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Summary Ordinary least-squares (OLS) is well known to produce an inconsistent estimator
of the spatial parameter in pure spatial autoregression (SAR). In this paper, we explore the
potential of indirect inference to correct the inconsistency of OLS. Under broad conditions,
it is shown that indirect inference (II) based on OLS produces consistent and asymptotically
normal estimates in pure SAR regression. The II estimator used here is robust to departures
from normal disturbances and is computationally straightforward compared with quasi-
maximum likelihood (QML). Monte Carlo experiments based on various specifications of
the weight matrix show that: (a) the II estimator displays little bias even in very small samples
and gives overall performance that is comparable to the QML while raising variance in some
cases; (b) II applied to QML also enjoys good finite sample properties; and (c) II shows robust
performance in the presence of heavy-tailed error distributions.

Keywords: Bias, Binding function, Inconsistency, Indirect Inference, Spatial autoregression,
Weight matrix.

1. INTRODUCTION

Cross-section correlation poses a considerable challenge in econometric work that affects
modelling, estimation and inference. Correlation across spatial data is typically ubiquitous,
arising from multiple sources, such as competition, regulatory practices, spillover and
aggregation effects, and the influence of macroeconomic factors on individual decision-making.
Spatial correlation can be transmitted in an econometric model via observed variables or
unobserved disturbances. Parsimonious models, such as the spatial autoregression (SAR) of
Cliff and Ord (1981), have become increasingly popular in practical work. These models offer
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Indirect inference in SAR 169

a useful and easily implemented framework for describing irregularly spaced correlated spatial
data, where space can be interpreted in general terms as a network and correlation may depend
on various forms of economic distance, include physical distance as a special case. A central
advantage of SAR models is the fact that exact empirical knowledge of location is not required.
Instead, location effects, wider economic distance effects and irregularly spaced data effects may
all be embodied in an n × n weight matrix (where n is the size of the data set) that can be
constructed by the practitioner using all available relevant information.

Given an n-vector of spatial observations y, we consider the following simple (pure) SAR
model

y = λ0Wy + ε, (1.1)

where λ0 denotes the spatial parameter and ε is a vector of independent and identically distributed
(i.i.d.) disturbances with mean zero and unknown variance σ 2

0 . The weight matrix W carries
spatial correlation effects, is exogenously specified and satisfies certain restrictions that facilitate
asymptotic analysis. So, elements of W typically depend on n and are likely to change as n

increases. Thus, the components W = Wn, y = yn and ε = εn are, in fact, triangular arrays, even
though the subscript n is often omitted for notational simplicity.

Asymptotic properties of various parametric estimators of λ0 in (1.1) and more general
SAR models that include exogenous regressors have been extensively studied in recent years.
In particular, under certain conditions on the behaviour of W as n increases, Lee (2004)
derived asymptotic properties of the Gaussian maximum likelihood (ML) and quasi-maximum
likelihood (QML) estimators of λ0. Lee (2002) showed that the ordinary least-squares (OLS)
estimator of λ0 in (1.1) is inconsistent, while OLS applied to a more general SAR model with
exogenous regressors can be consistent and asymptotically normal under stronger conditions on
W . Estimates of SAR models based on generalized methods of moments (GMM) have been
studied by Lee (2001, 2007) and Liu et al. (2010), and they have been extended by Lin and
Lee (2010) and Kelejian and Prucha (2010) to accommodate unobserved heterogeneity in the
disturbances.

While asymptotic properties are generally favourable, small-sample performance of SAR
parameter estimates can be poor. Poor performance is particularly serious in the pure SAR model
(1.1) because rates of convergence to the true value may be slower than usual

√
n parametric

rates, depending on the limit behaviour of W . Correspondingly, statistical tests about the spatial
parameter that are based on asymptotic theory can also be unreliable. Much Monte Carlo work
has been conducted to study the finite sample performance of SAR estimates and tests; see, e.g.
Anselin and Florax (1995), Das et al. (2003) and Egger et al. (2009). However, finite sample
theory and analytical bias corrections are at a much earlier stage of development, in comparison
to related work in areas such as panel data modelling. Recently, Bao and Ullah (2007) derived
second-order bias and mean-squared error formulae for the ML estimator of λ0 in (1.1) using
Nagar moment expansions, and Bao (2013) extended these results to a more general model
that includes exogenous regressors and possibly non-normal disturbances. The literature about
finite sample corrections for tests is now developing and includes both the derivation of finite
sample corrections for t-type tests (Robinson and Rossi, 2015) and refinements for Moran I/LM
statistics; see, e.g. Cliff and Ord (1981), Robinson (2008), Baltagi and Yang (2013) and Robinson
and Rossi (2014).

In this paper, we use indirect inference (II) methods to derive a new OLS-based estimation
procedure that shows good performance and involves simpler computations than QML estimation

C© 2017 Royal Economic Society.



170 M. Kyriacou, P. C. B. Phillips and F. Rossi

of λ0 in (1.1). Our use of II involves a mechanism to deliver an indirect bias correction that
involves simulations or the indirect use of asymptotic approximations, as in Phillips (2012). The
II estimator of λ0 is consistent, asymptotically normal, and enjoys good finite sample behaviour.
II methods were originally introduced by Gouriéroux et al. (1993) and Smith (1993) to deal with
models with intractable objective functions. The methods have also achieved success in bias
correction under various time series settings; see, e.g. Gouriéroux et al. (2000). Applications of
II to obtain improved finite sample inference have been discussed by Phillips and Yu (2009) in a
contingent claims pricing context, where II estimates display virtually no bias and often smaller
variance compared to standard ML. Also, Gouriéroux et al. (2010) use II to accomplish bias
reduction in dynamic panels and Phillips (2012) shows that II delivers improved estimation, even
asymptotically, in a first-order autoregression with potential non-stationarity. However, these
methods have so far never been applied to spatial data.

Given the novelty of II methodology in the spatial literature, in this paper we explore its use
and develop the corresponding limit theory within the pure SAR model (1.1) with homogeneous
disturbances. Our main result demonstrates the power of II in achieving corrections, showing
how simple OLS estimation can be transformed to produce a consistent and asymptotically
normal estimate of the spatial parameter. Extensions of our new method presented in this paper
to SAR models with heterogeneous disturbances and/or a set of exogenous regressors is under
investigation in separate work; the results appear promising, and some findings are reported here.
Furthermore, extensions of this method to models in which the spatial lag enters non-linearly are
possible due to the flexibility of II and, more generally, of simulation-based techniques. By means
of a set of Monte Carlo simulations, we also show how the II methodology can be applied to the
standard QML estimator of λ0 in order to reduce its small-sample bias. Although such QML-
based estimation of λ0 performs very well in the case of model (1.1), we stress the importance
of the OLS-based method for its degree of generality. In fact, it is well known that QML is
not, in general, robust to the presence of heteroscedasticity of unknown form, and thus the good
performance of a simple QML-based II estimator may be lost in practical applications due to
heterogeneity. Also, even though the analytical bias expansions developed in Bao (2013) would
provide the groundwork to construct an II estimator based on QML when a set of regressors is
included, its practical implementation and the need to substitute unknown higher-order moments
with their estimates would pose some computational challenges. Here, the simplicity of the
OLS-based procedure is an advantage and the approach can be extended to neatly accommodate
heterogeneity and the presence of exogenous regressors.

