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Bubble Testing under Deterministic Trends∗

Xiaohu Wang
Chinese University of Hong Kong

Jun Yu
Singapore Management University

September 21, 2017

Abstract

This paper develops the asymptotic theory of the ordinary least squares estimator
of the autoregressive (AR) coeffi cient in various AR models, when data is generated
from trend-stationary models in different forms. It is shown that, depending on how
the autoregression is specified, the commonly used right-tailed unit root tests may
tend to reject the null hypothesis of unit root in favor of the explosive alternative. A
new procedure to implement the right-tailed unit root tests is proposed. It is shown
that when the data generating process is trend-stationary, the test statistics based
on the proposed procedure cannot find evidence of explosiveness. Whereas, when
the data generating process is mildly explosive, the unit root tests find evidence of
explosiveness. Hence, the proposed procedure enables robust bubble testing under
deterministic trends. Empirical implementation of the proposed procedure using data
from the stock and the real estate markets in the US reveals some interesting findings.
While our proposed procedure flags the same number of bubbles episodes in the stock
data as the method developed in Phillips, Shi and Yu (2015a, PSY), the estimated
termination dates by the proposed procedure match better with the data. For real
estate data, all negative bubble episodes flagged by PSY are no longer regarded as
bubbles by the proposed procedure.

JEL classification: C12, C22, G01
Keywords: Autoregressive regressions, right-tailed unit root test, explosive and mildly
explosive processes, deterministic trends, coeffi cient-based statistic, t-statistic.

1 Introduction

Other than its catastrophic effect on global financial markets of many kinds, the recent
global financial crisis also turned the field of economics, including economic theory of
financial markets, econometric theory of financial time series, and economic policies, on
its head. Acknowledging an important empirical observation that often a financial bubble
precedes immediately a financial crisis, a great deal of efforts that have been made in

∗Xiaohu Wang, Department of Economics, The Chinese University of Hong Kong, Shatin, N.T.,
Hong Kong. Email: xiaohu.wang@cuhk.edu.hk. Jun Yu, School of Economics and Lee Kong Chian
School of Business, Singapore Management University, 90 Stamford Road, Singapore 178903. Email:
yujun@smu.edu.sg.
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econometrics is to test for the presence of bubbles in financial time series and to estimate
the origination date and the termination date of each bubble in real time. Widely used
methods which have achieved great success in detecting and dating periodically collapsing
bubbles are the recursive right-tailed unit root testing procedures proposed in Phillips,
Wu and Yu (2011), Phillips and Yu (2011), and Phillips, Shi and Yu (2015a, 2016b,
PSY hereafter). Harvey, et al. (2016), and Harvey, Leybourne and Zu (2017a, 2017b)
extended the procedures to deal with the case with heteroscedasticity. A recent survey
and comparisons of alternative methods in bubble testing and dating can be found in
Homm and Breitung (2012).

In an environment of time-invariant discount rate, the standard no-arbitrage condition
implies that

pt = ft + bt, (1)

where pt is an asset price at time t, ft :=
∞∑
i=1

(1+r)−iEt(dt+i) is a “fundamental”component

with dt+i representing the payment received over the period from t+ i− 1 to t+ i due to
the ownership of the asset, r is the discount rate (r > 0), and bt is a bubble component
which satisfies

Et(bt+1) = (1 + r)bt. (2)

Since β := 1 + r > 1, when bt > 0, Et(bt+1) = βbt > bt, indicating the presence of an
upward explosive behavior in bt+1, i.e. a positive bubble. When ft+1 does not involve any
explosive behavior, the upward explosive behavior in bt+1 suggests that pt+1 manifests in
an explosive positive bubble behavior. When bt < 0, Et(bt+1) = βbt < bt, indicating the
presence of a downward explosive behavior in bt+1, i.e. a negative bubble. When ft+1

does not involve any explosive behavior, the downward explosive behavior in bt+1 leads to
an explosive negative bubble behavior in pt+1. In this case pt+1 could still be positive as
long as ft+1 > −bt+1.

The testing and dating method for bubbles relies on the technique of fitting to time
series data (i.e. prices adjusted by fundamental values) the following autoregressive (AR)
model where the AR coeffi cient (β) may take a different value in a bubble (or even a crisis)
period from that in a normal period:

yt = α+ βyt−1 + εt. (3)

To test H0 : β = 1 against H1 : β > 1, both the t-test and the coeffi cient-based test have
been used. Both tests are based on the ordinary least squares (LS) estimate of β.1 When
the tests are implemented recursively, they can detect when the time series switches from
a unit root model to an explosive model, and vice versa.

PSY (2015a) applied the proposed recursive method to a long time series data on the
monthly S&P 500 stock price index-dividend ratio over the period from January 1871
to December 2010. Figure 1 reproduces PSY’s Figure 7 where the original data, the

1More recent studies have proposed methods based on the weighted LS estimate to deal with het-
eroscedasticity; see, for example, Harvey et al. (2017a).
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Figure 1: The price-dividend ratio of S&P500, the backward SADF of PSY, and the 95%
critical value between January 1871 to December 2010.

sequence of the sup t-statistics, and the sequence of the 95% finite sample critical values
are plotted. According to PSY, whenever the test statistic exceeds the critical value, it
indicates a bubble episode. As a consequence, several well-known bubble episodes in this
series have been identified, including the dot-com bubble (1995M11—2001M08).

Interestingly, the PSY strategy also identifies two periods of market downturns as bub-
ble episodes, namely the 1917 stock market crash (1917M08-1918M04) and the subprime
mortgage crisis (2009M02-M04). PSY conjectured that “the identification of crashes as
bubbles may be caused by very rapid changes in the data”. Some recent studies, such
as Phillips and Shi (2017) and Harvey, et al. (2016, 2017b), modelled downturns using
a stationary AR process with β in Model (3) smaller than 1. However, a stationary AR
model is at odd with the testing result found in PSY which suggests β > 1. Instead of
using a stationary AR process to describe downturns, one may argue that the downturns
in yt are generated by a negative bubble process (2), where β > 1 and bt < 0.

To see the time series property in the downturns more clearly, we plot the monthly
data between October 2006 and March 2009 in Figure 2. The plot seems to suggest an
alternative model of a quadratic trend to describe the downturns, rather than a stationary
AR model. A similar observation can be made for the data in the 1917 stock market crash
period (1917M08-1918M04). These observations naturally raise two questions. First, if
the time series data is actually generated by a downward quadratic trend model, is it
possible for right-tailed unit root tests to reject the null hypothesis of unit root in favor
of the explosive alternative? This question extends to the testing results of the explosive
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Figure 2: Monthly price-dividend ratio of S&P500 between October 2006 to March 2009.

positive bubble. That is, when an explosive positive bubble is detected by a right-tailed
unit root test, is it possible that the data is actually generated from a model with an
upward polynomial trend? Second, if the answer to the first question is yes, how to
modify the right-tailed unit root tests so that they are robust under deterministic trends.
These two questions motivate us to study the ability of two right-tailed unit root tests
based on AR regressions to distinguish the explosive process from the trend-stationary
process, and to introduce robust unit root testing procedures.

In the paper, we first show that if the data is generated from a stationary process with
a quadratic trend or a higher order trend (upward or downward), the LS estimate of β
from regression (3) tends to be larger than 1 so that the right-tailed unit root tests (both
the t-test and the coeffi cient-based test) often reject the unit root null hypothesis in favor
of the explosive alternative. We then propose to construct the right-tailed unit root tests
based on the following regression with an explicit requirement that k ≥ 1:

yt = α̌+ β̌yt−1 +
∑k

i=1
ψ̌i∆yt−i + ět. (4)

It is proved that, when the data generating process (DGP) is trend-stationary, the estimate
β̌ in regression (4) converges to 1 at a rate faster than Op(n). As a result, both the t-test
and the coeffi cient-based test based on β̌ tend not to reject the null hypothesis of unit
root. Whereas, when the data is generated by a mildly explosive process, the test statistics
based on β̌ diverge to positive infinity, and hence, the right-tailed unit root tests reject
the unit root null hypothesis in favor of the explosive alternative.
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To see the difference in empirical implications of the tests based on (3) and on (4)
with k = 1, we first apply the coeffi cient-based test recursively to the monthly S&P 500
stock price index-dividend ratio from January 1871 to December 2010. It is found that the
test based on (4) with k = 1 detects the same bubbles as the test based on (3), including
five positive bubble episodes and two negative bubble episodes. Since the right-tailed
test based on (4) with k = 1 can better distinguish the explosive process from the trend-
stationary process, we can conclude that the seven episodes including the two negative
bubble episodes are not likely due to polynomial trends.

In the second empirical study, we apply the coeffi cient-based test recursively to the
monthly price-rent ratio of the US housing market (the Case-Shiller US National Home
Price Index divided by the rent of primary residence) for the period from January 1981
to June 2017. The test based on (3) detects two positive bubble episodes (1986M05 to
1990M04, and 1998M04 to 2008M01). Moreover, it also flags two collapsing periods as
bubble episodes. However, the right-tailed coeffi cient-based test based on (4) with k = 1

detects only the two positive bubble periods, indicating that the data in the two collapsing
periods may be better fitted by models with downward polynomial trends. In addition, the
two positive bubble episodes are estimated to end much earlier by our proposed method
than those based on (3). The estimated termination dates of the two positive bubbles by
the proposed method match better with the turning points in the data.

