �

Lemma 10 Let Pi ∼+ P ′i and
{

(xs, z−s), (ys, z−s)
}
z−s∈A−s be the local switching pairs in Pi

and P ′i . Assume that either (xs, z−s)Pj(y
s, z−s) and (xs, z−s)P ′j(y

s, z−s) for all z−s ∈ A−s, or

(ys, z−s)Pj(x
s, z−s) and (ys, z−s)P ′j(x

s, z−s) for all z−s ∈ A−s. We have[
ϕ(Pi, Pj , P−{i,j}) = ϕ(P ′i , Pj , P−{i,j})

]
⇒
[
ϕ(Pi, P

′
j , P−{i,j}) = ϕ(P ′i , P

′
j , P−{i,j})

]
.

Proof : According to item 2(ii) of Lemma 1, to verify this lemma, it suffices to show that for ev-

ery z−s ∈ A−s, there exists as ∈ {xs, ys} such that ϕ(as,z−s)(Pi, P
′
j , P−{i,j}) = ϕ(as,z−s)(P

′
i , P

′
j , P−{i,j}).

We assume (xs, z−s)Pj(y
s, z−s) and (xs, z−s)P ′j(y

s, z−s) for all z−s ∈ A−s. The verifica-

tion related to the other case is symmetric and we hence omit it. Since Pj ∼+ P ′j , we know

that Pj and P ′j are separable preferences. Moreover, we assume (x̄τ , z̄−τ )Pj !(ȳ
τ , z̄−τ ) and

(ȳτ , z̄−τ )P ′j !(x̄
τ , z̄−τ ) for all z̄−τ ∈ A−τ . We consider two situations: τ = s and τ 6= s. As-

sume τ = s. Given z−s ∈ A−s, since (xs, z−s)Pj(y
s, z−s) and (xs, z−s)P ′j(y

s, z−s), it is true that

there exists as ∈ {xs, ys} such that as /∈ {x̄s, ȳs}. Therefore, item 2(iii) of Lemma 1 implies

ϕ(as,z−s)(Pi, Pj , P−{i,j}) = ϕ(as,z−s)(Pi, P
′
j , P−{i,j}) and ϕ(as,z−s)(P

′
i , Pj , P−{i,j}) = ϕ(as,z−s)(P

′
i , P

′
j , P−{i,j}).

Since ϕ(Pi, Pj , P−{i,j}) = ϕ(P ′i , Pj , P−{i,j}) by the hypothesis, we have ϕ(as,z−s)(Pi, P
′
j , P−{i,j}) =

ϕ(as,z−s)(P
′
i , P

′
j , P−{i,j}), as required.

Next, assume τ 6= s. Given z−s ∈ A−s, either one of two cases occurs: (i) There ex-

ists as ∈ {xs, ys} such that (as, z−s) /∈ (x̄τ , A−τ ) ∪ (ȳτ , A−τ ), or (ii) (xs, z−s), (ys, z−s) ∈
(x̄τ , A−τ )∪ (ȳτ , A−τ ). In the first case, item 2(iii) of Lemma 1 implies ϕ(as,z−s)(Pi, Pj , P−{i,j}) =

ϕ(as,z−s)(Pi, P
′
j , P−{i,j}) and ϕ(as,z−s)(P

′
i , Pj , P−{i,j}) = ϕ(as,z−s)(P

′
i , P

′
j , P−{i,j}).

Since ϕ(Pi, Pj , P−{i,j}) = ϕ(P ′i , Pj , P−{i,j}) by the hypothesis, we have ϕ(as,z−s)(Pi, P
′
j , P−{i,j}) =

ϕ(as,z−s)(P
′
i , P

′
j , P−{i,j}), as required.

If the second case occurs, it must be either (xs, z−s) = (xs, x̄τ , z−{s,τ}) and (ys, z−s) =

(ys, x̄τ , z−{s,τ}), or (xs, z−s) = (xs, ȳτ , z−{s,τ}) and (ys, z−s) = (ys, ȳτ , z−{s,τ}). Assume (xs, z−s) =

(xs, x̄τ , z−{s,τ}) and (ys, z−s) = (ys, x̄τ , z−{s,τ}). The verification related to the other case is sim-

ilar and we hence omit it. Then, by item 2(ii) of Lemma 1, we have∑
āτ∈{x̄τ ,ȳτ}

ϕ(xs,āτ ,z−{s,τ})(Pi, Pj , P−{i,j}) =
∑

āτ∈{x̄τ ,ȳτ}

ϕ(xs,āτ ,z−{s,τ})(Pi, P
′
j , P−{i,j})∑

āτ∈{x̄τ ,ȳτ}

ϕ(xs,āτ ,z−{s,τ})(P
′
i , Pj , P−{i,j}) =

∑
āτ∈{x̄τ ,ȳτ}

ϕ(xs,āτ ,z−{s,τ})(P
′
i , P

′
j , P−{i,j})
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Moreover, since ϕ(Pi, Pj , P−{i,j}) = ϕ(P ′i , Pj , P−{i,j}) by the hypothesis, we have∑
āτ∈{x̄τ ,ȳτ}

ϕ(xs,āτ ,z−{s,τ})(Pi, P
′
j , P−{i,j}) =

∑
āτ∈{x̄τ ,ȳτ}

ϕ(xs,āτ ,z−{s,τ})(P
′
i , P

′
j , P−{i,j}).

Furthermore, item 2(i) of Lemma 1 implies

ϕ(xs,x̄τ ,z−{s,τ})(Pi, P
′
j , P−{i,j}) ≥ ϕ(xs,x̄τ ,z−{s,τ})(P

′
i , P

′
j , P−{i,j})

ϕ(xs,ȳτ ,z−{s,τ})(Pi, P
′
j , P−{i,j}) ≥ ϕ(xs,ȳτ ,z−{s,τ})(P

′
i , P

′
j , P−{i,j}).

Therefore, it must be the case that ϕ(xs,z−s)(Pi, P
′
j , P−{i,j}) ≡ ϕ(xs,x̄τ ,z−{s,τ})(Pi, P

′
j , P−{i,j}) =

ϕ(xs,x̄τ ,z−{s,τ})(P
′
i , P

′
j , P−{i,j}) ≡ ϕ(xs,z−s)(P

′
i , P

′
j , P−{i,j}), as required. �

Now, we start to prove Proposition 3. Let domain D be connected+. If N = 1, it is evident

that unanimity implies the tops-only property.42 Next, we provide an induction argument on

the number of voters.

Induction Hypothesis: Given N ≥ 2, every unanimous and strategy-proof RSCF with 1 ≤ n < N

voters satisfies the tops-only property.

Given a unanimous and strategy-proof RSCF ϕ : DN → ∆(A), we show that ϕ satisfies

the tops-only property. According to the Interior+ property, it suffices to show that fixing

i ∈ I, and given Pi, P
′
i ∈ D with r1(Pi) = r1(P ′i ) and either Pi ∼ P ′i or Pi ∼+ P ′i , we have

ϕ(Pi, P−i) = ϕ(P ′i , P−i) for all P−i ∈ DN−1.

We first induce an (N−1)-voter RSCF. Fixing j ∈ I\{i}, let φ(Pi, P−{i,j}) = ϕ(Pi, Pi, P−{i,j})

for all Pi ∈ D and P−{i,j} ∈ DN−2. It is evident that φ is a well-defined RSCF satisfying

unanimity and strategy-proofness. Hence, induction hypothesis implies that φ satisfies the tops-

only property. Henceforth, we fix Pi, P
′
i ∈ D with r1(Pi) = r1(P ′i ) = x∗ and either Pi ∼ P ′i or

Pi ∼+ P ′i , and fix P−{i,j} ∈ DN−2. We show ϕ(Pi, Pj , P−{i,j}) = ϕ(P ′i , Pj , P−{i,j}) for all Pj ∈ D.

The lemma below implies that if r1(Pj) = x∗, then ϕ(Pi, Pj , P−{i,j}) = ϕ(P ′i , Pj , P−{i,j}).

Lemma 11 Given Pj , P
′
j ∈ D with r1(Pj) = r1(P ′j) = x∗, we have

(i) ϕ(Pi, Pj , P−{i,j}) = ϕ(P ′i , Pj , P−{i,j}), (ii) ϕ(Pi, Pj , P−{i,j}) = ϕ(Pi, P
′
j , P−{i,j}) and

(iii) ϕ(P ′i , Pj , P−{i,j}) = ϕ(P ′i , P
′
j , P−{i,j}).

Proof : Given P−{i,j} ∈ DN−2, by strategy-proofness, we have that for every 1 ≤ l ≤ |A|,∑l
k=1 ϕrk(Pi)(Pj , Pj , P−{i,j}) ≤

∑l
k=1 ϕrk(Pi)(Pi, Pj , P−{i,j}) ≤

∑l
k=1 ϕrk(Pi)(Pi, Pi, P−{i,j}),∑l

k=1 ϕrk(P ′i )
(Pj , Pj , P−{i,j}) ≤

∑l
k=1 ϕrk(P ′i )

(P ′i , Pj , P−{i,j}) ≤
∑l
k=1 ϕrk(P ′i )

(P ′i , P
′
i , P−{i,j}),

 (1)

∑l
k=1 ϕrk(Pj)(Pi, Pi, P−{i,j}) ≤

∑l
k=1 ϕrk(Pj)(Pi, Pj , P−{i,j}) ≤

∑l
k=1 ϕrk(Pj)(Pj , Pj , P−{i,j}),∑l

k=1 ϕrk(P ′j)
(Pi, Pi, P−{i,j}) ≤

∑l
k=1 ϕrk(P ′j)

(Pi, P
′
j , P−{i,j}) ≤

∑l
k=1 ϕrk(P ′j)

(P ′j , P
′
j , P−{i,j}),

 (2)

∑l
k=1 ϕrk(Pj)(P

′
i , P

′
i , P−{i,j}) ≤

∑l
k=1 ϕrk(Pj)(P

′
i , Pj , P−{i,j}) ≤

∑l
k=1 ϕrk(Pj)(Pj , Pj , P−{i,j}),∑l

k=1 ϕrk(P ′j)
(P ′i , P

′
i , P−{i,j}) ≤

∑l
k=1 ϕrk(P ′j)

(P ′i , P
′
j , P−{i,j}) ≤

∑l
k=1 ϕrk(P ′j)

(P ′j , P
′
j , P−{i,j}).

 (3)

In Inequalities (1), since ϕ(Pj , Pj , P−{i,j}) ≡ φ(Pj , P−{i,j}) = φ(Pi, P−{i,j}) ≡ ϕ(Pi, Pi, P−{i,j})

and ϕ(Pj , Pj , P−{i,j}) ≡ φ(Pj , P−{i,j}) = φ(P ′i , P−{i,j}) ≡ ϕ(P ′i , P
′
i , P−{i,j}), it is true that

42We follow Chatterji and Sen (2011) and add the case N = 1 just to simplify the proof.
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ϕ(Pi, Pj , P−{i,j}) = ϕ(Pj , Pj , P−{i,j}) and ϕ(P ′i , Pj , P−{i,j}) = ϕ(Pj , Pj , P−{i,j}). Therefore, we

have proved the item (i) ϕ(Pi, Pj , P−{i,j}) = ϕ(P ′i , Pj , P−{i,j}). Symmetrically, according to In-

equalities (2) and (3), we have ϕ(Pi, Pj , P−{i,j}) = ϕ(Pi, P
′
j , P−{i,j}) and ϕ(P ′i , Pj , P−{i,j}) =

ϕ(P ′i , P
′
j , P−{i,j}). �

The lemma below considers the situation Pi ∼ P ′i .

Lemma 12 Let Pi ∼ P ′i and {a, b} be the local switching pair in Pi and P ′i . For all Pj ∈ D, we

have ϕ(Pi, Pj , P−{i,j}) = ϕ(P ′i , Pj , P−{i,j}).

Proof : Fix Pj ∈ D. By Lemma 11, we only need to consider the situation r1(Pj) 6= x∗.

It is evident that either aPjb or bPja. We assume aPjb. The verification related to the

case bPja is symmetric and we hence omit it. Now, by the Exterior+ property, we have a

simple+ path {P kj }tk=1 ⊆ D connecting Pi and Pj such that aP kj b for all 1 ≤ k ≤ t. Note

that ϕ(Pi, P
1
j , P−{i,j}) = ϕ(P ′i , P

1
j , P−{i,j}) by Lemma 11. Following the simple+ path and

repeatedly applying Lemma 9, we have ϕ(Pi, P
t
j , P−{i,j}) = ϕ(P ′i , P

t
j , P−{i,j}). Equivalently,

ϕ(Pi, Pj , P−{i,j}) = ϕ(P ′i , Pj , P−{i,j}). �

Now, to complete the verification, we consider the situation Pi ∼+ P ′i .

Lemma 13 Let Pi ∼+ P ′i and
{

(xs, z−s), (ys, z−s)
}
z−s∈A−s be the local switching pairs in Pi and

P ′i . For all Pj ∈ D, we have ϕ(Pi, Pj , P−{i,j}) = ϕ(P ′i , Pj , P−{i,j}).

Proof : By Lemma 11, to verify this lemma, we only need to consider the situation r1(Pj) 6= x∗.

Given arbitrary z−s ∈ A−s, we know either (xs, z−s)Pj(y
s, z−s) or (xs, z−s)Pj(y

s, z−s). Assume

(xs, z−s)Pj(y
s, z−s). The verification related to the other case is symmetric and we hence omit

it. According to the Exterior+ property, we have a simple+ path {P kj }tk=1 connecting Pi and Pj
such that (as, z−s)P kj (bs, z−s), k = 1, . . . , t. Evidently, ϕ(Pi, P

1
j , P−{i,j}) = ϕ(P ′i , P

1
j , P−{i,j}) by

item (i) of Lemma 11. We introduce a secondary induction hypothesis: Given 1 < k ≤ t, for all

1 ≤ k′ < k, we have ϕ(Pi, P
k′
j , P−{i,j}) = ϕ(P ′i , P

k′
j , P−{i,j}).