The approach is defined and discussed in the next section, together with the main assumptions
used in the asymptotic development. In Section 3, we provide the main results relating to
the asymptotic distribution of the II estimator, and in Section 4 we report simulation findings
concerning finite sample performance for different forms of the spatial weight matrix W . In
Section 5, we report some further examples of weight matrices that are amenable to exact analysis
and comparison with the ML estimate of λ0 in (1.1), while in Section 6 we present and discuss
some extensions of our results. In Section 7, we give concluding remarks and some discussion of
extensions of the II methodology in spatial models. Sketches of proofs are given in the Appendix
and full developments in the online Appendix, which also provides further simulation findings.

Throughout the paper, λ0 and σ 2
0 denote true values of these parameters while λ and σ 2

denote admissible values. We write Sn(x) = S(x) = I − xW , where I denotes the n × n identity
matrix, and Gn(x) = G(x) = WS−1(x). We set G = G(λ0) and use Aij to signify the ij th element
of the matrix A. We denote by η̄(·) the spectral radius, ||.|| and ||.||∞ are the spectral norm
and uniform absolute row sum norm, respectively, and K represents an arbitrary finite, positive

C© 2017 Royal Economic Society.



Indirect inference in SAR 171

constant whose value may change in each location. The notation f (i)(.) denotes the ith derivative
of the function f (.).

2. INDIRECT INFERENCE IN THE PURE SAR MODEL

We consider model (1.1) whose reduced form is

y = S−1(λ0)ε, (2.1)

under assumed invertibility of S(λ0). We use the following assumptions.

ASSUMPTION 2.1. For all n, the elements of ε ∼i.i.d. (0, σ 2
0 ) with unknown variance σ 2

0 and, for
some δ > 0, E[εi]4+δ ≤ K .

ASSUMPTION 2.2. λ0 ∈ �, where � is a closed subset in (−1, 1).

ASSUMPTION 2.3. (a) For all n, Wii = 0; (b) for all n, ||W || ≤ 1; (c) for all sufficiently large
n, ||W ||∞ + ||W ′||∞ ≤ K; (d) for all sufficiently large n, uniformly in i, j = 1, . . . , n, Wij =
O(1/h), where h = hn is bounded away from zero for all n and h/n → 0 as n → ∞.

ASSUMPTION 2.4. For all sufficiently large n, sup
λ∈�

||S−1(λ)||∞ + ||S−1(λ)′||∞ ≤ K .

ASSUMPTION 2.5. The limits

lim
n→∞

h

n
tr(G

′iGj ) with 1 ≤ i + j ≤ 3, lim
n→∞

h

n
tr((G′G)2), (2.2)

lim
n→∞

h

n

∑
i

(Gii)
2, lim

n→∞
h

n

∑
i

(G′G)2
ii , lim

n→∞
h

n

∑
i

Gii(G
′G)ii (2.3)

all exist and

lim
n→∞

h

n
tr((G + G′)G′G) �= 0. (2.4)

Assumptions 2.2 and 2.2(b), or some other related conditions, are common in the SAR
literature to ensure the existence of a reduced form and to define the likelihood function; see,
e.g. Lee (2004). Although not the only possibility, the set defined in Assumption 2.2 together
with Assumption 2.3(b) seems natural in most applications as the existence of S−1(λ) is assured
and its power series representation (which is extensively used in Section 6) holds, so that for all
λ ∈ �

||S−1(λ)|| = ||
∞∑

s=0

λsWs || ≤
∞∑

s=0

|λ|s ||W ||s ≤ (1 − |λ|)−1 ≤ K. (2.5)

Detailed discussions on the choice of the parameter space of λ and further restrictions to
guarantee existence of the reduced form (2.1) are given in Kelejian and Prucha (2010). In
fact, QML estimation relies on the existence of a reduced form and S−1(λ) for λ ∈ � under
Assumptions 2.2 and 2.3(b), while OLS estimation does not rely on such restrictions and so II
implemented on OLS can be defined for values of λ beyond the (−1, 1) space. Assumption 2.3(b)
is not particularly restrictive, as any W can be rescaled by its spectral norm so that ||W || ≤ 1 is

C© 2017 Royal Economic Society.



172 M. Kyriacou, P. C. B. Phillips and F. Rossi

trivially satisfied. Assumption 2.3(c) – see Kelejian and Prucha (1998) – rules out strong spatial
dependence and it is evidently satisfied when each unit has a finite number of neighbours as n

increases. When Wij = O(1/h), which is common practice when dealing with SAR models –
see, e.g. Lee (2004) – we impose h/n → 0 along with Assumption 2.4 to establish a central
limit theorem for quadratic forms; see, e.g. Robinson (2008). From a practical perspective,
Assumptions 2.3(c) and 2.3(d) rule out the case in which a unit is related to all other units as
n increases. Assumptions 2.3(c) and 2.4 are satisfied, for instance, when W is row-normalized so
that Wl = l, where l indicates an n × 1 column of ones, symmetric and with positive entries.

By a standard argument, under Assumption 2.3,

h

n
tr(WpW

′q) = O(1), ∀p, q s.t. p + q > 1, (2.6)

as n → ∞. Also, under Assumptions 2.3 and 2.4 as n → ∞,

h

n
tr(G(λ)pG(λ)

′q) = O(1), ∀p, q s.t. p + q ≥ 1, (2.7)

as ||S−1(λ)||∞ + ||S−1(λ)′||∞ ≤ K uniformly in λ. Assumption 2.5 is required to impose
existence and non-singularity of limits of certain sequences that figure in the asymptotic
development. The sequences in (2.2) are bounded as n → ∞ according to (2.7) and converge
under Assumption 2.5. Sequences in (2.3) are O(1/h) and vanish as n increases when h is
a divergent sequence and (2.3) ensures that limits are well defined also in case h = O(1) as
n → ∞. Condition (2.4) ensures non-singularity of the asymptotic variance in our main theorem,
as by the Cauchy inequality

0 <
(h

n

)2
(tr((G + G′)G′G)2 <

(h

n

)2
tr((G + G′)2)tr((G′G)2) < 2

(h

n

)2
tr(G′G)tr((G′G)2).

(2.8)

The OLS estimator of λ0 is given by the ratio λ̂ = y ′W ′y/y ′W ′Wy, and by a standard
argument as n → ∞

λ̂ − λ0 →p lim
n→∞

htrG/n

htr(G′G)/n
. (2.9)

As n → ∞ limn→∞ htr(G′G)/n �= 0 under Assumption 2.5 and (2.8), the limit in (2.9) exists and
is bounded. However, unless W is restricted to very specific choices, it is difficult to calculate the
limit on the right-hand side of (2.9) and to give an analytical expression as a function of λ0.