The rest of the paper is organized as follows. Sections 2-4 introduce the stationary
processes with different kinds of trends, including the linear trend, the quadratic trend,
and the cubic trend. For each trend-stationary process, the large sample theory of the LS
estimator of the AR coeffi cient and the two unit root test statistics are developed, when
(misspecified) AR models are fitted. The large sample results show that the right-tailed
unit root tests based on the regression (3) cannot distinguish the explosive process from the
trend-stationary process. In Section 5 we show that the right-tailed unit root tests based
on the regression (4) with k ≥ 1 can successfully distinguish the mildly explosive process
from the trend stationary process. Section 6 presents simulation evidence to support the
asymptotic results. The proposed procedure is used to analyze two real time series in
Section 7. Section 8 concludes. A brief summary and the proof of all theoretical results
are included in the Appendix.

2 Linear Trend Model and Explosiveness

We first study the asymptotic performance of the right-tailed unit root tests based on the
LS regressions of (4) with different values of k including k = 0, when the data is actually
generated from the linear trend model as

yt = δt+ ut, t = 1, 2, ..., n, (5)

where δ is a non-zero constant (positive or negative), ut = C(L)εt =
∑∞

j=0 cjεt−j , c0 = 1,∑∞
j=0 j|cj | < ∞, and {εt} is a sequence of independent and identically distributed (iid)
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random variables with E (εt) = 0, V ar (εt) = σ2, and E
(
ε4
t

)
<∞. Let γ0 = V ar (ut) and

γ1 = Cov (ut, ut−1).
We consider the three LS regression equations:

yt = β̂yt−1 + êt, (6)

yt = α̃+ β̃yt−1 + ẽt, (7)

yt = α̌+ β̌yt−1 +
∑k

i=1
ψ̌i∆yt−i + ět, (8)

where β̂,
(
α̃, β̃

)
, and

(
α̌, β̌, ψ̌1, · · · , ψ̌k

)
are the conventional LS estimators. We define the

following regression t-statistics which are commonly used to test the unit root hypothesis
against the explosive alternative:

t
β̂

=
β̂ − 1

se
(
β̂
) , tβ̃ =

β̃ − 1

se
(
β̃
) , and tβ̌ =

β̌ − 1

se
(
β̌
) ,

where se
(
β̂
)
, se

(
β̃
)
and se

(
β̌
)
are the standard errors of β̂, β̃ and β̌, respectively. The

coeffi cient-based statistics are defined as n
(
β̂ − 1

)
, n
(
β̃ − 1

)
and n

(
β̌ − 1

)
, respectively,

which can also be used to test the unit root hypothesis against explosiveness.
Note that the process yt defined in (5) can be rewritten as

yt = δ + yt−1 + ∆ut, (9)

where ∆ut = ut − ut−1. Hence, the true DGP of yt is not covered by the regression (6)
for any value of β̂ due to the presence of an intercept in (9). Theorem 2.1 reports the
asymptotic theory of the t-statistic and the coeffi cient-based statistic when the regression
(6) is fitted to yt.

Theorem 2.1 When the LS regression (6) is fitted to the time series yt generated from
the linear trend model defined in (5), we have, as n→∞,

(a) n
(
β̂ − 1

)
= 3/2 +Op

(
n−1

)
;

(b) t
β̂
/
√
n

p−→
√

3 |δ| /
√
δ2 + 8 (γ0 − γ1).

Theorem 2.1 suggests that, although β̂
p−→ 1 at the rate of n, the average value of β̂

is greater than one. Moreover, n
(
β̂ − 1

)
≈ 1.5 which is larger than 1.28, the 95% critical

value of the Dickey-Fuller (DF) distribution.2 In addition, the t-statistic t
β̂
diverges to

+∞ with the speed of
√
n. Hence, when the data is generated from a linear trend model,

the coeffi cient-based statistic and, more so, the t-statistic in regression (6) tend to reject
the unit root null hypothesis in favor of explosiveness, no matter what the sign of δ is.

2The DF distribution is given by
∫ 1

0
W (r) dW (r) /

∫ 1

0
[W (r)]2 dr where W (r) is a standard Brownian

motion; see Hamilton (1994) for the textbook treatment and Table B.5 Case 1 in Hamilton (1994) for finite
sample critical values and asymptotic critical values.
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The regression equations (7) and (8), although misspecified, include the true DGP of

yt when particular values of the parameters are chosen:
(
α̃, β̃

)
= (δ, 1) for regression

(7), and
(
α̌, β̌, ψ̌1, · · · , ψ̌k

)
= (δ, 1, 0, · · · , 0) for regression (8). Theorem 2.2 reports the

asymptotic theory for the t-statistic and the coeffi cient-based statistic when the regression
(7) is fitted to the data yt.

Theorem 2.2 When the LS regression (7) is fitted to the time series yt generated from
the linear trend model defined in (5), we have, as n→∞,

(a) n2
(
β̃ − 1

)
= −12 (γ0 − γ1) /δ2 + 6 (un + u1) /δ + op (1) ;

(b)
√
ntβ̃ = −6(γ0−γ1)+3δ(un+u1)

|δ|
√

6(γ0−γ1)
+ op (1) .

Theorem 2.2 suggests that n
(
β̃ − 1

)
p−→ 0, indicating the null of unit root cannot be

rejected if a positive asymptotic critical value is used.3 Interestingly, it can be seen that
β̃ has a downward bias as

E
(
β̃
)

= 1− 12 (γ0 − γ1) /(n2δ2) + o
(
n−2

)
.

Hence, the average value of tβ̃ is expected to be negative. This is confirmed as

E
(
tβ̃

)
=

−6 (γ0 − γ1)

|δ|
√

6n (γ0 − γ1)
+ o

(
n−1/2

)
.

Note that tβ̃ converges to zero, indicating the null of unit root cannot be rejected if a
positive critical value is used.4 When the critical values for both tests are chosen to be
positive constants or to diverge to positive infinity at the same speed, since n

(
β̌ − 1

)
converges in probability to zero faster than tβ̌, we expect that the coeffi cient-based test
has better asymptotic power than the t-test to distinguish the linear trend process from
the explosive process.

Based on the large sample results reported in Theorem 2.3 below, similar conclusions
can be made when the regression (8) with k ≥ 1 is used to fit the time series yt generated
from the linear trend model (5). That is, both the coeffi cient-based test and the t-test
tend not to reject the null hypothesis of unit root and the coeffi cient-based test has better
asymptotic power than the t-test to distinguish the linear trend process from the explosive
process.

Theorem 2.3 When the LS regression (8) with k ≥ 1 is fitted to the time series yt
generated from the linear trend model defined in (5), we have, as n→∞,

(a) n2
(
β̌ − 1

)
= Op (1) ;

(b)
√
ntβ̌ = Op (1) ,

where the form of the limiting distribution depends on the value of k in the regression.

3From Table B.5 in Hamilton (1994), the 97.5% and the 99% critical value are 0.41 and 1.04.
4From Table B.6 in Hamilton (1994), the 97.5% and the 99% critical value are 0.23 and 0.60.
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3 Quadratic Trend Model and Explosiveness

In this section, we study the asymptotic performance of the right-tailed unit root tests
based on the LS regressions of (6), (7) and (8), respectively, when the data {yt} is generated
from a quadratic trend model as

yt = δt2 + ut, t = 1, 2, ..., n, (10)

where δ is a positive or negative constant, {ut} is a weakly stationary process as defined
in (5). An equivalent representation of yt is

yt = −δ + 2δt+ yt−1 + ∆ut. (11)

Due to the presence of both the intercept and the linear trend in (11), when the
regression (6) is considered, no value of β̂ can cover the true DGP of yt; when the regression

(7) is considered, no value of
(
α̃, β̃

)
can cover the true DGP of yt. However, since ∆yt −

∆yt−1 = ∆2yt = 2δ + ∆2ut, the DGP of yt can be rewritten as

yt = 2δ + yt−1 + ∆yt−1 + ∆2ut. (12)

Therefore, the DGP of yt is covered by the regression (8) with parameters
(
α̌, β̌, ψ̌1, · · · , ψ̌k

)
=

(2δ, 1, 1, 0, · · · , 0).
Theorems 3.1-3.3 report the asymptotic theory of the t-statistic and the coeffi cient-

based statistic when regressions (6)-(8) are fitted to yt, respectively.

Theorem 3.1 When the LS regression (6) is fitted to the data {yt} generated from the
quadratic trend model defined in (10), we have, as n→∞,

(a) n
(
β̂ − 1

)
= 5/2 +Op

(
n−1

)
;

(b) t
β̂
/
√
n

p−→
√

15.

Theorem 3.1 shows that, on average n
(
β̂ − 1

)
≈ 5/2 > 2.03, the 99% critical value of

the DF distribution. In addition, the t-statistic diverges to +∞ at the speed of
√
n. Note

that the leading terms both in β̂ − 1 and t
β̂
are independent of δ. Therefore, no matter

what the sign of δ has, the coeffi cient-based test, and more so, the t-test in regression (6)
tend to reject the unit root null hypothesis in favor of explosiveness.