We show ϕ(Pi, P
k
j , P−{i,j}) = ϕ(P ′i , P

k
j , P−{i,j}). First, we know either P k−1

j ∼+ P kj or

P k−1
j ∼ P kj . Assume P k−1

j ∼+ P kj . Thus, P k−1
j and P kj are separable preferences. Since

(xs, z−s)P k−1
j (ys, z−s) and (xs, z−s)P kj (ys, z−s), separability implies (xs, z−s)P k−1

j (ys, z−s) and

(xs, z−s)P kj (ys, z−s) for all z−s ∈ A−s. Consequently, by Lemma 10, ϕ(Pi, P
k−1
j , P−{i,j}) =

ϕ(P ′i , P
k−1
j , P−{i,j}) implies ϕ(Pi, P

k
j , P−{i,j}) = ϕ(P ′i , P

k
j , P−{i,j}), as required.

Next, assume P k−1
j ∼ P kj . By the definition of a simple+ path, it must be the case that

r1(P k−1
j ) = r1(P kj ) ≡ z. Assume xP k−1

j !y and yP kj !x. If z = x∗ ≡ r1(Pi) = r1(P ′i ), then item

(i) of Lemma 11 implies ϕ(Pi, P
k
j , P−{i,j}) = ϕ(P ′i , P

k
j , P−{i,j}). Now, assume z 6= x∗. Evi-

dently, we know either xPiy or yPix. Assume xPiy. The verification related to the other case

is symmetric and we hence omit it. Thus, the Exterior+ property implies that there exists a

simple+ path {P ki }
q
k=1 ⊆ D connecting P k−1

j and Pi such that xP ki y, k = 1, . . . , q. Item (ii) of

Lemma 11 first implies ϕ(P 1
i , P

k−1
j , P−{i,j}) = ϕ(P 1

i , P
k
j , P−{i,j}). Following the simple+ path

{P ki }
q
k=1 and repeatedly applying Lemma 9, we have ϕ(Pi, P

k−1
j , P−{i,j}) = ϕ(Pi, P

k
j , P−{i,j}).
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43To apply Lemma 9 here, we need to make a notational change on the expression of Lemma 9 by switching voters

i and j: Let Pj ∼ P ′j and {a, b} be the local switching pair in Pj and P ′j . Let Pi ∼ P ′i or Pi ∼+ P ′i . Assume that

either aPib and aP ′i b, or bPia and bP ′ia. We have
[
ϕ(Pi, Pj , P−{i,j}) = ϕ(Pi, P

′
j , P−{i,j})

]
⇒
[
ϕ(P ′i , Pj , P−{i,j}) =

ϕ(P ′i , P
′
j , P−{i,j})

]
.
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Analogously, with the initial equality of item (iii) of Lemma 11, since either xP ′iy or yP ′ix,

we can apply a similar argument and show ϕ(P ′i , P
k−1
j , P−{i,j}) = ϕ(P ′i , P

k
j , P−{i,j}). Last,

since ϕ(Pi, P
k−1
j , P−{i,j}) = ϕ(P ′i , P

k−1
j , P−{i,j}) by the secondary induction hypothesis, we have

ϕ(Pi, P
k
j , P−{i,j}) = ϕ(P ′i , P

k
j , P−{i,j}), as required. This completes the verification of the sec-

ondary induction hypothesis. Therefore, ϕ(Pi, Pj , P−{i,j}) = ϕ(P ′i , Pj , P−{i,j}). �

Finally, by Lemmas 12 and 13, we have ϕ(Pi, Pj , P−{i,j}) = ϕ(P ′i , Pj , P−{i,j}) for all Pj ∈ D.

This completes the verification of the induction hypothesis and hence proves Proposition 3.

B Proof of Theorem 2

First, by the verification of the sufficiency part of Theorem 1, we know that all multidimensional

projection rules are unanimous, anonymous and strategy-proof on the multidimensional single-

peaked domain. Therefore, we omit the verification of the sufficiency part of Theorem 2, but

focus on the necessity part.

Let D be a minimally rich and connected+ domain. Let f̄ : DN → A be a unanimous,

anonymous and strategy-proof DSCF where N is an even integer. First, Proposition 3 implies

that DSCF f̄ satisfies the tops-only property. By a similar argument in the beginning proof of

Theorem 1, we can also induce a two-voter unanimous, anonymous, tops-only and strategy-proof

DSCF f : D2 → A. Let I = {i, j}. Note that we establish all Lemmas 2, 6, 7 and 8 without

referring to any RSCFs. Therefore, to complete the verification, we only need to use DSCF f

to show Lemma 4, establish a counterpart result of Lemma 3, and prove the result of Lemma 5.

Lemma 14 Given s ∈M and x−s ∈ A−s, G∼+

(
(As, x−s)

)
is a tree.

Proof : Suppose that G∼+

(
(As, x−s)

)
is not a tree. Thus, there exists a cycle {xk}tk=1 ⊆

(As, x−s), t ≥ 3, such that xk ∼+ xk+1, k = 1, . . . , t, where xt+1 = x1. Given distinct 1 ≤
k, k′ ≤ t, we have a clockwise adjacency+ path and a counter clockwise adjacency+ path which

connect xk and xk′ . By the proof of Lemma 3, the social outcome f(xk, xk′) must belong to both

paths. Therefore, f(xk, xk′) ∈ {xk, xk′}. We start with f(x1, x2), and assume f(x1, x2) = x1.

The verification related to the case f(x1, x2) = x2 is symmetric and we hence omit it. Along the

clockwise adjacency+ path from x2 to xt, by a repeated application of item 2(iii) of Lemma 1, we

know x1 = f(x1, x2) = · · · = f(x1, xt−1) = f(x1, xt). Next, since x2 ∼+ x1, item 2(ii) of Lemma

1 implies f(x2, xt) ∈ {x1, x2}. Furthermore, since f(x2, xt) ∈ {x2, xt}, we have f(x2, xt) = x2.

Last, since xt ∼+ x1, item 2(iii) of Lemma 1 implies f(x2, x1) = f(x2, xt) = x2 6= f(x1, x2)

which contradicts anonymity of f . Therefore, G∼+

(
(As, x−s)

)
is a tree. �

Given s ∈M , x−s ∈ A−s and a, b ∈ (As, x−s), let 〈a, b〉(As,x−s) denote the unique graph path

in G∼+

(
(As, x−s)

)
connecting a and b. Since G∼+

(
(As, x−s)

)
is a tree, the notion of projection

(recall the proof of sufficiency of Theorem 1) is well-defined. Thus, given x, a, b ∈ (As, x−s), let

π
(
x, 〈a, b〉(As,x−s)

)
denote the projection of x on the graph path 〈a, b〉(As,x−s).

Lemma 15 Given s ∈ M and x−s ∈ A−s, there exists ā ∈ (As, x−s) such that for all a, b ∈
(As, x−s), f(a, b) = π

(
ā, 〈a, b〉(As,x−s)

)
. Moreover, given an adjacent+ path {xk}qk=1 ⊆ (As, x−s)

and Pi ∈ Dx1, we have xkPixk+1, k = 1, . . . , q − 1.
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Proof : According to the proof of Lemma 3, we know f(a, b) ∈ (As, x−s) for all a, b ∈ (As, x−s).

Then, the first part of this lemma follows exactly from the proof of the necessity part of the

Theorem of Chatterji et al. (2013).

Next, suppose xk+1Pixk for some 1 ≤ k < q. It is evident 1 < k < q. Pick an arbitrary

P ′i ∈ Dxk+1 by minimal richness. By the no-detour property, we have a simple+ path {P li }
q
l=1 ⊆

D(As,x−s) connecting Pi and P ′i such that xk+1P
l
ixk, l = 1, . . . , q. Evidently, r1(P li ) 6= xk for all

1 ≤ l ≤ q. Then, by an argument similar to the proof of Lemma 2, we can elicit an adjacency+

path connecting x1 and xk+1 from {P li }
q
l=1. Consequently, we have two distinct adjacent+ paths

connecting x1 and xk+1: One includes xk (see the hypothesis of the lemma), while the other

excludes xk. This contradicts Lemma 14. Therefore, xkPixk+1, k = 1, . . . , q − 1. �

Before proceeding further with the proof, we note that the order of Lemmas 3 and 4 is

opposite to the order of Lemmas 14 and 15. This difference arises mainly from the difference

between the random setting and the deterministic one. In the random setting, the preference

restriction in Lemma 3 is simply induced from the compromise property of the unanimous and

strategy-proof RSCF, and Lemma 4 is proved by the RSCF characterization result in Lemma 3.

In the deterministic case, Lemma 14 (which is identical to Lemma 4) is proved using mainly the

anonymity of the unanimous and strategy-proof DSCF, and the same preference restriction in

Lemma 15 (which is the counterpart of Lemma 3) is elicited from the result of Lemma 14 and

the richness condition of connectedness+.

To prove the result of Lemma 5 by using a DSCF f , we first provide an intermediate step

which will be repeatedly applied in the subsequent verification.

Lemma 16 If f(x, y) = y, f(y, z) = z and y ∼+ z, then f(x, z) = z.

Proof : Since z ∼+ y and f(x, y) = y, strategy-proofness implies f(x, z) ∈ {y, z}. If f(x, z) = y,

strategy-proofness implies f(y, z) = y which contradicts the hypothesis f(y, z) = z. Therefore,

f(x, z) = z. �

Now, we are ready to prove the result of Lemma 5. We fix the following four alternatives: a =

(xs, xτ , z−{s,τ}), b = (ys, yτ , z−{s,τ}), c = (xs, yτ , z−{s,τ}) and d = (ys, xτ , z−{s,τ}) where xs 6= ys

and xτ 6= yτ . We assume a ∼+ c and a ∼+ d. Recall Figure 3. Let {xk}pk=1 ⊆ (ys, Aτ , z−{s,τ})

denote the adjacency+ path connecting b and d. Let {yk}qk=1 ⊆ (As, yτ , z−{s,τ}) denote the

adjacency+ path connecting b and c. Furthermore, by Lemma 15, let x̄ ∈ (ys, Aτ , z−{s,τ}) and

ȳ ∈ (As, yτ , z−{s,τ}) be such that

• f(x, y) = π
(
x̄, 〈x, y〉(As,yτ ,z−{s,τ})

)
for all x, y ∈ (ys, Aτ , z−{s,τ});

• f(x′, y′) = π
(
ȳ, 〈x′, y′〉(ys,Aτ ,z−{s,τ})

)
for all x′, y′ ∈ (As, yτ , z−{s,τ}).

By the first paragraph of the proof of Lemma 3, since a ∼+ c and a ∼+ d, we have f(a, c) =

f(c, a) ∈ {c, a} and f(a, d) = f(d, a) ∈ {a, d}. Therefore, there are four situations:

Situation 1. f(a, c) = f(c, a) = c and f(a, d) = f(d, a) = a (see the first diagram of Figure 6).

Situation 2. f(a, c) = f(c, a) = c and f(a, d) = f(d, a) = d (see the second diagram of Figure 6).

Situation 3. f(a, c) = f(c, a) = a and f(a, d) = f(d, a) = d (see the third diagram of Figure 6).

Situation 4. f(a, c) = f(c, a) = a and f(a, d) = f(d, a) = a (see the fourth diagram of Figure 6).
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Figure 6: Four situations44

Note that Situations 1 and 3 are analogous. Thus, we only consider Situations 1, 2 and 4.

In Lemmas 17, 18 and 19, we show that in each situation, b ∼+ c and b ∼+ d.

Lemma 17 In Situation 1, b ∼+ c and b ∼+ d.

Proof : Since f(d, a) = a, f(a, c) = c and c ∼+ a, Lemma 16 implies f(d, c) = c. We first show

b ∼+ d. Suppose not, i.e., p > 2. Thus, xp−1 ≡ (ys, xτp−1, z
−{s,t}) and xτp−1 /∈ {xτ , yτ}.

Claim 1: f(xp, xp−1) = f(xp−1, xp) = xp.

Since xp ∼+ xp−1, we have Pi ∈ Dxp and P ′i ∈ Dxp−1 such that Pi ∼+ P ′i . Since cτ =

yτ /∈ {xτp , xτp−1}, item 2(iii) of Lemma 1 implies fc(xp−1, c) = fc(P
′
i , c) = fc(Pi, c) = fc(xp, c) ≡

fc(d, c) = 1. Thus, f(xp−1, c) = c. Next, since a ∼+ c, strategy-proofness implies f(xp−1, a) ∈
{c, a}. Suppose f(xp−1, a) = c. Since xp ∼+ xp−1 and cτ ≡ yτ /∈ {xτp , xτp−1}, by a similar

argument right above, we know fc(xp, a) = fc(xp−1, a) = 1. Hence, f(d, a) ≡ f(xp, a) = c

which contradicts the hypothesis f(d, a) = a. Therefore, f(xp−1, a) = a. Furthermore, since

xp ∼+ a, strategy-proofness implies f(xp−1, xp) ∈ {xp, a}. Last, since xp ∼+ xp−1, by the first

paragraph of the proof of Lemma 3, we have f(xp−1, xp) ∈ {xp, xp−1}. Therefore, f(xp, xp−1) =

f(xp−1, xp) = xp. This completes the verification of the claim.

Now, we know π
(
x̄, 〈xp, xp−1〉(A

s,yτ ,z−{s,τ})
)

= f(xp, xp−1) = xp. Thus, xp ∈ 〈x̄, xp−1〉(A
s,yτ ,z−{s,τ}),

and hence xp ∈ 〈x̄, x1〉(A
s,yτ ,z−{s,τ}). Therefore, f(b, d) ≡ f(x1, xp) = π

(
x̄, 〈x1, xp〉(A

s,yτ ,z−{s,τ})
)

=

xp ≡ d. Furthermore, since f(d, a) = a and d ∼+ a by the hypothesis of Situation 1, Lemma

16 implies f(b, a) = a. By connectedness+, we have a separable preference P̂i ∈ Db. Since

(ys, yτ , z−{s,τ}) ≡ b = r1(P̂i), separability implies c ≡ (xs, yτ , z−{s,τ})P̂i(x
s, xτ , z−{s,τ}) ≡ a.