According to the usual II calculations, for any λ ∈ � we can generate B sets of pseudo-data
yb = (yb

1 , yb
2 , . . . , yb

n)′, b = 1, 2, . . . , B from the true model (under assumed Gaussianity of ε)
and for each pseudo-data set b the OLS estimator of λ is computed as

λ̂b = λ̂b(λ) = yb(λ)′W ′yb(λ)

yb(λ)′W ′Wyb(λ)
= λ + yb(λ)′W ′εb

yb(λ)′W ′Wyb(λ)
, b = 1, . . . , B. (2.10)

The II estimator of λ0, λ̂II, is then defined by the extremum problem

λ̂II = argmin
λ

|λ̂ − 1

B

B∑
b=1

λ̂b(λ)|, (2.11)

C© 2017 Royal Economic Society.
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which produces an estimator that aligns the sample mean of the simulations to the observed λ̂.
As B → ∞, (2.11) becomes

λ̂II = argmin
λ

|λ̂ − Eb[λ̂b(λ)]|, (2.12)

where the expectation operator Eb is interpreted with respect to the pseudo-variate εb.
We define the binding function as

bn(λ) = Eb[λ̂b(λ)] = λ + Eb

[ ε′bG(λ)′εb

ε′bG(λ)′G(λ)εb

]
, (2.13)

and introduce the following condition.

ASSUMPTION 2.6. (a) For all n, the binding function bn(λ) is continuous and strictly increasing
for all λ ∈ �; (b) lim

n→∞b(1)
n (λ0) exists and is positive.

Assumption 2.6 reveals the key conditions under which II converts an inconsistent estimator,
λ̂ here, into a consistent estimator, which is a central contribution of the paper. In Section 5,
we show analytically that for various choices of W Assumption 2.6 is satisfied; however, as the
boundary value λ = 1 is approached, the binding function becomes nearly flat, which indicates
that, near the bound, the II method is less effective due to reduced information in the approximate
binding function, b∗(λ), about the true value of λ. It would be useful to establish general primitive
conditions on W or, possibly, on the parameter space � and W under which Assumption 2.6 is
satisfied. However, derivation of such conditions is likely possible only in special cases. As is
usual practice, therefore, we rely in general on numerical methods to verify the validity of this
assumption.

For each λ ∈ �, we have the formal moment expansion (Lieberman, 1994)

Eb

[ ε′bG(λ)′εb

ε′bG(λ)′G(λ)εb

]
= Eb[ε′bG(λ)′εb]

Eb[ε′bG(λ)′G(λ)εb]
+ θ1n + θ2n + θ3n + . . . , (2.14)

where

θ1n = Eb[ε′bG(λ)′εb]cum2

(Eb[ε′bG(λ)′G(λ)εb])3
− cum11

(Eb[ε′bG(λ)′G(λ)εb])2
. (2.15)

Here, cump is the pth cumulant of ε′bG(λ)′G(λ)εb, cum1p is the pth generalized cumulant of the
product of ε′bG(λ)′εb and ε′bG(λ)′G(λ)εb – see, e.g. McCullagh (1987) – while θin for i > 1 are
functions of cump, cum1p, and moments of ε′bG(λ)′G(λ)εb and ε′bG(λ)′εb. As n → ∞, under
Assumptions 2.3, 2.4 and 2.6 and by (2.7), the leading term in (2.14) is O(1), and θ1n = O(h/n).

By observing that higher-order terms in (2.14) are of increasingly smaller order (the
computation is tedious and is not reported here), we may have the formal expansion for the
binding function

bn(λ) = λ + tr(G(λ))

tr(G(λ)′G(λ))
+ O

(h

n

)
. (2.16)

An advantage of Lieberman’s result is the fact that (2.14) and (2.16) do not rely on the normality
of εb, so that procedures based on them should have some invariance properties with respect to
the underlying data distribution.

C© 2017 Royal Economic Society.



174 M. Kyriacou, P. C. B. Phillips and F. Rossi

Because we restrict our analysis to the class of W matrices such that Assumption 2.6 holds,
we have the simple inverse function formulation

λ̂II = b−1
n (λ̂). (2.17)

In practice, we can construct λ̂II by generating a large number B of pseudo-data to approximate
the binding function by

1

B

B∑
b=1

λ̂b(λ). (2.18)

However, distributional assumptions are required to generate the pseudo-data and, because the
asymptotic variance of λ̂ depends on the fourth cumulant of the εi , as we will show, this
mechanism is not fully robust to distributional misspecification. Instead, we construct λ̂II using
the approximate analytical form of the binding function

b∗
n(λ) = λ + tr(G(λ))

tr(G(λ)′
G(λ))

, (2.19)

which holds more generally under Assumption 2.1. We show that λ̂II obtained by (2.19) is
consistent and asymptotically normal without any additional distributional assumption, unlike the
estimator λ̂, which is biased in finite samples and also inconsistent (Lee, 2002). The generality
offered by an implementation based on (2.19) offsets the potential gain of an estimator with
possibly smaller finite sample bias, which might be achieved by using the binding function (2.18)
based on simulations for sufficiently large B. Derivation of higher-order bias adjustment also
seems unnecessary not only because b∗

n(λ) is close to bn(λ), but also because bn(λ) is found to be
stable across different distributions, a feature that conforms to already well-known results, such
as those in Andrews (1993). The binding function plots shown later in Figures 1 and 4 verify
that the approximate binding functions b∗

n(λ) across different specifications of W offer very good
approximations to the exact binding functions based on (2.18) from either Gaussian or standard
Cauchy innovations.

Whereas the term ‘indirect inference’, as originally developed in econometrics, refers to
methods where the parameters are estimated indirectly via a mechanism that involves simulations
from another related model, the terminology can also be sensibly used in bias correction
problems where simulations are employed to compute the binding function, either within the
procedure itself or separately in extensive simulation exercises, or even via analytics. In such
cases, simulations or analytical expansion formulae, such as (2.16), enable indirect or implicit
correction of the estimator, which captures the main idea of II, the key notion being indirect
rather than explicit direct correction of the bias. Importantly, in the present case, the implicit bias
correction leads also to correction of inconsistency.