Theorem 3.2 When the LS regression (7) is fitted to the data {yt} generated from the
quadratic trend model defined in (10), we have, as n→∞,

(a) n
(
β̃ − 1

)
= 15/8 +Op

(
n−1

)
;

(b) tβ̃/
√
n

p−→
√

15.

When the regression (7) is considered, the 99% asymptotic critical values of the DF
coeffi cient-based test and the DF t-test are 1.04 and 0.6, respectively. However, the large
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sample results in Theorem 3.2 show that n
(
β̃ − 1

)
≈ 1.875 > 1.04, and tβ̃ ≈

√
15n →

+∞. As a result, for any value of δ (> 0 or < 0), both the coeffi cient-based test and
the t-test in the regression (7) tend to reject the unit root null hypothesis in favor of
explosiveness. It means that these two tests, especially the t-test, have no power to
distinguish the quadratic trend process from the explosive process under the LS regression
(7). Since the regression (7) is the one that is commonly used in the literature on testing
and dating bubbles, this finding has important empirical implications.

Theorem 3.3 When the LS regression (8) with k ≥ 1 is fitted to the data {yt} generated
from the quadratic trend model defined in (10), we have, as n→∞,

(a) n3
(
β̌ − 1

)
= Op (1) ;

(b)
√
ntβ̌ = Op (1),

where the form of the limiting distribution depends on the value of k in the regression (8).

The large sample results reported in Theorem 3.3 show that n
(
β̌ − 1

) p−→ 0 and

tβ̌
p−→ 0, which suggest that both the coeffi cient-based test and the t-test in regression (8)

with k ≥ 1 tend not to reject the unit root null hypothesis if the critical values for both
tests are chosen to be positive constants or to diverge to positive infinity. Since n

(
β̌ − 1

)
converges in probability to zero faster than tβ̌, we expect that the coeffi cient-based test
has better asymptotic power than the t-test to distinguish the quadratic trend process
from the explosive process under the LS regression (8) with k ≥ 1.

4 Cubic Trend Model and Explosiveness

In this section, we assume the data {yt} is generated from a cubic trend model as

yt = δt3 + ut, t = 1, 2, ..., n, (13)

where δ is a non-zero constant and {ut} is a weakly stationary process defined as in (6).
An equivalent representation of the DGP of yt is

yt = 3δt2 − 3δt+ δ + yt−1 + ∆ut. (14)

Due to the presence of the intercept, the linear trend, and the quadratic trend in (14), the
regression (6) does not cover the true DGP of yt for any value of β̂, and the regression (7)

does not cover the true DGP of yt for any value of
(
α̃, β̃

)
.

Note that ∆2yt = 6δ (t− 1) + ∆2ut, which leads to

yt = −6δ + yt−1 + ∆yt−1 + 6δt+ ∆2ut.

Together with the result of ∆2yt−1 = 6δ (t− 2) + ∆2ut−1, an alternative representation of
the DGP of yt can be obtained as

yt = 6δ + yt−1 + 2∆yt−1 −∆yt−2 + ∆3ut. (15)

9



Hence, the true DGP is covered by the regression (8) with k ≥ 2 and
(
α̌, β̌, ψ̌1, ψ̌2, · · · , ψ̌k

)
=

(6δ, 1, 2,−1, 0, · · · , 0). Since ∆yt−1 = 3δt2 +Op (t) and ∆yt−2 = 3δt2 +Op (t), the regres-
sion (8) with k ≥ 2 faces with the problem of asymptotic perfect collinearity. However, as
we prove in the Appendix, this problem plays no effect on the large sample property of β̌.

Theorems 4.1-4.3 report the asymptotic theory of the t-statistic and the coeffi cient-
based statistic when regressions of (6)-(8) are fitted, respectively, to the data {yt} gener-
ated from the cubic trend model (13).

Theorem 4.1 When the LS regression (6) is fitted to the data {yt} generated from the
cubic trend model (13), we have, as n→∞,

(a) n
(
β̂ − 1

)
= 7/2 +Op

(
n−1

)
;

(b) tβ̂/
√
n

p−→
√

35.

Theorem 4.1 shows that, n
(
β̂ − 1

)
≈ 7/2 > 2.03, the 99% critical value of the DF

distribution. Moreover, the t-statistic t
β̂
diverges towards +∞ at the speed of

√
n. There-

fore, no matter what sign δ has, the coeffi cient-based test and, more so, the t-test in the
regression (6) tend to reject the unit root null hypothesis in favor of explosiveness.

Theorem 4.2 When the LS regression (7) is fitted to the data {yt} generated from the
cubic trend model (13), we have, as n→∞,

(a) n
(
β̃ − 1

)
= 28/9 +Op

(
n−1

)
;

(b) tβ̃/
√
n

p−→
√

35.

From Theorem 4.2, it can be seen that tβ̃ ≈
√

35n→ +∞ as n→∞, and n
(
β̃ − 1

)
≈

28/9 > 1.04, the 99% critical value of the DF distribution. Thus, for any non-zero value
of δ (> 0 or < 0), both the coeffi cient-based test, and more so, the t-test in regression (7)
tend to reject the unit root null hypothesis in favor of explosiveness.

Theorem 4.3 When the LS regression (8) is fitted to the data {yt} generated from the
cubic trend model (13), we have, as n→∞,

(a) when k = 1,

n2
(
β̌ − 1

)
= −8.4 +Op

(
n−1

)
, and tβ̌/

√
n = −

√
21/2 +Op

(
n−1

)
;

(b) when k > 1,

n4
(
β̌ − 1

)
= Op (1) , and

√
ntβ̌ = Op (1) .

where the limits of β̌ and tβ̌ in (b) depends on the value of k in the regression (8).
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From (15), it is known that the true DGP of yt is covered by the regression (8) with
k > 1. Part (b) of Theorem 4.3 shows that n

(
β̌ − 1

) p−→ 0 and tβ̌
p−→ 0. Hence, both the

coeffi cient-based test and the t-test from the regression (8) with k > 1 tend not to reject
the unit root null hypothesis if the critical values for both tests are chosen to be positive
constants or to diverge to positive infinity. Since n

(
β̌ − 1

)
converges in probability to

zero much faster than tβ̌, we expect that the coeffi cient-based test has better asymptotic
power than the t-test to distinguish the cubic trend process from the explosive process.

Also revealed by the representation in (15) is that the regression (8) with k = 1 does
not cover the true DGP of yt. Part (a) of Theorem 4.3 shows that, although β̌ converges
to 1 less quickly than it does in the regression (8) with k > 1, it still goes to 1 fast enough
to ensure n

(
β̌ − 1

) p−→ 0. Moreover, the leading term of n
(
β̌ − 1

)
is negative. Therefore,

the coeffi cient-based test tends not to reject the unit root null hypothesis if a positive
critical value is used. It is also shown that tβ̌ diverges to negative infinity at the speed of
n1/2, which implies that the t-test tends not to reject the unit root null hypothesis.

It is not diffi cult to extend the theory to the case where the true DGP has a deter-
ministic trend with an order higher than 3. In particular, if the LS regression (8) with
k = 1 is applied to fit the data, it can still be shown that n

(
β̌ − 1

) p−→ 0 and tβ̌
p−→ −∞.

Hence, both the t-test and the coeffi cient-based test tend not to reject the unit root null
hypothesis.

5 A Proposed Regression

As we have proved in earlier sections, if the true DGP is a trend-stationary process, the
right-tailed unit root tests based on the regression model (8) with k ≥ 1 tend not to find
the evidence of explosiveness and hence can distinguish a bubble behavior from a trend-
stationary behavior. This finding motivates us to propose the following procedure to test
the unit root null hypothesis against explosiveness:

yt = α̌+ β̌yt−1 +

k∑
i=1

ψ̌i∆yt−i + ět with k ≥ 1, (16)

where the minimum value that k can take is set to be 1, namely at least one term involving
the lagged ∆yt is included in the regression. As shown in the following Theorem 5.1,
the right-tailed unit root tests (the coeffi cient-based test and the t-test) based on the LS
regression of (16) are able to distinguish the explosive AR process from the trend-stationary
process.

Theorem 5.1 Let W (r) denote a standard Brownian motion, and ut =
∑∞

j=0 cjεt−j be

the weakly stationary process as defined in (5) with εt
iid∼ N(0, σ2).

(a) When the DGP is yt = yt−1 + εt, the LS regression (16) with k ≥ 1 leads to

n
(
β̌ − 1

)
⇒
∫ 1

0 W (r) dW (r)−W (1)
∫ 1

0 W (r) dr∫ 1
0 [W (r)]2 dr −

(∫ 1
0 W (r) dr

)2 , (17)
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and

tβ̌ =
β̌ − 1

se
(
β̌
) ⇒ ∫ 1

0 W (r) dW (r)−W (1)
∫ 1

0 W (r) dr{∫ 1
0 [W (r)]2 dr −

(∫ 1
0 W (r) dr

)2
}1/2

, (18)

as n→∞;
(b) When the DGP is an ARIMA(p, 1, 0) process with p ≥ 1, the statistics n

(
β̌ − 1

)
and

tβ̌ based on the LS regression (16) with k ≥ p have the same limiting distributions as those
given in (a), respectively;
(c) When the DGP is yt = δtm + ut with m = 1 or 2 or 3,..., the statistics n

(
β̌ − 1

)
and

tβ̌ based the LS regression (16) with k ≥ 1 have the limits as

n
(
β̌ − 1

) p−→ 0 and tβ̌
p−→ 0 or −∞;

(d) When the DGP is mildly explosive, i.e., yt = ρnyt−1 + ut with ρn = 1 + c/nθ, c > 0,
and θ ∈ (0, 1), the statistics n

(
β̌ − 1

)
and tβ̌ based on the LS regression (16) with k ≥ 1

have the limits as
n
(
β̌ − 1

)
→ +∞ and tβ̌ → +∞.

