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aSchool of Economics, Singapore Management University, Singapore; bSchool of Economics and Finance, University of
Hong Kong, Hong Kong

ABSTRACT

The paper develops a systematic estimation and inference procedure for quan-
tile regression models where there may exist a common threshold e�ect
across di�erent quantile indices. We �rst propose a sup-Wald test for the
existence of a threshold e�ect, and then study the asymptotic properties of
the estimators in a threshold quantile regression model under the shrinking
threshold e�ect framework. We consider several tests for the presence of a
common threshold value across di�erent quantile indices and obtain their
limiting distributions. We apply ourmethodology to study the pricing strategy
for reputation through the use of a data set from Taobao.com. In our economic
model, an online seller maximizes the sum of the pro�t from current sales
and the possible future gain from a targeted higher reputation level. We
show that the model can predict a jump in optimal pricing behavior, which
is considered as “reputation e�ect” in this paper. The use of threshold quantile
regressionmodel allows us to identify and explore the reputation e�ect and its
heterogeneity in data.We�ndboth reputation e�ects and common thresholds
for a range of quantile indices in seller’s pricing strategy in our application.
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1. Introduction

Since Tong (1978, 1983) threshold models have become very popular in econometrics and statistics.
Early literature focuses on the modeling of the conditional mean in time series context. See, for
example, Chan (1993) and Hansen (2000) on the asymptotic distribution theory for the threshold
estimator in the �xed threshold e�ect and shrinking threshold e�ect frameworks, respectively, and
Tong (2011) and Hansen (2011) for reviews on the development and applications of the threshold
regression models in statistics and economics. Robust estimation of the threshold parameter has not
been analyzed in the literature until Caner (2002) who derives the asymptotic distribution of the LAD
estimator of the threshold parameter. Kato (2009) extends the convexity arguments of Pollard (1991) to
the case where estimators are obtained as stochastic processes and applies this technique to study the
inferential problems for the LAD estimator in threshold models. Cai and Stander (2008), Cai (2010),
and Galvao et al. (2011) study the asymptotic properties of the parameter estimators in threshold
quantile autoregressivemodels. Yu (2012) studies likelihood-based estimation and inference in threshold
regression models.

This paper studies the estimation and inference in threshold quantile regression (TQR)models when
it is uncertain whether there is a threshold e�ect at any quantile index, and if there is any e�ect, whether
or not the threshold point depends on the quantile index. Early literature on TQR models assumes the
existence of a threshold �rst and studies the asymptotic properties for the estimators of both regression
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coe�cients and threshold parameters. Examples include but are not limited toCaner (2002), Kato (2009),
Cai and Stander (2008), Cai (2010), and Galvao et al. (2011). However, it is only until Lee et al. (2011)
that the test for the existence of threshold e�ect has been developed. They propose a general likelihood-
ratio-basedmethod for testing threshold e�ects in regressionmodels that include the quantile regression
as a special case. But they can only test whether the threshold e�ect exists for a single quantile index.
More recently, Yu (2014) considers the estimation and testing in TQR by assuming that the threshold
parameter is invariant to the quantile index τ . As expected, his estimator is more e�cient than some
of the existing estimators (e.g., LAD or least squares estimators) and his test is more powerful than the
conventional tests based solely on the LAD or least squares estimators if the underlying assumption
of common threshold parameter across di�erent quantile indices holds true. On the other hand, an
estimation and testing procedure of this kind may be invalid if the above underlying assumption is
violated. Therefore, it is important to consider an inferential procedure which does not rely on either
one of the following two assumptions: (i) there exists a threshold e�ect in the quantile regression, and
(ii) the threshold parameter is invariant to the quantile index.

This paper thus develops a systematic procedure on estimation and inference of quantile regression
models in the absence of either assumptions mentioned above. First, similar to Galvao et al. (2014) who
develop a test of linearity against threshold e�ects in the quantile regression framework, we propose a
sup-Wald test for the absence of a threshold e�ect. The supremum is taken over a compact subset T in
(0, 1) where the quantile index lies. In principle, our test has power as long as the threshold e�ect exists
for some quantile index τ ∈ T . It is possible that the threshold e�ect does not exist for τ in a subset
T1 of T , but it is present for τ that lies in the complement of T1 relative to T . In this case, the single
quantile index-based test of Lee et al. (2011) loses power if the quantile index τ happens to lie in T1.
When we motivate the TQR model from the random coe�cient perspective, we can easily construct a
data generating process (DGP) where the threshold e�ect exists only for quantile indices in a subset of
(0, 1). This phenomenon is also con�rmed in our empirical application.

Second, we study the asymptotic properties of the estimators of both the threshold parameter and
regression coe�cients. In the TQR framework, it is typically assumed that the regression coe�cients are
dependent on the quantile index and composite quantile regression should be called upon otherwise.
Then a question arises—whether we should allow the threshold parameter to depend on the quantile
index. Previous works, such as done by Caner (2002) and Kato (2009), consider quantile regressions
at a �xed quantile index and their estimators may be ine�cient if the threshold parameter is invariant
to the quantile index. In contrast, Yu (2014) assumes that the threshold parameter is invariant to the
quantile index and considers e�cient estimation under such an assumption. Nevertheless, his estimation
and inference can be misleading if the common threshold speci�cation is incorrect. In fact, such an
assumption can be easily violated in a class of random coe�cient models that motivates the TQR; see
Case 3 in our simulation example. Therefore, we take a precautionary step and propose to estimate
both the regression coe�cients and the threshold parameters separately for each quantile index of
interest. We establish the asymptotic distribution theory for both estimators by following the shrinking
threshold e�ect framework of Hansen (2000). In addition, we also propose a likelihood ratio (LR) test
for the threshold parameter. Admittedly, our procedure avoids the potential issue of misspeci�cation but
sacri�ces on e�ciency in the case of a common threshold value.

Thirdly and most importantly, we study the estimation and inference theory associated with a
common threshold value. We �rst study the asymptotic properties of the estimators of the regression
coe�cients and the threshold parameter in the presence of a common threshold value. Thenwe consider
tests for the presence of a common threshold value. Here, we are interested in testing whether the
quantile-index-dependent threshold parameter γτ is the same for all τ ∈ T . We propose two LR-type
tests, one is for the case where the common threshold value γ 0 is unobserved and estimated from data,
and the other is the case where γ 0 is observed. The �rst case works when it is unclear whether a common
threshold parameter value should be shared across di�erent quantile indices, and when one has no idea
about the potential value of the common threshold parameter. The rejection of the null in this case
implies the absence of a common threshold value and therefore misspeci�cation of the model as in
Yu (2014). On the other hand, when we fail to reject the null, one can follow Yu (2014) and consider
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e�cient inference under the assumption of a common threshold value. The second case works when it is
strongly believed that the quantile regressions for di�erent quantile indices share the common threshold
value (say based on the result of the �rst LR test here) and one wants to test whether the true common
threshold value is given by a hypothesized value γ 0. The RDD setup may be one example of the second
case. The second test statistic can be inverted to obtain the con�dence interval for the common threshold
parameter too.

For the empirical application, we apply our proposed estimation and inference procedure to study
the existence of a particular pricing pattern arising from reputation concerns in online sales. Empirical
studies have documented extensive evidence to show that sellers enjoy greater bene�ts from a better
reputation. See, e.g., Bolton et al. (2004) and Resnick et al. (2006). Although it is heartening to know that
reputation confers rewards, it is also of interest to economists to knowwhether a reputation system exerts
any in�uence on a seller’s market behavior. Our empirical application therefore focuses on investigating
whether and how a selling strategy may be a�ected by a reputation system in use.

We collected trading data from Taobao.com, the leading online shopping website in China. There
exhibits an interesting phenomenon.When posting an item for sale, sellers sometimes explicitly indicate
that it is “on sale” for the purpose of striving for the next category of reputation. To explain such an
interesting pattern in pricing, we construct an economic model in which an online seller maximizes
the sum of the pro�t from current sales and the possible future gain from a targeted higher reputation
level. We demonstrate that there exists a threshold in reputation, starting from which the sellers engage
in price-cuts in exchange for the rewards of better reputation. Thus our model predicts pricing-regime
changes and accordingly discontinuity (or, more speci�cally a “jump”) in optimal pricing behavior. In
turn, examining the relevance of theory prediction arising from reputation concerns amounts to testing
for existence of threshold. In view of the presence of heterogeneous sellers in the market, we recognize
that high-end sellers may adopt di�erent pricing strategies than middle- and low-end sellers. Cabral
and Hortacsu (2010) acknowledge the existence of signi�cant unobservable seller heterogeneity in the
electronic market. Such heterogeneity, indeed, motivates us to adopt a TQR model to investigate the
jump behavior of pricing. It is well known that quantile regressions are a �exible way to model the
heterogeneous in�uences of explanatory variables on the response variable of interest, which is the selling
price here.

Beyond the di�erence, however, it is also fair to ask whether at all, or to what extent, there exists
homogeneous pricing behavior across sellers. Particularly, in our application, it is certainly critical to
know how common the sellers may share the same cut-o� strategy in terms of these regime changes.
This question instead motivates us to consider studying the case of common threshold. Our empirical
results indicate that sellers at di�erent quantiles (of prices) exhibit quite di�erent pricing behavior, yet
some of them do use the same pricing for reputation strategy predicted in the model. Thus, we believe
that our methodology enriches the empirical analysis on dealing with heterogeneity by identifying the
existence of a subset of homogeneous agents.

It is worth mentioning that, from the application perspective, this paper also subtly enriches the
empirical literature on the RDD. In a typical RDD framework, researchers are interested in the causal
e�ect of a binary intervention or treatment. This design arises frequently in the study of administrative
decisions. The basic idea behind the RDD is that assignment to a treatment group is determined by
whether the value of a predictor/covariate lies on one side of a �xed threshold. Then, any discontinuity
in the conditional distribution of the outcome as a function of the covariate at the cuto� value can serve
as evidence for the causal e�ect of the treatment. See Imbens and Lemieux (2008) for a detailed survey
on the empirical applications. At the heart of identifying assumptions to validate the RDD framework,
the covariate is connected with the potential outcomes in a continuous way. However, it has gradually
caught practitioners’ attention that public knowledge of the treatment assignment rulemay threaten such
a continuity assumption. Calling this the “manipulation problem,”McCrary (2008) points out that “when
the individuals know of the selection rule for treatment, are interested in being treated, and have time to
fully adjust their behavior accordingly,” the validity of the identi�cation arguments in the RDD approach
may fail to hold. McCrary proposes a test for the discontinuity at the cuto� in the density function of
the covariate. This paper instead provides a complete picture of how agents adjust their behavior when
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approaching the treatment threshold (if we consider the “next reputation category” as a treatment). We
contribute to the literature by documenting a scenario inwhich, at individuals’ optimal behavior, another
endogenous cuto� may occur in accordance with the incentive to achieve an exogenous threshold for
the treatment.

The rest of the paper is organized as follows. In Section 2, we introduce the estimation and inferences
in a TQRmodel where we propose three types of tests: one for testing the existence of a threshold e�ect,
the second for testing the presence of a common threshold value, and the third for the inference of a
common or noncommon threshold parameter. The asymptotic properties of both the estimators and test
statistics are reported. We conduct a sequence of Monte Carlo simulations in Section 3 to investigate the
�nite sample performance of our estimators and tests.We apply ourmethodology to study the pricing for
reputation through the use of a data set fromTaobao.com in Section 4. Section 5 concludes. All technical
assumptions and proofs of the main results are collected in the Appendix.

2. Estimation and inferences in quantile threshold regressionmodels

In this section, we �rst introduce the TQR model and propose a sup-Wald test for the existence of
a threshold e�ect. Then we study the asymptotic properties of the estimators of both the regression
coe�cients and the threshold parameter for a �xed quantile index τ and consider the inference issue
associated with the threshold parameter. Finally and most importantly, we study the estimation and
inference issues associated with the presence of a common threshold e�ect.

2.1. A quantile regression thresholdmodel

Let
{

yi, xi, ri
}n

i=1
be an independent sample, where yi and ri are real-valued and xi is a k×1 randomvector.

The threshold variable ri may be an element of xi, and is assumed to be exogenous with a continuous
probability density function (PDF) g (·). Let zi ≡ (x′

i, ri)
′ if ri /∈ xi, and zi ≡ xi otherwise. We assume

that the τ th conditional quantile of yi, given zi, is given by:

Qτ (zi) = α′
τxi1 {ri ≤ γτ } + β ′

τxi1 {ri > γτ } , (2.1)

where 1 {A} is an indicator function that takes value one if A holds true, and zero otherwise; and δτ ≡
ατ − βτ may be nonzero for some unknown threshold point γτ . If δτ is 0 for all γτ on the support of ri
and for all τ ∈ (0, 1), then we can say there is no regime change in the quantile regression model (2.1).
For technical simplicity, below we assume that γτ can only take values in a compact set Ŵ ≡ [γ , γ̄ ].

Let θ1τ ≡
(

α′
τ ,β

′
τ

)′
and θτ ≡ (θ ′

1τ , γτ )
′. De�ne the “check function” ρτ (·) by ρτ (u) ≡

(τ − 1 {u < 0}) u. Following Koenker and Bassett (1978), we obtain the quantile estimate θ̂τ of θτ
as:

θ̂τ ≡ argmin
θτ

Snτ (θτ ) with Snτ (θτ ) =
n
∑

i=1

ρτ
(

yi − θ ′
1τ zi (γτ )

)

, (2.2)

where zi (γ ) ≡
(

x′
i1{ri ≤ γ }, x′

i1{ri > γ }
)′
.

For this minimization, there is no closed-form solution. In fact, the objective function is not convex
in all of its parameters, and so it is di�cult to obtain the global minimizer. Nevertheless, we can consider
the pro�le quantile regression. For this, we �rst pretend that γτ is known and obtain an estimate of
(ατ ,βτ ) by:

(

α̂τ (γτ ) , β̂τ (γτ )
)

≡
(

α̂ (τ , γτ ) , β̂ (τ , γτ )
)

= argmin
ατ ,βτ

Snτ (ατ ,βτ , γτ ) , (2.3)

where Snτ is convex in its �rst two arguments. Let Ŝnτ (γ ) ≡ Snτ (α̂τ (γ ) , β̂τ (γ ) , γ ). Then we can
estimate γτ by:

γ̂τ = argmin
γ∈Ŵ

Ŝnτ (γ ) . (2.4)
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In view of the fact that Ŝnτ (γ ) takes on less than n distinct values, we follow Hansen (2000, p. 578) and
de�ne γ̂τ by choosing γτ over Ŵn = Ŵ∩{r1, r2, . . . , rn}. Then, computing γ̂τ requires at most n function
evaluations.1 However, if n is large, then we can approximate Ŵ by a grid as suggested by Hansen (2000).

A�er γ̂τ is obtained, we can compute the estimates of ατ and βτ as α̂τ = α̂τ
(

γ̂τ
)

and β̂τ = β̂τ
(

γ̂τ
)

,
respectively.

2.2. Test the existence of a change point

The preceding computation procedure is meaningful only if γτ is identi�ed, in which case a regime
change occurs for the τ th conditional quantile regression. It is thus worthwhile to consider a test for the
existence of a regime change before embarking on the estimation of γτ .

Let T ≡ [τ , τ ] ⊂ (0, 1) and21 ⊂ R
2k denotes the compact support for θ1τ . In principle, we allow the

support of θ1τ to be τ -dependent, and write21 as21τ . We use21 instead of21τ mainly for notational

simplicity. Let θ0n1τ ≡
(

α0′nτ ,β
0′
nτ

)′
denote the true value of θ1τ . It is fair to comment here that we allow

θ0n1τ to be n-dependent in our framework to facilitate the study of the estimate of θ1τ , even in the case
where we have a regime change but the jump size shrinks to zero as the sample size n → ∞. But, for
notational simplicity, we suppress the dependence of θ0n1τ , α

0
nτ , and β

0
nτ on n and write them as θ01τ , α

0
τ ,

and β0τ , respectively.
The null hypothesis of no regime change is

H0 : Qτ (zi) = zi (γ )
′ θ01τ ∀ γ ∈ Ŵ for some θ01τ ∈ 21 with α

0
τ = β0τ for all τ ∈ T . (2.5)

The alternative hypothesis is

H1 : Qτ (zi) = zi
(

γ 0
τ

)′
θ01τ for some

(

γ 0
τ , θ

0
1τ

)

∈ Ŵ ×21 with α
0
τ 6= β0τ for some τ ∈ T . (2.6)

Clearly, bothH0 andH1 are composite hypotheses, which are designed to test the existence of a regime
change at an arbitrary quantile point τ . For di�erent τ ’s, the regime changes are allowed to occur at
di�erent threshold values γ 0

τ under H1. If we restrict our attention to a single quantile τ , i.e., T = {τ },
then we can consider the following null hypothesis.

H0τ : Qτ (zi) = zi (γ )
′ θ01τ for some θ01τ ∈ 21 with α

0
τ = β0τ , (2.7)

regardless of the value of γ ∈ Ŵ, and the alternative hypothesis becomes

H1τ : Qτ (zi) = zi
(

γ 0
τ

)′
θ01τ for some θ01τ ∈ 21 with α

0
τ 6= β0τ and γ

0
τ ∈ Ŵ. (2.8)

The above formulation motivates us to consider the following τ th quantile regression of yi on zi (γ ) .