3. LIMIT DISTRIBUTION OF λ̂II

In the notation that follows, some quantities are given an affix (subscript) n to emphasize their n-
dependence. Let gij = htr(GiGj ′

)/n and g = htr((G′G)2)/n. Define the centring quantity λ̄n =
λ0 + (g10/g11). By a standard delta argument,

λ̂ − λ̄n =
(h

n

)1/2
f ′

n

(h

n

)1/2
Un +op

((h

n

)1/2)
, (3.1)

C© 2017 Royal Economic Society.
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where

Un = (y ′Wε − tr(G)σ 2
0 ; y ′W ′Wy − tr(G′G)σ 2

0 )′ (3.2)

and

fn =
((h

n
y ′W ′Wy

)−1
, −

(h

n
y ′W ′Wy

)−2(h

n
y ′Wε

))′
. (3.3)

THEOREM 3.1. (a) Under (1.1) and Assumptions 2.1–2.5
(n

h

)1/2
(λ̂ − λ̄n)

d→ N (0, ω), (3.4)

where

ω = lim
n→∞

(g20 + g11

g2
11

− 4g10g21

g3
11

+ 2g2
10g

g4
11

+ h

n

κ4

σ 4
0 g2

11

n∑
i=1

(Gii − g10g
−1
11 (G′G)ii)

2
)

(3.5)

and κ4 = E[ε4
i ] − 3σ 4

0 . (b) Under (1.1) and Assumptions 2.1–2.6

(n

h

)1/2
(λ̂II − λ0)

d→ N (0, ω∗), (3.6)

where

ω∗ = lim
n→∞(g11 + g20)−1

(
1 − 2g10g21

g11(g20 + g11)

)−2(
1 − 4g21g10

g11(g11 + g20)
+ 2gg2

10

g2
11(g11 + g20)

+h

n

κ4

σ 4
0 (g11 + g20)

n∑
i=1

(Gii − g10g
−1
11 (G′G)ii)

2
)
. (3.7)

The limits on the right-hand sides of (3.5) and (3.7) exist and are strictly positive under
Assumptions 2.5 and 2.6.

Theorem 3.1 enables a comparison between λ̂II and the Gaussian ML estimator λ̂ML. When
εi ∼i.i.d. N (0, σ 2), we have κ4 = 0 and then, from Lee (2004),

(n

h

)1/2
(λ̂ML − λ0)

d→ N (0, VML), (3.8)

where

VML = lim
n→∞

(
g20 + g11 − 2

h
g2

10

)−1
. (3.9)

For λ0 = 0, a case that is especially relevant in testing, tr(G) = 0 and ω∗ = VML, so that II and
ML have equivalent limit distributions. However, from Robinson and Rossi (2015), when λ0 = 0

(n

h

)1/2
λ̂

d→ N (0, VOLS), (3.10)

where VOLS = (g2
11/(g11 + g20))−1. Furthermore, because λ̂ is inconsistent when λ0 �= 0, a Wald

test based on λ̂ may not be reliable for all values of λ0. By contrast, a Wald test based on λ̂II is
equivalent to one based on the MLE and is consistent against any alternative value for λ0.

C© 2017 Royal Economic Society.
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4. SIMULATIONS

Simulations were conducted to assess the finite sample performance of λ̂II in (2.17) in relation
to λ̂ and the QML estimator of λ0, λ̂QML. We consider two different specifications of the weight
matrix W : a circulant matrix and an asymmetric Toeplitz matrix. Bias and mean square error
(MSE) were computed for values of λ0 ∈ {−0.8,−0.5, 0, 0.5, 0.8} and the sample size range
is n ∈ {30, 50, 100, 200}. In the reported results, the disturbances εi are generated from a t-
distribution with five degrees of freedom with 104 replications. Results based on Gaussian errors
appear to follow a very similar pattern and are available from the authors upon request. We
implement OLS-based II using the approximate binding function b∗

n(.) in (2.19) to obtain λ̂II.
Simulation results suggest that b∗

n(.) closely approximates the true value E[λ̂], a feature that is
also verified analytically for some simple choices of W shown in Section 5.

Although the main idea explored in this paper is the application of the II methodology
to λ̂ to restore its consistency, an II estimator based on QML (rather than OLS), λ̂II, QML,
can also be constructed based on λ̂QML following the same principles discussed in previous
sections. Although consistent, λ̂QML does suffer from finite-sample bias, as evidenced in the
findings of Bao and Ullah (2007) and Bao (2013). We construct λ̂II, QML using the analytical
bias expansion of Bao (2013, expression (2.15) p. 78), to obtain an approximate QML binding
function, b∗

n, QML(λ). The explicit form of b∗
n,QML(λ) is omitted here to avoid introducing further

notation. Provided monotonicity requirements similar to Assumption 2.6 are satisfied, then

λ̂II, QML = b∗−1
n, QML(λ̂QML). (4.1)

Both the QML binding function and estimator λ̂II, QML itself depend on the unknown excess
kurtosis parameter γ2, which satisfies E[ε4

i ] = (γ2 + 3)σ 4
0 . We use the QML residuals êi , i =

1, . . . , n to estimate γ2 with γ̂2 = (μ̂4/μ̂2) − 3, where μ̂4 = (
∑n

i=1 ê4
i )/n and μ̂2 = (

∑n
i=1 ê2

i )/n.
Although γ̂2 is a consistent estimator of γ2, using it for calculating the QML binding function
may result in an increase of the variance of the II–QML estimator and may affect its asymptotic
theory. For each choice of W , the entries in Tables 1 and 2 display the bias and MSE of λ̂,
λ̂II, λ̂QML and λ̂II, QML, labelled OLS, II–OLS, QML and II–QML respectively. For comparison
purposes, the bottom panels of Tables 1 and 2 report bias and MSE of the bias-corrected QML
estimator using the analytical bias expression of Bao (2013), λ̂BC, QML (denoted by BC–QML in
the tables). This estimator is calculated by bias-correcting λ̂QML using the analytical expression
for the leading bias term as in expression (2.15) in Bao (2013) and by estimating the excess
kurtosis parameter term γ2 as discussed above. Additional simulation results based on a different
weight matrix structure can be found in the online Appendix.

4.1. Circulant weights

Our first example is a row-normalized weight matrix with a circulant structure, WC , similar to
the one used by Kelejian and Prucha (1999), defined as

WC = 1

||AC ||AC, (4.2)

where AC is a circulant matrix with leading row (0, 1, 1, 0, . . . , 0, 1, 1), and WC in (4.2) is
normalized with respect to its spectral norm so that ||WC || = 1. Assumptions 2.3–2.5 are readily
verified with h = ||AC ||, which in this case remains fixed as n → ∞.
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Table 1. Bias and MSE when W is given by (4.2).