The results reported in Part (c) of Theorem 5.1 show that, if the data is generated
from a trend-stationary model, regardless of the direction of the trend, n

(
β̌ − 1

) p−→ 0

and tβ̌
p−→ 0 or −∞. Hence, the right-tailed unit root tests from the regression (16) do

not reject the unit root null hypothesis when the critical values for both tests are chosen
to be positive constants or to diverge to positive infinity. Whereas, as reported in Part (d)
of Theorem 5.1, if the data is generated from a mildly explosive process, n

(
β̌ − 1

)
→ +∞

and tβ̌ → +∞. Hence, both the coeffi cient-based test and the t-test should reject the unit
root null hypothesis in favor of explosive alternative. As a result, both the two right-tailed
unit root tests based on the regression (16) with k ≥ 1 can distinguish the mildly explosive
process from the trend-stationary process.

6 Simulation Studies

6.1 Linear trend model

Tables 1-3 report some simulation results based on 10,000 replications for the LS regres-
sions (6), (7), and (8) with k = 1, respectively. For each regression, the true DGP is

the linear trend model as in (5) with δ = −2 or −4, ut
iid∼ N(0, 1), and n = 20 or 50.

Unless explicitly stated, we always report the mean and variance of the LS estimator of
the AR(1) coeffi cient, the minimum, mean and maximum of the coeffi cient-based statis-
tic (i.e. c-stat), and the minimum, mean and maximum of the t-statistic (i.e. t-stat).
Also reported are the 99% finite sample critical values of the c-stat and t-stat which are
simulated under the random walk null hypothesis.

Table 1 reports the simulation results for the regression (6), an AR(1) regression with-
out intercept. Some conclusions can be made from Table 1. First, the average values of β̂
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Table 1: Statistical results for the LS regression (6) when the data is generated from a
linear trend model as in (5). The 99% finite sample critical values of the test statistics are
simulated under the random walk null hypothesis.

δ -2 -4 -2 -4
n 20 20 50 50

mean of β̂ 1.0749 1.0764 1.0300 1.0302

variance of β̂ 1.76e-05 4.32e-06 3.90e-07 9.67e-08
minimum of c-stat 1.1426 1.3092 1.3473 1.4195
mean of c-stat 1.4226 1.4517 1.4696 1.4810
maximum of c-stat 1.7351 1.6024 1.5794 1.5378
99% CV of c-stat 2.37 2.37 2.16 2.16
minimum of t-stat 2.1047 4.2141 4.7689 8.0217
mean of t-stat 4.3897 6.3537 7.0046 10.0048
maximum of t-stat 8.4469 8.7309 9.3513 11.7077
99% CV of t-stat 2.24 2.24 2.08 2.08

in all four cases are greater than 1, although getting closer to 1 as n increases. Second, the
average values of the c-stat in all four cases are around 1.5, which is the value suggested
by the asymptotic theory given in Theorem 2.1. In addition, except for the case where
δ = −2 and n = 20, the minimum values of the c-stat are all larger than 1.28 which is the
95% asymptotic critical value of the DF distribution. Hence, if this critical value is used,
the unit root null hypothesis will always be rejected in favor of the explosive alternative.
However, when the 99% finite sample critical values are used, the unit root null hypothesis
will not be rejected. Third, except for the case with δ = −2 and n = 20 in which the
minimum value of the t-stat is slightly smaller than the corresponding 99% finite sample
critical value, the minimum values of the t-stat in other cases are all larger than the corre-
sponding 99% finite sample critical values, indicating that the unit root null hypothesis is
always rejected in favor of the explosive alternative. Fourth, the simulated average values
of the t-stat are consistent with that suggested by the asymptotic theory given in Theorem
2.1. For example, according to the asymptotic theory, when ut

iid∼ N(0, 1) and δ = −2, we
should have t

β̂
/
√
n

p→ 2
√

3/
√

4 + 8 = 1, suggesting that t
β̂
≈
√
n. Hence, t

β̂
≈ 4.47 when

n = 20, and t
β̂
≈ 7.07 when n = 50. These values are very close to the simulated average

values of the t-stat reported in Table 1.
Table 2 reports the simulation results for the regression (7), an AR(1) regression with

an intercept. Some conclusions can be made from Table 2. First, β̃ converges to one very
quickly. Second, β̃ has a small downward bias. This explains why the average values of
the c-stat and the t-stat are negative. Third, the maximum values of the c-stat in all cases
are smaller than the corresponding 99% finite-sample critical values, indicating that the
unit root null hypothesis will not be rejected in favor of the explosive alternative. Fourth,
although the maximum values of the t-stat in all cases are larger than the respective
99% finite-sample critical values, their average values are much smaller than these critical
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Table 2: Statistical results for the LS regression (7) when the data is generated from a
linear trend model as in (5). The 99% finite sample critical values of the test statistics are
simulated under the random walk null hypothesis.

δ -2 -4 -2 -4
n 20 20 50 50

mean of β̃ 0.9919 0.9980 0.9988 0.9997

variance of β̃ 1.44e-04 3.47e-05 3.24e-06 7.94e-07
minimum of c-stat -1.0523 -0.4523 -0.4051 -0.1846
mean of c-stat -0.1545 -0.0389 -0.0610 -0.0153
maximum of c-stat 0.6914 0.3951 0.2610 0.1425
99% CV of c-stat 1.40 1.40 1.22 1.22
minimum of t-stat -2.0613 -1.8580 -1.2086 -1.1304
mean of t-stat -0.2777 -0.1397 -0.1737 -0.0868
maximum of t-stat 1.5702 1.6110 0.8810 0.9641
99% CV of t-stat 0.80 0.80 0.66 0.66

values. Hence, the t-test will not reject the unit root null hypothesis most of the time.
However, it can be seen that the coeffi cient-based test is more powerful than the t-test to
distinguish the linear trend process from the explosive process in finite samples. Fifth, the
simulation results are consistent with what suggested by the asymptotic theory given in 2.2.
For example, when ut

iid∼ N(0, 1), n = 50 and δ = −4, the asymptotic theory suggests that

E
(
β̃
)

= 1− 12/
(
n2δ2

)
+ o

(
n−2

)
≈ 0.9997 and E

(
tβ̃

)
= −

√
6

|δ|
√
n

+ o (1/
√
n) ≈ −0.0866.

These values are nearly identical to what we obtained in simulations.
Table 3 reports the simulation results for the regression (8) with k = 1. Conclusions

similar as those obtained from Table 2 can be made from Table 3. The most important
one is that β̌ converges to 1 very quickly making the c-stat taking values around 0 with
a small variation. As a result, the right-tailed unit root test based on the c-stat cannot
reject the unit root null hypothesis, and hence, has power to distinguish the linear trend
process from the explosive process.

6.2 Quadratic trend model

Tables 4-6 report some simulation results based on 10,000 replications for the LS regres-
sions (6), (7), and (8) with k = 1, respectively. For each regression, the true DGP is the

quadratic trend model as in (10) with δ = −2 or −4, ut
iid∼ N(0, 1), and n = 20 or 50.

Table 4 reports the simulation results for the regression (6), an AR(1) model without
intercept. Some conclusions can be made from Table 4. First, the average value of β̂ is
greater than 1 in all four cases, although gets closer to 1 in the cases with larger n. The
average value of β̂ is very close to 1 + 2.5/n, a value predicted by our asymptotic theory
given in Theorem 3.1. Second, the minimum values of the c-stat in all cases are larger than
the respective 99% finite sample critical values. Hence, the coeffi cient-based test always
indicates explosiveness in unit root testing. Third, consistent with the asymptotic theory
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Table 3: Statistical results for the LS regression (8) with k = 1 when the data is generated
from a linear trend model as in (5). The 99% finite sample critical values of the test
statistics are simulated under the random walk null hypothesis.

δ -2 -4 -2 -4
n 20 20 50 50

mean of β̌ 0.9955 0.9988 0.9994 0.9998

variance of β̌ 2.15e-04 5.35e-05 4.23e-06 1.05e-06
minimum of c-stat -0.9786 -0.4748 -0.4051 -0.1939
mean of c-stat -0.0815 -0.0207 -0.0308 -0.0076
maximum of c-stat 1.0156 0.5005 0.3478 0.1812
99% CV of c-stat 2.29 2.29 1.50 1.50
minimum of t-stat -1.9943 -1.9186 -1.2923 -1.2605
mean of t-stat -0.1566 -0.0804 -0.0983 -0.0489
maximum of t-stat 2.1857 2.2014 1.3951 1.4323
99% CV of t-stat 0.92 0.92 0.72 0.72

Table 4: Statistical results for the LS regression (6) when the data is generated from a
quadratic trend model as in (10). The 99% finite sample critical values of the test statistics
are simulated under the random walk null hypothesis.