θ̂1 (τ , γ ) =
(

α̂ (τ , γ )′ , β̂ (τ , γ )′
)′

= argmin
θ1

n
∑

i=1

ρτ
(

yi − θ ′
1zi (γ )

)

. (2.9)

Even though γ is not identi�ed under H0 for any τ ∈ T , we can study the asymptotic property of

θ̂1 (τ , γ ) under H0 and propose a test for the null hypothesis of no regime change for all τ over T by

considering the asymptotic behavior of δ̂ (τ , γ ) ≡ α̂ (τ , γ )− β̂ (τ , γ ) over the compact set T × Ŵ.
Here we consider a sup-Wald statistic for testing H0. Let �(γ ) ≡ E

[

xix
′
i1 {ri ≤ γ }

]

,�∗ (γ ) ≡
E
[

xix
′
i1 {ri > γ }

]

,�(τ , γ ) ≡ E
[

xix
′
i1 {ri ≤ γ } f

(

α0′τ xi|zi
)]

, and �∗ (τ , γ ) ≡ E[xix′
i1 {ri > γ } ×

f
(

β0′τ xi|zi
)

], where f (·|z) denotes the conditional PDF of yi given zi = z. By Lemma B.1 in Appendix B,

1Let r(1) ≤ r(2) ≤ · · · ≤ r(n−1) ≤ r(n) denote the order statistics for {ri , i = 1, . . . , n}. It is well known that the solution to the
threshold quantile regression is not unqiue in the sense if γ̂τ ∈ [r(q) , r(q+1)) for some q is the solution, then any value on
[r(q) , r(q+1)) is also the solution. For this reason, Hansen (2000) recommended searching the solutions overŴ∩{r1, . . . , rn} .
But some researchers e.g., Yu (2012) suggested to search the solutions over Ŵ ∩ { 12 (r(1) + r(2)), . . . ,

1
2 (r(n−1) + r(n))} as the

solution.
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we can readily show that for each (τ , γ ) ∈ T × Ŵ,

√
nδ̂ (τ , γ )

d→ N
(

0k×1, τ (1 − τ)V (τ , γ )
)

, (2.10)

where
d→ denotes convergence in distribution, and

V (τ , γ ) ≡ �(τ , γ )−1�(γ )� (τ , γ )−1 +�∗ (τ , γ )−1�∗ (γ )�∗ (τ , γ )−1 . (2.11)

Let �̂ (γ ) ≡ n−1
∑n

i=1 xix
′
i1 {ri ≤ γ }, �̂∗ (γ ) ≡ n−1

∑n
i=1 xix

′
i − �̂ (γ ), �̂ (τ , γ ) ≡ (2nh)−1

∑n
i=1 1

{|yi − x′
iα̂τ | ≤ h}xix′

i1 {ri ≤ γ }, and �̂∗ (τ , γ ) ≡ (2nh)−1
∑n

i=1 1{|yi − x′
iβ̂τ | ≤ h}xix′

i1 {ri > γ }, where
h ≡ h (n) is a bandwidth parameter such that h → 0 and nh2 → ∞ as n → ∞ (see Koenker (2005,
pp. 80–81)). Using Lemma B.1 and following the proof of Theorem 3 in Powell (1991), one can readily
show that the above estimators are uniformly consistent with �(γ ), �∗ (γ ), �(τ , γ ), and �∗ (τ , γ ),
respectively, over T × Ŵ. Thus, a uniformly consistent estimate of V (τ , γ ) is given by:

V̂ (τ , γ ) ≡ �̂ (τ , γ )−1 �̂ (γ ) �̂ (τ , γ )−1 + �̂∗ (τ , γ )−1 �̂∗ (γ ) �̂∗ (τ , γ )−1 . (2.12)

Following Qu (2008) and Su and Xiao (2008) who consider testing for a permanent structural change
in time series quantile regression models and Galvao et al. (2014) who consider testing linearity against
threshold e�ects in quantile regression models, we propose a sup-Wald statistic for testingH0 given by:

supWn ≡ sup
(τ ,γ )∈T ×Ŵ

Wn (τ , γ ) , (2.13)

whereWn (τ , γ ) = nδ̂ (τ , γ )′ [τ (1 − τ) V̂ (τ , γ )]−1δ̂ (τ , γ ) .
The following theorem provides the asymptotic distribution of supWn.

Theorem 2.1. Let R ≡ [Ik,−Ik] with Ik being a k × k identity matrix, �0 (γ1, γ2) ≡ E[zi (γ1) zi (γ2)′],
and �1 (τ , γ ) ≡ E[f

(

θ0′1τ zi (γ ) |zi
)

zi (γ ) zi (γ )
′]. Suppose that Assumptions A1–A5 in Appendix A hold.

Suppose that h → 0 and nh2 → ∞ as n → ∞. Then, underH0,

supWn
d→ sup
(τ ,γ )∈T ×Ŵ

1

τ (1 − τ)
W (τ , γ )′�1 (τ , γ )

−1 R′V (τ , γ )−1 R�1 (τ , γ )
−1W (τ , γ )

where W (τ , γ ) is a zero-mean Gaussian process on T × Ŵ with covariance kernel E[W (τ1, γ1)
W (τ2, γ2)

′] = (τ1 ∧ τ2 − τ1τ2)�0 (γ1, γ2).

The preceding theorem shows that the limiting distribution of supWn depends on the bi-parameter
Gaussian process W (τ , γ ) . It is not pivotal and one cannot tabulate the critical values for the supWn

test. Nevertheless, given the simple structure ofW (τ , γ ), we can readily simulate the critical values for

the supWn test statistic. Observing that�1 (τ , γ ) =
(

�(τ ,γ ) 0k×k

0k×k �∗(τ ,γ )

)

, we can consistently estimate it by

�̂1 (τ , γ ) ≡
(

�̂(τ ,γ ) 0k×k

0k×k �̂∗(τ ,γ )

)

. Following Hansen (1996), we propose to simulate the critical values for

the supWn statistic with the following procedure:
1. Generate {ui, i = 1, . . . , n} independently from the uniform distribution on [0, 1];
2. Calculate Zn (τ , γ ) = n−1/2

∑n
i=1[τ − 1 {ui ≤ τ }]zi (γ );

3. Compute supW∗
n ≡ sup(τ ,γ )∈T ×Ŵ

1
τ(1−τ)Zn (τ , γ )

′ �̂1 (τ , γ )
−1 R′V̂ (τ , γ )−1 R�̂1 (τ , γ )

−1 Zn (τ , γ );

4. Repeat Steps 1–3 B times and denote the resulting supW∗
n test statistics as supW∗

n,j for j = 1, . . . ,B.

5. Calculate the simulated p-value for the supWn test as p
∗
W = 1

B

∑B
j=1 1{supW∗

n,j ≥ supWn}.
In practice, we compute the supWn by constructing a �ne partitionTm1×Ŵm2 ⊂ T ×Ŵ by a �nite grid

of m1 × m2 points. In our applications, we set m1 = m2 = 81 and choose T81 = {0.10, 0.11, . . . , 0.90}
and Ŵ81 as the collection of the τ th quantile of qi for τ ∈ T81. To obtain the simulated p-value, one can
choose a �ner partition because of the fast speed of computing supW∗

n .
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One can readily show thatZn (·, ·) ⇒ W (·, ·) in (ℓ∞ (T × Ŵ))2k, where⇒denotesweak convergence
and ℓ∞ (T × Ŵ) the space of all bounded functions onT ×Ŵ equippedwith the uniform topology.When
B is su�ciently large, the asymptotic critical value of the level α test based on supWn is approximately
given by the empirical upper α-quantile of {supW∗

n,j, j = 1, . . . ,B}. Therefore, we can reject the null

hypothesisH0 if the simulated p-value p∗
W is smaller than the prescribed nominal level of signi�cance α.

Note that by choosing T as a large compact subset of (0, 1), the above test can detect various violations
of the null hypothesis. Alternatively, specifying T = {τ } allows us to consider the test of structural or
regime change at a single quantile τ . In the case where we rejectH0τ for the speci�ed τ , we can further
consider estimating the location of the change point γτ underH1τ .

Remark 1. Using δτ = ατ − βτ , we can rewrite (2.1) as

Qτ (zi) = α′
τxi + δ′τxi1 {ri > γτ } . (2.14)

If γτ is known, one can follow Koenker and Machado (1999) and consider several tests for the null
hypothesis H0 : δ0τ = 0 ∀ τ ∈ T , which include a sup-Wald test. Our sup-Wald test can be regarded as
an extension of theirs to allow for the presence of unknown threshold e�ect. It is alsomotivated from the
literature on threshold regression; see, e.g., Hansen (1996) and Galvao et al. (2014) who only consider
sup-Wald tests too. In principle, any other smooth functional can be used in place of our sup functional
and our Wald statistic can be replaced by the LM or LR statistic. Let Tn (τ , γ ) denote any one of these
three statistics indexed by (τ , γ ) . A general test statistic can be written as a function g (Tn), where g (·)
maps functionals on T ×Ŵ to the real lineR andwe treatTn = {Tn (τ , γ ) : (τ , γ ) ∈ T × Ŵ} as a random
function on T × Ŵ. A basic requirement on g is that it is monotonic and continuous. The continuity is
required for us to apply the continuous mapping theorem. For brevity and clarity, we limit our attention
to the sup functional and focus on the Wald statistic only in this paper.

Remark 2. Our test for the absence of threshold e�ect can be put in the general framework of hypothesis
tests when a nuisance parameter (γτ here) is present only under the alternative. The statistics literature
goes back to at least Davies (1977, 1987). In econometrics, Andrews and Ploberger (1994) (AP herea�er)
and Hansen (1996) have made some fundamental contributions. AP focus on the asymptotic optimality
issue.Hansen (1996) proposes a heteroskedasticity-robust sup-Wald test and suggests a useful simulation
method to obtain the simulating critical values. But he does not discuss optimal choice of tests. GivenAP,
it is natural to ask considering an asymptotically optimal test for the absence of threshold e�ect, say, by
proposing an average exponential LM, LR, orWald test thatmaximizes the weighted average local power
among a class of tests. We �nd that the extension of AP’s optimal test to the current framework does
not appear appealing mainly for the following two reasons. First, as emphasized by AP, their optimality
results only apply in correctly speci�ed maximum likelihood contexts (see Remark 3 on p. 1394 in AP).
The correct speci�cation of the likelihood function is crucial for their optimality results but is generally
not needed for the usual sup-Wald-type test. In our TQR model, the loss function is associated with
the asymmetric Laplacean density: fτ (u) = τ (1 − τ) exp (−ρτ (u)), where ρτ (·) is the check function.
Despite this connection, it is rather implausible to assume the quantile error term follows the Laplacean
distribution; see Koenker and Machado (1999, p. 1298). Without assuming the correct speci�cation of
the error distribution (which is what a robust method like quantile regression tries to avoid exactly),
we cannot address the optimality issue of a test for the absence of quantile threshold e�ect. Second,
even if we make the above stringent distributional assumption on the quantile error term, the extension
is challenging due to the nonsmoothness of the check function ρτ (·) . AP requires that the density

function be twice continuously di�erential with respect to the parameter of interest (θ1τ =
(

α′
τ ,β

′
τ

)′

in our notation), which is violated in our setup. So their proof strategy which relies on the second order
Taylor expansion of the log-likelihood function repeatedly breaks down and some alternative method
must be called upon.
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In addition, Andrews and Ploberger (1995) demonstrate that the sup-Wald test and their asymptot-
ically equivalent tests, namely, the sup-LR and sup-LM tests, are asymptotically admissible in the sense
that they are the best tests against alternatives that are su�ciently distant from the null hypothesis in large
samples. It is natural to ask whether our sup-Wald test is also asymptotic admissible. Again, Andrews
and Ploberger (1995) work in a correctly speci�ed maximum likelihood framework where the density
function is twice continuously di�erentiable. Our quantile threshold regression does not �t into this
framework and for this reason, we do not verify the potential asymptotic admissibility of our sup-Wald
test here.

2.3. Asymptotic properties and inference underHHH1τ

In this section, we �rst investigate the asymptotic properties of θ̂1τ and γ̂τ underH1τ , and then focus on
the inference issue associated with the threshold parameter γτ . The analysis here will pave a way to the
test and inference issue associated with the common threshold parameter in the next section.

Let θ̂1τ ≡ (α̂′
τ , β̂

′
τ )

′ and θ̂τ ≡ (θ̂ ′
1τ , γ̂τ )

′. Let N (γ ) ≡ E
[

xix
′
i|ri = γ

]

, Dτ (γ ) ≡ E
[

f
(

α0′τ xi|zi
)

xix
′
i|ri = γ

]

, Nτ ≡ Nτ
(

γ 0
τ

)

, and Dτ ≡ Dτ
(

γ 0
τ

)

. We study the strong consistency of θ̂τ and the

asymptotic distributions of θ̂1τ and γ̂τ in the following two theorems, respectively.

Theorem 2.2. Suppose that Assumptions A1–A6 in Appendix A hold. Then θ̂τ = θ0τ + oa.s. (1) where
θ0τ = (θ0′1τ , γ

0
τ )

′.

Theorem 2.3. Suppose that Assumptions A1–A8 in Appendix A hold. Then

(i) n1/2(θ̂1τ − θ01τ )
d→ N

(

02k×1, τ (1 − τ)6
(

τ , γ 0
τ

))

,

(ii) n1−2a
(

γ̂τ − γ 0
τ

) d→ λτ
µ2
τ

argmax
r∈(−∞,∞)

{W (r)− 1
2 |r|},

where the parameter a is de�ned in Assumption A7, W (·) is a two-sided Brownian motion, 6 (τ , γ ) ≡
�1 (τ , γ )

−1�0 (γ , γ )�1 (τ , γ )
−1, λτ ≡ τ (1 − τ) v′

τNτ vτ g
(

γ 0
τ

)

,µτ ≡ v′
τDτ vτ g

(

γ 0
τ

)

, g (·) denotes the
PDF of ri, and vτ are de�ned in Assumption A7.

Recall that a two-sided Brownian motion on the real line is de�ned asW (r) = W1 (−r) 1 {r ≤ 0} +
W2 (r) 1 {r > 0}, whereW1 (·) andW2 (·) are two independent standard Brownian motions on [0,∞).
It is worth mentioning that the result in Theorem 2.3(i) continues to hold even if one allows a = 0 in
AssumptionA7.However, the asymptotic distribution of γ̂τ in Theorem 2.3(ii) remains valid only for the
case of a ∈ (0, 12 ) in Assumption A7, analogously to the case of the least squares threshold regression in
Hansen (2000) and the LAD threshold regression in Caner (2002). In particular, the limiting distribution
of our quantile threshold e�ect estimator is invariant to the quantile index up to the scalar e�ect ( λτ

µ2
τ
) and

the random component in the limiting distribution, i.e., argmax
r∈(−∞,∞)

{W (r)− 1
2 |r|} also appears in Hansen

(2000) and Caner (2002). In the case of a = 0, if we assume the independence of εiτ and zi, then we can
apply the result of Koul et al. (2003) and demonstrate that n

(

γ̂τ − γ 0
τ

)

converges in distribution to the
argmin of a two-sided compound Poisson process. However, such an independence assumption seems
too strong, and thus we focus only on the case of a ∈ (0, 12 ). Onemay also be interested in the asymptotic
behavior of γ̂ (τ ) ≡ γ̂τ when the estimators are treated as a stochastic process {γ̂ (·)} indexed by the
quantile index τ on the set T . But because the limiting process is non-Gaussian and cannot be simply
characterized by its mean and covariance kernel, we are unable to formally study this challenging issue.

Based on Theorem 2.3, we can conduct asymptotic tests for both the coe�cient and threshold

parameters. Because θ̂1τ is asymptotically normally distributed, the statistical inferences for θ1τ are
standard. We will focus on the study of statistical inferences for γτ below.
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To make inferences about γτ , one may be tempted to apply the asymptotic distribution result in
Theorem 2.3(ii). But since the asymptotic distribution of γ̂τ depends on some nuisance parameters,
inferences based on it tend to be poor in �nite samples. Below, we follow the spirit of Hansen (2000)
and consider an LR statistic to test the hypotheses about the threshold parameter γτ . Speci�cally, we are
interested in testing the null hypothesis

H0τ : γτ = γ 0
τ . (2.15)

We consider the LR statistic: LRnτ
(

γ 0
τ

)

= Snτ (θ̂1τ , γ
0
τ )− Snτ (θ̂1τ , γ̂τ ). We reject H0τ for large values of

LRnτ
(

γ 0
τ

)

. The following theorem establishes the asymptotic distribution of LRnτ
(

γ 0
τ

)

under H0τ .

Theorem 2.4. Suppose that Assumptions A1–A8 in Appendix A hold. Then under H0τ , LRnτ
(

γ 0
τ

) d→
λτ
2µτ
4, where4 ≡ supr∈(−∞,∞) {2W (r)− |r|} , and λτ ,µτ , and W (·) are as de�ned in Theorem 2.3.