λ0 n = 30 n = 50 n = 100 n = 200

BIAS MSE BIAS MSE BIAS MSE BIAS MSE

OLS
−0.8 0.2278 0.1462 0.2690 0.1102 0.2897 0.0990 0.2988 0.0958
−0.5 0.4869 0.4582 −0.4923 0.3783 −0.4867 0.3083 −0.4924 0.2780

0.0 −0.0964 0.2627 −0.0575 0.1606 −0.0286 0.0803 −0.0148 0.0393
0.5 −0.2250 0.1323 0.2665 0.1086 0.2918 0.1006 0.3021 0.0981
0.8 0.2084 0.0525 0.2164 0.0501 0.2211 0.0500 0.2218 0.0497

II–OLS
−0.8 −0.0225 0.0562 −0.0113 0.0269 −0.0084 0.0116 −0.0074 0.0051
−0.5 −0.0345 0.0902 −0.0399 −0.0399 −0.0075 0.0209 −0.0044 0.0133

0.0 −0.0491 0.0804 −0.0234 0.0417 −0.0157 0.0204 −0.0073 0.0098
0.5 −0.0240 0.0498 −0.0264 0.0297 −0.0115 0.0116 −0.0047 0.0054
0.8 −0.0185 0.0251 −0.0084 0.0131 0.0054 0.0078 0.0100 0.0045

QML
−0.8 −0.0496 0.0447 −0.0283 0.0214 −0.0156 0.0097 −0.0105 0.0045
−0.5 −0.0048 0.0668 −0.0118 0.0687 −0.004 0.0190 0.088 0.0119

0.0 −0.0452 0.0682 −0.0227 0.0389 −0.0154 0.0196 −0.0072 0.0096
0.5 −0.0508 0.0383 −0.0430 0.0247 −0.0182 0.0102 −0.0087 0.0047
0.8 −0.0400 0.0151 −0.0224 0.0070 −0.0080 0.0028 −0.0055 0.0013

II–QML
−0.8 −0.0031 0.0426 0.0003 0.0205 −0.0011 0.0095 −0.0032 0.0044
−0.5 −0.005 0.0775 −0.0130 0.0798 −0.0029 0.0203 −0.0065 0.0124

0.0 −0.0119 0.0743 −0.0015 0.0410 0.0046 0.0201 −0.0017 0.0097
0.5 −0.0038 0.0359 −0.0143 0.0231 −0.0037 0.0099 −0.0014 0.0046
0.8 −0.0038 0.0120 0.0023 0.0070 0.0016 0.0028 0.0022 0.0013

BC–QML
−0.8 0.0079 0.0623 0.0087 0.0387 0.0066 0.0191 0.0062 0.0098
−0.5 0.0035 0.0751 0.0035 0.0450 0.0020 0.0213 0.0048 0.0104

0.0 −0.0055 0.0715 −0.0048 0.0421 0.0046 0.0204 0.0045 0.0107
0.5 −0.0032 0.0372 −0.0026 0.0214 −0.0049 0.0093 0.0046 0.0045
0.8 −0.0017 0.0130 −0.0006 0.0063 0.0079 0.0027 −0.0023 0.0013

Note: Bias and MSE of λ̂, λ̂II, λ̂QML, λ̂II, QML and λ̂QML, BC at n = 30, 50, 100 and 200 for λ0 = −0.8, −0.5, 0, 0.5 and
0.8, when W is given by (4.2) (104 repl. and ε is generated from a t-distribution with five degrees of freedom).

Figure 1 depicts the exact OLS binding functions bn(.) based on Gaussian and standard
Cauchy innovations (B = 50,000), the approximate OLS binding functions b∗

n(.) and the
approximate QML binding functions bn, QML(.), for λ ∈ (−1, 1) when W is (4.2) at n = 100 For
the latter, we employ the true value of the excess kurtosis parameter γ2 under the t-distribution
with five degrees of freedom.1 Some key features of the binding functions are immediately
apparent from the plots in Figure 1. The simulated binding functions following (2.18) (denoted
as exact henceforth) are based on B = 50,000 pseudo-data sets drawn from either Gaussian

1 This could be replaced with γ̂2 as λ̂QML is consistent.

C© 2017 Royal Economic Society.



178 M. Kyriacou, P. C. B. Phillips and F. Rossi

Table 2. Bias and MSE when W is given by (4.3).

λ0 n = 30 n = 50 n = 100 n = 200

BIAS MSE BIAS MSE BIAS MSE BIAS MSE

OLS
−0.8 −0.3088 0.1843 −0.3296 0.1609 −0.3336 0.1363 −0.3417 0.1287
−0.5 −0.2837 0.2122 −0.2921 0.1666 −0.2848 0.1231 −0.2858 0.1031

0.0 −0.0681 0.1598 −0.0377 0.0979 −0.0182 0.0489 −0.0121 0.0246
0.5 0.1503 0.0810 0.1829 0.0628 0.2046 0.0547 0.2158 0.0523
0.8 0.1302 0.0254 0.1439 0.0241 0.1524 0.0244 0.1564 0.0249

II–OLS
−0.8 −0.0209 0.0966 −0.0232 0.0585 −0.0104 0.0266 −0.0104 0.0127
−0.5 −0.0292 0.0800 −0.0298 0.0506 −0.0135 0.0223 −0.0041 0.0129

0.0 −0.0392 0.0646 −0.0194 0.0356 −0.0173 0.0193 −0.0025 .0086
0.5 −0.0320 0.0375 −0.0151 0.0203 −0.0092 0.0096 −0.0047 0.0048
0.8 −0.0114 0.0277 −0.0085 0.0135 0.0002 0.0054 −0.0032 0.0022

QML
−0.8 −0.0156 0.0930 −0.0187 0.0557 −0.0075 0.0256 −0.0088 0.0122
−0.5 −0.0241 0.0766 −0.0256 0.0484 −0.0111 0.0215 −0.0032 0.0127

0.0 −0.0390 0.0620 −0.0194 0.0350 −0.0172 0.0190 −0.0025 0.0085
0.5 −0.0425 0.0334 −0.0203 0.0192 −0.0124 0.0092 −0.0063 0.0045
0.8 −0.0453 0.0190 −0.0296 0.0087 −0.0105 0.0035 −0.0072 0.0018

II–QML
−0.8 −0.0031 0.0930 −0.0076 0.0566 −0.0029 0.0256 −0.0071 0.0123
−0.5 0.0092 0.0788 −0.0114 0.0488 −0.0047 0.0217 −0.0023 0.0128

0.0 −0.0033 0.0634 0.0021 0.0356 −0.0065 0.0190 0.0029 0.0086
0.5 0.0016 0.0323 0.0064 0.0191 0.0093 0.0092 0.0037 0.0045
0.8 −0.0011 0.0167 −0.0032 0.0078 0.0027 0.0034 −0.0059 0.0018

BC–QML
−0.8 0.0108 0.0983 −0.0030 0.0561 0.0033 0.0254 0.0042 0.0142
−0.5 0.0095 0.0787 −0.0097 0.0466 −0.0093 0.0252 −0.0052 0.0113

0.0 −0.0064 0.0661 0.0021 0.0373 0.0014 0.0177 −0.0011 −0.0090
0.5 −0.0023 0.0366 −0.0029 0.0190 0.0022 0.0091 −0.0012 0.0044
0.8 −0.0020 0.0083 0.0019 0.0078 0.0017 0.0032 0.0013 0.0046

Note: Bias and MSE of λ̂, λ̂II, λ̂QML, λ̂II, QML and λ̂QML, BC at n = 30, 50, 100 and 200 for λ0 = −0.8, −0.5, 0, 0.5 and
0.8, when W is given by (4.3) (104 repl. and ε is generated from a t-distribution with five degrees of freedom).