δ -2 -4 -2 -4
n 20 20 50 50

mean of β̂ 1.1327 1.1327 1.0512 1.0512

variance of β̂ 1.32e-07 3.30e-08 4.46e-10 1.11e-10
minimum of c-stat 2.4966 2.5091 2.5042 2.5063
mean of c-stat 2.5212 2.5214 2.5084 2.5084
maximum of c-stat 2.5475 2.5345 2.5124 2.5104
99% CV of c-stat 2.37 2.37 2.16 2.16
minimum of t-stat 15.0876 15.5004 26.2124 26.3187
mean of t-stat 15.7351 15.8186 26.3792 26.4052
maximum of t-stat 16.4100 16.1522 26.5231 26.4794
99% CV of t-stat 2.24 2.24 2.08 2.08
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Table 5: Statistical results for the LS regression (7) when the data is generated from a
quadratic trend model as in (10). The 99% finite sample critical values of the test statistics
are simulated under the random walk null hypothesis.

δ -2 -4 -2 -4
n 20 20 50 50

mean of β̃ 1.0944 1.0944 1.0376 1.0376

variance of β̃ 3.70e-07 9.26e-08 1.27e-09 3.18e-10
minimum of c-stat 1.7491 1.7712 1.8353 1.8388
mean of c-stat 1.7929 1.7932 1.8422 1.8422
maximum of c-stat 1.8367 1.8151 1.8494 1.8458
99% CV of c-stat 1.40 1.40 1.22 1.22
minimum of t-stat 14.8184 16.6229 26.9877 27.3744
mean of t-stat 17.2173 17.6987 27.5395 27.6500
maximum of t-stat 19.7671 19.0951 28.0039 27.8771
99% CV of t-stat 0.80 0.80 0.66 0.66

given in Theorem 3.1, in all cases, the t-stat takes values around
√

15n with a very small
variation. In addition, the minimum values of the t-stat in all cases are larger than the
respective 99% finite sample critical values. Hence, the t-test always rejects the unit root
null hypothesis in favor of explosive alternative. All these findings corroborate the large
sample theory given in Theorem 3.1.

Table 5 reports the simulation results for the regression (7), an AR(1) model with an
intercept. Similar conclusions to those from Table 4 can be made from Table 5. First,
the average value of β̃ is greater than 1 in all four cases, although it gets closer to 1 as
n increases. Second, consistent with the asymptotic theory given in Theorem 3.2, the
c-stat takes values around 15/8 ≈ 1.8750 with a very small variation so that its minimum
values in all cases are larger than the respective 99% finite sample critical values. Hence,
the coeffi cient-based test always suggests explosiveness in unit root testing. Third, as
suggested by the asymptotic theory, the t-stat in every case takes values around

√
15n with

a small variation. As
√

15n is much larger than the respective 99% finite sample critical
values, the t-test always rejects the unit root null hypothesis in favor of the explosive
alternative. These findings from Table 5 have important empirical implications as the
implementation of the right-tailed unit root testing in the literature has been based on the
LS regression (7). When the data is generated from a quadratic trend model, our findings
suggest that the unit root tests based on the regression (7) always suggest explosiveness.

Table 6 reports the simulation results for the regression (8) with k = 1. Several
conclusions are made from Table 6. First, β̌ converges to 1 very quickly so that the c-stat
takes values around 0 with small variations in all cases. The maximum values of the c-stat
in all cases are smaller than the respective 99% finite sample critical values. Hence, the
right-tailed coeffi cient-based test from the regression (8) with k = 1 does not reject the
null hypothesis of unit root. Second, the t-stat slowly goes to zero when n increases,
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Table 6: Statistical results for the LS regression (8) with k = 1 when the data is generated
from a quadratic trend model as in (10). The 99% finite sample critical values of the test
statistics are simulated under the random walk null hypothesis.

δ -2 -4 -2 -4
n 20 20 50 50

mean of β̌ 1.0113 1.0030 1.0006 1.0002

variance of β̌ 4.22e-05 7.98e-06 1.01e-07 2.030e-08
minimum of c-stat -0.1857 -0.1301 -0.0273 -0.0189
mean of c-stat 0.2042 0.0548 0.0299 0.0075
maximum of c-stat 0.8005 0.3052 0.0933 0.0373
99% CV of c-stat 2.29 2.29 1.50 1.50
minimum of t-stat -1.1180 -1.3639 -0.6453 -0.8976
mean of t-stat 0.9370 0.4745 0.5872 0.2936
maximum of t-stat 2.6522 2.1970 1.5824 1.2862
99% CV of t-stat 0.92 0.92 0.72 0.72

as suggested by the asymptotic theory given in Theorem 3.3. In most of the cases, the
average value of the t-stat is smaller than the corresponding 99% critical value, indicating
that the t-test has a good chance not to reject the unit root hypothesis. However, the
probability for the t-test to suggest explosiveness is non-negligible in finite samples because
the maximum values of the t-stat in most of the cases are considerably larger than the
respective 99% finite sample critical values.

To further understand the behavior of the t-stat, Table 7 reports extra simulation
results of the t-stat when the data is generated from the quadratic trend model as in (10)
with δ = −4, n = 100 or 250. It can be seen that, as n gets larger, the probability for
the t-test to find explosiveness becomes smaller. And in the case where δ = −4 and n =

250, the maximum value of the t-stat becomes smaller than the corresponding 99% critical
value, and hence, the t-test does not find explosiveness any more. Comparing the t-stat
with the c-stat, we conclude that the coeffi cient-based test is more able to distinguish the
quadratic trend process from the explosive process in finite samples.5

6.3 Cubic trend model

Tables 8-10 report some simulation results based on 10,000 replications for the LS regres-
sions (6), (7), and (8) with k = 1 and k = 2, respectively. For each regression, the true

DGP is the cubic trend model as in (13) with δ = −0.02 or −0.04, ut
iid∼ N(0, 1), and

n = 20 or 50.
Table 8 reports the simulation results for the regression (6), an AR(1) model without

5This conclusion is consistent with that suggested by the large sample theory given in Theorem 3.3,
where it is shown that the t-stat = Op (1/

√
n) and the c-stat = Op

(
1/n2

)
. In fact, when δ = −2, the ratio

of the average value of the t-stat for n = 20 and for n = 50 is 0.9370/0.5872 = 1.5957 which is very close
to
√
50/20 = 1.5811, reinforcing the result derived in Theorem 3.3 about the

√
n-convergence of tβ̌ .
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Table 7: Further statistical results of the t-statistic from the regression (8) with k = 1
when data is generated from the quadratic trend model (10).

δ -4 -4
n 100 250
minimum of t-stat -0.4716 -0.2782
mean of t-stat 0.2079 0.1298
maximum of t-stat 0.9289 0.5717
99% CV of t-stat 0.66 0.63

Table 8: Statistical results for the LS regression (6) when the data is generated from a
cubic trend model as in (13). The 99% finite sample critical values of the test statistics
are simulated under the random walk null hypothesis.

δ -0.02 -0.04 -0.02 -0.04
n 20 20 50 50

mean of β̂ 1.1907 1.1909 1.0724 1.0725

variance of β̂ 7.18e-06 1.79e-06 3.64e-09 9.10e-10
minimum of c-stat 3.4441 3.5376 3.5379 3.5440
mean of c-stat 3.6227 3.6278 3.5500 3.5501
maximum of c-stat 3.8245 3.7275 3.5614 3.5558
99% CV of c-stat 2.37 2.37 2.16 2.16
minimum of t-stat 12.3593 18.1769 38.8708 39.5090
mean of t-stat 18.8805 22.1239 39.6705 39.9027
maximum of t-stat 25.1421 25.6325 40.3300 40.2198
99% CV of t-stat 2.24 2.24 2.08 2.08
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Table 9: Statistical results for the LS regression (7) when the data is generated from a
cubic trend model as in (13). The 99% finite sample critical values of the test statistics
are simulated under the random walk null hypothesis.

δ -0.02 -0.04 -0.02 -0.04
n 20 20 50 50

mean of β̃ 1.1654 1.1659 1.0639 1.0639

variance of β̃ 1.41e-05 3.52e-06 7.26e-09 1.81e-09
minimum of c-stat 2.8777 3.0176 3.1126 3.1208
mean of c-stat 3.1428 3.1519 3.1288 3.1289
maximum of c-stat 3.4192 3.2883 3.1458 3.1374
99% CV of c-stat 1.40 1.40 1.22 1.22
minimum of t-stat 8.7165 14.6320 38.2528 39.6795
mean of t-stat 15.8692 21.1515 39.8576 40.4008
maximum of t-stat 27.4502 27.7903 41.1378 41.0256
99% CV of t-stat 0.80 0.80 0.66 0.66

intercept. Some conclusions can be made from Table 8. First, the average value of β̂ is
greater than 1 in all four cases, and gets closer to 1 as n increases. Second, in all cases,
the c-stat takes values around 3.5 with a very small variation, a value predicted by our
asymptotic theory given in Theorem 4.1. Moreover, the minimum values of the c-stat
in all cases are larger than the respective 99% finite sample critical values. Hence, the
coeffi cient-based test always indicates explosiveness in unit root testing. Third, consistent
with the asymptotic theory given in Theorem 4.1, in all cases, the t-stat takes values
around

√
35n with a small variation. Consequently, the minimum values of the t-stat in

all cases are larger than the respective 99% finite sample critical values. Hence, the t-test
always rejects the unit root null hypothesis in favor of explosive alternative. All these
findings corroborate the large sample theory given in Theorem 4.1.