Theorem 2.4 indicates that LRnτ
(

γ 0
τ

)

is not asymptotically pivotal under the null hypothesis. To
obtain an asymptotically pivotal test statistic, we need to estimate λτ and µτ and consider the following
normalized LR test statistic:

NLRnτ
(

γ 0
τ

)

= 2δ̂′τ D̂τ δ̂τ

τ (1 − τ) δ̂′τ N̂τ δ̂τ
LRnτ

(

γ 0
τ

)

, (2.16)

where δ̂τ ≡ α̂τ
(

γ 0
τ

)

− β̂τ
(

γ 0
τ

)

, N̂τ = N̂τ
(

γ 0
τ

)

is a consistent local linear (or constant) estimate of

Nτ
(

γ 0
τ

)

using the bandwidth h1 and the kernel K; D̂τ = D̂
(

γ 0
τ

)

= Êh1[f̂h1(α̂τ
(

γ 0
τ

)′
xi |zi)xix′

i|γ 0
τ ],

f̂h1 (·|zi) is a kernel estimate for the density of yi given zi using the bandwidth h1 and the kernel K, and

Êh1
(

·|γ 0
τ

)

is a kernel estimate of E
[

f
(

α0′τ xi|zi
)

xix
′
i|ri = γ 0

τ

]

using the bandwidth h1, the kernel K, and

the observations on f̂h1(α̂τ
(

γ 0
τ

)′
xi|zi)xix′

i and ri. Under the assumption that zi is compactly supported
with bounded density that is bounded away from 0 on its support, one can obtain both estimates by
the local linear method (e.g., Fan et al. (1996)) to avoid boundary bias and the asymptotic trimming
issue. In this case, we can regress φ

((

yi − y
)

/hy
)

on zi using the local linear method with kernel K and
bandwidth h1 to obtain f

(

y|zi
)

, where hy is another bandwidth and φ (·) is the standard normal PDF.

Under standard conditions, we can readily show that
δ̂′τ D̂τ δ̂τ

τ(1−τ)δ̂′τ N̂τ δ̂τ
→ µτ

λτ
in probability. Then, by the

Slutsky lemma, we haveNLRnτ
(

γ 0
τ

) d→ 4. That is,NLRnτ
(

γ 0
τ

)

is asymptotically pivotal. It is well known
that supr≤0[2W (r)− |r|] and supr≥0[2W (r)− |r|] are independent exponential random variables with

distribution function 1 − e−z such that the CDF of 4 is given by P (4 ≤ z) =
(

1 − e−z/2
)2
. We can

easily tabulate the asymptotic critical values for the normalized statisticNLRnτ
(

γ 0
τ

)

. See Hansen (2000,
p. 582) for more details. In addition, we can invert the NLRnτ

(

γ 0
τ

)

statistic to obtain the asymptotic
1 − α con�dence interval for γ 0

τ : 1 − α con�dence interval for the common threshold parameter γ 0

is given by C1−α = {γ : NLRnτ (γ ) ≤ 41−α , γ ∈ Ŵn}, where 41−α is the 1 − α upper percentile of 4
(e.g.,41−α = 5.94, 7.35 and 10.59 for α = 0.1, 0.05, and 0.01, respectively).

2.4. Test and inference for the common threshold parameter across quantiles

In data analysis, we may suspect that di�erent conditional quantile functions share a common threshold
value. If it were the case, joint analysis of multiple quantile regressions would improve the accuracy of
the common threshold estimate. In this section, we show that our previous analysis can be naturally
extended to the case of a common break, which turns out to be relevant in our empirical application
later.
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Recall that T ≡ [τ , τ ] ⊂ (0, 1) . We �rst propose a test for the hypothesis of common threshold value
on the set T . That is, we consider testing the null hypothesis

H0 : γτ = γ 0 for all τ ∈ T and some γ 0 ∈ Ŵ, (2.17)

versus the alternative hypothesis

H1 : There is no γ ∈ Ŵ such that γτ = γ for all τ ∈ T . (2.18)

The test of the null hypothesis in (2.17) serves as a speci�cation test for the key assumption of common
threshold value in Yu (2014). If the null is rejected, inferences in Yu (2014) would be invalid. Otherwise,
one can follow Yu (2014) and conduct inferences that tend to be more e�cient than those based on a
single quantile regression.

In general, γ 0 is not observed. Under H0 : γτ = γ 0 for all τ ∈ T , we can estimate γ 0 by

γ̃ ≡ γ̃ (5) ≡ argmin
γ∈Ŵ

Ŝn,5 (γ ) , (2.19)

where Ŝn,5 (γ ) =
∫

Snτ (θ̂1 (τ , γ ) , γ )d5(τ), and5 is a user-speci�ed probability distribution function
de�ned on T . A�er we obtain the estimate γ̃ of γ , we can estimate α0τ and β0τ by α̃τ = α̂ (τ , γ̃ ) and

β̃τ = β̂ (τ , γ̃ ), respectively. As before, let θ̂1 (τ , γ ) ≡ (α̂ (τ , γ )′ , β̂ (τ , γ )′)′ and θ̃1τ ≡ (α̃′
τ , β̃

′
τ )

′. The
following theorem summarizes the important properties of γ̃ , θ̃1τ , and θ̂1 (τ , γ ) .

Theorem 2.5. Suppose that Assumptions A1–A4 and A6–A9 in Appendix A hold. Then,
(i) γ̃ = γ 0 + oP (1) and θ̃1τ = θ01τ + oP (1) for each τ ∈ T ;

(ii)
√
n
(

θ̂1 (τ , γ )− θ01 (τ , γ )
)

= �̄1 (τ , γ )
−1 1√

n

∑n
i=1 ψτ

(

yi − θ01 (τ , γ )
′ zi (γ )

)

zi (γ ) + oP (1)

uniformly in (τ , γ ) ∈ T × Ŵ;

(iii) n1/2
(

θ̃1τ − θ01τ

)

d→ N
(

02k×1, τ (1 − τ)6
(

τ , γ 0
))

;

(iv) n1−2a
(

γ̃ − γ 0
) d→ λ0

µ2
0
argmax
r∈(−∞,∞)

{W (r)− 1
2 |r|};

where ψτ (u) ≡ τ − 1{u < 0}, the pseudo-true values γ 0, θ01τ and θ01 (τ , γ ) together with

�̄1 (τ , γ ) are de�ned in Assumption A9, λ0 ≡ {
∫

√

τ (1 − τ) v′
τNτ

(

γ 0
)

vτd5(τ)}2g
(

γ 0
)

, and

µ0 ≡
∫

v′
τDτ

(

γ 0
)

vτd5(τ) g
(

γ 0
)

in (iv), and W (·) is as de�ned in Theorem 2.3.

Theorem 2.5(i) implies the consistency of the parameter estimates. Theorem 2.5(ii) extends the
uniform Bahadur representation result in Lemma B.1 to allow a single common break in the quantile
processes. The last two parts of Theorem 2.5 are parallel to those in Theorem 2.3. In particular,
Theorem 2.5(iii) indicates that the �rst-order asymptotic distribution of θ̃1τ is the same as that of θ̂1τ
obtained before. This is as expected due to the asymptotic independence between the estimator of the
regression coe�cients and that of the threshold parameter.

Given the above estimator γ̃ of γ 0 under H0 and motivated from the early LR test for a threshold
parameter, we consider the following LR test statistic:

LRn =
∫

[

Snτ (θ̂1τ , γ̃ )− Snτ (θ̂1τ , γ̂τ )
]

d5(τ) . (2.20)

The following theorem reports the asymptotic distribution of the LRn statistic.

Theorem 2.6. Suppose that Assumptions A1–A4 and A6–A9 in Appendix A hold. Then, under H0 : γτ =
γ 0 for all τ ∈ T and some γ 0 ∈ Ŵ, we have LRn

d→ cLR4, where cLR =
∫

λτ
2µτ

d5(τ)− λ0
2µ0

, λτ , µτ and

4 are de�ned in Theorem 2.4, and λ0 and µ0 are de�ned in Theorem 2.5.
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To implement the LRn test, we need to estimate cLR. Following the discussion a�er Theorem 2.4, we
propose to estimate it by

c̃LR = 1

2

∫

τ (1 − τ) δ̂′τ N̂τ δ̂τ

δ̂′τ D̂τ δ̂τ
d5(τ)−

{

∫

√

τ (1 − τ) δ̂′τ N̂τ δ̂τd5(τ)

}2

2
∫

δ̂′τ D̂τ δ̂τd5(τ)
(2.21)

where δ̂τ , N̂τ , and D̂τ are de�ned as before. Using the Cauchy–Schwarz inequality, we can easily show

that c̃LR ≥ 0 and the equality holds if and only if δ̂′τ N̂τ δ̂τ = (δ̂′τ D̂τ δ̂τ )
2 a.e.-5. It is easy to show that c̃LR

converges in probability to cLR. Then under under H0, the normalized version of LRn satis�es

NLRn ≡ c̃−1
LRLRn

d→ 4. (2.22)

In some applications, γ 0 is known under the null hypothesis of common threshold. This can be the
case of the RDD framework where the potential discontinuity/threshold point is commonly observable.
It can also be the case when one fails to reject the null hypothesis using the above NLRn test statistic,
concludes that the quantile regression shares a common threshold value for τ ∈ T , and then tries to
test whether the common threshold value is given by particular value γ 0. In this case, we write the null
hypothesis as

H∗
0 : γτ = γ 0 for all τ ∈ T (2.23)

and the alternative hypothesis as

H∗
1 : γτ 6= γ 0 for some τ ∈ T . (2.24)

In this case, we investigate the following LR statistic:

LRn
(

γ 0
)

=
∫

[

Snτ

(

θ̂1τ , γ
0
)

− Snτ

(

θ̂1τ , γ̃
)]

d5(τ) . (2.25)

We rejectH∗
0 for large values of LRn

(

γ 0
)

. The following theorem establishes the asymptotic distribution

of LRn
(

γ 0
)

under H∗
0 in (2.23).

Theorem2.7. Suppose that Assumptions A1–A4 and A6–A9 in Appendix A hold. Then, under H∗
0 we have

LRn
(

γ 0
) d→ λ0

2µ0
4, where λ0 and µ0 are as de�ned in Theorem 2.5.

Clearly, the asymptotic distribution of LRn
(

γ 0
)

is analogous to that of LRnτ
(

γ 0
τ

)

in Theorem 2.4
under H0τ for a speci�c quantile index τ . To implement the test, we consider the following normalized
version of LRn

(

γ 0
)

:

NLRn
(

γ 0
)

=
2
∫

δ̃′τ D̃
(

γ 0
)

δ̃τd5(τ)
{

∫

√

τ (1 − τ) δ̃′τ Ñτ
(

γ 0
)

δ̃τd5(τ)

}2
LRn

(

γ 0
)

, (2.26)

where δ̃τ = α̃τ − β̃τ , and D̃
(

γ 0
)

and Ñτ
(

γ 0
)

are de�ned analogously to D̂
(

γ 0
τ

)

and N̂τ
(

γ 0
τ

)

. One can

readily show that NLRn
(

γ 0
) d→ 4 underH∗

0 . The 1− α con�dence interval for the common threshold

parameter γ 0 is given by C1−α =
{

γ : NLRn (γ ) ≤ 41−α , γ ∈ Ŵn
}

.

By the de�nitions of the two LR statistics, namely, LRn in (2.20) and LRn
(

γ 0
)

in (2.25), we use

the unrestricted estimators θ̂1τ for the likelihood under both the null and alternative hypotheses. We
can do this because the value θ01τ is not a�ected by whether the threshold parameter γτ is common

or not, making θ̂1τ consistent under both the null and alternative. A close examination of the proofs
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of Theorems 2.6 and 2.7 suggests that such a use of the same estimators θ̂1τ generates some cancelling
mechanism to greatly facilitate the proof. Conceptually, onemay consider using the restricted estimators
of θ1τ under the null but that will greatly complicate the derivation of the asymptotic distributions of our
LR test statistics.

3. Monte Carlo simulations

In this section, we conduct a set of Monte Carlo experiments to evaluate the �nite sample performance
of our tests and estimates.

3.1. Data generating process

We consider the following data generating process (DGP):

yi =
{

[1 +8−1(vi)] + (a0 + a1vi)xi, if ri ≤ 0.5 + c|vi − 0.5|
[

1 +8−1(vi)+ c0n
−1/8

]

+
(

a0 + a1vi + c0n
−1/8

)

xi, if ri > 0.5 + c|vi − 0.5|
, (3.1)

where 8(·) is the standard normal cumulative distribution function (CDF), xi’s are independent and
identically distributed (IID) from the Beta (2, 3) distribution, ri’s and vi’s are independently generated
from the uniform distribution on [0, 1]. In our simulation, we chose a0 = 1 and a1 = 0.5 and consider
various values for c0 and c. We consider both sample sizes of n = 200 and n = 400. The number of
repetitions is set as 500.

Apparently, the τ th conditional quantile of yi given (xi, ri) is

Qτ (xi, ri) =
{

[1 +8−1(τ )] + (1 + 0.5τ)xi
}

1 {ri ≤ 0.5 + c|τ − 0.5|}
+
{

[1 +8−1(τ )+ c0n
−1/8] + (1 + 0.5τ + c0n

−1/8)xi
}

1 {ri > 0.5 + c|τ − 0.5|} .

Here, c0n
−1/8 signi�es the jump size for both the intercept and slope coe�cients. (3.1) can accommodate

various scenarios of interest by taking di�erent values on c0 and c. In particular, we shall consider the
following cases:
1. c0 = 0. In this case, there is no quantile threshold e�ect irrespective of the value of c.
2. c = 0 and any nonzero c0. In this case, we have the quantile threshold e�ect and the threshold e�ect

is common across all quantile indices τ and given by γ 0 = 0.5.
3. c = 0.5 and any nonzero c0. In this case, we have the quantile threshold e�ect γ

0
τ = 0.5+0.5·|τ−0.5|,

which is varying over τ .

3.2. Test for the presence of quantile threshold e�ect

We �rst consider the sup-Wald test for the presence of quantile threshold e�ect at the three conventional
signi�cance levels, namely, 1%, 5%, and 10%. To obtain the simulated p-value for the test statistic, we

need to choose the bandwidth h = h (τ ) to obtain the estimates �̂ (τ , γ ) and �̂∗ (τ , γ ) . Following
Koenker (2005), we set h (τ ) = κ

[

8−1 (τ + en)−8−1 (τ − en)
]

, where κ is a robust estimate of the

scale of the quantile residual, en = 2
3n

−1/3, and 8−1 (·) is the inverse function of 8(·) . To implement
the sup-Wald test, we �rst consider the test for a �xed quantile index where the set T is a singleton {τ }
for τ = 0.1, 0.2, . . ., and 0.9. Then we consider the test by setting T = [0.1, 0.9].

Table 1 reports the rejection frequency for testing the presence of quantile threshold e�ect. We
consider 500 repetitions and generate 200 simulated samples of {ui} in each repetition to obtain the
simulated p-values. We made a few observations from Table 1. First, the top panel in Table 1 indicates
that the sup-Wald test tends to be undersized where T = {τ } is a singleton and τ lies close to either 0
or 1, and it is moderately oversized for the 5% test when τ takes value around 0.5. This is especially true
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Table 1. Rejection frequency for the test of existence of a threshold e�ect.

n = 200 n = 400

T \ Level 1% 5% 10% 1% 5% 10%

No threshold e�ect (c0 = 0, c = 0)
0.1 0.004 0.028 0.042 0.018 0.040 0.072
0.2 0.010 0.034 0.050 0.026 0.050 0.072
0.3 0.018 0.054 0.068 0.032 0.050 0.066
0.4 0.024 0.052 0.080 0.036 0.068 0.100
0.5 0.020 0.064 0.092 0.020 0.064 0.088
0.6 0.040 0.068 0.098 0.026 0.054 0.086
0.7 0.030 0.062 0.084 0.022 0.048 0.078
0.8 0.018 0.044 0.068 0.016 0.044 0.062
0.9 0.008 0.026 0.054 0.012 0.056 0.094
[0.1, 0.9] 0.010 0.030 0.056 0.030 0.062 0.086

Common threshold value (c0 = 0.5, c = 0)

0.1 0.050 0.102 0.148 0.084 0.198 0.272
0.2 0.040 0.104 0.146 0.114 0.204 0.286
0.3 0.108 0.182 0.250 0.140 0.254 0.338
0.4 0.110 0.200 0.268 0.184 0.310 0.394
0.5 0.090 0.194 0.270 0.196 0.328 0.380
0.6 0.104 0.190 0.248 0.160 0.292 0.344
0.7 0.082 0.158 0.220 0.120 0.288 0.348
0.8 0.042 0.102 0.148 0.110 0.204 0.278
0.9 0.032 0.082 0.122 0.106 0.184 0.260
[0.1, 0.9] 0.064 0.118 0.150 0.144 0.280 0.346

Noncommon threshold value (c0 = 0.5, c = 0.5)

0.1 0.058 0.126 0.172 0.124 0.226 0.312
0.2 0.058 0.128 0.182 0.136 0.216 0.282
0.3 0.116 0.208 0.270 0.156 0.254 0.336
0.4 0.116 0.212 0.272 0.212 0.354 0.416
0.5 0.096 0.210 0.274 0.188 0.330 0.402
0.6 0.094 0.172 0.242 0.156 0.252 0.332
0.7 0.070 0.128 0.182 0.096 0.232 0.312
0.8 0.032 0.076 0.112 0.072 0.160 0.232
0.9 0.022 0.056 0.088 0.056 0.122 0.178
[0.1, 0.9] 0.052 0.136 0.174 0.148 0.268 0.340

Common threshold value (c0 = 1, c = 0)

0.1 0.204 0.390 0.480 0.542 0.740 0.812
0.2 0.258 0.460 0.546 0.720 0.856 0.894
0.3 0.422 0.596 0.680 0.788 0.902 0.944
0.4 0.474 0.652 0.734 0.854 0.930 0.954
0.5 0.508 0.666 0.744 0.852 0.926 0.942
0.6 0.522 0.692 0.756 0.830 0.924 0.946
0.7 0.452 0.610 0.680 0.770 0.892 0.926
0.8 0.334 0.496 0.580 0.666 0.810 0.864
0.9 0.248 0.416 0.524 0.550 0.740 0.802
[0.1, 0.9] 0.374 0.550 0.648 0.848 0.940 0.960

Noncommon threshold value (c0 = 1, c = 0.5)

0.1 0.250 0.440 0.520 0.576 0.706 0.780
0.2 0.358 0.532 0.612 0.686 0.844 0.886
0.3 0.526 0.668 0.740 0.836 0.916 0.942
0.4 0.588 0.738 0.806 0.858 0.934 0.948
0.5 0.562 0.690 0.774 0.852 0.924 0.948
0.6 0.476 0.638 0.696 0.798 0.896 0.926
0.7 0.350 0.524 0.622 0.726 0.856 0.900
0.8 0.224 0.412 0.504 0.552 0.766 0.836
0.9 0.114 0.248 0.344 0.366 0.564 0.692
[0.1, 0.9] 0.410 0.570 0.626 0.852 0.938 0.972

(Continued)
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Table 1. Continued.

n = 200 n = 400

T \ Level 1% 5% 10% 1% 5% 10%

Common threshold value (c0 = 2, c = 0)

0.1 0.956 0.994 0.998 0.998 1 1
0.2 0.986 0.996 1 1 1 1
0.3 1 1 1 1 1 1
0.4 1 1 1 1 1 1
0.5 1 1 1 1 1 1
0.6 1 1 1 1 1 1
0.7 0.998 1 1 1 1 1
0.8 0.992 0.998 0.998 1 1 1
0.9 0.96 0.99 0.994 1 1 1
[0.1, 0.9] 1 1 1 1 1 1

Noncommon threshold value (c0 = 2, c = 0.5)

0.1 0.938 0.972 0.980 0.994 0.998 0.998
0.2 0.984 0.994 0.996 1 1 1
0.3 0.996 1 1 1 1 1
0.4 1 1 1 1 1 1
0.5 1 1 1 1 1 1
0.6 0.998 1 1 1 1 1
0.7 0.988 0.998 1 1 1 1
0.8 0.960 0.982 0.994 1 1 1
0.9 0.880 0.950 0.970 1 1 1
[0.1, 0.9] 0.994 1 1 1 1 1

when n = 200. When T = [0.1, 0.9], both the 5% and 10% tests are undersized when n = 200, but the
sizes improve quickly when n is increased to 400.