or standard Cauchy innovations, while the approximate binding OLS binding function, b∗
n(λ)

is based on (2.19). The exact and approximate binding functions are indistinguishable, which
confirms that b∗

n(λ) serves as a valuable approximation at very little computational cost without
relying on a restrictive distributional assumption on ε. The (approximate) QML binding function
b∗

n, QML is noticeably monotonic and increasing over the full domain −1 < λ < 1, whereas the
OLS binding functions bn(.) and b∗

n(.) are monotonic and decreasing with a slope that becomes
steeper as λ → 1, so that the inverse binding function is also monotonic but becomes flatter as
λ → 1.2

2 Extended binding plots for values of λ beyond unity are shown in the online Appendix.
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Figure 1. Exact and approximate binding functions. [Colour figure can be viewed at
wileyonlinelibrary.com]

Table 1 summarizes the bias and MSE of OLS, II–OLS, QML, II–QML and BC–QML when
W is chosen to have a circulant structure as in (4.2). The entries in the top panel of Table 1 reveal
that the OLS estimator λ̂ suffers from substantial bias for all values of λ0. In accordance with
asymptotic theory (Lee, 2002), the bias does not vanish as n increases. In fact, for a given λ0 �= 0,
the bias seems to increase with n and becomes particularly severe when λ0 is negative. The entries
in the last four panels of Table 1 reveal that II–OLS, QML, II–QML and BC–QML provide
substantial reductions in the OLS bias and MSE. In moderately large sample sizes (n = 100
and 200), II–OLS often outperforms QML in bias reduction without much compromise in the
MSE. The MSE of λ̂II is comparable to the MSE of λ̂QML in most cases other than when λ0 is
close to unity, as might be expected from the shape of the OLS binding function b∗

n(.) which
becomes flat as λ approaches unity. The entries in the bottom panel of Table 1 indicate that II
applied to λ̂QML achieves the best results in terms of both bias and MSE reduction. In most cases,
II–QML outperforms BC–QML, although their respective performances are in general very
satisfactory. Importantly, the MSE of λ̂II, QML does not suffer any deterioration as λ approaches
unity, consonant with the form of the binding function b∗

n, QML over the full domain of λ.
To shed light on their distributional characteristics, Figure 2 plots the simulated density

functions of λ̂, λ̂II, λ̂QML, λ̂II, QML and λ̂BC, QML for n = 100 when λ0 = 0.5. The distribution
of λ̂ is seen to be severely upward biased (centred around 0.85 rather than its true value of 0.5),
whereas the II–OLS, QML, II–QML and BC–QML estimators appear to be almost unbiased on
the scale of this figure. All five estimators seem to have similar dispersion in this case.

Direct analytical comparison of the variances of λ̂II and λ̂QML is difficult because (3.7) and
the asymptotic variance of the QML estimator (Lee, 2004) are highly complicated non-linear
functions of the weight matrix. Figure 3 shows how the finite sample variances of λ̂II and λ̂QML

vary with λ0 at n = 100. The variances are close for small to moderate spatial autocorrelation,
but as |λ0| increases ω∗ in (3.7) increases rapidly as λ0 tends to unity. This variance increase
can be attributed to flatness in the binding function bn(λ)∗ as λ approaches the boundaries of the
support in this case.
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Figure 2. Empirical densities when W is chosen as in (4.2) at n = 100. [Colour figure can be viewed at
wileyonlinelibrary.com]
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Figure 3. Finite sample variances when W is chosen as in (4.2) at n = 100. [Colour figure can be viewed
at wileyonlinelibrary.com]
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Figure 4. Exact OLS binding functions when W is chosen as in (4.3) at n = 100. [Colour figure can be
viewed at wileyonlinelibrary.com]

4.2. Asymmetric Toeplitz weights

We next consider an asymmetric Toeplitz weight matrix WAT. Using the circulant matrix AC

as a starting point, we introduce asymmetry in the weight matrix structure by removing the
neighbourhood effect of the (n − 1)th unit on the first unit in (4.2). This produces a three-element
neighbourhood effect in each row rather than four. Specifically, we define

WAT = 1

‖AAT‖AAT, (4.3)

where the leading row of AAT is (0, 1, 1, 0, . . . , 0, 0, 0, 1).
The weight matrix is again row-normalized, in accordance with Assumption 2.3. Figure 4

depicts exact OLS binding functions bn(.) based on Gaussian and standard Cauchy innovations
(B = 50,000), approximate OLS binding functions b∗

n(.) and approximate QML binding
functions bn, QML(.), for λ ∈ (−1, 1) when W is chosen as in (4.3) at n = 100. In the figure, the
approximate binding function for n = 100 verifies that both b∗

n(.) and b∗
n, QML(.) are monotonic

over a large subset of (−1, 1). For λ > 0.8, the OLS binding function flattens out, although not
as markedly as in the symmetric case examined previously.

The simulation results reported in Table 2 confirm that the QML, II–OLS, BC–QML and II–
QML estimators provide substantial reductions to both the bias and MSE of OLS. Interestingly,
for most configurations, QML and II–OLS display similar performances: II–OLS generally has
smaller bias than QML when λ0 > 0, without any evident increase in MSE and, for n = 200,
largely reproduces the performance characteristics of QML. These results, along with the entries
of Table 1, indicate that once symmetry is removed from the weight matrix structure, the QML
performance starts to weaken. Similarly to the circulant W case, II–QML outperforms both II–
OLS and QML in terms of bias, and often outperforms QML in MSE reduction when λ0 is
positive. The entries of the bottom panel in Table 2 show that, in this case, BC–QML is very
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Figure 5. Empirical densities when W is chosen as in (4.3) at n = 100. [Colour figure can be viewed at
wileyonlinelibrary.com]

effective at reducing the bias of λ̂QML, and its performance is comparable to that of II–QML.
Indeed, this is expected as the bias of λ̂BC, QMLE (and also λ̂II, QMLE) is o(h/n), while the bias
of λ̂II, OLS is O(h/n). The bias reduction of II–OLS, QML, II–QML and BC–QML compared
to OLS is clearly confirmed by the plots of the empirical densities of λ̂, λ̂II, λ̂QML, λ̂II, QML and
λ̂BC, QML reported in Figure 5 for n = 100 and λ0 = 0.5 .

Figure 6 displays comparisons of the finite sample variances of λ̂II and λ̂QML over λ0 ∈
(−1, 1), revealing that the plots virtually overlap for most admissible values of λ0, with
discrepancies emerging as |λ0| tends to unity.

5. EXAMPLES

In this section, we consider a few examples for which we may analyse whether the binding
function bn(λ) in (2.16) is invertible, at least as n → ∞, rather than relying on numerical work, as
in the plots of Figures 1 and 4. In some cases, an analytical comparison between the performances
of λ̂II and λ̂QML is also possible.