Table 9 reports the simulation results for the regression (7), an AR(1) model with an
intercept. Similar conclusions to those from Table 7 can be made from Table 9. First, the
average value of β̃ is greater than 1 in all four cases, and get closer to 1 as n increases.
Second, consistent with the asymptotic theory given in Theorem 4.2, the c-stat takes values
around 28/9 ≈ 3.1111 with a very small variation so that its minimum values in all cases
are larger than the respective 99% finite sample critical values. Hence, the coeffi cient-
based test always suggests explosiveness in unit root testing. Third, as suggested by
the asymptotic theory, the t-stat in every case takes values around

√
35n with a small

variation. As
√

35n is much larger than the respective 99% finite sample critical values,
the t-test also always find explosiveness in unit root testing. All these findings corroborate
the large sample theory given in Theorem 4.2.

Table 10 reports the simulation results for the regression (8) with k = 1. Some conclu-
sions different with those from Tables 7-8 can be made from Table 9. First, as predicted
by Part (1) of Theorem 4.3, β̌ converges to 1 very quickly. When n and the absolute value

19



Table 10: Statistical results for the LS regression (8) with k = 1 when the data is generated
from a cubic trend model as in (13). The 99% finite sample critical values of the test
statistics are simulated under the random walk null hypothesis.

δ -0.02 -0.04 -0.02 -0.04 -0.02 -0.04
n 20 20 50 50 250 250

mean of β̌ 1.1491 1.0626 1.0005 0.9976 0.9999 0.9999

variance of β̌ 0.0016 8.83e-04 1.67e-06 2.43e-07 1.39e-12 3.44e-13
minimum of c-stat -0.4477 -0.6767 -0.1719 -0.1955 -0.0341 -0.0338
mean of c-stat 2.6846 1.1275 0.0222 -0.1141 -0.0331 -0.0333
maximum of c-stat 5.2222 3.3061 0.2875 -0.0136 -0.0320 -0.0327
99% CV of c-stat 2.29 2.29 1.50 1.50 1.02 1.02
minimum of t-stat -0.6116 -1.5677 -1.5055 -3.3262 -14.6752 -24.1792
mean of t-stat 3.2143 1.5686 0.1023 -1.4358 -11.6925 -20.4927
maximum of t-stat 7.2216 4.0850 1.3016 -0.1418 -9.4362 -17.4079
99% CV of t-stat 0.92 0.92 0.72 0.72 0.63 0.63

of δ are reasonably large, β̌ has downward bias. Second, the c-stat gets closes to zero as n
increases whereas the t-stat diverges as n increases. When n = 50, the maximum values
of the c-stat are smaller than the respective 99% finite sample critical values, indicating
that the coeffi cient-based test will not suggest explosiveness in unit root testing regardless
of δ = −0.02 or −0.04. Third, in the cases where n = 50 and δ = −0.04, the maximum
values of the t-stat are smaller than the respective 99% finite sample critical values, indi-
cating that the t-test will not reject unit root null hypothesis. However, when n = 20 or
when n = 50 and δ = −0.02, the t-test has to reject the null hypothesis of unit root in
favor of explosiveness for some replications. Hence, the coeffi cient-based test is more able
to distinguish the cubic trend process from the explosive process than the t-test in finite
samples.

To further understand the behavior of the two statistics under the regression (8) with
k = 1, we have done extra calculations for n = 250 and report the results in the last two
columns of Table 10. The average value of β̌ becomes smaller than one. Furthermore, the
average values of the two statistics are close to what Part (1) of Theorem 4.3 predicts. For
example, the average value of the coeffi cient-based statistics is close to −8.4/n = −0.0336.
The average value of the t-statistics is closer to −

√
21× n/2 ≈ −36. Both tests cannot

reject the null hypothesis of unit root in all cases.
Table 11 reports the simulation results for the regression (8) with k = 2. It can be

seen that β̌− 1, the c-stat, and the t-stat converge to zero very fast. As a result, both the
coeffi cient-based test and the t-test will not find evidence for explosiveness. These findings
corroborate the large sample theory reported in Part (2) of Theorem 4.3.
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Table 11: Statistical results for the LS regression (8) with k = 2 when the data is
generated from a cubic trend model as in (13). The 99% finite sample critical values of
the test statistics are simulated under the random walk null hypothesis.

δ -2 -4 -2 -4
n 20 20 50 50

mean of β̌ 0.9914 0.9973 0.9998 1.0000

variance of β̌ 1.41e-05 3.24e-06 4.61e-09 7.79e-10
minimum of c-stat -0.4015 -0.1927 -0.0225 -0.0071
mean of c-stat -0.1464 -0.0465 -0.0075 -0.0019
maximum of c-stat 0.0610 0.0626 0.0024 -0.0031
99% CV of c-stat 3.7344 3.7344 1.9928 1.9928
minimum of t-stat -4.0344 -2.7740 —2.1171 -1.6387
mean of t-stat -1.6916 -0.8830 -0.9371 -0.4696
maximum of t-stat 1.0553 1.3609 0.4687 0.7518
99% CV of t-stat 1.1982 1.1982 0.8499 0.8499

Table 12: The percentiles of the coeffi cient-based statistic and the t-statistic based on the
LS regression (16) with k = 1 when the true DGP is yt = yt−1 + ut.

n 90 95 99
c-stat t-stat c-stat t-stat c-stat t-stat

20 -0.5299 -0.2422 0.3415 0.1435 2.2865 0.9240
50 -0.7389 -0.3743 0.0342 0.0175 1.4955 0.7208
100 -0.8221 -0.4180 -0.0520 -0.0337 1.2574 0.6592
250 -0.8144 -0.4058 -0.0957 -0.0556 1.0203 0.6283
500 -0.8222 -0.4128 -0.1448 -0.0844 1.0641 0.5921
∞ -0.85 -0.44 -0.13 -0.07 1.04 0.60

6.4 Proposed regression model

In this section, we fit simulated data to the LS regression (16) with k = 1. First, we
obtain the critical values of the coeffi cient-based test and the t-test when the true DGP
is yt = yt−1 + ut with y0 = 10 and ut

iid∼ N(0, 1). Both the c-stat and the t-stat are
calculated for 10,000 replications and we report the 90%, 95% and 99% critical values for
n = 20, 50, 100, 250, 500 in Table 11. Also reported are the 90%, 95% and 99% critical
values of the asymptotic distributions obtained from Table B.5 and Table B.6 in Hamilton
(1994). These critical values can be used to test the null hypothesis of unit root against the
explosive alternative in the proposed regression (16) with k = 1. The asymptotic critical
values can be used to test the null hypothesis of unit root against the explosive alternative
in the proposed regression (16) with any k. When the test statistics take values larger
than the corresponding critical values, the evidence of explosiveness is found.

Second, in Table 12 we report the proportions of replications, out of 10,000 replications,
where the coeffi cient-based test and the t-test reject the unit root null hypothesis in favor
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Table 13: Proportion of replications for unit root tests to reject the null hypothesis of unit
root in favor of explosiveness based on the proposed regression

linear trend quadratic trend explosive (β = 1.03) explosive (β = 1.05)
n c-stat t-stat c-stat t-stat c-stat t-stat c-stat t-stat
50 0 0.007 0 0.043 0.268 0.700 0.984 0.995
100 0 0.001 0 0.006 0.987 0.987 1.000 1.000
250 0 0 0 0.001 1.000 1.000 1.000 1.000

of explosiveness when the true DGP is yt = −4t+ut, or yt = −4t2 +ut, or yt = βyt−1 +ut
with y0 = 10 and β = 1.03 or β = 1.05, respectively. The two values of β for the
explosive process are empirically reasonable. In all DGPs, ut

iid∼ N(0, 1) and three different
sample sizes are used, i.e., n = 50, 100, 250. When the c-stat (t-stat) is larger than
the corresponding 99% finite sample critical value, the unit root test finds evidence of
explosiveness in the simulated data. The overall conclusion from this simulation study
is that our proposed procedure can effectively distinguish the trend-stationary processes
from the explosive process. In particular, when data is generated from the trend-stationary
models, in no replication the coeffi cient-based test based on the proposed regression finds
evidence of explosiveness in all six cases considered. In a small number of replications,
the t-test based on the proposed regression finds the evidence of explosiveness in unit root
testing. The proportion becomes smaller when the sample size increases. When data is
generated from an explosive process with a stronger explosive behavior (β = 1.05), the
two tests almost always find evidence of explosiveness. When the explosive behavior is not
so strong (β = 1.03) and the sample size is small (n = 50), the two statistics, especially
the coeffi cient-based statistic, has diffi culty in rejecting the unit root hypothesis. When
n = 100 or 200, the two unit root tests almost always find the evidence of explosiveness
regardless of β = 1.03 or 1.05.