Consequently, by Situation 1, f(c, a) = cP̂ia = f(b, a) = f(P̂i, a). Then, voter i will manipulate

at (P̂i, a) via P ′i ∈ Dc. Therefore, p = 2. Equivalently, b ∼+ d.

Claim 2: f(b, d) = f(d, b) = b.

Since b ∼+ d, strategy-proofness implies f(b, d) ∈ {b, d}. Suppose f(b, d) = d. Since f(d, a) =

a and d ∼+ a by the hypothesis, Lemma 16 implies f(b, a) = a. We adopt the preference P̂i
specified right above. Since f(c, a) = cP̂ia = f(b, a) = f(P̂i, a), voter i will manipulate at (P̂i, a)

via P ′i ∈ Dc. Therefore, f(b, d) = f(d, b) = b. This completes the verification of the claim.

Last, we show b ∼+ c. Suppose not, i.e., q > 2.

Claim 3: f(y1, y2) = f(y2, y1) = y1.

Since y1 ∼+ y2, strategy-proofness implies f(y1, y2) ∈ {y1, y2}. Suppose f(y1, y2) = y2. Ac-

cording to y2 ≡ (ys2, y
τ , z−{s,τ}), y1 ≡ (ys1, y

τ , z−{s,τ}) and d ≡ (ys, xτ , z−{s,τ}) = (ys1, x
τ , z−{s,τ}),

we induce another alternative x∗ = (ys2, x
τ , z−{s,τ}). Now, note that y1 ∼+ y2, y1 = b ∼+ d;

44Taking the first diagram of Figure 6 as an example, “a→ c” represents that a ∼+ c and f(a, c) = f(c, a) = c.
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f(y2, y1) = f(y1, y2) = y2 (by the hypothesis above) and f(y1, d) = f(d, y1) = y1 (by Claim 2).

The analogy of Situation 1 occurs on alternatives {y2, x
∗, y1, d}. See Figure 7 below.
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r r
r r

d x∗

y2 y1

Figure 7: The analogy of Situation 1 on alternatives {y2, x
∗, y1, d}

Then, by a similar argument in the verification of Claims 1 and 2, we have x∗ ∼+ d and

f(x∗, d) = f(d, x∗) = x∗. Note that x∗, d, a ∈ (As, xτ , z−{s,τ}), x∗ ∼+ d and d ∼+ a. Since

f(a, d) = a by Situation 1, d ∼+ x∗ and a /∈ (ds, A−s) ∪ (x∗ s, A−s), item 2(iii) of Lemma 1

implies fa(a, x
∗) = fa(a, d) = 1. Thus, f(a, x∗) = a. Then, by d ∼+ a, strategy-proofness

implies f(d, x∗) ∈ {a, d} which contradicts the result f(x∗, d) = f(d, x∗) = x∗. Therefore,

f(y1, y2) = y1. This completes the verification of the claim.

Now, we know π
(
ȳ, 〈y1, y2〉(A

s,yτ ,z−{s,τ})
)

= f(y1, y2) = y1. Thus, y1 ∈ 〈ȳ, y2〉(A
s,yτ ,z−{s,τ})

and hence, yk ∈ 〈ȳ, yk′〉(A
s,yτ ,z−{s,τ}) for all 1 ≤ k < k′ ≤ q. Therefore, f(yk+1, yk) =

f(yk, yk+1) = π
(
ȳ, 〈yk, yk+1〉(A

s,yτ ,z−{s,τ})
)

= yk for all 1 ≤ k ≤ q−1. Since f(a, yq) ≡ f(a, c) = c

by Situation 1, f(yk+1, yk) = yk and yk+1 ∼+ yk for all 1 ≤ k ≤ q − 1, by a repeated appli-

cation of Lemma 16, we have f(a, yk) = yk for all k = q − 1, . . . , 1. Thus, f(b, a) = f(a, b) ≡
f(a, y1) = y1 ≡ b. Last, since d ∼+ b, we have P̄i ∈ Dd with r2(P̄i) = b. Consequently,

f(b, a) = bP̄ia = f(d, a) = f(P̄i, a). Then, voter i will manipulate at (P̄i, a) via P ′i ∈ Db. There-

fore, q = 2. Equivalently, b ∼+ c. �

Lemma 18 In Situation 2, b ∼+ c and b ∼+ d.

Proof : We first provide two mutually exclusive claims.

Claim 1: If p > 2, then f(a, b) = f(b, a) = d.

Since xp ∼+ xp−1, by the first paragraph of the proof of Lemma 3, we have f(xp, xp−1) =

f(xp−1, xp) ∈ {xp, xp−1}. Suppose f(xp, xp−1) = xp−1. According to xp−1 ≡ (ys, xτp−1, z
−{s,τ}),

xp ≡ (ys, xτp , z
−{s,τ}) and a ≡ (xs, xτ , z−{s,τ}) = (xs, xτp , z

−{s,τ}), we induce another alternative

x∗ = (xs, xτp−1, z
−{s,τ}). Thus, the analogy of Situation 1 occurs to {xp, x∗, xp−1, a}. See Figure

8 below.
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Figure 8: The analogy of Situation 1 on {xp, x∗, xp−1, a}

Hence x∗ ∼+ a and x∗ ∼+ xp−1 by Lemma 17.

Furthermore, we claim f(x∗, a) = f(a, x∗) = x∗. Since x∗ ∼+ a, by the first paragraph of the

proof of Lemma 3, we have f(x∗, a) = f(a, x∗) ∈ {a, x∗}. Suppose f(x∗, a) = f(a, x∗) = a. Since

f(x∗, a) = a, f(a, xp) = xp and a ∼+ xp, Lemma 16 first implies f(x∗, xp) = xp. Next, since

f(x∗, xp) = xp, f(xp, xp−1) = xp−1 and xp ∼+ xp−1, Lemma 16 further implies f(x∗, xp−1) =

xp−1. However, on the other hand, since f(x∗, xp−1) = xp−1 and f(xp−1, xp) = xp−1, by strategy-

proofness, xp ∼+ xp−1 implies f(x∗, xp) ∈ {xp−1, xp}, and xp−1 ∼+ x∗ implies f(x∗, xp) ∈
{xp−1, x

∗}. Therefore, f(x∗, xp) = xp−1. Contradiction! Hence, f(x∗, a) = f(a, x∗) = x∗.
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Note that c, a, x∗ ∈ (xs, Aτ , z−{s,τ}), c ∼+ a and a ∼+ x∗. Since f(c, a) = c by Situation

2, a ∼+ x∗ and cτ /∈ {aτ , x∗ τ}, item 2(iii) of Lemma 1 implies fc(c, x
∗) = fc(c, a) = 1. Thus,

f(c, x∗) = c. Furthermore, since a ∼+ c, strategy-proofness implies f(a, x∗) ∈ {a, c} which

contradicts f(x∗, a) = f(a, x∗) = x∗. Therefore, we have f(xp, xp−1) = f(xp−1, xp) = xp.

Now, we know π
(
x̄, 〈xp, xp−1〉(y

s,Aτ ,z−{s,τ})
)

= f(xp, xp−1) = xp. Thus, xp ∈ 〈x̄, xp−1〉(y
s,Aτ ,z−{s,τ}),

and hence xp ∈ 〈x̄, x1〉(y
s,Aτ ,z−{s,τ}). Therefore, f(b, d) ≡ f(x1, xp) = π

(
x̄, 〈x1, xp〉(y

s,Aτ ,z−{s,τ})
)

=

xp ≡ d. Furthermore, since a ∼+ d, strategy-proofness implies f(b, a) ∈ {a, d}. Suppose

f(b, a) = a. By connectedness+, we have a separable preference P̂i ∈ Db. Since (ys, yτ , z−{s,τ}) ≡
b = r1(P̂i), separability implies d ≡ (ys, xτ , z−{s,τ})P̂i(x

s, xτ , z−{s,τ}) ≡ a. Consequently, by Sit-

uation 2, f(d, a) = dP̂ia = f(b, a) = f(P̂i, a). Then, voter i will manipulate at (P̂i, a) via

P ′i ∈ Dd. Therefore, f(a, b) = f(b, a) = b. This completes the verification of the claim.

Claim 2: If q > 2, then f(a, b) = f(b, a) = c.

The verification of this claim is symmetric to the verification of Claim 1.

Evidently, Claims 1 and 2 are mutually exclusive. Therefore, it must be either p = 2 or

q = 2. Thus, either b ∼+ d or b ∼+ c. Suppose p > 2. Then, q = 2, and equivalently,

b ∼+ c. The verification related to the case p = 2 and q > 2 is symmetric, and we hence omit it.

Thus, Claim 1 implies f(b, a) = d. However, on the other hand, since f(c, a) = c by Situation

2 and c ∼+ b, strategy-proofness implies f(b, a) ∈ {b, c}. Contradiction! Therefore, p = 2.

Equivalently, b ∼+ d. Symmetrically, we have b ∼+ c. �

Lemma 19 In Situation 4, b ∼+ c and b ∼+ d.

Proof : We first show b ∼+ d. Suppose not, i.e., p > 2. According to the adjacency+ path

{xk}pk=1 ⊆ (ys, Aτ , z−{s,τ}), by replacing the element ys in each xk by xs, we construct an-

other sequence {zk}pk=1 = {(xs, x−sk )}pk=1 ≡
{

(xs, xτk, z
−{s,τ})

}p
k=1
⊆ (xs, Aτ , z−{s,τ}). Note that

{zk}pk=1 is simply a sequence of alternatives, not necessarily an adjacency+ path. We will show

that {zk}pk=1 is an adjacency+ path. Note that zp ≡ (xs, xτp , z
−{s,τ}) = (xs, xτ , z−{s,τ}) ≡ a and

z1 ≡ (xs, xτ1 , z
−{s,τ}) = (xs, yτ , z−{s,τ}) ≡ c.

We first consider xp, zp−1, zp and xp−1. Note that xp ∼+ xp−1, xp ∼+ zp and f(xp, zp) =

f(zp, xp) = zp by Situation 4. Since xp ∼+ xp−1, by the first paragraph of the proof of Lemma

3, we have f(xp, xp−1) = f(xp−1, xp) ∈ {xp, xp−1}. If f(xp, xp−1) = f(xp−1, xp) = xp, then the

analog of Situation 1 occurs to xp, zp−1, zp and xp−1. If f(xp, xp−1) = f(xp−1, xp) = xp−1, then

the analog of Situation 2 occurs to {xp, zp−1, zp, xp−1}. See Figure 9 below.
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Figure 9: The analogy of Situation 1 or 2 on {xp, zp−1, zp, xp−1}

Then, by Lemma 17 or 18, we have zp−1 ∼+ zp and zp−1 ∼+ xp−1.

Furthermore, we claim f(zp−1, xp−1) = f(xp−1, zp−1) = zp−1. If f(xp, xp−1) = f(xp−1, xp) =

xp, then by an argument similar to the second paragraph of the verification of Claim 1 of Lemma

18, we have f(zp−1, xp−1) = f(xp−1, zp−1) = zp−1. Next, assume f(xp, xp−1) = f(xp−1, xp) =
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xp−1, and we show f(zp−1, xp−1) = f(xp−1, zp−1) = zp−1. Since zp−1 ∼+ xp−1, by the first para-

graph of the proof of Lemma 3, we have f(zp−1, xp−1) = f(xp−1, zp−1) ∈ {xp−1, zp−1}. Suppose

f(zp−1, xp−1) = f(xp−1, zp−1) = xp−1. Since f(xp, xp−1) = xp−1 and zp−1 ∼+ xp−1, strategy-

proofness implies f(xp, zp−1) ∈ {xp−1, zp−1}. Meanwhile, since f(xp−1, zp−1) = xp−1 and xp ∼+

xp−1, strategy-proofness implies f(xp, zp−1) ∈ {xp, xp−1}. Thus, f(xp, zp−1) = xp−1. However,

on the other hand, since f(xp, zp) = zp by Situation 4 and zp−1 ∼+ zp, strategy-proofness implies

f(xp, zp−1) ∈ {zp, zp−1}. Contradiction! Therefore, f(zp−1, xp−1) = f(xp−1, zp−1) = zp−1.

Moving from from zp−1 to z1 according to the sequence {zk}p−1
k=1, and applying the argument

above to {xk, zk−1, zk, xk−1} from k = p − 1 to k = 2 step by step, we have zk−1 ∼+ zk,

zk−1 ∼+ xk−1 and f(zk−1, xk−1) = f(xk−1, zk−1) = zk−1, k = p − 1, . . . , 2. Consequently, since

c ∼+ a (equivalently, z1 ∼+ zp), we have a cycle in G
(
(xs, Aτ , z−{s,τ})

)
which contradicts Lemma

14. Therefore, p = 2. Equivalently, b ∼+ d. Symmetrically, we have b ∼+ c. �

Now, by Lemmas 17 - 19, we know b ∼+ c and b ∼+ d. This proves the result of Lemma 5,

as required. This completes the verification of the necessity part of Theorem 2.

C Proof of Theorem 3

We first show the necessity part of Theorem 3. Let φ : DN → ∆(Ā) be a constrained RSCF satis-

fying unanimity, tops-onlyness, strategy-proofness and the compromise property. Then, similar

to the verification of the necessity part of Theorem 1, we induce a two-voter constrained RSCF

ϕ : D2 → ∆(Ā) satisfying unanimity, tops-onlyness, strategy-proofness and the compromise

property.

Lemma 20 Domain D satisfies the unique feasible peaks condition.