Second, in terms of power, we compare three cases with di�erent values of c0, i.e., c0 = 0.5, 1 and
2 in Table 1. It shows that for any given sample size, the larger value of c0 the higher power of our test.
It is indeed intuitive. The power of our test to detect the presence of threshold e�ect depends on the
underlying jump size at the thresholds in the DGP. Of course, it also depends on the choice of T .

Next, we focus on the DGP with moderate jump size at threshold (i.e., c0 = 1). We observe that our
test has stable power, no matter whether the threshold e�ect is common or not. When n = 200, the test
based on T = [0.1, 0.9] is not necessarily more powerful than those based on individual quantile index
for τ to take values not far away from 0.5. Nevertheless, for n = 400, we observe that the test based
on T = [0.1, 0.9] is more powerful than those based on individual quantile index τ . This suggests the
bene�t of taking supremum over τ ∈ T in large samples.

3.3. Estimation results

We consider the estimation of the TQR model in both cases of common threshold value (c = 0) and
non-common threshold value (c = 0.5). We also specify c0 = 0.5 in DGP (3.1). Table 2 provides the
mean squared error (MSE) of the estimates of quantile regression coe�cients when τ = 0.1, 0.2, . . . , 0.9
across 500 repetitions. The results in Table 2 are as expected. First, the MSEs are generally larger when
τ is close to 0 or 1 than when τ is close to 0.5. Second, as the sample size n doubles, we observe that
the MSEs are roughly halved, which is consistent with the

√
n-consistency of the quantile regression

coe�cient estimators.

3.4. Test for the presence of a common threshold value

We implement the LR test for the presence of a common threshold value. The test statistic used is NLRn
de�ned in (2.22). To construct the test statistic, we need to specify the probability distribution function
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Table 2. MSE of estimates of the quantile regression coe�cients in the presence of threshold e�ect.

n = 200 n = 400

ατ βτ ατ βτ

τ Intercept Slope Intercept Slope Intercept Slope Intercept Slope

Common threshold value (c0 = 0.5, c = 0)
0.1 0.322 1.764 0.542 2.767 0.170 0.819 0.153 0.848
0.2 0.211 1.208 0.228 1.242 0.117 0.553 0.119 0.682
0.3 0.176 0.979 0.207 1.057 0.110 0.566 0.099 0.535
0.4 0.169 0.902 0.205 1.053 0.100 0.535 0.091 0.500
0.5 0.166 0.890 0.214 1.070 0.098 0.542 0.080 0.472
0.6 0.170 0.908 0.199 0.999 0.114 0.572 0.085 0.470
0.7 0.194 0.952 0.221 1.207 0.109 0.543 0.100 0.529
0.8 0.235 1.251 0.314 1.719 0.124 0.634 0.098 0.517
0.9 0.300 1.559 0.797 4.898 0.150 0.704 0.156 0.836

Noncommon threshold value (c0 = 0.5, c = 0.5)

0.1 0.301 1.662 0.343 1.735 0.157 0.754 0.220 1.140
0.2 0.194 1.025 0.301 1.556 0.103 0.508 0.139 0.851
0.3 0.155 0.870 0.252 1.205 0.096 0.507 0.112 0.680
0.4 0.166 0.901 0.231 1.146 0.096 0.499 0.098 0.550
0.5 0.160 0.904 0.210 1.104 0.099 0.551 0.082 0.482
0.6 0.162 0.875 0.204 0.987 0.109 0.527 0.086 0.499
0.7 0.203 1.047 0.231 1.211 0.089 0.457 0.106 0.562
0.8 0.215 1.148 0.401 1.966 0.115 0.588 0.117 0.646
0.9 0.295 1.502 0.440 2.175 0.150 0.705 0.205 1.273

5(·) . Here, we specify5(·) through its PDF π (·) :
π(τ) = 2 − 4 (τ − 0.5) sgn(τ − 0.5), (3.2)

where sgn(u) = −1 if u ≤ 0 and 1 otherwise. One can check that π(τ) is non-negative and integrated
into one on [0, 1] . Apparently, this way of speci�cation of π (·) allows us to put more weight on τ when
it is around 0.5 than when τ is close to either end because of the low estimation accuracy of the quantile
regression coe�cients when τ is close to 0 or 1. To test from the presence of common threshold on
T = [τ , τ̄ ], we approximate the integral as follows:

∫ τ̄

τ

A (τ ) d5(τ) ≈ 1

N

N
∑

j=1

A
(

τj
)

π
(

τj
)

,

where A (·) is an arbitrary smooth function and τ1, τ2, . . . , τN are equally spaced on T . The above
approximation can be justi�ed from the law of large numbers in statistics or the Riemann sum formula
for approximating a de�nite integral, and the approximation error can be made arbitrarily well by
choosing su�ciently large N. We �nd through simulations that our simulation results are not sensitive
to the choice of N provided N ≥ 40. To save on computation, we �x N = 41 in our simulations.

We then let c varies from 0 to 1 in DGP.When c = 0, we examine the level behavior of ourNLRn test;
when c > 0, we check whether NLRn has any power to detect the deviation from the null hypothesis of
a common threshold value. In particular, our concern is how the power function depends on the value
of c.

To construct the test statistic NLRn in (2.22), we obtain the estimates D̂τ and N̂τ by following the
remarks a�er Theorem 2.4. We consider the local linear estimates of the conditional density f (·|zi) by
following Fan et al. (1996) closely. We choose the kernel function K as the standard normal PDF and
specify the two bandwidth sequences by following Silverman’s normal reference rule: hy = 1.06syn

−1/5

and h1 = 1.06szn
−1/6 where sz = (sx, sr), and sy, sx, and sr denote the sample standard deviations of

{

yi
}

, {xi} and {ri}, respectively.
Figure 1 plots the rejection frequency of ourNLRn test for the presence of a common threshold value

when the nominal level is �xed at 0.05 and the number of replications is 500. When c = 0, the rejection
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Figure 1. The power function of the NLRn test for a common threshold value.

frequency is about 0.032 and 0.040 for n = 200 and 400, respectively. This suggests that the level of the
test is well controlled. As c increases, we observe the stable increase in the power function. As n increases,
the power also increases for the �xed positive value of c. This indicates that our test has reasonably good
power in detecting deviations from the null hypothesis of a common threshold value.

3.5. Inference on the threshold parameter

It is well known that the inference on the threshold parameter in a threshold regression is a hard problem
despite the availability of the asymptotic distribution result. Here we consider the inference on the
threshold parameter based on individual TQR or integrated QR in the case of a common threshold
value.

Following Hansen (2000), we �rst consider the empirical coverage ratio and average length for the
95% con�dence interval for γ 0

τ by inverting theNLRnτ
(

γ 0
τ

)

given in (2.16). To construct the test statistic,

we obtain the estimates D̂τ and N̂τ as described above. The con�dence interval is asymptotically valid no
matter whether the threshold parameters are common across the quantile index τ or not. In the presence
of a common threshold value, we also consider the empirical coverage ratio and average length for the
95% con�dence interval for the common threshold parameter γ 0 by inverting the NLRn

(

γ 0
)

given in
(2.26).

Table 3 reports the results the empirical coverage ratio and average lengths for constructing the 95%
con�dence intervals of γ 0

τ or γ 0. It shows that, for both empirical coverage ratio and average lengths of
the estimated con�dence intervals, tail index (i.e., when τ is close to 0 or 1) performs less satisfactory
than the middle range of values for τ . As the sample size n increases, both measures get to improve, that
is, the average lengths decrease and coverage ratios approach to the nominal 95% con�dence level. Most
favorably, however, the inference on γ 0 seems to perform better in general than that of γ 0

τ .

4. Empirical application: Pricing for reputation

In this section, we apply our methodology to investigate the reputation and pricing patterns on the
dominant online trading platform in China, Taobao.com. Similar to eBay in the United States, Taobao
provides a platform for businesses and individual entrepreneurs to open online retail stores that cater
mainly to consumers in mainland China.

The reputation scoring system in Taobao.com works as follows. Once a transaction is completed, a
buyer who is a member of Taobao.com is quali�ed to review the seller’s service according to his/her
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Table 3. Coverage ratio for the 95% con�dence interval of γτ and its average length.

n = 200 n=400

τ γτ Coverage ratio Average length Coverage ratio Average length

Common threshold value (c0 = 0.5, c = 0)
0.1 0.5 0.996 0.681 0.976 0.674
0.2 0.5 0.982 0.659 0.980 0.656
0.3 0.5 0.970 0.637 0.960 0.609
0.4 0.5 0.974 0.610 0.946 0.567
0.5 0.5 0.948 0.594 0.946 0.527
0.6 0.5 0.950 0.588 0.946 0.526
0.7 0.5 0.962 0.600 0.934 0.549
0.8 0.5 0.976 0.628 0.946 0.600
0.9 0.5 0.982 0.660 0.978 0.612
0.1–0.9 0.5 0.918 0.572 0.946 0.513

Noncommon threshold value (c0 = 0.5, c = 0.5)

0.1 0.7 0.986 0.670 0.978 0.665
0.2 0.65 0.982 0.639 0.978 0.611
0.3 0.6 0.980 0.622 0.968 0.581
0.4 0.55 0.964 0.606 0.956 0.558
0.5 0.5 0.916 0.599 0.948 0.537
0.6 0.55 0.918 0.584 0.936 0.527
0.7 0.6 0.940 0.599 0.942 0.551
0.8 0.65 0.934 0.626 0.946 0.603
0.9 0.7 0.950 0.671 0.964 0.674

Table 4. The reputation scoring system on Taobao.com.

Category Points needed Category icon Category Points needed Category icon

1 4–10 1-heart 11 10,001–20,000 1-crown
2 11–40 2-hearts 12 20,001–50,000 2-crowns
3 41–90 3-hearts 13 50,001–100,000 3-crowns
4 91–150 4-hearts 14 100,001–200,000 4-crowns
5 151–250 5-hearts 15 200,001–500,000 5-crowns
6 251–500 1-diamond 16 500,001–1,000,000 1-gold crown
7 501–1,000 2-diamonds 17 1,000,001–2,000,000 2-gold crowns
8 1,001–2,000 3-diamonds 18 2,000,001–5,000,000 3-gold crowns
9 2,001–5,000 4-diamonds 19 5,000,001–10,000,000 4-gold crowns
10 5,001–10,000 5-diamonds 20 10,000,000+ 5-gold crowns

experience of the transaction. In addition to any written comments, the review has to conclude with a
rating of “good,” “neutral,” or “bad.” In accordance with the buyer’s review, the seller accrues one point
for a “good” review, loses one point for a “bad” one, and gets nothing for a “neutral” review. Taobao.com
also categorizes sellers’ reputation status based on their reputation scores. Table 4 lists the 20 categories.
For example, a seller with a reputation score between 4 and 10 falls into the “1-heart” category. The
categories progress with numbers 1 to 5 and from heart to diamond, crown, and gold crown. At the
time of posting prices, the information on seller’s reputation scores and category will both be revealed
to potential trading partners.

4.1. Data

We collect the trading data on the iPod Nano IV 8G on Taobao.com from September to December
2009. Two factors motivate the choice of iPod Nano for this study. First, developed by Apple, the iPod
Nano has become a popular choice among young consumers in China. This group of consumers is more
familiar, and therefore more comfortable, with the trading rules and logistics of online transactions.
Consequently, this group is more likely to become the target of online promotions. Second, the iPod
Nano is designed to di�erentiate itself substantially from the other digital media players available on the
market. Therefore, to a large extent, we sustain our analysis on a homogeneous product.

We �rst plot the raw data of prices and reputation scores and the histogram of the sellers’ reputation
category in Figures 2 and 3, respectively. Two observations can bemade from these plots, whichmotivate
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our empirical study. First, Figure 2 indicates that the prices posted by the sellers with reputation scores
5000 or above aremuch less scattered with a signi�cantly highermean than other sellers in themarket. It
echoes the established results in the literature that the reputation rewards. Furthermore, Figure 3 suggests
thatmost of the sellers are spread betweenCategories 1 and 9 (1-heart to 4-diamonds), and very few have
accumulated more than 50,000 good reviews (Category 12). We therefore spot a possible exogenous
cuto� that might provide incentives for the sellers on Taobao.com to price for a better reputation: that
is, 5000, the point at which a seller moves from Category 9 (4-diamonds) to Category 10 (5-diamonds).
Sellers near the cuto� of 5000 are strongly motivated to move up to 5-diamonds, where they can enjoy a
higher pay-o� from their better reputation, with a tremendous reduction in competition. We therefore
de�ne “reputation” in this application by a seller’s reputation classi�ed as Category 10 or above. Second,
the price distributions appear di�erent for the reputation scores in the range of 2500–3500. We then
suspect that there may involve a regime change in underlying pricing strategies occurred in this range,
given the possible motives from the “reputation.”

Figure 2. Scatter plot of the raw data.

Figure 3. The histogram of reputation category.



ECONOMETRIC REVIEWS 19

4.2. Economicmodel of pricing for reputation

Next, we construct an economic model to explain the pricing strategy that a seller may adopt when the
bene�t from a better reputation concerns the pricing decision. In our model, we demonstrate that, at a
certain threshold on the reputation level, a seller may decide to undercut the current price in exchange
for the future gain. Such a pricing pattern entails a “jump” or “regime change” in the pricing rule. We
therefore refer to this pattern as “pricing for reputation”.

Consider a monopolist with current reputation status (score) r who is selling a product with zero
marginal cost. A one-shot demand is Q(p) = 1 − αp (for 0 ≤ p ≤ 1/α, to guarantee non-negative
sales). Among the salesmade, the seller can receive a number of good reviews.When accumulating these
good reviews to exceed a threshold r̄, the seller can receive an extra (exogenous) pro�t β . The empirical
literature has documented extensive evidence to show that sellers with a superior reputation generate
signi�cantly higher pro�ts. This β can be thought of as the discounted future pro�t from operating with
a better business reputation. Thus, the seller’s expected pro�t function is given by

50(p; r) = 51(p; r)+52(p; r)

= 51(p; r)+ β · Pr[R(p, e) ≥ r̄ − r],
where R(p, e) denotes the accrued good reviews from sales by charging a price p, and e is a random
factor that generates the randomness of52 for any given

(

p, r
)

. Therefore,51 denotes the pro�t a seller
obtains from the market without any concerns over reputation bene�ts, and52 is the expected gain in
extra pro�t from good reputation.

We further specify R(p, e) = 1 − αp − e. Note that in such a speci�cation we implicitly assume
that more sales (from charging lower prices) tend to generate more good reviews. Moreover, e can be
understood as the part of the sales that incur bad reviews. Then, the probability of bene�ting from
reputation is Pr[1 − αp − e > r̄ − r] = F(1 − αp − r̄ + r), where F is the cumulative distribution
function of e with density f , which is everywhere di�erentiable on its domain [0, 1]. The seller’s pro�t
function becomes

50(p; r) = p(1 − αp)+ βF(1 − αp − r̄ + r).

Let f ′ and f ′′ denote the �rst- and second-order derivatives of f . We make the following assumptions
on the density function f .

Assumption M1. There exists ê ∈ (0, 1] such that f (ê) < 1/(αβ) and f ′(ê) = 0. Moreover, f ′(e) >
0 ∀ e < ê, and f ′(e) < 0 ∀ e > ê.