5.1. The districts model

The simplest choice of W that is amenable to analysis and facilitates a comparison between (3.7)
and (3.9) is the block diagonal ‘districts model’ weight matrix W (Case, 1991), which is defined
as

Wn = Ir ⊗ Bm, Bm = 1

m − 1
(lml′m − Im), (5.1)
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Figure 6. Finite sample variances when W is chosen as in (4.3) at n = 100. [Colour figure can be viewed
at wileyonlinelibrary.com]

where Is is the s × s identity matrix, lm is an m-vector of ones and ⊗ is the Kronecker product. It
is easy to verify that W in (5.1) satisfies Assumptions 2.3 and 2.4 with n = mr and h = m − 1.
The specification (5.1) indicates that within a particular district (block) the spatial dependence
has the same form, whereas it is zero between blocks.

The approximate binding function b∗
n(.) shown in Figure S.3 of the online Appendix is

invertible for λ ∈ (−1, 1) and for all sample sizes but it flattens considerably as λ approaches
unity.

THEOREM 5.1. Let W be defined as in (5.1): (a) as n → ∞, the binding function bn in (2.16) is
strictly increasing for all λ ∈ �; (b) if 1/m + 1/r → 0, then λ̂II is asymptotically equivalent to
λ̂QML.

The condition in Theorem 5.1(b) corresponds to a case of divergent h.

5.2. Circulant weight matrix model

As another example, we consider the simple circulant matrix C with leading row (0, 1, 0,
. . . , 0, 1). and

W = 1

2
C, (5.2)

so that ||W || = 1 and h = 2 for all n.
From Figure S.4 in the online Appendix where n = 100, the approximate binding function

b∗
n(λ) in this case is strictly monotonic for λ ∈ (−0.7, 0.7) but becomes almost flat (and even

decreases slightly) as λ → 1, with related behaviour as λ → −1. Similar behaviour was found
in simulations for the case where W was chosen as in (4.2). We have the following analytical
result.
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THEOREM 5.2. Define W as in (5.2). As n → ∞, bn(λ) in (2.16) is strictly increasing for all
λ ∈ �, where � is any closed subset of (−√

3/2,
√

3/2).

In principle, we can extend the argument below to any choice of W with a Toeplitz structure,
and thus to circulants with more than ‘one behind and one ahead’ neighbours. However, this
would require numerical solutions of integrals and thus it is beyond the scope of the present
example.

From (3.7) and the results reported in the online Appendix (i.e. (A.39), (A.42) and (A.45))
we also conclude that ω∗ → ∞ as λ0 → ±√

3/2, as

1 − 2g10g21

g11(g20 + g11)
→ 0 as λ → ±

√
3

2
. (5.3)

This result, even though it is derived under the simpler circulant weight matrix (5.2), is consistent
with the Monte Carlo results based on the weight matrix W defined in (4.2). Hence, both
analytical and simulation findings reveal that for circulant weight matrices W the II estimator
λ̂II can be obtained by inversion of the binding function for small to moderate values of λ0 and
performs well as an estimator over this domain.

6. EXTENSIONS

The simplest generalization of the results derived in Section 3 involves the inclusion of an
unknown intercept μ0 in the SAR model, so that

y = μ0l + λ0Wy + ε, (6.1)

where l is an n-vector of ones, W is row-normalized, so that Wl = l, y is the n-dimensional
observation vector and ε is a vector of i.i.d. disturbances.

The OLS estimator of λ0 in (6.1) is

λ̃ = y ′W ′Py

y ′W ′PWy
, (6.2)

where P = I − ll′/n. When W is row-normalized, it is easy to verify by a series expansion of
S−1(λ0) that the reduced form of (6.1) is

y = S−1(λ0)(μ0l + ε) = μ0

1 − λ0
l + S−1(λ0)ε. (6.3)

Thus, by standard algebra and observing that l′Gl/n = O(1) under Assumptions 2.3 and 2.4,
we conclude that (2.9) holds with λ̂ replaced by λ̃ and the formal expansion for bn in (2.16)
is still appropriate so that we can define the II estimator of λ0 in (6.1) as λ̃II = b−1

n (λ̃). Thus,
Theorem 3.1 holds with λ̂ replaced by λ̃ and λ̂II replaced by λ̃II. When W is not row-normalized,
the asymptotic theory for the OLS of λ0 in (6.1) would be different, as λ̃ may be consistent
and asymptotically normal with a standard

√
n rate under some additional conditions on the

behaviour of W in the limit; see Lee (2002). Because the focus of the present work is on using
II to convert an inconsistent OLS estimator into a consistent estimator, we do not further pursue
the case of model (6.1) with non-row-normalized W .

Theorem 3.1 is also robust to mild forms of unobserved heterogeneity, such as the
following.
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ASSUMPTION 6.1. For all n, the elements of ε are independent with mean zero and

E[εε′] = D > 0, with D = σ 2
0 I + C,

where C = (Cii) is an n × n diagonal matrix with rank c = cn, where cn is a positive sequence
satisfying cn = o(n), and uniformly in i and n, |Cii| ≤ K . For some δ > 0

sup
1≤i≤n,n≥1

E[εi]
4+δ ≤ K.

If either 1/h + c/h → 0 or h = O(1) and c = O(1) as n → ∞ the probability limit in (2.9),
the formal expansion for bn(λ) in (2.16) and the asymptotic distribution in Theorem 3.1 still
holds.

Although our theoretical results have been derived under Assumption 2.1 (i.e. for error
terms with finite moments up to order 4 + δ, δ > 0), the online Appendix reports Monte Carlo
results for SAR estimation under heavy-tailed errors. Specifically, Tables S.1– S.3 illustrate
the behaviour of II-based estimators compared to OLS, QML and BC–QML when the errors
are generated from a Student t-distribution with three degrees of freedom across different
W specifications. These results confirm that II estimators continue to enjoy good robustness
properties in all cases with heavy-tailed errors.

Cases of general heteroscedasticity and the extension of our method to a SAR models with
exogenous regressors (SARX) are under investigation in ongoing work. Dealing with error
heterogeneity involves new theory and technical challenges, so we do not report details on the
implementation of our methodology to SARX under unknown heteroscedasticity here. However,
to illustrate the potential of the methods, some Monte Carlo results are tabulated in Section S.3
of the online Appendix. These findings are promising and reveal, in particular, that II estimation
in its extended version, which accommodates error heterogeneity, dominates both standard
QML – as might be expected in view of its inconsistency – and the robust GMM estimator,
which is known to be consistent (Lin and Lee, 2010).

7. CONCLUSIONS

The II methodology can be used in pure SAR to convert the inconsistent OLS estimator of the
spatial parameter into a consistent and asymptotically normal estimator. The method is simple
to implement and its performance characteristics are broadly comparable to QML and can be
superior in terms of bias reduction, although variance typically increases when the binding
function flattens out towards the boundary of the domain of definition of λ. In addition, the
II methodology can be straightforwardly applied to other estimation techniques. In particular,
Monte Carlo simulations show that II adaptations of QML successfully remove much of the
finite sample bias of QML. In fact, II–QML estimation enjoys the best finite sample behaviour
in many cases, especially those where there is some random organization of the elements of
the weight matrix. In this latter case, simulations confirm that standard QML has finite sample
performance characteristics that are sensitive to the weight matrix structure.