Proof : Given distinct Pi, P
′
i ∈ D with r1(Pi) = r1(P ′i ) /∈ Ā, suppose that r1(Pi|Ā) ≡ x 6=

y ≡ r1(P ′
i|Ā). By unanimity, we have ϕx(Pi, Pi) = 1 and ϕy(P

′
i , P

′
i ) = 1, which contradict the

tops-only property. �

Lemma 21 Given s ∈ M , as, bs ∈ As and x−s ∈ A−s, if (as, x−s), (bs, x−s) ∈ Ā, there exists

a unique adjacent+ path {xk}qk=1 ⊆ (As, x−s) connecting (as, x−s) and (bs, x−s), i.e., x1 =

(as, x−s), xq = (bs, x−s) and xk ∼+ xk+1, k = 1, . . . , q − 1. Moreover, {xk}qk=1 ⊆ Ā.

Proof : First, by Lemma 2, we have an adjacent+ path {xk}qk=1 ⊆ (As, x−s) connecting (as, x−s)

and (bs, x−s). Suppose that xk /∈ Ā for some 1 < k < q. Thus, we elicit an adjacent+ subpath

{xk}kk=k such that k − k ≥ 2, xk, xk ∈ Ā and xk+1, . . . , xk−1 /∈ Ā.

Since xk ∼+ xk+1, we have Pi ∈ Dxk and Pj ∈ Dxk+1 with Pi ∼+ Pj . Since xk ∈ Ā and

xk+1 /∈ Ā, tops-onlyness and unanimity imply ϕxk(xk, xk+1) = ϕxk(Pi, Pj) = 1. Moving from

xk+1 up to xk along the subpath, by a repeated application of item 2(iii) of Lemma 1, we have

1 = ϕxk(xk, xk+1) = · · · = ϕxk(xk, xk−1) = ϕxk(xk, xk). Conversely, from xk down to xk along

the subpath, by a symmetric argument, we have 1 = ϕxk(xk−1, xk) = · · · = ϕxk(xk+1, xk) =

ϕxk(xk, xk). Contradiction! Thus, {xk}qk=1 ⊆ Ā.

The verification also implies that every adjacent+ path connecting (as, x−s) and (bs, x−s) in

(As, x−s) consists of all feasible alternatives. Since Lemma 4 remains valid when all alternatives
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on an adjacent+ path in question are feasible, it is true that the adjacent+ path {xk}qk=1 above

must be unique. �

Thus, given s ∈ M and x−s ∈ A−s with (As, x−s) ∩ Ā 6= ∅, we assert that all feasible

alternatives of (As, x−s)∩ Ā are located on a tree, denoted G
(
(As, x−s) ∩ Ā

)
, where two feasible

alternatives form an edge if and only if they are adjacent+.

Lemma 22 Fix s ∈M and x−s ∈ A−s with (As, x−s)∩ Ā 6= ∅. Given a ∈ (As, x−s), there exists

ā ∈ (As, x−s) ∩ Ā such that ā = r1

(
Pi|(As,x−s)∩Ā

)
for all Pi ∈ Da.45

Proof : The lemma holds evidently if (As, x−s) ∩ Ā is a singleton set. Thus, we assume∣∣(As, x−s) ∩ Ā∣∣ ≥ 2. Next, if a ∈ (As, x−s) ∩ Ā, then it is evident that ā = a. Thus, we

assume a ∈ (As, x−s)\Ā. Pick an arbitrary b ∈ (As, x−s) ∩ Ā. By Lemma 2, we have an

adjacent+ path {xk}qk=1 ⊆ (As, x−s) connecting b and a. Since x1 ∈ Ā and xq /∈ Ā, there exists

there exists 1 ≤ k̄ < q such that xk̄ ∈ Ā and xk̄+1, . . . , xq /∈ Ā. Moreover, by Lemma 21, we

know that there exists a unique adjacent+ in (As, x−s) ∩ Ā connecting x1 and xk̄. Thus, we

can assume w.l.o.g. that x1, x2, . . . , xk̄ ∈ (As, x−s) ∩ Ā. We show xk̄ = r1

(
Pi|(As,x−s)∩Ā

)
for all

Pi ∈ Da.
Suppose not, i.e., there exists Pi ∈ Da and x ∈ (As, x−s) ∩ Ā such that xPixk̄. Picking

arbitrary P ′i ∈ Dx, by the no-detour property, we have a simple+ path {P ki }tk=1 connecting Pi
and P ′i such that r1(P ki ) ∈ (As, x−s) and xP ki xk̄ for all k = 1, . . . , t. Thus, xk̄ is never the peak of

any preference of the simple+ path. Then, by sorting all preferences of {P ki }tk=1 according to the

peaks of preferences and removing those repetitions of top alternatives, we induce an adjacent+

path {yk}pk=1 ⊆ (As, x−s) connecting a and x. It is evident that xk̄ /∈ {yk}
p
k=1. Consequently,

combining {xk̄, xk̄+1, . . . , xq ≡ a} and {a ≡ y1, . . . , yp ≡ x} and removing repetitions, we can

construct an adjacent+ path {zk}lk=1 ⊆ (As, x−s) connecting xk̄ ∈ Ā and x ∈ Ā. Last, since

xk̄+1, . . . , xq /∈ Ā and xk̄ /∈ {yk}
p
k=1, the adjacent+ path {zk}lk=1 must include at least one invalid

alternative, which contradicts Lemma 21. �

Lemma 23 Given s ∈ M and x−s ∈ A−s, let the adjacent+ path {xk}qk=1 ⊆ (As, x−s) be such

that x1, . . . , xk̄ ∈ Ā and xk̄+1, . . . , xq /∈ Ā, where 1 ≤ k̄ ≤ q. There exist 0 ≤ α1 < · · · < αk̄−1 ≤ 1

such that ϕ(x1, xq) = α1ex1 +
∑k̄−1

k=2(αk−αk−1)exk+(1−αk̄−1)exk̄ . Moreover, for every Pi ∈ Dx1,

xkPixk+1, k = 1, . . . , k̄ − 1.

Proof : The verification is similar to Lemma 3. We omit the detailed proof. �

To establish the next lemma which is similar to Lemma 5, we fix the following four alter-

natives: a = (xs, xτ , z−{s,τ}), b = (ys, yτ , z−{s,τ}), c = (xs, yτ , z−{s,τ}) and d = (ys, xτ , z−{s,τ})

where xs 6= ys and xτ 6= yτ .

Lemma 24 If a, c, d ∈ Ā, a ∼+ c and a ∼+ d, then b ∈ Ā, b ∼+ c and b ∼+ d.

Proof : This lemma follows exactly from Lemma 5 if b ∈ Ā. Therefore, in the rest of verification,

we show b ∈ Ā. Since b, d ∈ (ys, Aτ , z−{s,τ}) and b, c ∈ (As, yτ , z−{s,τ}), by Lemma 2, we

45The notation Pi|(As,x−s)∩Ā is the induced preference over (As, x−s) ∩ Ā according to preference Pi.
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have an adjacent+ path {xk}pk=1 ⊆ (ys, Aτ , z−{s,τ}) connecting b and d, and an adjacent+ path

{yk}qk=1 ⊆ (As, yτ , z−{s,τ}) connecting b and c. Recall Figure 3.

Suppose b /∈ Ā. Since b, c ∈ (As, yτ , z−{s,τ}) and c ∈ Ā, by Lemma 22 we have b̄ ∈
(As, yτ , z−{s,τ}) such that b̄ = r1

(
Pi|(As,yτ ,z−{s,τ})∩Ā

)
for all Pi ∈ Db. Furthermore, by the proof

of Lemma 22, it must be the case b̄ = yk̄ for some 1 < k̄ ≤ q, y1, . . . , yk̄−1 /∈ Ā and yk̄, . . . , yq ∈ Ā.

Then, Lemma 23 implies
∑q

k=k̄
ϕyk(c, b) = 1. Thus, since b /∈ Ā and d /∈ {yk̄, . . . , yq}, we have

ϕb(c, b) = 0 and ϕd(c, b) = 0. Furthermore, since a ∼+ c, we have Pi ∈ Da and P ′i ∈ Dc with

Pi ∼+ P ′i . Note that d and b form a local switching pair in Pi and P ′i . Therefore, tops-onlyness

and item 2(ii) of Lemma 1 imply ϕd(a, b)+ϕb(a, b) = ϕd(Pi, b)+ϕb(Pi, b) = ϕd(P
′
i , b)+ϕb(P

′
i , b) =

ϕd(c, b) + ϕb(c, b) = 0. Thus, ϕd(a, b) = 0.

We will induce a contradiction by showing ϕd(a, b) > 0. Consider the adjacent+ path

{xk}pk=1. First, since a ∼+ d and d ∼+ xp−1, we have Pi ∈ Da and Pj ∈ Dxp−1 such

that r2(Pi) = r2(Pj) = d ∈ Ā. Then, tops-onlyness and the compromise property imply

ϕd(a, xp−1) = ϕd(Pi, Pj) > 0. Moving from xp−1 to x1 ≡ b along the adjacent+ path {xk}pk=1, by

a repeated application of item 2(iii) of Lemma 1, we have ϕd(a, b) > 0. Contradiction! There-

fore, b ∈ Ā, as required. �

We introduce a new notion. Given c, d ∈ Ā, let cs 6= ds for every s ∈ S ⊆ M and c−S =

d−S ≡ z−S where |S| ≥ 1. We say that c and d formulate a feasible box if the following two

conditions are satisfied.

(i) For each s ∈ S, there exists a sequence {xsk}
q(s)
k=1 ⊆ As where q(s) ≥ 2, xs1 = cs and

xsq(s) = ds such that B(c, d) ≡
(
×s∈S {xsk}

q(s)
k=1 , z

−S
)
⊆ Ā.

(ii) For all x, y ∈ B(c, d), we have

[xs = xsk, y
s = xsk+1 and x−s = y−s for some s ∈ S and 1 ≤ k < q(s)]⇒ [x ∼+ y].

Lemma 25 Every pair of distinct feasible alternatives formulate a feasible box.

Proof : Evidently, Lemma 21 implies that every two similar feasible alternatives always formu-

late a feasible box. Next, we provide an induction argument to complete the verification.

Induction hypothesis: Given an integer 2 < l ≤ m, for all c, d ∈ Ā which disagree on at least one

component and at most l−1 components, i.e., cs 6= ds for every s ∈ S ⊆M and c−S = d−S ≡ z−S

where 1 ≤ |S| < l, we know that c and d formulate a feasible box.

Given c, d ∈ Ā, let cs 6= ds for every s ∈ S ⊆ M and c−S = d−S ≡ z−S where |S| = l. We

show that c and d formulate a feasible box. For notational convenience, let S = {1, 2, . . . , l}.

Claim 1: If there exists s ∈ S such that a ≡ (c1, . . . , cs−1, ds, cs+1, . . . , cl, z−S) ∈ Ā, then c and

d formulate a feasible box.

Assume w.l.o.g. that s = 1. Thus, a ≡ (d1, c2, . . . , cl, z−S), a and d disagree on l − 1

components, and induction hypothesis implies that a and d formulate a feasible box B(a, d).

Specifically,

(i) For each τ ∈ {2, . . . , l}, there exists a sequence {xτk}
q(s)
k=1 ⊆ A

τ such that q(s) ≥ 2, xτ1 = cτ

and xτq(τ) = dτ such that B(a, d) ≡
(
d1, {x2

k}
q(2)
k=1, . . . , {x

l
k}
q(l)
k=1, z

−S
)
⊆ Ā.
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(ii) For all x, y ∈ B(a, d), we have[
xs = xsk, y

s = xsk+1 and x−s = y−s for some s ∈ {2, . . . , l} and 1 ≤ k < q(s)
]
⇒ [x ∼+ y].

Next, since a, c ∈ (A1, c2, . . . , cl, z−S) ∩ Ā, by Lemma 21, we have a unique adjacent+ path

{xk}qk=1 ≡
{

(x1
k, c

2, . . . , cl, z−S)
}q
k=1
⊆ Ā connecting a and c.

Pick an arbitrary adjacent+ path {yk}pk=1 ⊆ B(a, d) connecting a and d. Note that

(d1, c2, . . . , cl, z−S) ≡ a = x1 ≡ (xs1)s∈M . Thus, we can rewriteB(a, d) ≡
(
x1

1, {x2
k}
q(2)
k=1, . . . , {x

l
k}
q(l)
k=1, z

−S
)

.

Note that all alternatives of {yk}pk=1 have d1 in component 1, and d1 ≡ x1
1 6= x1

2. We replace

d1 by x1
2 in every alternative of {yk}pk=1, and hence construct another sequence {zk}pk=1 ≡{

(x1
2, y
−1
k )
}p
k=1

. We will show that {zk}pk=1 ⊆ Ā and {zk}pk=1 is an adjacent+ path. Since

(d1, c2, . . . , cl, z−S) ≡ a = y1 ≡ (y1
1, y
−1
1 ), we know z1 ≡ (x1

2, y
−1
1 ) = (x1

2, c
2, . . . , cl, z−S) ≡

x2 ∈ Ā. Note that zp ≡ (x1
2, y
−1
p ) ≡ (x1

2, d
2, . . . , dl, z−S). Given y1 = x1 ∼+ x2 = z1, along

the adjacent+ path {yk}pk=1, by a repeated application of Lemma 24, we have {zk}pk=1 ⊆ Ā,

zk ∼+ zk+1, k = 1, . . . , p − 1, and zk ∼+ yk, k = 1, . . . , p. Since we choose the adjacent+

path {yk}pk=1 arbitrarily, it is true that z1 ≡ (x1
2, c

2, . . . , cm, z−S) and zp ≡ (x1
2, d

2, . . . , dm, z−S)

formulate a feasible box B(z1, zp) =
(
x1

2, {x2
k}
q(2)
k=1, . . . , {x

l
k}
q(l)
k=1, z

−S
)

, and moreover, for all

y ∈ B(a, d) ≡ B(y1, yp) and z ∈ B(z1, zp), [y−1 = z−1]⇒ [y ∼+ z].