Assumption M2. There exists ẽ ∈ (0, ê) such that f ′(ẽ) > 2/(αβ). Moreover, lime→0 f
′(e) < 2/(αβ).

These assumptions require a special curvature on f to the le� of its mode. This curvature induces
increasingmarginal returns on a segment of50, which implies that the pro�t function50 is not globally
concave. Indeed, it is this particular curvature that delivers the pricing strategy for reputation in the
following proposition.

Proposition 4.1. Suppose Assumptions M1 and M2 hold. Then the seller’s optimal pricing strategy entails
a regime change. That is, there exist a threshold of reputation γ0 and two di�erent pricing regimes p∗

1(r)
and p∗

2(r) such that the seller’s optimal pricing rule p∗(r) is

p∗(r) =







p∗
1(r) if r ≤ γ0

p∗
2(r) if r > γ0

,

where ∂p∗
1(r)/∂r < 0.
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We leave the technical proof of Proposition 4.1 and detailed discussion on the model intuition to the
Supplementary Appendix C. It is worth mentioning that Assumption M1 implies that f is a unimodal
density function. This is plausible in application, if one believes that, for example, the randomprocess for
a consumerwriting a good review follows a binomial distribution. Then, the uncertainty a sellermay face
for not getting good reviews from sales may be well approximated by a normal distribution. The height
restriction on f in Assumption M1 ensures that the �rst-order condition is equipped with a solution,
thereby e�ectively ruling out an uninteresting case in which the reputation e�ect would dominate over
the current monopolistic pricing (and therefore the seller would charge zero price). We can extend the
model by allowing for more general curvatures on the tails of f . Our major �ndings on pricing strategy
in the model remain valid, but the extension unnecessarily complicates the analysis by introducing
multiple optimal solutions. Therefore, we decide to retain the most simplifying assumption for ease of
exposition.

Proposition 4.1 suggests that the seller’s optimal pricing schedule when r ∈ [γ0, r̄] is di�erent from
that when r < γ0. Such a regime change predicts two observable patterns in the seller’s optimal pricing.
First, there exists a discontinuity in the pricing function, which occurs at γ0. In our model, the “jump”
re�ects the local maxima switches at the seller’s optimal pricing decision. Second, the pricing function
is always negatively sloped in r before the regime change (i.e., r < γ0). However, the dependence of
pricing function with respect to r a�er γ0 is indeterminate. In our model, such an ambiguity is induced
by the unimodal shape of probability distribution on not incurring good reviews from sales. It is these
particular pricing patterns that are referred to as the “reputation e�ect” in this paper.

Apparently, the exact value of γ0 hinges on themodel parameters ofα andβ , which capture themarket
demand situation and the seller’s perceived gain from future goodwill, respectively. We may naturally
expect that the sellers are heterogeneous and that di�erent sellers face di�erent sets of such model
parameters uponmaking their decisions. As in any typical empirical work, our economicmodel can also
accommodate other covariates to control the observed heterogeneity across sellers. Quantile regression
is a �exible way tomodel the heterogeneous in�uences of explanatory variables on the response variable,
which is the selling price here.

Our application of pricing strategy at Taobao.com connects our work to the literature of reputation.
Empirical studies are abundant for the past decade, ensuing the emerging digital market of internet.
Among them, the most related branch should be the one which have documented extensive evidence to
show that sellers enjoy greater bene�ts from a better reputation. See, for example, Bolton et al. (2004)
and Resnick et al. (2006). Moreover, Cabral and Hortacsu (2010) explicitly acknowledge the existence
of signi�cant unobservable seller heterogeneity in the electronic markets. Our model and methodology
developed above respect and include these features of internet market in the literature. It has also been
noticed that only reviewers who provide good reviews tend to break the silence. See, e.g., Dellarocas and
Wood (2008). This pattern partially validates our theoreticalmodel, in which a distribution that does not
elicit good reviews plays a central role in equilibrium pricing. Our focus on the le� tail of the distribution
becomes more relevant. To the best knowledge of ours, we are not aware of any other theory model that
is designed for reputation system in internet market of this kind.

4.3. Estimation and testing results

In the application, we face the potential issue of sellers’ maturity. For example, a new seller may have a
greater chance of being “badly” behaved, as the reputation concern is of less signi�cance to him. Taking
this possibility into account, we regard sellers with a reputation score of less than 500 (Category 6 and
below) as rookies and exclude them from our data analysis. Therefore, the sample for this study includes
only sellers with reputation scores between 500 and 5,000, and the total number of observations is n =
1903.
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4.3.1. Testing for the existence of a quantile threshold e�ect

First, we conduct the sup-Wald test for the existence of a change point in the data following the approach
suggested in Section 2.2. As in the simulations, we consider testing the null hypothesis of no threshold
e�ect for all quantile indices between 0.1 and 0.9 (i.e., T = [0.1, 0.9] in (2.5)) and for nine individual
quantile indices (i.e., T = {τ } in (2.5) for τ = 0.1, 0.2, . . . , 0.9). The implementation is done as in the
simulation section. Table 5 reports the test statistic, the simulated p-value, and the simulated critical
values at the three conventional signi�cance levels (1%, 5%, and 10%). The p-value for the sup-Wald test
based on T = [0.1, 0.9] is 0.000, which o�ers strong evidence for the existence of a jump behavior in
the pricing behavior. For the sup-Wald test based on individual quantile index τ , we �nd that at the 5%
nominal level, jump points exist for quantiles up to 0.7 and that the breaks do not occur for such high
quantiles as 0.8 and 0.9.

4.3.2. Estimation

Given the above �ndings, we can estimate the quantile regression coe�cients for τ = 0.1, 0.2, . . . , 0.7
when the quantile threshold e�ect is detected. Table 6 reports the parameter estimates for these typical
quantiles. Figure 4 shows the plots of the quantile regression lines before and a�er the changes for a
number of representative quantiles. Our estimates show that jumps occur among sellers at all quantiles
under investigation. The size of these jumps can be as signi�cant as −370.79, which is about 37%
of the mean price in the sample. The slope parameters before the jumps are mostly negative among

Table 5. The sup-Wald test for the existence of quantile threshold e�ect.

Critical value

T Test stat p-value 10% 5% 1%

[0.1, 0.9] 596.11 0.00 19.88 21.54 25.09
0.1 151.43 0.00 15.68 17.34 20.63
0.2 190.86 0.00 15.31 16.80 20.13
0.3 279.62 0.00 15.28 16.71 20.28
0.4 359.55 0.00 15.28 16.72 19.95
0.5 596.11 0.00 15.19 16.60 19.77
0.6 103.87 0.00 15.18 16.55 20.32
0.7 61.00 0.00 15.24 16.68 20.35
0.8 12.47 0.36 15.46 16.98 20.19
0.9 9.25 0.89 15.94 17.67 21.41

Table 6. Estimation results.

ατ βτ

τ Jump size γ Intercept Slope Intercept Slope

0.1 −197.88 3,264 856.10 0.010 1006.98 −0.097

(6.21) (0.003) (34.15) (0.029)
0.2 −224.28 3,264 947.22 −0.007 969.33 −0.083

(5.73) (0.003) (30.59) (0.025)
0.3 −265.17 3,264 992.30 −0.005 967.87 −0.079

(6.04) (0.004) (43.50) (0.044)
0.4 −300.63 3,264 1037.13 −0.008 735.55 −0.008

(6.4) (0.004) (42.03) (0.044)
0.5 −370.79 3,264 1080.00 0.000 339.14 0.113

(6.53) (0.004) (42.61) (0.043)
0.6 −224.47 3,240 1097.85 0.000 634.86 0.074

(6.02) (0.004) (44.00) (0.047)
0.7 −148.52 3,364 1121.87 −0.007 584.56 0.108

(6.31) (0.004) (52.40) (0.050)
Mean regression −178.67 3,240 1043.00 −0.006 804.39 0.0125

(4.78) (0.004) (89.36) (0.023)

Note: Numbers inparentheses are standarderrors, andnumbers inbold indicate that the corresponding slope coe�cients are statistically
signi�cant at the 10% level. All intercepts are statistically signi�cant at the 1% level.



22 L. SU AND P. XU

Figure 4. The estimated quantile regression lines before and after the jump point.

the statistically signi�cant estimates, consistent with our model predictions. An exception occurs for
quantile 0.1 where the slope estimate is positive and statistically signi�cant. We will comment on this
case in the Supplementary Material of this paper.

We tend to have more signi�cant slope estimates a�er the change point, and they are much larger in
magnitude than those before the jumps. Furthermore, we also observe that, for the quantiles below the
median, the slope estimates are negative. They turn positive for the median and upper quantiles. Recall
that our model predicts such di�erences on slope parameters, which is induced by the unimodal shape
of the probability distribution on not incurring good reviews from sales. Particularly, the change in signs
of slope parameters implies the shi� from tails to the right of modal on the probability distribution of
“not incurring good review from sales.” In other words, it is rather likely for the sellers posting prices
at lower quantiles (up to the median) to receive good reviews from sales. In stark contrast, the sellers
who post prices at upper quantiles may face certain probabilities of not incurring good feedback. We
believe this �nding concurs with general intuition on internet market—a lower price is more likely to
generate a positive feedback from customers. In general, our estimates justify not only the relevance of
our economic model but also our quantile regression approach.

4.3.3. Testing and inference on the threshold parameter

We then test for the presence of a common threshold value for the quantile index τ ∈ T . We implement
the NLRn test statistic in (2.22) by specifying three choices for T , namely, T = [0.1, 0.5], [0.1, 0.7], and
[0.1, 0.9]. The test statistic takes values 0.0161, 7.7198, and 53.6874, respectively, with the corresponding
p-values 0.9999, 0.0417, and 0.000. That is, we have a common threshold value for T = [0.1, 0.5].

Table 7 reports the 95% con�dence intervals for the jump location estimates (γ̂ ). We �nd the upper
bound for the 95% con�dence intervals by inf{γ : γ > γ̂ and NLR(γ ) ≤ c0.95}, where c0.95 denotes the
0.95-level critical value for4. Accordingly, the lower bound for the 95% con�dence intervals is de�ned
by sup{γ : γ < γ̂ and NLR(γ ) ≤ c0.95}. Clearly, for τ = 0.1 − 0.5, even though the estimates of the
change points are the same, the 95% con�dence intervals may be di�erent.

The previous testing results of a common threshold suggest that the quantiles between 0.1 and 0.5 have
a common threshold at which regime changes occur. Hence, we implement the estimating and inference
procedure on these quantiles for the case of common threshold. These results are also reported inTable 7.
The jump is estimated to occur at 3,264, and its 95% con�dence interval appears tighter than those of
single quantile estimates.
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Table 7. Inference on the threshold parameter.

τ γτ or γ 95% lower bound 95% upper bound

0.1 3,264 3,168 3,271
0.2 3,264 3,182 3,271
0.3 3,264 3,168 3,271
0.4 3,264 3,166 3,271
0.5 3,264 3,231 3,271
0.6 3,240 3,232 3,248
0.7 3,364 3,337 3,367
0.1–0.5 3,264 3,197 3,271
Mean regression 3,240 3,134 3,272

Next, we address several concerns on the empirical exercise. First, we considered only linear
speci�cation in the previous analysis to ease the exhibition. But, nonlinearity may occur in applications
for various reasons. To capture this possible pattern in data, we augment our TQR model by including
r2 and interaction terms of r with other observables. We found the coe�cients of these nonlinear terms
insigni�cantly di�erent from 0 at the 10% level for all quantiles under investigation.

Second, in comparison with our TQR model, one may wonder whether a least squares threshold
regression can identify as much about the pricing scheme changes as our TQR model. To address this
concern, we estimate Hansen’s (2000) least squares threshold model. The results are reported in the
last rows of Tables 6 and 7. It suggests several di�erences between the mean and quantile estimates.
Among them, two are worth highlighting. One is that the slope estimates before and a�er the change in
the mean regression are both statistically insigni�cant, indicating less support of dependence between
prices and reputation scores. Moreover, the con�dence interval for the estimated threshold in the least
square estimation is much wider than those obtained in quantile regressions. Generally speaking, these
di�erences shed some lights on the necessity of using quantile regression models for the consideration
of unobserved heterogeneities. In our application, the heterogeneous pricing behavior across quantiles
may re�ect di�erences across sellers and market demand situations in online markets.

Our last concern arises in line of the manipulation problem raised by McCrary (2008). McCrary
argued that some varieties of manipulation (e.g., complete manipulation) on the running variable in
RDD may lead to identi�cation problems while others may not. He develops a test of manipulation
related to the continuity of the running variable density function when the potential discontinuity point
is known. Here we follow McCrary (2008) closely to test the discontinuity of the density function of
the running variable (r) at the estimated cuto� point 3,264 (for 0.1 ≤ τ ≤ 0.5). The estimated log
di�erence of the le� and right density limits at this point is 2.5968 with a standard error of 0.3932, which
suggests a large t-ratio that rejects the null hypothesis of continuity at any conventional signi�cance
levels. Even so, because the sellers do not have any complete control on the reputation score and the
latter also has idiosyncratic elementwhich is determined by the buyers, the discontinuity at the density of
reputation score does not lead to identi�cation problems for the optimal pricing strategy (c.f., Footnote 4
in McCrary, 2008). On the contrary, we believe it o�ers partial support for our empirical analysis.

5. Conclusion

We consider quantile regression models where there may exist a threshold e�ect and the threshold
e�ect, if exists, may be common for all quantile indices in a proper subset of (0, 1) or not. Following
the literature, a sup-Wald test is proposed to determine the existence of a threshold e�ect in the quantile
regression across quantiles. We propose two tests for the presence of a common threshold value across
di�erent quantile indices and obtain their limiting distributions.We apply ourmethodology to study the
pricing for reputation through the use of a data set from Taobao.com and �nd both the existence of a
threshold e�ect across many quantiles and the presence of a common threshold value for across quantile
indices in the set [0.1, 0.5] .
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Several extensions are possible. First, we only consider a parametric TQR model. It is feasible to
extend our analysis to the nonparametric TQR model as considered by Oka (2010). Second, once
common threshold e�ect is detected, it is natural to consider more e�cient inference on the threshold
parameter. Yu (2014) has started this line of research and more can be done. Third, we only consider
IID observations and the presence of one threshold. It is possible to extend to time series observations
and multiple-threshold scenario (see, e.g., Lanne and Saikkonen, 2002; Galvao et al., 2014). Fourth, the
economic model in our application is a simple static model. It is interesting to extend it to the dynamic
case. We leave these for future research.

Appendix

In this appendix, we provide assumptions and prove all main results but Proposition 4.1 in the paper.

A. Assumptions

Wemake the following assumptions.

Assumption A1. (yi, zi), i = 1, . . . , n, are independent and identically distributed (IID).

Assumption A2. E ‖xi‖2 < ∞.

Assumption A3. The conditional CDF F (·|z) of yi given zi = z admits a PDF f (·|z) such that (i) f (·|z)
is continuous for each z, and (ii) f (·|z) is uniformly bounded for each z.

Assumption A4. The threshold variable ri is continuously distributed with continuous PDF g (·) .

Assumption A5. �1 (τ , γ ) is positive de�nite for each (τ , γ ) ∈ T × Ŵ.

AssumptionA6. Let1(zi, θτ ) ≡ zi (γτ )
′ θ1τ−zi

(

γ 0
τ

)′
θ01τ . There exists c0 > 0 such thatP(|1(zi, θτ )| >

c0) > 0 for all θτ ∈ 2 such that θτ 6= θ0τ , where2 = 21 × Ŵ.

Assumption A7. Let δ0τ ≡ δ0nτ ≡ α0nτ − β0nτ . δ
0
τ = vτn

−a with vτ 6= 0 and a ∈ (0, 12 ).

AssumptionA8. (i)Nτ (γ ) andDτ (γ ) are continuous at γ
0
τ . v

′
τNτ vτ > 0, v′

τDτ vτ > 0, and g
(

γ 0
τ

)

> 0.

(ii) E ‖xi‖4 < ∞.

Assumption A9. (i) Let θ01 (τ , γ ) ≡ argminθ1S (θ1; τ , γ ) , where S (θ1; τ , γ ) ≡ E[ρτ (yi − θ ′
1zi (γ ))].

There exists a γ 0 ∈ Ŵ such that γ 0 = argminγ S
(

θ01 (τ , γ ) ; τ , γ
)

for all τ . (ii) Let θ01τ ≡ θ01
(

τ , γ 0
)

and

1(zi, τ , γ ) ≡ θ01 (τ , γ )
′ zi (γ )− θ0′1τ zi

(

γ 0
)

, and
∫

P (|1(zi, τ , γ )| > 0) d5(τ) > 0 for all γ 6= γ 0. (iii)

Let �̄1 (τ , γ ) ≡ E[f (θ01 (τ , γ )′ zi (γ ) |zi)zi (γ ) zi (γ )′], and �̄1 (τ , γ ) is positive de�nite for all (τ , γ ) ∈
T × Ŵ.

AssumptionA1 requires IIDobservations, but it can beweakened to allow for time series observations
using the concept of mixing processes, as in Bai (1995), Hansen (2000), Caner (2002), Su and Xiao
(2008), Galvao et al. (2011), andGalvao et al. (2014). AssumptionsA2–A5 specify standard conditions on
threshold quantile regressions; see, e.g., Galvao et al. (2011). Assumption A6 speci�es the identi�cation

conditionwhich is needed to establish the consistency of θ̂τ underH1τ . In the special case of xi = (1, ri)
′,

we canwriteα0τ = (α00τ ,α
0
1τ )

′ andβ0τ = (β00τ ,β
0
1τ )

′, whereα00τ andβ
0
0τ are the true values of the intercept

parameters before and a�er the break, and α01τ and β01τ are the true values of the slope parameters
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before and a�er the break. Let dτ ≡ (α0τ − β0τ ) + (α1τ − β1τ ) γ
0
τ . Then, a su�cient condition for

Assumption A6 to hold is dτ 6= 0. Assumption A7 speci�es the magnitude of change in the coe�cients,
which is also made in Hansen (2000) and Caner (2002).