The present approach complements earlier work on analytical bias corrections of ML or QML
estimators – see Bao and Ullah (2007) and Bao (2013) – and offers an alternative mechanism of
improving finite sample performance. The results of the present paper, although novel for spatial
regressions, are limited by the restrictive assumptions implied by the pure SAR model (1.1): i.e.
a single spatial lag (and thus a single weight matrix W ), a linear functional form for the spatial
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lag and homoscedastic disturbances. Subject to this limitation, the II methodology enjoys the
advantages of the flexibility of simulation-based methods, in comparison to analytical expansions
for bias functions and densities.

Allowance for heterogeneity is of particular importance in practical work. It is well
known (Lin and Lee, 2010) that ML or QML fail to be consistent when the disturbances are
heterogeneously distributed. Extensions of the II methodology based on OLS to SAR models
with unknown heteroscedasticity and a set of exogenous regressors seems promising. As
indicated above, some preliminary results of this extended methodology are given in Section
S.3 of the online Appendix. A full development of this extension will be reported in subsequent
work.
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APPENDIX

Proof of Theorem 3.1: The proof of Theorem 3.1(a) is carried out in a similar way to Robinson (2008)
and a detailed derivation is given in the online Appendix. To prove Theorem 3.1(b), let q = b−1

n (x) and, for
any function v(x) dvr (x)/dxr = v(r)(x). By standard algebra

b(1)
n (x) = 1 + tr(G(x)2)tr(G′(x)G(x)) − 2trG(x)tr(G′(x)G(x)2)

(tr(G′(x)G(x)))2
+ O

(
h

n

)
, (A.1)

which is non-zero under Assumption 2.6 and O(1) under Assumptions 2.3 and 2.4. Also,

b−1(1)
n (x)|x=bn(λ0) = (b(1)

n (q))−1|
q=b−1

n (bn(λ0))=λ0
. (A.2)
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Because λ̄n = bn(λ0) + O(h/n), by Taylor expansion,

b−1
n (λ̄n) = b−1

n

(
bn(λ0) + O

(
h

n

))

= b−1
n (bn(λ0)) + (b(1)

n (x))−1|x=λ0O

(
h

n

)
+ . . . = λ0 + O

(
h

n

)
, (A.3)

and thus (
n

h

)1/2

(λ̂II − λ0) =
(

n

h

)1/2

(b−1
n (λ̂) − b−1

n (λ̄n)) + o(1). (A.4)

We can derive the asymptotic distribution of the latter by means of the extended Delta method (Phillips,
2012) if the derivative sequence {b−1(1)

n (x)} is asymptotically locally relatively equicontinuous. In this case,
this is equivalent to showing ∣∣∣∣b

(1)
n (λ0) − b(1)

n (r)

b
(1)
n (r)

∣∣∣∣ → 0 (A.5)

as n → ∞, uniformly in Nδ = {r ∈ � : |s(r − λ0)| < δ, δ > 0}, s = sn → ∞ and s(h/n)1/2 → 0. Under
Assumptions 2.3, 2.4 and 2.6,∣∣∣∣b

(1)
n (λ0) − b(1)

n (r)

b
(1)
n (r)

∣∣∣∣ ≤ K|b(1)
n (λ0) − b(1)

n (r)|

≤ K

(∣∣∣∣g20

g11
− htr(G(r)2)/n

htr(G′(r)G(r))/n

∣∣∣∣
+

∣∣∣∣g10g21

g2
11

− h2tr(G(r))tr(G(r)2G′(r))/n2

(htr(G′(r)G(r))/n)2

∣∣∣∣
)

. (A.6)

The first term of the latter expression is bounded by

K

(∣∣∣∣g20 − h

n
tr(G(r)2)

∣∣∣∣ +
∣∣∣∣g11 − h

n
tr(G(r)′G(r))

∣∣∣∣
)

= K

(∣∣∣∣hn tr(G(λ∗)2)(λ0 − r)

∣∣∣∣ +
∣∣∣∣hn tr(G(λ∗)′G(λ∗))(λ0 − r)

∣∣∣∣
)

≤ K|λ0 − r| ≤ s−1δ (A.7)

as n → ∞, where the first equality follows by the mean value theorem, λ∗ indicating an intermediate point
between λ0 and r . The second term in (A.6) can be dealt with in a similar fashion.

Therefore, as b−1(1)
n (λ̄n) = (b(1)

n (λ0))−1 + O(h/n),

(
n

h

)1/2

(λ̂II − λ0)
d→ N (0, ω∗), (A.8)

where

ω∗ = lim
n→∞

(
g11 + g20

)−1(
1 − 2g10g21

g11(g20 + g11)

)−2(
1 − 4g21g10

g11(g11 + g20)
+ 2gg2

10

g2
11(g11 + g20)

+h

n

κ4

σ 4
0 (g11 + g20)

n∑
i=1

(Gii − g10g
−1
11 (G′G)ii)

2

)
, (A.9)

giving the required result. �
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Proof of Theorem 5.1: From the block diagonal structure, we have

tr(G) = tr

( ∞∑
i=0

λi
0W

i+1

)
= r

∞∑
i=0

λi
0tr(Bi+1

m ), (A.10)

where Bm has one eigenvalue equal to 1 and the other (m − 1) eigenvalues equal to −1/(m − 1), so that

tr(Bi+1
m ) = 1 + (m − 1)

( −1

m − 1

)i+1

. (A.11)

Thus,

h

n
tr(G) = λ0

1 − λ0

(m − 1)

m − 1 + λ0
, (A.12)

and, for s ≥ 2,

h

n
tr(Gs) = m − 1

m

1

(1 − λ0)s
+ (−1)s

(m − 1)2

m(m − 1 + λ0)s
. (A.13)

Proofs of Theorem 5.1(a) and (b) now involve only routine calculations and are reported in the online
Appendix. In particular, as m → ∞, we find that b′

n(λ) → 2(1 − λ) > 0. �

Proof of Theorem 5.2: The proof is based on the following results involving well-known asymptotic
formulae for traces of Toeplitz matrices, as n → ∞:

1

n
tr(G(λ)) = 1

n

∞∑
s=0

λs tr(Ws+1) →
∞∑

s=0

λs 1

2s+1

1

2π

∫ 2π

0
(2 cos x)s+1dx

= 1

λ

∞∑
s=1

λs 1

2π

∫ 2π

0
(cos x)sdx; (A.14)

1

n
tr(G(λ)2) = 1

n

∞∑
s,t=0

λs+t tr(Ws+t+2) → 1

2π

∞∑
s,t=0

λs+t

∫ 2π

0
(cos x)s+t+2dx; (A.15)

1

n
tr(G(λ)3)→ 1

2π

∑
s,t,q=0

λs+t+q

∫ 2π

0
(cos x)s+t+q+3dx. (A.16)

These results can then be used to establish the theorem. Complete proofs are given in the online
Appendix. �

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the
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