Along the adjacent+ path {xk}qk=1, moving from x2 to xq ≡ c, by repeating argument above,

we know that the following two statements hold:

(i) Given k = 1, . . . , q, (x1
k, c

2, . . . , cl, z−S) and (x1
k, d

2, . . . , dl, z−S) formulate a feasible box

B
(
(x1
k, c

2, . . . , cl, z−S), (x1
k, d

2, . . . , dl, z−S)
)
, and

(ii) Given k = 1, . . . , q − 1, y ∈ B
(
(x1
k, c

2, . . . , cl, z−S), (x1
k, d

2, . . . , dl, z−S)
)

and

z ∈ B
(
(x1
k+1, c

2, . . . , cl, z−S), (x1
k+1, d

2, . . . , dl, z−S)
)
, we have [y−1 = z−1]⇒ [y ∼+ z].

Consequently, c and d formulate a feasible box B(c, d) =
(
{x1

k}
q
k=1, {x

2
k}
q(2)
k=1, . . . , {x

l
k}
q(l)
k=1, z

−S
)

.

This completes the verification of Claim 1.

Claim 2: If there exists s ∈ S such that a ≡ (d1, . . . , ds−1, cs, ds+1, . . . , dl, z−S) ∈ Ā, then c and

d formulate a feasible box.

The verification of this claim is symmetric to the verification of Claim 1.

Claim 3: There exists s ∈ S such that either (d1, . . . , ds−1, cs, ds+1, . . . , dl, z−S) ∈ Ā or

(c1, . . . , cs−1, ds, cs+1, . . . , cl, z−S) ∈ Ā.

Suppose that it is not true. Thus, we know a ≡ (c1, d2, . . . , dl, z−S) /∈ Ā and b ≡ (d1, c2, . . . , cl, z−S) /∈
Ā. Note that b, c ∈ (A1, c2, . . . , cl, z−S) and c ∈ Ā. By Lemma 2, let {xk}qk=1 ⊆ (A1, c2, . . . , cl, z−S)

be an adjacent+ path connecting b and c. By Lemma 22 and its proof, let b̄ = xk̄ where 1 < k̄ ≤ q
be such that x1, . . . , xk̄−1 /∈ Ā, xk̄, . . . , xq ∈ Ā and b̄ = r1

(
Pi|(A1,c2,...,cl,z−S)∩Ā

)
for all Pi ∈ Db.

Thus, Lemma 23 implies
∑q

k=k̄
ϕxk(c, b) = 1.

Since c and a disagree on components 2, . . . ,m and agree on the rest of components, we

can induce the following alternatives yq(s) ≡ (c1, d2, . . . , ds, cs+1, . . . , cl, z−S), s = 1, . . . ,m.

Evidently, yq(1) = c and yq(l) = a. Moreover, for each 1 ≤ s < l, by Lemma 2, we have

an adjacent+ path in (c1, d2, . . . , ds, As+1, cs+2, . . . , cl, z−S) which connects yq(s) and yq(s+1).
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Combining all these l − 1 adjacent+ paths, we have an adjacent+ path to connect c and a:

{yk}pk=1 ≡ {yq(1), . . . , yq(2), . . . , yq(s), . . . , yq(s+1), . . . , yq(l)}.
Initially, since

∑q

k=k̄
ϕxk(y1, b) ≡

∑q

k=k̄
ϕxk(c, b) = 1 and x1

k 6= d1 for all k = k̄, . . . , q, it is

true that ϕ(d1,y−1)(y1, b) = 0 for all y−1 ∈ A−1.

Next, we provide an additional induction argument.

The Secondary Induction Hypothesis: Given 1 < k ≤ p, for all 1 ≤ k′ < k, we have ϕ(d1,y−1)(yk′ , b) =

0 for all y−1 ∈ A−1.

We show ϕ(d1,y−1)(yk, b) = 0 for all y−1 ∈ A−1. Since yk−1 ∼+ yk, we know ysk−1 6= ysk
and y−sk−1 = y−sk for some s ∈ {2, . . . , l}. Given y−1 ∈ A−1 and s ∈ {2, . . . , l}, we know ei-

ther ys ∈ {ysk−1, y
s
k} or ys /∈ {ysk−1, y

s
k}. If ys ∈ {ysk−1, y

s
k}, let ys ∈ {ysk−1, y

s
k}\{ys}, and

we construct y−1 ≡ (ys, y−{1,s}). By item 2(ii) of Lemma 1 and the induction hypothesis,

we have ϕ(d1,y−1)(yk, b) + ϕ(d1,y−1)(yk, b) = ϕ(d1,y−1)(yk−1, b) + ϕ(d1,y−1)(yk−1, b) = 0. Thus,

ϕ(d1,y−1)(yk, b) = 0. If ys /∈ {ysk−1, y
s
k}, then item 2(iii) of Lemma 1 and the induction hy-

pothesis imply ϕ(d1,y−1)(yk, b) = ϕ(d1,y−1)(yk−1, b) = 0. This completes the verification of

the secondary induction hypothesis. Therefore,ϕ(d1,y−1)(a, b) = 0 for all y−1 ∈ A−1. Thus,∑
y−1∈A−1 ϕ(d1,y−1)(a, b) = 0.

We are going to derive a contradiction by showing
∑

y−1∈A−1 ϕ(d1,y−1)(a, b) > 0. Since

a, d ∈ (A1, d2, . . . , dl, z−S), we have an adjacent+ path {x̄k}q̄k=1 ⊆ (A1, d2, . . . , dl, z−S) connecting

d and a. Similar to the adjacent+ path {yk}pk=1 which connects c and a, we can also construct

an adjacent+ path {zk}p̄k=1 ⊆ (d1, A2, . . . , Al, z−S) connecting d and b.

Start from profile (x̄2, z2). Since x̄2 ∼+ x̄1 ≡ d and z2 ∼+ z1 ≡ d, we have Pi ∈ Dx̄2 and

Pj ∈ Dz2 with r2(Pi) = r2(Pj) = d ∈ Ā. Then, tops-onlyness and the compromise property

imply ϕd(x̄2, z2) = ϕd(Pi, Pj) > 0. Moving from x̄2 to x̄q̄ ≡ a along the adjacent+ path {x̄k}q̄k=1,

by a repeated application of item 2(iii) of Lemma 1, we have ϕd(a, z2) ≡ ϕd(x̄q̄, z2) = · · · =

ϕd(x̄2, z2) > 0. Therefore,
∑

y−1∈A−1 ϕ(d1,y−1)(a, z2) > 0.

Move from z2 to zp̄ ≡ b along the adjacent+ path {zk}p̄k=1. Given 3 ≤ k ≤ p̄, we know

zsk 6= zsk−1 and z−sk = z−sk−1 for some s ∈ {2, . . . , l}. Thus, by items 2(ii) and 2(iii) of Lemma 1,
we have ∑

y−1∈A−1

ϕ(d1,y−1)(a, zk)

≡
∑

y−{1,s}∈A−{1,s}

[ ∑
ys∈{zs

k
,zs
k−1
}

ϕ(d1,ys,y−{1,s})(a, zk)
]

+
∑

y−1∈A−1:ys /∈{zs
k
,zs
k−1
}

ϕ(d1,y−1)(a, zk)

=
∑

y−{1,s}∈A−{1,s}

[ ∑
ys∈{zs

k
,zs
k−1
}

ϕ(d1,ys,y−{1,s})(a, zk−1)
]

+
∑

y−1∈A−1:ys /∈{zs
k
,zs
k−1
}

ϕ(d1,y−1)(a, zk−1)

≡
∑

y−1∈A−1

ϕ(d1,y−1)(a, zk−1).

Consequently, we eventually have
∑

y−1∈A−1 ϕ(d1,y−1)(a, b) ≡
∑

y−1∈A−1 ϕ(d1,y−1)(a, zp̄) = · · · =∑
y−1∈A−1 ϕ(d1,y−1)(a, z2) > 0. Contradiction!

Therefore, either a ∈ Ā or b ∈ Ā. Then, Claim 1 or 2 implies that c and d formulate a feasible

box. This completes the verification of the induction hypothesis and Claim 3, and hence, proves

the lemma. �

Now, given an arbitrary a ∈ Ā, by Lemma 25, we assert that for every s ∈M and x−s ∈ A−s

with (As, x−s) ∩ Ā 6= ∅, (as, x−s) ∈ Ā. Next, we claim that for every s ∈ A and x−s ∈ A−s with
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(As, x−s) ∩ Ā 6= ∅,
∣∣(As, x−s) ∩ Ā∣∣ ≥ 2. Suppose not, i.e., there exist s ∈ A and x−s ∈ A−s such

that
∣∣(As, x−s) ∩ Ā∣∣ = 1. Then, for all x−s ∈ A−s with (As, x−s) ∩ Ā 6= ∅,

∣∣(As, x−s) ∩ Ā∣∣ = 1.

Consequently, all feasible alternatives agree on component s which contradicts Assumption 1.

Thus, we have that for each s ∈ M , there exists x−s ∈ A−s such that (As, x−s) ∩ Ā 6= ∅, and

moreover,
∣∣(As, x−s) ∩ Ā∣∣ ≥ 2, as claimed above.

Given s ∈ M , we pick x−s ∈ A−s with (As, x−s) ∩ Ā 6= ∅. By Lemma 21, we induce

a tree G∼+

(
(As, x−s) ∩ Ā

)
. We next claim that there exists another y−s ∈ A−s such that

(As, y−s) ∩ Ā 6= ∅. Otherwise, for all y−s ∈ A−s\{x−s}, (As, y−s) ∩ Ā = ∅ implies that all

feasible alternatives agree on every component other than s which contradicts Assumption 1.

Thus, we pick another y−s ∈ A−s with (As, y−s)∩Ā 6= ∅, and induce a tree G∼+

(
(As, y−s) ∩ Ā

)
.

By Lemma 25, it must be the case that G∼+

(
(As, x−s) ∩ Ā

)
and G∼+

(
(As, y−s) ∩ Ā

)
coincide

in following sense: For all as, bs ∈ As,[
(as, x−s), (bs, x−s) ∈ Ā and (as, x−s) ∼+ (bs, x−s)

]
⇔
[
(as, y−s), (bs, y−s) ∈ Ā and (as, y−s) ∼+ (bs, y−s)

]
.

Therefore, Ā must be factorizable, i.e., Ā = ×s∈M Ās where Ās ⊆ As,
∣∣Ās∣∣ ≥ 2 for every

s ∈ M , and Ās is located on a tree G(Ās) where as, bs ∈ As form an edge if and only if

(as, x−s), (bs, x−s) ∈ Ā and (as, x−s) ∼+ (bs, x−s) for some x−s ∈ A−s. Thus, we have a product

of trees ×s∈MG(Ās), and the first condition of Definition 7 is satisfied.

Applying the same verifications of Lemmas 7 and 8, we know that for all Pi ∈ D, if r1(Pi) ∈ Ā,

then Pi|Ā is multidimensional single-peaked on ×s∈MG(Ās). Therefore, in the rest of the proof,

we focus on the preferences whose peaks are invalid alternatives.

Lemma 26 Given a ∈ A\Ā and Pi ∈ Da, if Pi|Ā is multidimensional single-peaked on ×s∈MG(Ās),

then every preference of Da is multidimensional single-peaked on ×s∈MG(Ās).

Proof : Let ā ∈ Ā be such that r1(Pi|Ā) = ā. Evidently, Lemma 20 implies r1(P̄i|Ā) = ā for all

P̄i ∈ Da. Since ā ∈ Ā, factorizability implies ās ∈ Ās for all s ∈M .

Claim 1: Given s ∈M and xs ∈ Ās, ϕ
(
P̄i, (x

s, ā−s)
)

= ϕ (ā, (xs, ā−s)) for all P̄i ∈ Da.

Let 〈ās, xs〉 = {xsk}tk=1 be the adjacent+ path connecting ās and xs in G(Ās). First, una-

nimity implies ϕā(Pi, ā) = 1. Thus,
∑1

k=1 ϕ(xsk,ā
−s) (Pi, (x

s
1, ā
−s)) = 1. Next, we provide an

induction hypothesis: Given 1 < k ≤ t, for all 1 ≤ k′ < k,
∑k′

ν=1 ϕ(xsν ,ā
−s)

(
Pi, (x

s
k′ , ā

−s)
)

= 1.

We show
∑k

ν=1 ϕ(xsν ,ā
−s) (Pi, (x

s
k, ā
−s)) = 1. Since (xsk, ā

−s) ∼+ (xsk−1, ā
−s), we have

k∑
ν=1

ϕ(xsν ,ā
−s)

(
Pi, (x

s
k, ā
−s)
)

≡
k∑

ν=k−1

ϕ(xsν ,ā
−s)

(
Pi, (x

s
k, ā
−s)
)

+

k−2∑
ν=1

ϕ(xsν ,ā
−s)

(
Pi, (x

s
k, ā
−s)
)

=

k∑
ν=k−1

ϕ(xsν ,ā
−s)

(
Pi, (x

s
k−1, ā

−s)
)

+

k−2∑
ν=1

ϕ(xsν ,ā
−s)

(
Pi, (x

s
k−1, ā

−s)
)

by items 2(ii) and 2(iii) of Lemma 1

≡
k−1∑
ν=1

ϕ(xsν ,ā
−s)

(
Pi, (x

s
k−1, ā

−s)
)

= 1, by the induction hypothesis.

This completes the verification of the induction hypothesis. Thus,
∑

z∈〈ā,(xs,ā−s)〉 ϕz (Pi, (x
s, ā−s)) =

1. Next, pick arbitrary P ′i ∈ Dā by minimal richness. Since ā ∈ Ā, we know that P ′i is mul-

tidimensional single-peaked w.r.t. Ā. Consequently, the induced preferences Pi|〈ā,(xs,ā−s)〉 and
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P ′i|〈ā,(xs,ā−s)〉 are single-peaked on the line 〈ā, (xs, ā−s)〉, and hence, Pi|〈ā,(xs,ā−s)〉 and P ′i|〈ā,(xs,ā−s)〉
are identical. Furthermore, since

∑
z∈〈ā,(xs,ā−s)〉

ϕz
(
Pi, (x

s
t , ā
−s)
)

= 1 and
∑

z∈〈ā,(xs,ā−s)〉
ϕz
(
P ′i , (x

s
t , ā
−s)
)

=

1, we have that for all P̄i ∈ Da, ϕ
(
P̄i, (x

s
t , ā
−s)
)

= ϕ
(
Pi, (x

s
t , ā
−s)
)

= ϕ
(
P ′i , (x

s
t , ā
−s)
)

=

ϕ
(
ā, (xst , ā

−s)
)

where the first and third equalities are implied by the tops-only property while

the second equality is implied by strategy-proofness. This completes the verification of the claim.