Assumption A8 is needed to study the asymptotic distributions of θ̂1τ and γ̂τ under H1τ . It is also
used to establish the asymptotic distribution of the likelihood ratio test statistic in Sections 2.4 and 2.5.
Assumption A9 is needed to establish the asymptotic distribution of the likelihood ratio test statistic in
Section 2.5. Observe that E

[

ρτ
(

yi − θ ′
1zi (γ )

)]

is convex in θ1 for all (τ , γ ) ∈ T × Ŵ, and θ01 (τ , γ ) in
A9(i) exists and is uniquely de�ned. It is also continuous in (τ , γ ) by an application of the maximum
theorem. The �rst-order condition for the minimization of S (θ1; τ , γ ) with respect to θ1 implies
that

E
[

ψτ
(

yi − θ01 (τ , γ )
′ zi (γ )

)

zi (γ )
]

= 0 for all (τ , γ ) ∈ T × Ŵ, (A.1)

where ψτ (u) = τ − 1 {u < 0} . (A.1) will be used in the proof of Theorem 2.5 below. The last part
of A9(i) simply restricts the conditional quantile regression from sharing a common break γ 0, which
does not depend on τ ∈ T . Like Assumption A6, A9(ii) is an identi�cation condition and requires
that γ 0 be the unique common break. A9(iii) extends A5. Note that �̄1

(

τ , γ 0
)

= �1

(

τ , γ 0
)

under
A9(i)–(ii).

B. Proofs of themain results

We �rst prove some technical lemmas that are used in the proof of the main results in Section 2.

Lemma B.1. Suppose that Assumptions A1–A5 hold. Then, under H0, θ̂1 (τ , γ ) admits the following

uniform Bahadur representation:
√
n(θ̂1 (τ , γ ) − θ01τ ) = �1 (τ , γ )

−1 1√
n

∑n
i=1 ψτ (yi − α0′τ xi)zi (γ ) +

oP (1), where ψτ (u) = τ − 1 {u < 0}, and oP (1) holds uniformly in (τ , γ ) ∈ T × Ŵ.

Proof. See the proof of Theorem 1 in Galvao et al. (2014).

To state and prove the next three lemmas, we �rst de�ne some notation. Recall that θτ ≡ (θ ′
1τ , γτ )

′,
θ1τ ≡ (α′

τ ,β
′
τ )

′, and the true value of θτ , θ1τ , ατ , βτ , and γτ is denoted as θ0τ , θ
0
1τ , α

0
τ , β

0
τ , and γ

0
τ ,

respectively. Let εiτ (θτ ) ≡ yi − θ ′
1τ zi (γτ ) and εiτ = εiτ

(

θ0τ
)

. Note that the τ th conditional quantile of
εiτ given zi is 0, i.e., E [ψτ (εiτ ) |zi] = 0. Let

Snτ (θτ ) =
n
∑

i=1

ρτ
(

yi − θ ′
1τ zi (γτ )

)

. (B.1)

Let ‖·‖ denotes the Euclidean norm. Note that for all θτ ∈ R
2k+1, we have ‖zi (γτ )‖ = ‖xi‖,

∣

∣θ ′
1τ zi (γτ )

∣

∣ ≤ ‖θ1τ‖ ‖xi‖, and |θ ′
1τ zi (γτ )− θ

∗′
1τ zi (γτ ) | ≤

∥

∥θ1τ − θ∗
1τ

∥

∥ ‖xi‖, and
∥

∥zi (γτ )− zi
(

γ ∗
τ

)
∥

∥ ≤
√
2 ‖xi‖ 1

{

|ri − γτ | ≤
∣

∣γ ∗
τ − γτ

∣

∣

}

. (B.2)

Let Dnτ (θ1τ , γτ ) ≡ Snτ (θ1τ , γτ ) − Snτ
(

θ01τ , γ
0
τ

)

, D1nτ (w1) ≡ Snτ
(

θ01τ + n−1/2w1, γ
0
τ

)

−
Snτ

(

θ01τ , γ
0
τ

)

, and Dn2τ (θ1τ , γτ ) ≡ Snτ (θ1τ , γτ )− Snτ
(

θ1τ , γ
0
τ

)

. Then we have

Dnτ (θ1τ , γτ ) = D1nτ

(

n1/2(θ1τ − θ01τ )
)

+ D2nτ (θ1τ , γτ ) . (B.3)

Let D̄2nτ (w1,w2) ≡ D2nτ

(

θ01τ + n−1/2w1, γ
0
τ + n−1+2aw2

)

. We will study the asymptotic properties of

D1nτ (w1) and D̄2nτ (w1,w2) in Lemmas B.3 and B.4, respectively.
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Lemma B.2. Suppose that Assumptions A1–A2 and A4 hold. Then limη→0 E supθ∗
τ ∈Nη(θτ ) |ρτ (yi −

θ
∗′
1τ zi

(

γ ∗
τ

)

) − ρτ (yi − θ ′
1τ zi (γτ ))| = 0 for any θτ ∈ 2, where Nη (θτ ) ≡ {θ∗

τ =
(

θ∗′
1τ , γ

∗
τ

)′ ∈ 2 :
∥

∥θ∗
1τ − θ1τ

∥

∥ < η,
∣

∣γ ∗
τ − γτ

∣

∣ < η} denotes an η-neighborhood of θτ ∈ 2 and η > 0.

Proof. Let1iτ ≡ θ
∗′
1τ zi

(

γ ∗
τ

)

− θ ′
1τ zi (γτ ) . Then by the triangle inequality and (B.2),

|1iτ | ≤
∣

∣θ ′
1τ [zi (γτ )− zi

(

γ ∗
τ

)

]
∣

∣+
∣

∣

∣

(

θ1τ − θ∗
1τ

)′
zi
(

γ ∗
τ

)

∣

∣

∣

≤
{√

2 × 1
{

γτ ∧ γ ∗
τ < ri ≤ γτ ∨ γ ∗

τ

}

‖θ1τ‖ +
∥

∥θ1τ − θ∗
1τ

∥

∥

}

‖xi‖

≤
{√

2 × 1
{

|ri − γτ | ≤
∣

∣γτ − γ ∗
τ

∣

∣

}

‖θ1τ‖ +
∥

∥θ1τ − θ∗
1τ

∥

∥

}

‖xi‖

≤
{√

2 × 1 {|ri − γτ | ≤ η} ‖θ1τ‖ + η

}

‖xi‖ .

By Knight’s (1998) identity (see also Koenker, 2005, p. 121),

ρτ

(

yi − θ
∗′
1τ zi

(

γ ∗
τ

)

)

− ρτ
(

yi − θ ′
1τ zi (γτ )

)

= ρτ (εiτ (θτ )−1iτ )− ρτ (εiτ (θτ ))

= −1iτψτ (εiτ (θτ ))+
∫ 1iτ

0
[1 {uiτ ≤ s} − 1 {uiτ ≤ 0}] ds.

It follows that E supθ∗
τ ∈Nη(θτ )

∣

∣

∣
ρτ

(

yi − θ
∗′
1τ zi

(

γ ∗
τ

)

)

− ρτ
(

yi − θ ′
1τ zi (γτ )

)

∣

∣

∣
≤ 2E |1iτ | ≤ 2

√
2 ×

[P(|ri − γτ | ≤ η)]1/2 ‖xi‖2 ‖θ1τ‖ + 2
√
2ηE ‖xi‖ → 0 as η → 0, where ‖xi‖2 ≡ {E ‖xi‖2}1/2.

Lemma B.3. Suppose Assumptions A1–A5 hold. Then sup‖w1‖≤M |D1nτ (w1)+n−1/2w′
1

∑n
i=1 zi

(

γ 0
τ

)

ψτ

(εiτ )− 1
2w

′
1�1τw1| = oP (1) for everyM ∈ (0,∞), where�1τ ≡ �1

(

τ , γ 0
τ

)

= E[zi
(

γ 0
τ

)

zi
(

γ 0
τ

)′
f (θ0′1τ zi

(

γ 0
τ

)

|zi)].

Proof. Let d1nτ (w1) ≡ D1nτ (w1) + n−1/2w′
1

∑n
i=1 zi

(

γ 0
τ

)

ψτ (εiτ ) − 1
2w

′
1�1τw1. By Knight’s

identity, D1nτ (w1) = −n−1/2w′
1

∑n
i=1 zi

(

γ 0
τ

)

ψτ (εiτ ) + n−1/2w′
1

∑n
i=1 zi

(

γ 0
τ

) ∫ 1
0 πi(w1, s)ds, where

πi (w1, s) = 1{εiτ ≤ sn−1/2w′
1zi
(

γ 0
τ

)

}−1 {εiτ ≤ 0} . It follows that d1nτ (w1) = n−1/2w′
1

∑n
i=1 zi

(

γ 0
τ

)

×
∫ 1
0 πi (w1, s) ds − 1

2w
′
1�1τw1 = d1nτ ,1 (w1)+ d1nτ ,2 (w1), where

d1nτ ,1 (w1) =
∫ 1

0
n−1/2

n
∑

i=1

w′
1zi
(

γ 0
τ

)

{πi (w1, s)− E [πi (w1, s) |zi]} ds and

d1nτ ,2 (w1) =
∫ 1

0
n−1/2

n
∑

i=1

{

w′
1zi
(

γ 0
τ

)

E [πi (w1, s) |zi] − sn−1/2w′
1�1τw1

}

ds.

The pointwise convergence of d1nτ ,1 (w1) can follows from Chebyshev inequality. Its uniform conver-
gence results follows from similar arguments as used in the proof of Lemma 1 in Su and Xiao (2008).
For d1nτ ,2 (w1), we apply the Taylor expansion with integral remainder and the triangle inequality to
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obtain

sup
‖w1‖≤b

∣

∣d1nτ ,2 (w1)
∣

∣

= sup
‖w1‖≤b

∣

∣

∣

∣

∣

n−1/2w′
1

n
∑

i=1

zi
(

γ 0
τ

)

∫ 1

0

[

F
(

ςiτ + sn−1/2w′
1zi
(

γ 0
τ

)

|zi
)

− F (ςiτ |zi)
]

ds − 1

2
w′
1�1τw1

∣

∣

∣

∣

∣

≤ sup
‖w1‖≤b

∣

∣

∣

∣

∣

n−1w′
1

n
∑

i=1

zi
(

γ 0
τ

)

zi
(

γ 0
τ

)′
w1

∫ 1

0

∫ 1

0

[

f
(

ςiτ + stn−1/2w′
1zi
(

γ 0
τ

)

|zi
)

− f (ςiτ |zi)
]

dtds

∣

∣

∣

∣

∣

+ 1

2
sup

‖w1‖≤M

∣

∣

∣

∣

∣

n−1w′
1

n
∑

i=1

[

zi
(

γ 0
τ

)

zi
(

γ 0
τ

)′
f (ςiτ |zi)−�1τ

]

w1

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

M2n−1
n
∑

i=1

∥

∥

∥
zi
(

γ 0
τ

)

zi
(

γ 0
τ

)′∥∥
∥

∫ 1

0

∫ 1

0
sup

‖w1‖≤M

∣

∣f
(

ςiτ + stn−1/2w′
1zi
(

γ 0
τ

)

|zi
)

− f (ςiτ |zi)
∣

∣ dtds

∣

∣

∣

∣

∣

+ M2

2

∥

∥

∥

∥

∥

n−1
n
∑

i=1

[

zi
(

γ 0
τ

)

zi
(

γ 0
τ

)′
f (ςiτ |zi)−�1τ

]

∥

∥

∥

∥

∥

= oP (1)+ oP (1) = oP (1) ,

where ςiτ ≡ θ0′1τ zi
(

γ 0
τ

)

, and the last line follows from the Lebesgue dominated convergence theorem
and the weak LLN for IID observations.

Lemma B.4. Suppose that Assumptions A1–A5 hold. Then sup‖w1‖≤M |D̄2nτ (w1,w2) − D̄2nτ (0,w2)| =
oP (1) for every M ∈ (0,∞) and w2 ∈ R.

Proof. Without loss of generality, we consider the case w2 > 0. Let 1i (r) ≡ 1{γ 0
τ < ri ≤ γ 0

τ + r}. Let
r ≡ γτ − γ 0

τ and11τ ≡ θ1τ − θ01τ , a1 (x) ≡
(

01×p, x
′)′, a2 (x) ≡

(

x′, 01×p

)′
and a (x) ≡ a1 (x)− a2 (x),

where 01×p denotes a 1 × p vector of zeros. Noting that zi (γτ ) − zi
(

γ 0
τ

)

= −a (xi) 1i (r) when r > 0,
we observe that: (i) if 1i (r) = 0,

yi − θ ′
1τ zi (γτ ) = εiτ − θ0′1τ

[

zi (γτ )− zi
(

γ 0
τ

)]

−1′
1τ

[

zi (γτ )− zi
(

γ 0
τ

)]

−1′
1τ zi

(

γ 0
τ

)

= εiτ −1′
1τ zi

(

γ 0
τ

)

= yi − θ ′
1τ zi

(

γ 0
τ

)

;

and (ii) if 1i (r) = 1, zi
(

γ 0
τ

)

= a1 (xi) and zi (γτ ) = a2 (xi) . It follows that if r > 0, then

ρτ
(

yi − θ ′
1τ zi (γτ )

)

− ρτ (yi − θ ′
1τ zi

(

γ 0
τ

)

)

=
[

ρτ
(

yi − θ ′
1τ zi (γτ )

)

− ρτ (yi − θ ′
1τ zi

(

γ 0
τ

)

)
]

1i (r)

=
{

ρτ
(

εiτ − θ0′1τ
[

zi (γτ )− zi
(

γ 0
τ

)]

−1′
1τ zi (γτ )

)

− ρτ
(

εiτ −1′
1τ zi

(

γ 0
τ

))}

1i (r)

=
[

ρτ
(

εiτ + θ0′1τa (xi)−1′
1τa2 (xi)

)

− ρτ
(

εiτ −1′
1τa1 (xi)

)]

1i (r) . (B.4)
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(Similarly, if r < 0, thenρτ
(

yi − θ ′
1τ ṁγτ (zi)

)

−ρτ (yi−θ ′
1τ ṁγ 0τ (zi)) = [ρτ (εiτ−θ0′1τa (xi)−1′

1τa1 (xi))−
ρτ
(

εiτ −1′
1τa2 (xi)

)

]1̄i (r), where 1̄i (r) = 1
{

γ 0
τ + r < qi ≤ γ 0

τ

}

.) By Knight’s identity, we have

D̄2nτ (w1,w2)− D̄2nτ (0,w2)

= D2nτ

(

θ01τ + n−1/2w1, γ
0
τ + n−1+2aw2

)

− D2nτ

(

θ01τ , γ
0
τ + n−1+2aw2

)

=
n
∑

i=1

{

[ρτ
(

εiτ + θ0′1τa (xi)− n−1/2w′
1a2 (xi)

)

− ρτ (εiτ )]

− [ρτ
(

εiτ + θ0′1τa (xi)
)

− ρτ (εiτ )]

− [ρτ
(

εiτ − n−1/2w′
1a1 (xi)

)

− ρτ (εiτ )]
}

1i
(

n−1+2aw2

)

= n−1/2
n
∑

i=1

ψτ (εiτ )w
′
1a (xi) 1i

(

n−1+2aw2

)

+
n
∑

i=1

∫ −θ0′1τ a(xi)+n−1/2w′
1a2(xi)

−θ0′1τ a(xi)
[1 {εiτ ≤ s} − 1 {εiτ ≤ 0}] ds 1i

(

n−1+2aw2

)

−
n
∑

i=1

∫ n−1/2w′
1a1(xi)

0
[1 {εiτ ≤ s} − 1 {εiτ ≤ 0}] ds1i

(

n−1+2aw2

)

≡ d2nτ ,1 (w1)+ d2nτ ,2 (w1)− d2nτ ,3 (w1) , say.

To study the uniform bound for d2nτ ,1 (w1), we consider the class of functions F1 = {m1

(

y, z; w1, γ
)

:

w1 ∈ 2M , γ ∈ Ŵ}, wherem1

(

y, z; w1, γ
)

= ψτ (y − θ0′1τ z (γ ))w
′
1a (x) 1

{

q ≤ γ
}

, z (γ ) = [x′1
{

q ≤ γ
}

x′1
{

q > γ
}

]′, and2M = {ω1 : ‖ω1‖ ≤ M} . Let
F1,1 =

{

f1,1
(

y, z; γ
)

= 1
{

q ≤ γ
}

: γ ∈ Ŵ
}

,

F1,2 =
{

f1,2
(

y, z; γ
)

= τ − 1
{

y − θ0′1τ z (γ ) < 0
}

: γ ∈ Ŵ
}

, and

F1,3 =
{

f1,3
(

y, z;w1

)

= w′
1a (x) : w1 ∈ 2M

}

.