From the above simulations, it is clear that there is a trade-off between the coeffi cient-
based test and the t-test. While the c-statistic is more robust against trend-stationarity
in data, it is less powerful in identifying a mildly explosive behavior in small samples. For
conservative users whose primary concern is on the robustness property of the right-tailed
unit root testing against the trend stationary behavior, our recommendation is to use the
coeffi cient-based test.

7 Empirical Studies

The empirical usefulness of the right-tailed unit root tests has been made clear in PSY
(2015a) for testing for the presence of bubbles and for dating each bubble. The PSY
procedure relies on repeated calculations of the t-statistic in autoregression in a recursive
manner where the end point r2 (fraction) of each sample takes a value between r0 to 1

and the starting point r1 (fraction) of the sample takes a value between 0 to r2 − r0 with
r0 (fraction) being the smallest sample window. So bnr0c, the integer part of nr0, is the
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minimum window size in the calculations. PSY (2015a) proposed the GSADF statistic to
be the largest t-statistic in the double recursion over all possible combinations of r1 and
r2, namely

GSADF (r0) = sup
r2∈[r0,1],r1∈[0,r2−r0]

{
tr2r1
}
, (19)

where tr2r1 is the t-statistic based on the sample from r1 to r2. PSY (2015a) derived the
asymptotic distribution of GSADF (r0) when the null hypothesis is a unit root process,
from which the right-tailed critical values can be obtained. The intuition why the test is
reasonable is that if there is a subsample of data corresponding to an explosive bubble
period, the t-statistic calculated from this subsample should take a large value. The
proposed test is done in a recursive way to find such a subsample by seeking the largest
value of the t-statistic in different subsamples. Clearly, the GSADF test can also be done
based on the coeffi cient-based statistics, and the corresponding limiting distribution under
the unit root null hypothesis can be easily obtained based on the results given in Part (a)
of Theorem 5.1.

After the presence of bubbles has been detected, one can estimate the origination date
and the termination date of each bubble by

r̂e = inf
r2∈[r0,1]

{r2 : BSADFr2 (r0) > cvr0} , (20)

r̂f = inf
r2∈[r̂e,1]

{r2 : BSADFr2 (r0) < cvr0} , (21)

where
BSADFr2 (r0) = sup

r1∈[0,r2−r0]

{
tr2r1
}
, (22)

and cvr0 is the critical value of the sup t-statistic. Phillips, Wu and Yu (2011) developed the

asymptotic distribution of the sup t-statistic as supr∈[r0,1]

∫ r
0 W̃rdW/

(∫ r
0 W̃

2
r

)1/2
, where

W̃r (s) = W (s) − 1
r

∫ r
0 W is the demeaned Brownian motion. The 90%, 95%, 99% as-

ymptotic and finite sample critical values of the sup t-statistic were reported in Table 1
of PSY for various values of r0. Interestingly, in all cases the 95% critical value is much
larger than zero. The intuition for the two estimators is that, r̂e is the first time when the
evidence of explosive behavior is found while r̂f is, given an explosive subsample of data
having been found, the first time when the evidence of explosive behavior disappears.

The t-statistics in (22) can be replaced with the coeffi cient-based statistics. Phillips
and Yu (2011) obtained the asymptotic distribution of the corresponding sup c-statistic as
supr∈[r0,1] r

∫ r
0 W̃rdW/

∫ r
0 W̃

2
r . The 90%, 95%, 99% asymptotic and finite sample critical

values of the sup c-statistic can similarly be obtained. As for the sup t-statistic, the 95%
critical values of the sup c-statistic (both asymptotic and finite sample) are greater than
zero. For this reason, we recommend the use of 95% critical values in empirical studies.
This is because, according to Part (c) of Theorem 5.1, if the data is generated from a
trend-stationary model, the coeffi cient-based statistic, when obtained from the regression
(16) with k ≥ 1, converges in probability to zero and hence is less than the critical value.
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Figure 3: Date-stamping bubble periods in the S&P 500 price-dividend ratio based on the
c-statistic from the proposed regression (16) with k = 1.

In addition, we recommend the use of the sup c-statistic because the coeffi cient-based
statistic has better robustness properties under deterministic trends than the t-statistic in
finite samples as argued earlier.

7.1 Stock market

In the first empirical study, we analyze the monthly S&P 500 stock price index-dividend
ratio over the period from January 1871 to December 2010. Figure 3 plots the data, the
sequence of the sup c-statistics from the regression (16) with k = 1, and the sequence
of the 95% finite sample critical values of the sup c-statistic obtained from Monte Carlo
simulations. Comparing Figure 3 with Figure 1 which is based on the sup t-statistic
obtained by PSY from the regression (16) with k = 0, we can see that the empirical
findings from the two procedure are qualitatively identical. That is, the same seven bubble
episodes have been identified, namely the post long-depression period in 1880s, the great
crash episode in 1920s, the postwar boom in 1950s, black Monday in 1987, the dot-com
bubble in 1990s, the 1917 stock market crash in 1910s, and the subprime mortgage crisis
in 2008. The last two periods, namely the 1917 stock market crash in 1910s, and the
subprime mortgage crisis in 2008, although experiencing market downturns, continue to
be identified as bubble episodes.

Given that the proposed testing procedure in our paper is able to distinguish the ex-
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Table 14: Empirical results based on the PSY procedure and the proposed procedure for
the S&P 500 stock price index-dividend ratio between October 2006 and March 2009.

PSY Proposed Procedure
c-test t-test c-test t-test
1.3439 1.0714 1.0282 0.73773

95% Finite Sample CV -0.0498 -0.0264 0.0809 0.0377

plosive process from trend-stationary processes, the results from Figure 3 suggest that all
7 bubbles found by PSY (both the positive and negative bubbles) are robust to determin-
istic trends, and the deterministic trend models are probably irrelevant for describing the
movement of the price-dividend time series.

Although the PSY procedure and the proposed procedure flag the same bubble episodes,
the identified bubble durations are not identical. In particular, the estimated bubble ter-
mination date by the proposed method is earlier than that by the PSY method in 5 out
of 7 cases. For example, according to our method, the bubble episode in 1920s ends in
September 1929, one month earlier than that based on the PSY method. When checking
the S&P 500 stock price index-dividend ratio, we find that after a substantial period of
upward movements, the time series reaches 194.99 in September 1929 and drops to 172.53
(or 13%) in October 1929, suggesting that September 1929 is a turning point. Clearly, the
termination date estimated by our method matches the turning point of the time series
better.

To examine the empirical results for the data in downturn periods more closely, we
apply the proposed regression (16) with k = 1 to the data over the period from October
2006 to March 2009 whose time series plot is shown in Figure 2. Both the coeffi cient-based
statistic and the t-statistic are reported in Table 14, together with 95% finite sample critical
values obtained under the null hypothesis of unit root. Clearly, both the PSY and our
proposed procedure have to reject the null hypothesis of unit root in favor of explosiveness.
Again, since our empirical method is robust to deterministic trends, the negative bubble
identified by PSY is not likely due to a deterministic trend. Our result reinforces the
empirical conclusion drawn in PSY.

7.2 Real estate market

In the second empirical study, we analyze the data of the US real estate market, which
contains the monthly S&P/Case-Shiller US National Home Price Index and the monthly
rent of primary residence, both over the period from January 1981 to June 2017 (438
monthly observations in the full sample).6 The price-rent ratio is calculated for the sample
period.

For the purpose of comparison, we first apply the PSY method (based on the sup
c-statistic) with k = 0 to the price-rent ratio. Figure 4 plots the price-rent ratio, the

6The data is downloaded from Federal Reserve Bank of St. Louis. The series code for the home price
index is CSUSHPISA while the code for the rent is CUSR0000SEHA.
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Figure 4: Date-stamping bubble periods in the US home price rent ratio based on the
PSY method.

sequence of PSY c-statistics which are calculated in a recursive backward manner with
the minimum window size chosen as 0.01 + 1.8/

√
438 ≈ 42, and the sequence of the 95%

finite sample critical values of the sup c-statistic obtained from Monte Carlo simulations.
It can be seen that four bubble episodes are identified by the PSY method, namely, May
1986 to April 1990, March 1991 to June 1993, April 1998 to January 2008, and April
2008 to June 2011. The first and third episodes correspond to the well-known periods of
real estate market expansions in the US. However, some post-peak periods are included
as a part of bubble expansion. The price-rent ratio reached a peak in May 1989, whereas,
the estimated termination date of the first bubble by PSY method is April 1990. The
price-rent ratio reached another peak in March 2006, whereas, the PSY method estimates
January 2008 to be the termination date of the third bubble. During the second and last
detected bubble periods the real estate market experienced market downturns. Hence,
according to PSY, these two periods must have negative bubbles.