Claim 2: For every separable preference P ′i ∈ Da, the induced preference P ′
i|Ā is multidimen-

sional single-peaked on ×s∈MG(Ās).46

Given a separable preference P ′i ∈ Da, to show that P ′
i|Ā is multidimensional single-peaked

on ×s∈MG(Ās), it suffices to show that [P ′i ]
s
|Ā is single-peaked on G(Ās) for every s ∈M .

Given s ∈ M , since ϕ (P ′i , (x
s, ā−s)) = ϕ (ā, (xs, ā−s)) for all xs ∈ Ās by Claim 1, the

proof of Lemma 7 implies that [P ′i ]
s
|Ā is single-peaked on G(Ās). Then, by separability, P ′

i|Ā is

multidimensional single-peaked on ×s∈MG(Ās). This completes the verification of the claim.

Claim 3: For every P̄i ∈ Da, the induced preference P̄i|Ā is multidimensional single-peaked on

×s∈MG(Ās).

Given P̄i ∈ Da, suppose that P̄i|Ā is not multidimensional single-peaked on ×s∈MG(Ās).

Thus, there exist distinct x, y ∈ Ā such that x ∈ 〈ā, y〉 and yP̄ix. Pick arbitrary P ′i ∈ Dy.
Evidently, a 6= y. Since yP̄ix and yP ′ix, by the Exterior+ property, we have a simple+ path

{P ki }
q
k=1 connecting P̄i and P ′i such that yP ki x for all k = 1, . . . , q. Since a 6= y, there exists

1 ≤ k∗ < q such that r1(P k
∗

i ) = a and r1(P k
∗+1

i ) 6= a. Thus, P k
∗

i ∼+ P k
∗+1

i and P k
∗

i is a

separable preference. However, since P k
∗

i|Ā is multidimensional single-peaked on ×s∈MG(Ās) by

Claim 2, xP k
∗

i y. Contradiction! This completes the verification of the claim and the lemma. �

Lemma 27 Given Pi, P
′
i ∈ D with Pi ∼+ P ′i , if Pi|Ā is multidimensional single-peaked on

×s∈MG(Ās), then P ′
i|Ā is multidimensional single-peaked on ×s∈MG(Ās).

Proof : If r1(Pi) = r1(P ′i ), then Lemma 26 implies that P ′
i|Ā is multidimensional single-peaked

on ×s∈MG(Ās). If r1(P ′i ) ∈ Ā, it is also evident that P ′
i|Ā is multidimensional single-peaked on

×s∈MG(Ās). Hence, we assume r1(Pi) ≡ a 6= b ≡ r1(P ′i ) and b /∈ Ā. Since Pi ∼+ P ′i , we know

as 6= bs and a−s = b−s ≡ z−s for some s ∈ M , and both Pi and P ′i are separable preferences.

Let ā ≡ r1(Pi|Ā) and b̄ = r1(P ′
i|Ā).

Claim 1: If ā 6= b̄, then P ′
i|Ā is multidimensional single-peaked on ×s∈MG(Ās).

Since āPib̄, b̄P
′
i ā and Pi ∼+ P ′i , it must be the case that āPi!b̄ and b̄P ′i !ā, and hence ās = as,

b̄s = bs and ā−s = b̄−s ≡ z̄−s. Since ā, b̄ ∈ Ā, as = ās ∈ Ās, bs = b̄s ∈ Ās and z̄−s ∈ Ā−s.
Next, we claim 〈as, bs〉 = {as, bs}. Suppose not, i.e., there exists cs ∈ 〈as, bs〉\{as, bs}. Thus,

cs ∈ Ās, c̄ ≡ (cs, z̄−s) ∈ Ā and (cs, z̄−s) ∈ 〈(as, z̄−s), (bs, z̄−s)〉 ≡ 〈ā, b̄〉. Furthermore, since Pi
is multidimensional single-peaked w.r.t. Ā, we know āPic̄ and c̄Pib̄. Contradiction! Therefore,

〈as, bs〉 = {as, bs}.
Suppose that P ′

i|Ā is multidimensional single-peaked on ×s∈MG(Ās), i.e., there exist distinct

x, y ∈ Ā such that x ∈ 〈b̄, y〉 and yP ′ix. Since x ∈ 〈b̄, y〉, xs ∈ 〈b̄s, ys〉 ≡ 〈bs, ys〉 and x−s ∈
46Since every alternative is adjacent+ to some other alternative which is implied by the Exterior+ property, it

is true that for each alternative, there exists a separable preference whose peak is this alternative.
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〈b̄−s, y−s〉 = 〈z̄−s, y−s〉. Since 〈as, bs〉 = {as, bs}, x ∈ 〈bs, ys〉 implies xs ∈ 〈as, ys〉. Thus,

x = (xs, x−s) ∈ 〈(as, z̄−s), (ys, y−s)〉 = 〈ā, y〉, and xPiy by multidimensional single-peakedness

w.r.t. Ā, Thus, x and y form a local switching pair of Pi and P ′i , and hence xs = as, ys = bs

and x−s = y−s. Consequently, xs ∈ 〈bs, ys〉 = 〈bs, bs〉 = {bs} which contradicts xs = as. This

completes the verification of the claim.

Claim 2: If ā = b̄, then P ′
i|Ā is multidimensional single-peaked on ×s∈MG(Ās).

Note that if either as /∈ Ās or bs /∈ Ās, then Pi ∼+ P ′i implies Pi|Ā = P ′
i|Ā. Then, P ′

i|Ā
is multidimensional single-peaked on ×s∈MG(Ās). Next, we show either as /∈ Ās or bs /∈ Ās.
Suppose not, i.e., as, bs ∈ Ās. Since ā = b̄ ∈ Ā, it is evident that z̄−s ≡ ā−s = b̄−s ∈ Ā−s. Thus,

(as, z̄−s), (bs, z̄−s) ∈ Ā. Recall that both Pi and P ′i are separable preferences. Since r1(Pi) =

a ≡ (as, z−s) and r1(P ′i ) = b ≡ (bs, z−s), separability implies that either (as, z̄−s)Pi(ā
s, z̄−s) ≡ ā

or as = ās, and (bs, z̄−s)P ′i (b̄
s, z̄−s) ≡ b̄ or bs = b̄s. Furthermore, since ā = b̄ and as 6= bs, it

must be either (as, z̄−s)Piā or (bs, z̄−s)P ′i b̄ which contradicts ā = r1(Pi|Ā) and b̄ = r1(P ′
i|Ā). This

completes the verification of the claim and proves the lemma. �

Now, we show that for every preference whose peak is an invalid alternative, the induced

preference over Ā is multidimensional single-peaked on ×s∈MG(Ās). Given an arbitrary Pi ∈
D, let r1(Pi) = a /∈ Ā and r1(Pi|ā) = ā. Pick an arbitrary P ′i ∈ Dā by minimal richness.

Since ā ∈ Ā, P ′
i|Ā is multidimensional single-peaked on ×s∈MG(Ās). We have a simple+ path

{P ki }
q
k=1 connecting P ′i and Pi. We first consider preference P 2

i . If P 2
i ∼ P 1

i , then r1(P 2
i ) =

r1(P 1
i ) = ā and hence P 2

i|Ā is is multidimensional single-peaked on ×s∈MG(Ās). If P 2
i ∼+ P 1

i ,

Lemma 27 implies that P 2
i|Ā is is multidimensional single-peaked on ×s∈MG(Ās). Therefore,

we assert that P 2
i|Ā is is multidimensional single-peaked on ×s∈MG(Ās). Next, we provide an

induction hypothesis: Given 2 < k ≤ q, for all 2 ≤ k′ < k, P k
′

i|Ā is multidimensional single-

peaked on ×s∈MG(Ās). We show that P k
i|Ā is multidimensional single-peaked on ×s∈MG(Ās).

If P ki ∼ P k−1
i , then it is true that r1(P ki ) = r1(P k−1

i ). Then, Lemma 26 implies that P k
i|Ā is

multidimensional single-peaked on ×s∈MG(Ās). If P ki ∼+ P k−1
i , Lemma 27 implies that P k

i|Ā is

multidimensional single-peaked on ×s∈MG(Ās). This completes the verification of the induction

hypothesis. Therefore, Pi is multidimensional single-peaked on ×s∈MG(Ās). This completes the

verification of the necessity part of the theorem.

We now turn to the sufficiency part of Theorem 3. Let Ā = ×s∈M Ās where Ās ⊆ As

and |Ās| ≥ 2 for each s ∈ M . Let G(Ās) be a tree for each s ∈ M . Thus, Ā is located

on a product of trees ×s∈MG(Ās). Let D be multidimensional single-peaked w.r.t. Ā. Let

D|Ā =
{
Pi|Ā|Pi ∈ D

}
. Thus, the induced domain D|Ā is multidimensional single-peaked on

×s∈MG(Ās). According the proof of the sufficiency part of Theorem 1, we can construct a mixed

multidimensional projection rule φ : [D|Ā]N → ∆(Ā) which is unanimous, tops-only and strategy-

proof and satisfies the compromise property. Next, we define a new function ϕ : DN → ∆(Ā): For

all (P1, . . . , PN ) ∈ DN , ϕ(P1, . . . , PN ) = φ
(
P1|Ā, . . . , PN |Ā

)
. It is evident that ϕ is a unanimous

and strategy-proof constrained RSCF. We first claim that ϕ satisfies the tops-only property.

Given P, P ′ ∈ DN with r1(Pi) = r1(P ′i ) for all i ∈ I, we know r1(Pi|Ā) = r1(P ′
i|Ā) for all i ∈ I by

the second condition of Definition 7. Consequently, by the construction of ϕ and tops-onlyness

of φ, ϕ(P ) ≡ φ
(
P1|Ā, . . . , PN |Ā

)
= φ

(
P ′

1|Ā, . . . , P
′
N |Ā
)
≡ ϕ(P ′). Thus, ϕ satisfies the tops-only
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property. Last, we show that ϕ satisfies the compromise property. Given Î ⊆ I with |Î| = N
2

if N is even, and |Î| = N+1
2 if N is odd, fix Pi, Pj ∈ D with r1(Pi) ≡ x 6= y ≡ r1(Pj) and

r2(Pi) = r2(Pj) ≡ a ∈ Ā. If either x /∈ Ā or y /∈ Ā, we know faa

(
Pi|Ā

Î
,
Pj |Ā
I\Î

)
= a. If x, y ∈ Ā,

recall the verification of the sufficiency part of Theorem 1, it is true that a ∈ 〈x, y〉\{x, y}.
Then, faa

(
Pi|Ā

Î
,
Pj |Ā
I\Î

)
= a. Consequently, no matter x and y are feasible or not, we have

ϕa

(
Pi
Î
,
Pj

I\Î

)
≡ φa

(
Pi|Ā

Î
,
Pj |Ā
I\Î

)
=
∑

z∈Ā λzf
z
a

(
Pi|Ā

Î
,
Pj |Ā
I\Î

)
≥ λa > 0. Therefore, ϕ satisfies the

compromise property. This completes the verification of the sufficiency part of Theorem 1.

D Supplementary material

D.1 An example related to the no-detour property

Let A ≡ A1 ×A2, A1 = {0, 1, 2} and A2 = {0, 1}. We highlight two separable preferences:

Pi : (0, 0)⇀(1, 0)⇀(0, 1)⇀(1, 1)⇀(2, 0)⇀(2, 1) and P ′i : (1, 0)⇀(0, 0)⇀(1, 1)⇀(0, 1)⇀(2, 0)⇀(2, 1).

Note that (1, 1)Pi(2, 1), (1, 1)P ′i (2, 1) and Pi ∼+ P ′i . Thus, {Pi, P ′i} formulates a simple+ path

connecting Pi and P ′i where (1, 1) is always ranked above (2, 1), and satisfies the no-detour

property, i.e., r1(Pi) = (0, 0) ∈ (A1, 0) and r1(Pi) = (1, 0) ∈ (A1, 0). We can construct another

simple+ path {P ki }8k=1 ⊆ DS in Table 2 below connecting Pi and P ′i where (1, 1) is always ranked

above (2, 1). However, this simple+ path violates the no-detour property: It starts from Pi, first

takes a detour to preference P 3
i with peak (0, 1) /∈ (A1, 0), then diverges further to preference

P 5
i with peak (1, 1) /∈ (A1, 0), and finally goes back to preference P ′i .

Pi ≡ P 1
i ∼ P 2

i ∼+ P 3
i ∼ P 4

i ∼+ P 5
i ∼ P 6

i ∼+ P 7
i ∼ P 8

i ≡ P ′i
(0, 0) (0, 0) (0, 1) (0, 1) (1, 1) (1, 1) (1, 0) (1, 0)

(1, 0) (0, 1) (0, 0) (1, 1) (0, 1) (1, 0) (1, 1) (0, 0)

(0, 1) (1, 0) (1, 1) (0, 0) (1, 0) (0, 1) (0, 0) (1, 1)

(1, 1) (1, 1) (1, 0) (1, 0) (0, 0) (0, 0) (0, 1) (0, 1)

(2, 0) (2, 0) (2, 1) (2, 1) (2, 1) (2, 1) (2, 0) (2, 0)

(2, 1) (2, 1) (2, 0) (2, 0) (2, 0) (2, 0) (2, 1) (2, 1)

Table 2: A simple+ path violating the no-detour property

D.2 Related verification in Example 3

Since each f ∈ {fa}a/∈{(1,1,0),(1,1,1)}∪{f (j,i,i), f (i,j,j)} is unanimous, RSCF ϕ must be unanimous.