By Lemma 2.6.15 of Van der Vaart and Wellner (1996) (herea�er VW), F1,1 is a VC-subgraph class.
Noting that θ0′1τ z (γ ) = β0′τ x + δ0′τ x1

{

q ≤ γ
}

where δ0τ = α0τ − β0τ , F1,2 is also a VC-subgraph class
by Lemma 2.6.15(viii) of VW. F1,3 is Euclidean for the envelope C ‖x‖ by Theorem 2.7.11 of VW or
Lemma 2.13 of Pakes and Pollard (1989) (PP herea�er), where C is a large constant. Noting that the VC-
subgraph class is Euclidean for every envelope and the product of Euclidean classes of functions is also
Euclidean (see Lemmas 2.13 and 2.14(iii) of PP), we conclude that F1 = F1,1 · F1,2 · F1,3 is Euclidean.
Then by Assumption A2 and Lemma 2.17 of PP we have

sup
‖w1‖≤M

∣

∣d2nτ ,1 (w1)
∣

∣ = sup
‖w1‖≤M

∣

∣

∣

∣

∣

n−1/2
n
∑

i=1

[

m1

(

yi, zi; w1, γ
0
τ + n−1+2aw2

)

− m1

(

yi, zi; w1, γ
0
τ

)]

∣

∣

∣

∣

∣

= oP (1)

as n−1+2a → 0 as n → ∞ by Assumption A7. Next we study d2nτ ,3 (w1) . Write d2nτ ,3 (w1) =
n−1/2

∑n
i=1 w

′
1 × a1 (xi)

∫ 1
0 [1

{

εiτ ≤ n−1/2w′
1a1 (xi) s

}

− 1 {εiτ ≤ 0}]ds1i
(

n−1+2aw2

)

. Let m2(y, z;w1,

w̄1) = w′
1a1 (x)

∫ 1
0 1{y − θ0′1τ z (γ ) ≤ w̄′

1a1 (x) s}1{γ 0
τ < q ≤ γ 0

τ + n−1+2aw2}. We consider the
class of functions F2 = {m2(y, z;w1, w̄1) : w1 ∈ 2M , w̄1 ∈ 2M}. Let F2,1 = {f2,2(y, z; w̄1) =
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∫ 1
0 1{y− θ0′1τ z

(

γ 0
τ

)

≤ w̄′
1a1 (x) s}ds : w̄1 ∈ 2M}. By Andrews (1994, p. 2270), bothF1,3 andF2,1 belong

to the type I class of functions and satisfy the Pollard’s entropy condition. Noting thatF2 can be written
as the product ofF1,3,F2,1, and a �xed indicator function 1

{

γ 0
τ < q ≤ γ 0

τ + n−1+2aw2

}

, it also satis�es
that Pollard’s entropy condition and is stochastically equicontinuous with respect to the pseudometric
de�ned by:

ρ
(

(w1, w̄1) ,
(

w∗
1 , w̄

∗
1

))

=
{

E
[

∣

∣m2

(

yi, zi; w1, w̄1

)

− m2

(

yi, zi; w
∗
1 , w̄

∗
1

)
∣

∣

2
]}1/2

.

Consequently, lettingm2

(

yi, zi; w1, w̄1

)

= m2

(

yi, zi; w1, w̄1

)

− E
[

m2

(

yi, zi; w1, w̄1

)]

, we have

sup
‖w1‖≤M

∣

∣d2nτ ,3 (w1)
∣

∣

≤ sup
‖w1‖≤M

∣

∣

∣

∣

∣

n−1/2
n
∑

i=1

E
[

m2

(

yi, zi; w1, n
−1/2w1

)

− m2

(

yi, zi; w1, 0
)]

∣

∣

∣

∣

∣

+ sup
‖w1‖≤M

∣

∣

∣

∣

∣

n−1/2
n
∑

i=1

[

m̄2

(

yi, zi; w1, n
−1/2w1

)

− m̄2

(

yi, zi; w1, 0
)]

∣

∣

∣

∣

∣

= sup
‖w1‖≤M

∣

∣

∣

∣

∣

n−1/2
n
∑

i=1

E
[

m2

(

yi, zi; w1, n
−1/2w1

)

− m2

(

yi, zi; w1, 0
)]

∣

∣

∣

∣

∣

+ oP (1)

= sup
‖w1‖≤M

∣

∣

∣

∣

∣

n−1/2
n
∑

i=1

E

{

w′
1a1 (xi)

∫ 1

0

[

F
(

n−1/2w′
1a1 (xi) s| zi

)

− F (0|zi)
]

ds 1i
(

n−1+2aw2

)

}

∣

∣

∣

∣

∣

+ oP (1)

≤ M

∣

∣

∣

∣

∣

n−1/2
n
∑

i=1

E

{

‖a1 (xi)‖
∫ 1

0

[

F
(

n−1/2M ‖a1 (xi)‖ s | zi
)

− F (0|zi)
]

ds 1i
(

n−1+2aw2

)

}

∣

∣

∣

∣

∣

+ oP (1)

≤ Mn1/2
∥

∥

∥

∥

‖a1 (xi)‖
∫ 1

0

[

F
(

n−1/2M ‖a1 (xi)‖ s | zi
)

− F (0|zi)
]

ds

∥

∥

∥

∥

2

∥

∥1i
(

n−1+2aw2

)
∥

∥

2
+ oP (1)

= n1/2O
(

n−1/2
)

o
(

n−1+2a
)

+ oP (1) = oP (1) ,

where ‖A‖2 ≡ {E ‖A‖2}1/2. By the same token, we can show that sup‖w1‖≤M

∣

∣d2nτ ,2 (w1)
∣

∣ = oP (1) .
This completes the proof of the lemma.

Proof of Theorem 2.1. Recall that l∞ (T × Ŵ) denotes the space of all bounded functions on T × Ŵ

equipped with the uniform topology. From Lemma B.1, we can easily obtain that underH0,

√
n
(

θ̂1 (τ , γ )− θ01τ

)

⇒ �1 (τ , γ )
−1W (τ , γ ) in

(

l∞ (T × Ŵ)
)2k

.

Note that δ̂ (τ , γ ) = α̂ (τ , γ ) − β̂ (τ , γ ) = Rθ̂1 (τ , γ ) and V̂(τ , γ ) is a uniformly consistent estimator
of V (τ , γ ) under the stated conditions. By the Slutsky theorem and the continuous mapping theorem
(CMT), we have the desired result.

Proof of Theorem 2.2. First, observe that θ̂τ is also minimizing S̄nτ (θτ ) ≡ n−1
∑n

i=1 sτ
(

yi, zi; θτ
)

,

where sτ
(

yi, zi; θτ
)

≡ ρτ (yi − θ ′
1τ zi (γτ )) − ρτ

(

yi − θ0′1τ zi
(

γ 0
τ

))

. Let 1(zi, θτ ) ≡ θ ′
1τ zi (γτ ) −
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θ0′1τ zi
(

γ 0
τ

)

and ςτ (θτ ) ≡ E
[

sτ
(

yi, zi; θτ
)]

. Then by Knight’s (1998) identity, the compactness of21 and
Assumption A2, E

∣

∣sτ
(

yi, xi; θτ
)
∣

∣ ≤ 2E |1(zi, θτ )| ≤ 2 (‖ατ‖ + ‖βτ‖)E ‖xi‖ < ∞. This ensures that
Snτ (θτ ) = ςτ (θτ )+ oa.s. (1) for each θτ ∈ 2 by the strong law of large numbers (LLN). By the proof of
Lemma 2 in Galvao et al. (2011), the class of functions F ≡

{

sτ
(

y, z; θ
)

: θ ∈ 2
}

is Glivenko–Cantelli.

It follows that S̄nτ (θτ ) = ςτ (θτ )+oa.s. (1) uniformly in θτ ∈ 2. Let lτ (c) ≡ E [ρτ (εiτ − c)− ρτ (εiτ )].
Knight’s identity implies lτ (c) > 0 for any c 6= 0. Then by the law of iterated expectations and
Assumption A6, we have

ςτ (θτ ) = E [E [ρτ (εiτ −1(zi, θτ ))− ρτ (εiτ ) |zi]] = E [lτ (1 (zi, θτ ))] > 0 for all θτ 6= θ0τ .

By Lemma B.2 ςτ (θτ ) is continuous in θτ . It follows that θ
0
τ is the unique minimizer of ςτ (θτ ) and

θ̂τ → θ̂τ a.s.

Proof of Theorem 2.3. First, we follow the proof of Theorem 3.2 in Koul et al. (2003) and prove that

n1/2(θ̂1τ − θ01τ ) = OP (1) and n1−2a(γ̂τ − γ 0
τ ) = OP (1) . (B.5)

Let �(σ) ≡ {θτ ∈ 2 :
∥

∥θ1τ − θ01τ

∥

∥ < σ ,
∣

∣γτ − γ 0
τ

∣

∣ < σ }, where σ ∈ (0, 1) can be chosen su�ciently
small by Theorem 2.2. Let b ∈ (0,∞) . De�ne

N1b ≡ {θτ ∈ �(σ) :
∣

∣γτ − γ 0
τ

∣

∣ > bn2a−1} and N2b ≡ {θτ ∈ �(σ) :
∥

∥θ1τ − θ01τ

∥

∥ > bn−1/2}.
Noting that infθτ∈N1b∪N2b

Dnτ (θ1τ , γτ ) = min
{

infθτ∈N1b
Dnτ (θ1τ , γτ ) , infθτ∈N2b

Dnτ (θ1τ , γτ )
}

, one
can prove the theorem by showing that for any κ ∈ (0, 1], c1 ∈ (0,∞) and c2 ∈ (0,∞), there exists
b ∈ (0,∞) and n0 such that

P

(

inf
θτ∈Njb

Dnτ (θ1τ , γτ ) > cj

)

> 1 − κ for n > n0, j = 1, 2, (B.6)

because then infθτ∈N1b∪N2b
Dnτ (θ1τ , γτ ) > c1 ∧ c2 > 0 with positive probability, implying that θ̂τ /∈

N1b∪N2b asDnτ (θ̂1τ , γ̂τ ) ≡ Snτ (θ̂1τ , γ̂τ )−Snτ
(

θ01τ , γ
0
τ

)

< 0 by the de�nition of θ̂τ = (θ̂ ′
1τ , γ̂τ )

′. Noting
that for j = 1, 2,

inf
θτ∈Njb

Dnτ (θ1τ , γτ ) ≥ inf
θτ∈Njb

D1nτ

(

n1/2(θ1τ − θ01τ )
)

+ inf
θτ∈Njb

D2nτ (θ1τ , γτ ) ≡ Dnτ ,j1 + Dnτ ,j2, say,

it su�ces to analyze Dnτ ,11, Dnτ ,12, Dnτ ,21, and Dnτ ,22. We �rst analyze Dnτ ,12. By Koul et al. (2003) it
su�ces to show that for all κ ∈ (0, 1], c1 ∈ (0,∞), there exists c0 < ∞, b0 ∈ (0,∞), σ ∈ (0, 1) and n0
such that c0b0g

(

γ 0
τ

)

/2 > c1 and that

P

(

inf
θτ∈Njb

D2nτ (θ1τ , γτ )

nK
(
∣

∣γτ − γ 0
τ

∣

∣

) > c0

)

> 1 − κ/2 for all n > n0, (B.7)

where K (r) ≡ E [1i (r)] and 1i (r) ≡ 1
{

γ 0
τ < ri ≤ γ 0

τ + r
}

. Let r ≡ γτ − γ 0
τ and 11τ ≡ θ1τ − θ01τ .

Without loss of generality, assume that r > 0. Then by (B.4) we can decompose n−1D2nτ (θ1τ , γτ ) as
follows

n−1D2nτ (θ1τ , γτ ) = n−1
n
∑

i=1

[

ρτ
(

yi − θ ′
1τ zi (γτ )

)

− ρτ (yi − θ ′
1τ zi

(

γ 0
τ

)

)
]

= n−1
n
∑

i=1

[

ρτ
(

εiτ + θ0′1τa (xi)−1′
1τa2 (xi)

)

− ρτ
(

εiτ −1′
1τa1 (xi)

)]

1i (r)

= dnτ1 (θ1τ , r)+ dnτ2 (θ1τ , r)+ dnτ3 (r)+ dnτ4 (r)+ dnτ5 (r)+ dnτ6 (r) ,
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where

dnτ1 (θ1τ , r) = n−1
n
∑

i=1

[

ρτ (εiτ )− ρτ
(

εiτ −1′
1τa1 (xi)

)]

1i (r) ,

dnτ2 (θ1τ , r) = n−1
n
∑

i=1

[

ρτ
(

εiτ + θ0′1τa (xi)−1′
1τa2 (xi)

)

− ρτ
(

εiτ + θ0′1τa (xi)
)]

1i (r) ,

dnτ3 (r) = n−1
n
∑

i=1

[

ρτ
(

εiτ + θ0′1τa (xi)
)

− ρτ (εiτ )− p (ri)
]

1i (r) ,

dnτ4 (r) = n−1
n
∑

i=1

[

p (ri)− p
(

γ 0
τ

)]

1i (r) ,

dnτ5 (r) = p
(

γ 0
τ

)

[Kn (r)− K (r)] ,

dnτ6 (r) = p
(

γ 0
τ

)

K (r) ,

p
(

γ 0
τ

)

= E{
[

ρτ
(

εiτ + θ0′1τa (xi)
)

− ρτ (εiτ )
]

|ri = γ 0
τ } and Kn (r) = n−1

∑n
i=1 1i (r) . By Knight’s

identity, the law of iterated expectations, and Fubini’s theorem, we can readily show that p (γ ) is
strictly positive and continuous in γ under our assumptions. Following Koul et al. (2003) (see also
Hansen, 2000) we can show that the �rst �ve terms in the last decomposition are asymptotically
negligible in comparison with K (r) uniformly on N1b by modifying the proof of their Lemma 3.2 to
accommodate our de�nition of N1b. For example, we need to prove Claim (1) below in order to analyze
dnτ4 (r) and dnτ5 (r) because then supB/n1−2a≤r≤σ |dnτ4 (r) /K (r)| ≤ sup0≤r≤σ |p

(

γ 0
τ + r

)

− p
(

γ 0
τ

)

|
supB/n1−2a≤r≤σ |Kn (r) /K (r) | → 0 and supB/n1−2a≤r≤σ |dnτ5 (r) /K (r) | ≤ C supB/n1−2a≤r≤σ |Kn (r) /
K (r)−1| → 0 and by passing n → ∞ and then σ → 0, whereC is a large constant. Similarly, Claim (2)
below is needed to show that dnτ3 (r) /K (r) is asymptotically negligible on the set N1b.

Claim. For each κ > 0, c > 0, there exists a constant B ∈ (0,∞) such that for all σ ∈ (0, 1) and
n ≥ [B/σ ] + 1, we have

(1) P
(

supB/n1−2a≤r≤σ

∣

∣

∣

Kn(r)
K(r) − 1

∣

∣

∣
< c

)

> 1 − κ ,

(2) P
(

supB/n1−2a≤r≤σ

∣

∣

∣

Rn(r)
K(r)

∣

∣

∣
< c

)

> 1 − κ ,

where Rn (r) = n−1
∑n

i=1{J (xi, εiτ )−E [J (xi, εiτ ) |ri = r]}1i (r) and J (xi, εiτ ) ≡ ρτ (εiτ+θ0′1τ a (xi))−
ρτ (εiτ ) .

It follows that n−1D2nτ (θ1τ , γτ ) /K (r) = p
(

γ 0
τ

)

+ oP (1) > c > 0 with probability approaching 1
as n → ∞ uniformly in θτ ∈ N1b, and thus (B.7) follows. The analyses of Dnτ ,11, Dnτ ,12, and Dnτ ,22 are
analogous to those of the corresponding terms in the proof of Theorem 3.2 in Koul et al. (2003) and thus
omitted.

To prove (i), by (B.5) it su�ces to study the asymptotic behavior of Dnτ (θ1τ , γτ ) by restricting our
attention to the case where n1/2

∥

∥θ1τ − θ01τ

∥

∥ ≤ M and n1−2a
∣

∣γτ − γ 0
τ

∣

∣ ≤ M for some large but

�xed positive number M. Let w1nτ ≡ n1/2(θ̂1τ − θ01τ ) and w2nτ ≡ n1−2a
(

γ̂τ − γ 0
τ

)

. Then by (B.3),

Dnτ

(

θ01τ + n−1/2w1, γ
0
τ + n−1+2aw2

)

= D1nτ (w1)+ D̄2nτ (w1, w2), where recall that D̄2nτ (w1,w2, ) =
D2nτ

(

θ01τ + n−1/2w1, γ
0
τ + n−1+2aw2

)

. By Lemmas B.3 and B.4, we have

Dnτ

(

θ01τ + n−1/2w1, γ
0
τ + n−1+2aw2

)

= D̄1nτ (w1)+ D̄2nτ (0,w2)+ oP (1) ,
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where oP (1) holds uniformly over the set ‖w1‖ ≤ M and |w2| ≤ M, D̄1nτ (w1) = −n−1/2w′
1

∑n
i=1 zi

(

γ 0
τ

)

ψτ (εiτ )+ 1
2w

′
1�1τw1, and

D̄2nτ (0,w2) =



























n
∑

i=1

[

ρτ
(

εiτ + θ0′1τa (xi)
)

− ρτ (εiτ )
]

1i
(

n−1+2aw2

)

if w2 > 0

n
∑

i=1

[

ρτ
(

εiτ − θ0′1τa (xi)
)

− ρτ (εiτ )
]

1̄i
(

n−1+2aw2

)

if w2 ≤ 0

. (B.8)

Thus Dnτ (θ̂1τ , γ̂τ ) = D1nτ (w1n)+ D̄2nτ (w1n,w2n) = D̄1nτ (w1n)+ D̄2nτ (0,w2n)+ oP (1). Noting that
D̄1nτ (w1) and D̄2nτ (0,w2) are free ofw2 andw1, respectively, and (w1n,w2n) is aminimizer ofDnτ (θ

0
1τ+

n−1/2w1, γ
0
τ + n−1+2aw2) with respect to (w1,w2), the asymptotic distribution of w1n is determined by

that of the minimizer of D̄1nτ (w1)with respect tow1, and similarly the asymptotic distribution ofw2n is
determined by that of the minimizer of D̄2nτ (0,w2) with respect to w2. Noting that D̄1nτ (w1) is convex
in w1, we can readily apply the convexity lemma to obtain

w1nτ = n−1/2�−1
1τ

n
∑

i=1

zi
(

γ 0
τ

)

ψτ (εiτ )+ oP (1)
d→ N

(

02k×1, τ (1 − τ)6
(

τ , γ 0
τ

))

. (B.9)

where recall6 (τ , γ ) = �1 (τ , γ )
−1�0 (γ , γ )�1 (τ , γ )

−1 . This proves (i).
We now prove (ii). By reversing the argument used to obtain (B.4) in Appendix C we �nd that it is

convenient to rewrite D̄2nτ (0,w2) as

D̄2nτ (0,w2) =
n
∑

i=1

[

ρτ
(

εiτ + θ0′1τ zi
(

γ 0
τ

)

− θ0′1τ zi
(

γ 0
τ + n−1+2aw2

))

− ρτ (εiτ )
]

=
n
∑

i=1

[

ρτ
(

εiτ + δ0′τ 1xi (w2)
)

− ρτ (εiτ )
]

,

where 1xi (w2) = xi
[

1
{

ri ≤ γ 0
τ + n−1+2aw2

}

− 1
{

ri ≤ γ 0
τ

}]

and δ0τ = δ0nτ = α0nτ − β0nτ = vτn
−a.

By Knight’s identity, D̄2nτ (0,w2) =
∑n

i=1 ψτ (εiτ ) δ
0′
τ 1xi (w2) +

∑n
i=1

∫ −δ0′τ 1xi(w2)

0 [1{εiτ ≤ s} −
1 {εiτ ≤ 0}]ds ≡ D̄2nτ ,1 (w2)+ D̄2nτ ,2 (w2), say. Assume that w2 > 0. Using arguments similar to those
used in the proof of Lemma A.11 in Hansen (2000), we can readily show that

D̄2nτ ,1 (w2) ⇒ Bτ (w2) ,

where Bτ (w2) is a Brownian motion with variance E[Bτ (1)2] = τ (1 − τ) v′
τE[xix′

i|ri = γ 0
τ ]vτ g

(

γ 0
τ

)

≡
λτ . Analogously to the proof of Lemma B.4 and using arguments as used in the proof of Lemma A.10 in
Hansen (2000), we can show that uniformly in w2 on a compact set

D̄2nτ ,2 (w2) = −
n
∑

i=1

δ0′τ 1xi (w2)

∫ 1

0

[

F
(

θ0′1τ zi
(

γ 0
τ

)

− sδ0′τ 1xi (w2) |zi
)

− F
(

θ0′1τ zi
(

γ 0
τ

)

|zi
)]

ds + oP (1)

= 1

2
δ0′τ

n
∑

i=1

1xi (w2)1xi (w2)
′ δ0τ f

(

θ0′1τ zi
(

γ 0
τ

)

|zi
)

+ oP (1)

= 1

2
δ0′τ

n
∑

i=1

xix
′
if
(

θ0′1τ zi
(

γ 0
τ

)

|zi
) [

1
{

ri ≤ γ 0
τ + n−1+2aw2

}

− 1
{

ri ≤ γ 0
τ

}]2
δ0τ + oP (1)

= 1

2
µτ |w2| + oP (1) ,
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where µτ ≡ v′
τE[f

(

α0′τ xi|zi
)

xix
′
i|ri = γ 0

τ ]vτ g
(

γ 0
τ

)

. Noting that Bτ (·) is a Brownian motion with

variance λτ and thus can be written as −
√
λτW1 (·) with W1 (·) being a standard Brownian motion,

we have,

D̄2nτ (0,w2) ⇒ 1

2
µτ |w2| −

√

λτW1 (w2) if w2 > 0. (B.10)

Similarly, we can show that

D̄2nτ (0,w2) ⇒ 1

2
µτ |w2| −

√

λτW2 (−w2) if w2 ≤ 0, (B.11)

whereW2 (w2) is a standard Brownian motion that is independent ofW1 (w2) . Then by the continuous
mapping theorem (CMT) and following the proof of Theorem 1 in Hansen (2000), we have

w2nτ
d→ argmax

−∞<w2<∞
− 1

2
µτ |w2| +

√

λτW (w2)

= λτ

µ2
τ

argmax
−∞<r<∞

− 1

2
µτ

∣

∣

∣

∣

λτ

µ2
τ

r

∣

∣

∣

∣

+
√

λτW

(

λτ

µ2
τ

r

)

= λτ

µ2
τ

argmax
−∞<r<∞

− λτ

2µτ
|r| + λτ

µτ
W (r) = λτ

µ2
τ

argmax
−∞<r<∞

{

−1

2
|r| + W (r)

}

, (B.12)

by the change of variables w2 = (λτ/µ
2
τ )r and the distributional equalityW

(

c2r
)

≡ cW (r).

Proof of Theorem 2.4. Recall that w1nτ ≡ n1/2(θ̂1τ − θ01τ ) and w2nτ ≡ n1−2a
(

γ̂τ − γ 0
τ

)

. By (B.3),

the relationship between D2nτ and D̄2nτ , and Lemma B.4, we have LRnτ
(

γ 0
τ

)

= D̄2nτ (w1nτ , 0) −
D̄2nτ (w1nτ ,w2nτ ) = −D̄2nτ (0,w2nτ ) + oP (1). By the analysis of D̄2nτ (0,w2) in the the proof of
Theorem 2.3(ii) and the CMT, implies that

LRnτ
(

γ 0
τ

)

= −D̄2nτ (0,w2nτ )+ oP (1)
d→ sup

w2

{

−1

2
µτ |w2| +

√

λτW (w2)

}

(B.13)

By the change of variables w2 =
(

λτ/µ
2
τ

)

r and the distributional equalityW
(

c2r
)

≡ cW (r), we have

sup
w2

{

−1

2
µτ |w2| +

√

λτW (w2)

}

= sup
r

{

−1

2
µτ

∣

∣

∣

∣

λτ

µ2
τ

r

∣

∣

∣

∣

+
√

λτW

(

λτ

µ2
τ

r

)}

= λτ

µτ
sup
r

{

−1

2
|r| + W (r)

}

. (B.14)

Consequently, we have LRnτ
(

γ 0
τ

) d→ λτ
2µτ

supr {− |r| + 2W (r)} .

Proof of Theorem 2.5.

(i) First, observe that θ̂1 (τ , γ ) de�ned in (2.9) is alsominimizing S̄n (θ1, τ , γ ) ≡ n−1
∑n

i=1 s
(

yi, zi; θ1,

τ , γ
)

with respect to θ1, where s
(

yi, zi; θ1, τ , γ
)

≡ ρτ (yi − θ ′
1 zi (γ )) − ρτ

(

yi − θ0′1τ zi
(

γ 0
))

. Let
ς (θ1, γ , τ) ≡ E[s

(

yi, zi; θ1, τ , γ
)

]. By Lemma B.2, ς (θ1, τ , γ ) is continuous in (θ1, γ ). It is straightfor-
ward to show that it is also continuous in τ . Thus ς (θ1, τ , γ ) is continuous over21×T ×Ŵ. By Lemma 2
in Galvao et al. (2011), {s

(

y, z; θ1, γ , τ
)

: (θ1, τ , γ ) ∈ 21 × T ×Ŵ} is Glivenko–Cantelli. In conjunction

with the pointwise convergence, this implies that sup(θ1,τ ,γ )∈21×T ×Ŵ
∣

∣S̄n (θ1, τ , γ )− ς (θ1, τ , γ )
∣

∣

p→ 0.

As remarked a�er Assumption A9, θ01 (τ , γ ) = argminθ1∈21 ς (θ1, τ , γ ) is uniquely de�ned. It follows
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from Lemma B.1 of Chernozhukov and Hansen (2006) that

sup
(τ ,γ )∈T ×Ŵ

∥

∥

∥
θ̂1 (τ , γ )− θ01 (τ , γ )

∥

∥

∥
= oP (1) . (B.15)

Let Dn (γ ) ≡ Ŝnπ (γ )−
∑n

i=1

∫

ρτ
(

yi − θ0′1τ zi
(

γ 0
))

d5(τ) . (B.15) implies that uniformly over Ŵ

n−1Dn (γ ) = n−1
n
∑

i=1

∫

s
(

yi, zi; θ̂1 (τ , γ ) , τ , γ
)

d5(τ)

= n−1
n
∑

i=1

∫

[

ρτ

(

yi − θ̂1 (τ , γ )
′ zi (γ )

)

− ρτ
(

yi − θ0′1τ zi
(

γ 0
))

]

d5(τ)

= n−1
n
∑

i=1

∫

[

ρτ
(

yi − θ01 (τ , γ )
′ zi (γ )

)

− ρτ
(

yi − θ0′1τ zi
(

γ 0
))]

d5(τ)+ oP (1)

= D (γ )+ oP (1)

where D (γ ) =
∫

E
[

ρτ
(

εiτ − (θ01 (τ , γ ) zi (γ )− θ0′1τ zi
(

γ 0
)

)
)

− ρτ (εiτ )
]

d5(τ) and εiτ = yi −
θ0′1τ zi

(

γ 0
)

. Again, by the fact that E [ρτ (εiτ − c)− ρτ (εiτ )] > 0 for all c 6= 0, D (γ ) is minimized

i� θ01 (τ , γ ) zi (γ ) = θ0′1τ zi
(

γ 0
)

a.s., i.e., i� γ = γ 0 by Assumption A9(ii). By invoking Lemma B.1 of
Chernozhukov and Hansen (2006) again, we have γ̂ = γ 0 + oP (1) . This, in conjunction with (B.15)

and the continuity of θ01 (τ , ·), implies that θ̂1 (τ ) = θ̂1
(

τ , γ̂
)

= θ01
(

τ , γ̂
)

+ oP (1) = θ01τ + oP (1).

(ii) By the computational property of quantile regression (e.g., Lemma A2 in Ruppert and Carroll

(1980)), uniformly in (τ , γ ) oP (1) = n−1/2
∑n

i=1 ψτ (yi − θ̂1 (τ , γ )
′ zi (γ ))zi (γ ) . For u =

(

y, z′
)′
,

de�ne the map f 7−→ Gnf (u) ≡ n−1/2
∑n

i=1{f (ui) − E
[

f (ui)
]

} for any measurable function
f . Let f1 (u; θ1, τ , γ ) = ψτ

(

yi − θ ′
1z (γ )

)

z (γ ) . Noting that {f1 (u; θ1, τ , γ ) : (θ1, τ , γ ) ∈ 21 ×
T × Ŵ} is Euclidean and E

[

f1(ui; θ1 (τ , γ ) , zi (γ ) , γ )
]

= E{[F(θ01 (τ , γ )′ zi (γ ) |zi) − F(θ1 (τ , γ )
′

zi (γ ) |zi)]zi (γ )} → −E
[

�̄1 (τ , γ )
] (

θ1 (τ , γ )− θ01 (τ , γ )
)

when θ1 (τ , γ ) → θ01 (τ , γ ) uniformly in
(τ , γ ), we have

oP (1) = n−1/2
n
∑

i=1

ψτ

(

yi − θ̂1 (τ , γ )
′ zi (γ )

)

zi (γ )

= Gnf1

(

ui; θ̂1 (τ , γ ) , τ , γ
)

+
√
nE
[

f1 (ui; θ1, τ , γ )
]

|
θ1=θ̂1(τ ,γ )

= Gnf1
(

ui; θ
0
1 (τ , γ ) , τ , γ

)

+ oP (1)+
√
nE
[

f1 (ui; θ1, τ , γ )
]

|
θ1=θ̂1(τ ,γ )

= Gnf1
(

ui; θ
0
1 (τ , γ ) , τ , γ

)

+ oP (1)−�1 (τ , γ )
√
n
{

θ̂1 (τ , γ )− θ01 (τ , γ )
}

.

Thus we have the following uniform Bahadur representation

√
n
(

θ̂1 (τ , γ )− θ01 (τ , γ )
)

= �̄1 (τ , γ )
−1 1√

n

n
∑

i=1

ψτ
(

yi − θ01 (τ , γ )
′ zi (γ )

)

zi (γ )+ oP (1) , (B.16)

where we have used the fact E[ψτ (yi − θ01 (τ , γ )
′ zi (γ )))|zi] = 0 by (A.1) and the last oP (1) holds

uniformly over T × Ŵ.

(iii) and (iv) Let w1 (τ ) ≡ √
n
(

θ1τ − θ01τ
)

, w2 ≡ n1−2a
(

γ − γ 0
)

, w1n (τ ) ≡ √
n(θ̂1τ − θ01τ ) and w2n ≡

n1−2a
(

γ̂ − γ 0
)

. Let {θ1τ } denote {θ1τ }τ∈T , and similarly for {θ̂1τ }. As in the proof of Theorem 2.3,
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we continue to use the decomposition for Dnτ (θ1τ , γ ) in (B.3), where the only di�erence is that γ and

γ 0 are now τ -invariant. Noting that
(

{θ̂1τ }, γ̂
)

= argmin{θ1τ },γ
∫

Dnτ (θ1τ , γ ) d5(τ), we have

(w1n (·) ,w2n) = argmin
w1(·), w2

[

D1n (w1)+ D̄2n (w1,w2)
]

,

whereD1n (w1) =
∫

D1nτ (w1 (τ )) d5(τ) and D̄2n (w1,w2) =
∫

D̄2nτ (w1 (τ ) ,w2) d5(τ) . It is easy to
see that the results in Lemmata B.3 and B.4 can be strengthened to hold uniformly in (τ ,w1) over any
compact set. It follows that

D1n (w1) = −n−1/2

∫

w1 (τ )
′

n
∑

i=1

zi
(

γ 0
)

ψτ (εiτ ) d5(τ)+ 1

2

∫

w1 (τ )
′�1τw1 (τ ) d5(τ)+ oP (1) ,

(B.17)
and

D̄2n (w1,w2) = D̄2n (0,w2)+ oP (1) =
∫ n
∑

i=1

[

ρτ
(

εiτ + δ0′τ 1xi (w2)
)

− ρτ (εiτ )
]

d5(τ)+ oP (1) .

(B.18)
Then the rest of the proof follows directly from the proof of Theorem 2.3 with obvious modi�cation.

Proof of Theorem 2.6. Recall that w1nτ ≡ n1/2(θ̂1τ − θ01τ ) and w2nτ ≡ n1−2a
(

γ̂τ − γ 0
τ

)

. Let

w̃2n ≡ n1−2a
(

γ̃ − γ 0
)

. Then LRn =
∫ [

D̄2nτ (w1nτ , w̃2n)− D̄2nτ (w1nτ ,w2nτ )
]

d5(τ) . The result
in Lemma B.4 continues to hold when sup‖w1‖≤M is replaced by sup‖w1‖≤M supτ∈T . It follows that

LRn =
∫

[

D̄2nτ (0, w̃2n)− D̄2nτ (0,w2nτ )
]

d5(τ)+ oP (1) . (B.19)

Following the proof of Theorem 2.3(ii), we can readily show that D̄2nτ (0,w2) ⇒ µτ |w2| + B (τ ,w2),
where B (τ ,w2) is a two-dimensional Gaussian process with the covariance kernel

ϒ (τ , τ̄ ;w2, w̄2) ≡ E [B (τ ,w2)B (τ̄ , w̄2)] = (τ ∧ τ̄ − τ τ̄ ) λ (τ , τ̄ ) b (w2, w̄2) ,

where λ (τ , τ̄ ) = v′
τE[xix′

i|ri = γ 0]vτ̄ g
(

γ 0
)

, and b (w2, w̄2) = (|w2| ∧ |w̄2|) 1 (w2w̄2 ≥ 0) . For �xed τ ,
B (τ , ·) reduces to the one-dimensional Gaussian process Bτ (·) de�ned in the proof of Theorem 2.3(ii).
As before, we canwriteBτ (w2) as−

√
λτW (w2)whereW (·) is a two-sidedBrownianmotion. Following

the proof of Theorem 2.4, we can readily show that

−
∫

D̄2nτ (0, w̃2n)d5(τ)
d→ λ0

2µ0
sup
r

{− |r| + 2W (r)} . (B.20)

This, in conjunction with (B.13)-(B.14), implies that LRn = cLR4+ oP (1), where cLR =
∫

λτ
2µτ

d5(τ)−
λ0
2µ0

and 4 = sup−∞<r<∞ {− |r| + 2W (r)} . By the Cauchy–Schwarz inequality, one can easily verify

that cLR ≥ 0 and the equality holds if and only if λτ = µ2
τ a.s.-5.

Proof of Theorem 2.7. Recall that w̃2n ≡ n1−2a
(

γ̃ − γ 0
)

. Following closely the proof of Theorem 2.4,

we obtain LRn
(

γ 0
)

= −
∫

D̄2nτ

(

0, w̃2n

)

d5(τ) + oP (1) . The result then follows by arguments
analogous to those used in the proof of Theorem 2.4.
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