To show strategy-proofness of ϕ, it suffices to show that each f is strategy-proof.

As a generalized median voter scheme of Barberà et al. (1993), we first know that each f

above is strategy-proof on DMSP . Moreover, note that f also satisfies the tops-only property.

Therefore, (i) for all Pi ∈ DMSP and b ∈ A, voter i never manipulates at (Pi, b) via any P ′i ∈ D,

and (ii) for all Pj ∈ DMSP and b ∈ A, voter j never manipulates at (b, Pj) via any P ′j ∈ D.

Hence, the verification only concerns the following two possible manipulations:

(i) Given (P ∗i , Pj), voter i considers to deviate to P ′i ∈ D.

(ii) Given (Pi, P
∗
j ) where P ∗j is identical to preference P ∗i in Example 3, voter j considers to

deviate to P ′j ∈ D.
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We first identify an important multidimensional single-peaked preference below:

P̂i : (0, 0, 0)⇀(0, 0, 1)⇀(1, 0, 0)⇀(1, 0, 1)⇀(0, 1, 0)⇀(0, 1, 1)⇀(1, 1, 0)⇀(1, 1, 1).

Note that P ∗i ∼ P̂i, (1, 1, 1)P ∗i !(1, 1, 0) and (1, 1, 0)P̂i!(1, 1, 1).

Claim 1: Given f ∈ {fa}a/∈{(1,1,0),(1,1,1)} ∪
{
f (j,i,i), f (i,j,j)

}
, the first and second possible manip-

ulations are never profitable.

Suppose not, there exists P ′i ∈ D such that f(P ′i , Pj)P
∗
i f(P ∗i , Pj). Assume f(P ′i , Pj) = x

and f(P ∗i , Pj) = y. Evidently, P ′i 6= P ∗i and hence P ′i ∈ DMSP . Moreover, it is evidently that

r1(Pj) 6= (0, 0, 0) = r1(P ∗i ), and hence Pj ∈ DMSP . Otherwise, fa(P ∗i , Pj) = (0, 0, 0) = r1(P ∗i )

by unanimity, and consequently, there exist no P ′i ∈ D such that f(P ′i , Pj)P
∗
i f(P ∗i , Pj). By the

tops-only property, we know f(P̂i, Pj) = y. Since voter i cannot manipulate at (P̂i, Pj) via P ′i ,

it is true that yP̂ix. Now, since P ∗i ∼ P̂i, xP
∗
i y and yP̂ix imply x = (1, 1, 1) and y = (1, 1, 0).

Thus, f(P ∗i , Pj) = (1, 1, 0).

First, assume f ∈ {fa}a/∈{(1,1,0),(1,1,1)}. Assume r1(Pj) = b ≡ (b1, b2, b3). According to the

definition of the projection rule fa, where a ≡ (a1, a2, a3), fa
(
(0, 0, 0), (b1, b2, b3)

)
= fa(P ∗i , Pj) =

(1, 1, 1) implies med(0, b1, a1) = 1, med(0, b2, a2) = 1 and med(0, b3, a3) = 0. Consequently,

a1 = 1 and a2 = 1, and hence a ∈ {(1, 1, 0), (1, 1, 1)}. Contradiction!

Next, assume f ∈
{
f (j,i,i), f (i,j,j)

}
. If f = f (j,i,i), the definition of f (j,i,i) implies f(P ∗i , Pj)

2 =

r1(P ∗i )2 = 0, and hence f(P ∗i , Pj) 6= (1, 1, 0). Contradiction! If f = f (i,j,j), the definition

of f (i,j,j) implies f(P ∗i , Pj)
1 = r1(P ∗i )1 = 0, and hence f(P ∗i , Pj) 6= (1, 1, 0). Contradiction!

Therefore, the first possible manipulation cannot occur. By a symmetric argument, the second

possible manipulation cannot occur either. This completes the verification of the claim.

Since each f ∈ {fa}a/∈{(1,1,0),(1,1,1)} ∪
{
f (j,i,i), f (i,j,j)

}
is strategy-proof, as a mixture of these

eight DSCFs, it is true that ϕ is strategy-proof.

Last, we show that RSCF ϕ satisfies the compromise property. Given Pi, Pj ∈ D, assume

r1(Pi) ≡ x 6= y ≡ r1(Pj) and r2(Pi) = r2(Pj) ≡ z. We consider the following three cases: (i)

z = (1, 1, 0), (ii) z = (1, 1, 1), and (iii) z /∈ {(1, 1, 0), (1, 1, 1)}.
In the first case, since z = (1, 1, 0), it is true that either {x, y} = {(1, 0, 0), (0, 1, 0)}, or

{x, y} = {(0, 1, 0), (1, 1, 1)}, or {x, y} = {(1, 0, 0), (1, 1, 1)}. If {x, y} = {(0, 1, 0), (1, 0, 0)}, we

know f (j,i,i)
(
(0, 1, 0), (1, 0, 0)

)
= (1, 1, 0) = z and f (i,j,j)

(
(1, 0, 0), (0, 1, 0)

)
= (1, 1, 0) = z. If

{x, y} = {(0, 1, 0), (1, 1, 1)}, we know f (1,0,0)(x, y) = (1, 1, 0) = z. If {x, y} = {(1, 0, 0), (1, 1, 1)},
we know f (0,1,0)(x, y) = (1, 1, 0) = z. Therefore, there always exists f ∈ {fa}a/∈{(1,1,0),(1,1,1)} ∪{
f (j,i,i), f (i,j,j)

}
such that f(Pi, Pj) = z, and hence, ϕz(Pi, Pj) > 0.

In the second case, since z = (1, 1, 1), it is true that either {x, y} = {(0, 1, 1), (1, 0, 1)}, or

{x, y} = {(0, 1, 1), (1, 1, 0)}, or {x, y} = {(1, 1, 0), (1, 0, 1)}. If {x, y} = {(0, 1, 1), (1, 0, 1)}, we

know f (j,i,i)
(
(0, 1, 1), (1, 0, 1)

)
= (1, 1, 1) = z and f (i,j,j)

(
(1, 0, 1), (0, 1, 1)

)
= (1, 1, 1) = z. If

{x, y} = {(0, 1, 1), (1, 1, 0)}, we know f (1,0,1)(x, y) = (1, 1, 1) = z. If {x, y} = {(1, 1, 0), (1, 0, 1)},
we know f (0,1,1)(x, y) = (1, 1, 1) = z. Therefore, there always exists f ∈ {fa}a/∈{(1,1,0),(1,1,1)} ∪{
f (j,i,i), f (i,j,j)

}
such that f(Pi, Pj) = z, and hence, ϕz(Pi, Pj) > 0.

In the third case, since z /∈ {(1, 1, 0), (1, 1, 1)}, we have fz(x, y) = z, and hence ϕz(Pi, Pj) > 0.

In conclusion, RSCF ϕ satisfies the compromise property.
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D.3 The separable domain DS is a connected+ domain

We specify two facts which together show that the separable domain DS is a connected+ domain.

The detailed proof of these facts can be found in the working paper of Chatterji and Zeng (2015).

Fact 1 Given Pj , P
′
j ∈ DS with [Pj ]

s 6= [P ′j ]
s for some s ∈ M , and x, y ∈ A with xPjy and

xP ′jy, there exist t ≥ 1 pair(s) of separable preferences {P̄ kj , P̂ kj }, k = 1, . . . , t, such that

(i) [Pj ]
s = [P̄ 1

j ]s and [P ′j ]
s = [P̂ tj ]

s for all s ∈M ;

(ii) for each 1 ≤ k ≤ t, P̄ kj ∼+ P̂ kj , xP̄ kj y and xP̂ kj y;

(iii) for each 1 ≤ k ≤ t− 1, [P̂ kj ]s = [P̄ k+1
j ]s for all s ∈M .

In particular, if r1(Pj) and r1(P ′j) are similar, say r1(Pj) = (as, z−s) and r1(P ′j) = (bs, z−s),

then r1(P̄ kj ), r1(P̂ kj ) ∈
{

(as, z−s), (bs, z−s)
}

, k = 1, . . . , t.

Fact 2 Given two distinct Pj , P
′
j ∈ DS with [Pj ]

s = [P ′j ]
s for all s ∈ M , and x, y ∈ A with

xPjy and xP ′jy, there exists a simple path {P kj }
q
k=1 ⊆ DS connecting Pj and P ′j such that xP kj y,

k = 1, . . . , q.

We provide the following example to illustrate how both facts are used to show connectedness+

of the separable domain.

Example 5 Let A ≡ A1 × A2, A1 = {0, 1, 2} and A2 = {0, 1}. Fix two particular separable

preferences:

Pi : (0, 0)⇀(0, 1)⇀(1, 0)⇀(1, 1)⇀(2, 0)⇀(2, 1), and P ′i : (2, 1)⇀(0, 1)⇀(2, 0)⇀(1, 1)⇀(0, 0)⇀(1, 0).

Note that (0, 1)Pi(1, 1) and (0, 1)P ′i (1, 1).

First, we construct the following transitions of marginal preferences to reconcile the differ-
ences of marginal preferences of Pi and P ′i :(
[Pi]

1; [Pi]
2
)
≡ (0⇀1⇀2; 0⇀1)

1©
==⇒ (0⇀1⇀2; 1⇀0)

2©
==⇒ (0⇀2⇀1; 1⇀0)

3©
==⇒ (2⇀0⇀1; 1⇀0) ≡

(
[P ′

i ]
1; [P ′

i ]
2
)
.

For each transition, we identify a pair of adjacent+ preferences ranking (0, 1) above (1, 1) to

illustrate Fact 1.

1©
==⇒ 2©

==⇒ 3©
==⇒

P̄ 1
i ∼+ P̂ 1

i P̄ 2
i ∼+ P̂ 2

i P̄ 3
i ∼+ P̂ 3

i

(0, 0) (0, 1) (0, 1) (0, 1) (0, 1) (2, 1)

(0, 1) (0, 0) (0, 0) (0, 0) (2, 1) (0, 1)

(1, 0) (1, 1) (1, 1) (2, 1) (1, 1) (1, 1)

(1, 1) (1, 0) (2, 1) (1, 1) (0, 0) (2, 0)

(2, 0) (2, 1) (1, 0) (2, 0) (2, 0) (0, 0)

(2, 1) (2, 0) (2, 0) (1, 0) (1, 0) (1, 0)

Table 3: Three pairs of adjacent+ preferences

Next, we make the following two observations to illustrate Fact 2.
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(i) Pi = P̄ 1
i , P̂ 1

i ∼ P̄ 2
i and P̂ 3

i ∼ P ′i .

(ii) Preferences P̂ 2
i and P̄ 3

i share the same marginal preferences, i.e.,(
[P̂ 2
i ]1, [P̂ 2

i ]2
)
≡ (0⇀2⇀1; 1⇀0) ≡

(
[P̄ 3
i ]1, [P̄ 3

i ]2
)
. We identify the another separable prefer-

ence P̃i : (0, 1)⇀(2, 1)⇀(0, 0)⇀(1, 1)⇀(2, 0)⇀(1, 0) which admits the same marginal pref-

erences. Thus, we have a simple path {P̂ 2
i , P̃i, P̄

3
i } connecting P̂ 2

i and P̄ 3
i such that (0, 1)

is always ranked above (1, 1).47

Eventually, we construct the appropriate simple+ path connecting Pi and P ′i below which

meets the requirement of the Exterior+ property: Pi ≡ P̄ 1
i ∼+ P̂ 1

i ∼ P̄ 2
i ∼+ P̂ 2

i ∼ P̃i ∼
P̄ 3
i ∼+ P̂ 3

i ∼ P ′i . Furthermore, note that the simple+ subpaths {P̄ 1
i , P̂

1
i , P̄

2
i , P̂

2
i , P̃i, P̄

3
i } and

{P̂ 1
i , P̄

2
i , P̂

2
i , P̃i, P̄

3
i , P̂

3
i , P

′
i} satisfy the no-detour property.

Last, take the simple+ subpath {P̂ 1
i , P̄

2
i , P̂

2
i , P̃i, P̄

3
i } as an example where every preference

has the peak (0, 1). It illustrates that the requirement of the Interior+ property can be verified

in the separable domain as well. �

D.4 The top-separable domain DTS is a connected+ domain

To verify that DTS is a connected+ domain, we first provide two facts.

Fact 3 Given Pj ∈ DTS\DS and x, y ∈ A with xPjy, there exists P̄j ∈ DS such that r1(P̄j) =

r1(Pj) and xP̄jy.

Proof : Assume r1(Pj) = a ≡ (as)s∈M . Assume xs 6= ys for all s ∈ S ⊆ M and x−S = y−S .

Evidently, S 6= ∅. There exist two cases for x and y: (i) xs 6= as and ys 6= as for some s ∈ S, and

(ii) xs = as or ys = as for every s ∈ S. Furthermore, in the second case, due top-separability,

there must exist s ∈ S such that xs = as and ys 6= as. Now, in both cases, we can first identify

a marginal preference [P̄j ]
s on As such that xs[P̄j ]

sys. Next, we construct a lexicographically

separable preference P̄j such that r1(P̄j) = a and component s is lexicographically dominant.

Consequently, P̄j ∈ DS and xP̄jy. �

Fact 4 Given Pj ∈ DTS and P̄j ∈ DS, assume r1(Pj) = r1(P̄j) ≡ a. Given b, c ∈ A, assume

bPj !c and cP̄jb. There exists P̂j ∈ DaTS such that P̂j ∼ Pj and cP̂j !b.

Proof : Since r1(Pj) = r1(P̄j) ≡ a, bPj !c and cP̄jb, it is evident that a /∈ {b, c}. We first

construct preference P̂j by locally switching b and c in Pj . Thus, r1(P̂j) = a, P̂j ∼ Pj and cP̂j !b.

We show P̂j ∈ DTS . Suppose that P̂j /∈ DTS . Since Pj ∈ DTS and P̂j ∼ Pj , P̂j /∈ DTS implies

that bs = as 6= cs and b−s = c−s for some s ∈ M . Consequently, since P̄j ∈ DS , we have bP̄jc.

Contradiction! �

Now, we consider two distinct preferences Pj , P
′
j ∈ DTS with either r1(Pj) = r1(P ′j) or

r1(Pj) 6= r1(P ′j), and two alternatives x, y ∈ A such that xPjy and xP ′jy. We construct an

appropriate simple+ path {P kj }
q
k=1 ⊆ DTS connecting Pj and P ′j such that xP kj y, k = 1, . . . , q,

47Note that the existence of preference P̃i also illustrates the importance of the co-existence of adjacency and

adjacency+. If we forbid the presence of adjacency, then preference P̄ 3
i cannot be obtained via the transition of

preference P̂ 2
i , and consequently, the adjacency+ between P̄3 and P̂3 disappears.
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and [r1(Pj) = r1(P ′j) ≡ a]⇒ [r1(P kj ) = a for all k = 1, . . . , q]. There are three cases: (i) Pj ∈ DS
and P ′j ∈ DS , (ii) Pj ∈ DTS\DS and P ′j ∈ DS (or symmetrically, Pj ∈ DS and P ′j ∈ DTS\DS),

and (iii) Pj , P
′
j ∈ DTS\DS .

The first case is covered by Section D.3. In the second case, we first identify P̄j ∈ DS with

r1(P̄j) = r1(Pj) and xP̄jy by Fact 3. Between P̄j and P ′j , by case (i), we have an appropriate

simple+ path, while Between Pj and P̄j , we can construct another appropriate simple path by

repeatedly applying Fact 4. Combining these two paths, we have an appropriate simple+ path

connecting Pj and P ′j . In the third case, by Fact 3, we first identify P̄j ∈ DS with r1(P̄j) = r1(Pj)

and xP̄jy, and P̄ ′j ∈ DS with r1(P̄ ′j) = r1(P ′j) and xP̄ ′jy. Similar to the second case, between

Pi and P̄j , between P̄j and P̄ ′j , and between P̄ ′j and P ′j , we have an appropriate simple path,

an appropriate simple+ path and an appropriate simple path respectively. Combining these

three paths, we have an appropriate simple+ path connecting Pj and P ′j . Furthermore, by the

construction of the appropriate simple+ path and verification in Section D.3, we can prove that

the top-separable domain satisfies the no-detour property. Therefore, the top-separable domain

DTS is a connected+ domain.

D.5 The multidimensional single-peaked domain DMSP is a connected+ domain

According to the proof of Proposition 2 of Chatterji and Zeng (2017), we first provide two facts.

Fact 5 Given Pj , P
′
j ∈ DMSP with r1(Pj) 6= r1(P ′j), and x, y ∈ A with xPjy and xP ′jy, there

exist t ≥ 1 pair(s) of multidimensional single-peaked preferences {P̄ kj , P̂ kj }tk=1, such that

(i) r1(Pj) = r1(P̄ 1
j ) and r1(P ′j) = r1(P̂ tj );

(ii) for each 1 ≤ k ≤ t, r1(P̄ kj ) and r1(P̂ kj ) are similar; P̄ kj and P̂ kj are |A−s|-adjacent for some

s ∈M ; xP̄ kj y and xP̂ kj y;

(iii) for each 1 ≤ k ≤ t− 1, r1(P̂ kj ) = r1(P̄ k+1
j ).

In particular, if r1(Pj) and r1(P ′j) are similar, say r1(Pj) = (as, z−s) and r1(P ′j) = (bs, z−s),

then r1(P̄ kj ), r1(P̂ kj ) ∈
〈
(as, z−s), (bs, z−s)

〉
, k = 1, . . . , t.

Fact 6 Given two distinct Pj , P
′
j ∈ DMSP with r1(Pj) = r1(P ′j) ≡ a, and x, y ∈ A with xPjy

and xP ′jy, there exists a simple path {P kj }
q
k=1 ⊆ DaMSP connecting Pj and P ′j such that xP kj y,

k = 1, . . . , q.

Note that preferences P̄ kj and P̂ kj in Fact 5 are |A−s|-adjacent, not necessarily adjacent+.

Fact 7 below shows that such two |A−s|-adjacent preferences in Fact 3 can be replaced by two

appropriate adjacent+ preferences.

Fact 7 Given two distinct Pj , P
′
j ∈ DMSP with r1(Pj) 6= r1(P ′j) and Pj ∼|A

−s| P ′j for some

s ∈M , and x, y ∈ A with xPjy and xP ′jy, there exist P̄j , P̄
′
j ∈ DMSP ∩ DS such that

(i) r1(Pj) = r1(P̄j) and r1(P ′j) = r1(P̄ ′j),

(ii) P̄j ∼+ P̄ ′j,

(iii) xP̄jy and xP̄ ′jy.
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Proof : Assume r1(Pj) = a 6= b = r1(P ′j). Since Pj ∼|A
−s| P ′j , it is true as 6= bs and a−s =

b−s ≡ z−s. Since xPjy and xP ′jy, it is true that y /∈ 〈a, x〉 and y /∈ 〈b, x〉. We consider two cases:

(i) There exists τ 6= s such that yτ /∈ 〈zτ , xτ 〉, and (ii) yτ ∈ 〈zτ , xτ 〉 for all τ 6= s. In the first

case, it is evident that yτ /∈ 〈aτ , xτ 〉 and yτ /∈ 〈bτ , xτ 〉. In the second case, it must be true that

ys /∈ 〈as, xs〉 and ys /∈ 〈bs, xs〉. In conclusion, there exists τ ∈ M such that yτ /∈ 〈aτ , xτ 〉 and

yτ /∈ 〈bτ , xτ 〉.
On each component set ω ∈ M , according to the tree G(Aω), we construct two particular

marginal preferences [P̄j ]
ω and [P̄ ′j ]

ω such that the following conditions are satisfied:

(i) [P̄j ]
ω and [P̄ ′j ]

ω are single-peaked on G(Aω) for all ω ∈M .

(ii) r1([P̄j ]
ω) = aω and r1([P̄ ′j ]

ω) = bω for all ω ∈M .

(iii) xτ [P̄j ]
τyτ and xτ [P̄ ′j ]

τyτ .

(iv) [P̄j ]
s ∼ [P̄j ]

s and [P̄j ]
ω = [P̄j ]

ω for all ω 6= s.

Last, according to all marginal preferences [P̄j ]
ω and [P̄ ′j ]

ω, ω ∈ M , we assemble two mul-

tidimensional single-peaked and lexicographically separable preferences P̄j , P̄
′
j ∈ DMSP ∩ DLS

where both P̄j and P̄ ′j share the same lexicographic order over components, and component τ

lexicographically dominates all other components. Thus, r1(P̄j) = a, r1(P̄j) = b, P̄j ∼+ P̄j ,

xP̄jy and xP̄ ′jy. This completes the verification of Fact 7. �

Last, after updating Fact 5 by Fact 7, similar to the verification in Section D.3, we assert

that the multidimensional single-peaked domain DMSP is a connected+ domain by a repeated

application of Facts 5 and 6.

D.6 The intersection of the separable domain and the multidimensional single-peaked

domain DS ∩ DMSP is a connected+ domain

The verification here is similar to that in Section D.3. We replace the separable domain DS in

Facts 1 and 2 by the intersection DS ∩ DMSP , and establish the following two facts.

Fact 8 Given two preferences Pj , P
′
j ∈ DS ∩ DMSP with [Pj ]

s 6= [P ′j ]
s for some s ∈ M , and

x, y ∈ A with xPjy and xP ′jy, there exist t ≥ 1 pair(s) of separable and multidimensional single-

peaked preferences {P̄ kj , P̂ kj }k = 14 such that

(i) [Pj ]
s = [P̄ 1

j ]s and [P ′j ]
s = [P̂ tj ]

s for all s ∈M ;

(ii) for each 1 ≤ k ≤ t, P̄ kj ∼+ P̂ kj , xP̄ kj y and xP̂ kj y;

(iii) for each 1 ≤ k ≤ t− 1, [P̂ kj ]s = [P̄ k+1
j ]s for all s ∈M .

In particular, if r1(Pj) and r1(P ′j) are similar, say r1(Pj) = (as, z−s) and r1(P ′j) = (bs, z−s),

then r1(P̄ kj ), r1(P̂ kj ) ∈
〈
(as, z−s), (bs, z−s)

〉
, k = 1, . . . , t.

Fact 9 Given two distinct Pj , P
′
j ∈ DS ∩ DMSP with [Pj ]

s = [P ′j ]
s for all s ∈ M , and x, y ∈ A

with xPjy and xP ′jy, there exists a simple path {P kj }
q
k=1 ⊆ DS ∩ DMSP connecting Pj and P ′j

such that xP kj y, k = 1, . . . , q.
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D.7 The union of the separable domain and multidimensional single-peaked domains

DS ∪ [∪tk=1DMSPk ] is a connected+ domain

We first provide a fact which will be repeatedly applied.

Fact 10 Given P ′j ∈ DMSPk and x, y ∈ A with xP ′jy, there exists P̄j ∈ DS ∩ DMSPk such that

r1(P̄j) = r1(P ′j) and xP̄jy.

Proof : Assume r1(P ′j) = (as)s∈M and DMSPk is the multidimensional single-peaked domain on

product graph of trees ×s∈MG(As). Since xP ′jy, it is true that y /∈ 〈a, x〉. Thus, there must

exist s ∈ M such that ys /∈ 〈as, xs〉. Consequently, we can construct a marginal preference

[P̄j ]
s over all elements in As which is single-peaked on G(As), r1([P̄j ]

s) = as and xs[P̄j ]
sys.

For every τ ∈M\{s}, pick arbitrary marginal preference [P̄j ]
τ which is single-peaked on G(Aτ )

and r1([P̄j ]
τ ) = aτ . Last, we construct a lexicographically separable preference P̄j by using all

these marginal preferences and make component s lexicographically dominant. Consequently,

xP̄jy. Since each marginal preference is single-peaked, it is true that P̄j is multidimensional

single-peaked on ×s∈MG(As). �

To verify that the union DS ∪ [∪tk=1DMSPk ] is a connected+ domain, we fix two distinct

preferences Pj , P
′
j ∈ DS ∪ [∪tk=1DMSPk ] with either r1(Pj) = r1(P ′j) or r1(Pj) 6= r1(P ′j), and

x, y ∈ A with xPjy and xP ′jy, and construct an appropriate simple+ path {P kj }
q
k=1 ⊆ DS ∪

[∪tk=1DMSPk ] connecting Pj and P ′j such that xP kj y, k = 1, . . . , q, and [r1(Pj) = r1(P ′j) ≡ a] ⇒
[r1(P kj ) = a for all k = 1, . . . , q].

If Pj , P
′
j ∈ DS or Pj , P

′
j ∈ DMSPk for some k ≥ t, the verification follows from Section D.3 or

Section D.5. Thus, we consider the following two cases:

(i) Pj ∈ DS\DMSPk and P ′j ∈ DMSPk\DS for some k ≥ 1.

(ii) Pj ∈ DMSPk\DS and P ′j ∈ DMSPk′\DS for some k 6= k′.

In case (i), by Fact 10, we identify another preference P̄ ′j ∈ DS ∩ DMSPk such that r1(P ′j) =

r1(P̄ ′j) and xP̄ ′jy. First, since Pj , P̄
′
j ∈ DS , by the verification in Section D.3, we have an

appropriate simple+ path in DS connecting Pj and P̄ ′j . Second, since P̄ ′j , P
′
j ∈ DMSPk , by the

verification in Section D.5, we have an appropriate simple+ path in DMSPk connecting P̄ ′j and P ′j .

Combining these two simple+ paths, we have an appropriate simple+ path in DS ∪ [∪tk=1DMSPk ]

connecting Pj and P ′j .

In case (ii), by Fact 10, we identify two other preferences P̄j ∈ DS ∩ DMSPk and P̄ ′j ∈
DS∩DMSPk′ such that r1(Pj) = r1(P̄j), xP̄jy, r1(P ′j) = r1(P̄ ′j) and xP̄ ′jy. First, since P̄j , P̄

′
j ∈ DS ,

by the verification in Section D.3, we have an appropriate simple+ path in DS connecting P̄j
and P̄ ′j . Second, since Pj , P̄j ∈ DMSPk and P̄ ′j , P

′
j ∈ DMSPk′ , by the verification in Section D.5,

we have an appropriate simple+ paths in DMSPk connecting Pj and P̄j , and another appropriate

simple+ paths in DMSPk′ connecting P̄ ′j and P ′j . Combining these three simple+ paths, we have

an appropriate simple+ path in DS ∪ [∪tk=1DMSPk ] connecting Pj and P ′j .

Furthermore, by the construction of the appropriate simple+ path above and verifications

in Sections D.3 and D.5, we can prove that the union DS ∪ [∪tk=1DMSPk ] satisfies the no-detour

property. Therefore, the union DS ∪ [∪tk=1DMSPk ] is a connected+ domain.

53


	Random mechanism design on multidimensional domains
	Citation

	Introduction
	Related Literature

	Preliminaries
	Generalized random dictatorships

	Main results
	Connected1.1+ domains
	Multidimensional single-peakedness
	Deterministic voting
	Random voting under constraints

	Conclusion
	Proof of Proposition 3
	Proof of Theorem 2
	Proof of Theorem 3
	Supplementary material
	An example related to the no-detour property
	Related verification in Example 3
	The separable domain DS is a connected1.1+ domain
	The top-separable domain DTS is a connected1.1+ domain
	The multidimensional single-peaked domain DMSP is a connected1.1+ domain
	The intersection of the separable domain and the multidimensional single-peaked domain DSDMSP is a connected1.1+ domain
	The union of the separable domain and multidimensional single-peaked domains DS[k=1tDMSPk] is a connected1.1+ domain