We then apply the proposed regression (16) with k = 1 to the price-rent ratio of the
US real estate market. Figure 4 plots the price-rent ratio, the sequence of the c-statistics
from the proposed procedure calculated in a recursive backward manner with the same
minimum window size as in PSY method, and the sequence of the 95% finite sample
critical values obtained from Monte Carlo simulations. Only two bubble periods have been
identified by the proposed method, namely, May 1986 to May 1989 and July 1998 to March
2006. Although these two bubble periods correspond to the first and third bubble periods
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Figure 5: Date-stamping bubble periods in the US home price rent ratio based on the
proposed regression method.

identified by the PSY method, they are shorter in the sense that both bubbles ended much
earlier. The first bubble ended in May 1989 according to the proposed method, eleven
months earlier than that identified by the PSY method. The second bubble ended in March
2006 according to the proposed method, twenty-two months earlier than that identified
by the PSY method. As noted earlier, both May 1989 and March 2006 are two peaks of
the time series. Clearly, the estimated termination dates synchronize the turning points
by the proposed procedure. Moreover, the third and the last bubble periods identified by
PSY method are not flagged as a negative bubble episode by the proposed method. This
observation indicates that the market downturns in 1991-1993 and in 2008-2011 may be
better explained by deterministic trend models than pure AR models.

8 Conclusion

This paper is concerned about the performance of the right-tailed unit root tests against
explosive alternative when the true DGP has a deterministic trend. It is shown that when
there is a linear trend in DGP (upward or downward), the unit root tests based on the
AR(1) regression without intercept tend to reject the null hypothesis of unit root in favor
of the explosive alternative. Similarly, when there is a quadratic trend or a cubic trend
in DGP (upward or downward), the unit root tests based on the AR(1) regressions with
or without an intercept also tend to reject the null hypothesis of unit root in favor of the
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Table 15: The asymptotic properties of the two unit root test statistics obtained from
different regression models when data come from different DGPs.

Model (6) Model (7) Model (8) k = 1 Model (8) k = 2

DGP c-stat t-stat c-stat t-stat c-stat t-stat c-stat t-stat
Linear Trend 1.5 ∞ 0 0 0 0 0 0
Quadratic Trend 2.5 ∞ 15/8 ∞ 0 0 0 0
Cubic Trend 3.5 ∞ 28/9 ∞ 0 −∞ 0 0
Explosive ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

explosive alternative. Extensive simulation studies reinforce the analytical findings.
In order for the right-tailed unit root tests to be able to distinguish the trend station-

ary process from the explosive AR process, we propose a new autoregressive procedure.
Asymptotic distributions for the coeffi cient-based statistic and the t-statistic under the
null hypothesis of unit root are derived. When data is generated from a trend-stationary
model, we show that the null hypothesis of unit root will not be rejected. Whereas, when
data is generated from an explosive autoregressive process, we show that both test sta-
tistics go to positive infinity, suggesting that the null hypothesis of unit root has to be
rejected in favor of explosiveness. Interestingly, our proposed procedure is nearly identical
to the augmented DF procedure discussed in PSY (2015a, Equation (4)) with an impor-
tant distinction. That is our method requires k to be at least as large as 1, whereas in
Equation (4) of PSY k is allowed to be zero. However, in the empirical implementation,
PSY and many other empirical studies that applied the PSY method have always fixed k
to be zero for simplicity.

We have applied our proposed method to real data. For the S&P 500 stock price index-
dividend ratio over January 1871 to December 2010, our testing results are qualitatively
identical to those found in PSY, hence, reinforcing the empirical conclusion of negative
bubbles made in PSY, and suggesting that deterministic trend models are not relevant
for describing the movement of the price-dividend time series. However, for the price-rent
ratio of the US real estate market from January 1981 to June 2017, our testing results
are different from those obtained by using PSY method. Two negative bubbles identified
by PSY method are not flagged as bubbles any more. In addition, the termination dates
of two identified positive bubble periods are estimated to be much earlier than those
estimated by PSY method.

APPENDIX

Before we prove the asymptotic results reported in the paper, we first summarize them.
Table 15 summarizes the asymptotic properties of the two unit root test statistics obtained
from different regression models, (6)-(8) with k = 1, 2, and when data come from different
DGPs (the linear trend model (5), the quadratic trend model (10), the cubic trend model
(13), and the mildly explosive model).
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A Proof of theorems in Section 2

Lemma A.1 Let ut = C (L) εt =
∑∞

j=0 cjεt−j, where
∑∞

j=0 j |cj | < ∞ and {εt} ≡
i.i.d.

(
0, σ2

)
with finite fourth moment. Define γj = E (utut−j) for j = 0, 1, 2, . . . ,

λ = σ
∑∞

j=0 cj = σC (1) , and W (·) being a standard Brownian motion. Then,
(a) n−1/2

∑n
t=1 ut ⇒ λW (1)

d
= N

(
0, λ2

)
;

(b) n−1
∑T

t=1 ut−jut
p−→ γj for j = 0, 1, 2, . . . ;

(c) n−3/2
∑n

t=1 tut−j ⇒ λ
(
W (1)−

∫ 1
0 W (r) dr

)
for j = 0, 1, 2, . . . ;

(d) n−5/2
∑n

t=1 t
2ut−j ⇒ λ

(
W (1)− 2

∫ 1
0 rW (r) dr

)
for j = 0, 1, 2, . . . ;

(e) n−(s+1)
∑n

t=1 t
s = 1/ (s+ 1) +O (1/n) for s = 1, 2, . . .

Proof of Lemma A.1: Proofs of these standard results are omitted.

Proof of Theorem 2.1: (a) From Model (5), we have ∆yt = δ + ∆ut, which leads to

β̂ =

∑n
t=2 yt−1yt∑n
t=2 y

2
t−1

= 1 +

∑n
t=2 yt−1∆yt∑n
t=2 y

2
t−1

= 1 +

∑n
t=2 yt−1 (δ + ∆ut)∑n

t=2 y
2
t−1

.

Based on the results in Lemma A.1, it can be obtained that

n−2
n∑
t=2

δyt−1 =
δ

n2

n∑
t=2

[δ (t− 1) + ut−1] = δ2/2 +Op
(
n−1

)
,

n−1
n∑
t=2

(∆ut) yt−1 =
δ

n

n∑
t=2

(∆ut) (t− 1) +
1

n

n∑
t=2

(∆ut)ut−1

=
δ

n

(
nun −

n∑
t=2

ut

)
+

1

n

(
n∑
t=2

utut−1 −
n∑
t=2

u2
t−1

)
= δun + γ1 − γ0 + op (1)

and

n−3
n∑
t=2

y2
t−1 = n−3

(
δ2

n∑
t=2

(t− 1)2 +
n∑
t=2

u2
t−1 + 2δ

n∑
t=2

(t− 1)ut−1

)

=
δ2

n3

2n3 − 3n2 + n

6
+Op

(
n−3/2

)
= δ2/3 +Op

(
n−1

)
.

Consequently, we have

n
(
β̂ − 1

)
=
n−2

∑n
t=2 (δ + ∆ut) yt−1

n−3
∑n

t=2 y
2
t−1

=
δ2/2 +Op

(
n−1

)
δ2/3 +Op (n−1)

=
3

2
+Op

(
1

n

)
.

(b) Note that
[
se
(
β̂
)]2

=
(∑n

t=2 y
2
t−1

)−1
(

1
n−2

∑n
t=2

(
yt − β̂yt−1

)2
)
. We have

n∑
t=2

(
yt − β̂yt−1

)2
=

n∑
t=2

[
∆yt −

(
β̂ − 1

)
yt−1

]2
=

n∑
t=2

(∆yt)
2 −

(
β̂ − 1

)2
n∑
t=2

y2
t−1,
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which leads to [
se
(
β̂
)]2

=
1

n− 2

[
n∑
t=2

(∆yt)
2 /

n∑
t=2

y2
t−1 −

(
β̂ − 1

)2
]
.

Note that, as n→∞,

1

n− 2

n∑
t=2

(∆yt)
2 =

1

n− 2

n∑
t=2

(δ + ∆ut)
2 =

(n− 1) δ2 +
∑n

t=2 (∆ut)
2 + 2δ

∑n
t=2 ∆ut

n− 2

= δ2 + 2 (γ0 − γ1) + op (1) .

Together with the limits of n−3
∑n

t=2 y
2
t−1 and n

(
β̂ − 1

)
derived above, we have

n3
[
se
(
β̂
)]2

=
1

n−1

∑n
t=2 (∆yt)

2

n−3
∑n

t=2 y
2
t−1

− n3

n− 1

(
β̂ − 1

)2

p−→ δ2 + 2 (γ0 − γ1)

δ2/3
−
(

3

2

)2

=
3δ2 + 24 (γ0 − γ1)

4δ2 ,

which leads to the final result as

t
β̂√
n

=
n
(
β̂ − 1

)
n3/2se

(
β̂
) p−→ (3/2)

√
4δ2√

3δ2 + 24 (γ0 − γ1)
=

√
3 |δ|√

δ2 + 8 (γ0 − γ1)
.

Proof of Theorem 2.2: (a) As yt = δt+ut = δ+ yt−1 + ∆ut, the centered LS estimator
takes the form of(

α̃− δ
β̃ − 1

)
=

( ∑n
t=2 1

∑n
t=2 yt−1∑n

t=2 yt−1
∑n

t=2 y
2
t−1

)−1( ∑n
t=2 ∆ut∑n

t=2 yt−1∆ut

)
.

Based on the limits of n−2
∑n

t=2 yt−1, n−3
∑n

t=2 y
2
t−1 and n

−1
∑n

t=2 yt−1∆ut derived in the
proof of Theorem 2.1, we have(

1 0
0 n−1

)( ∑n
t=2 ∆ut∑n

t=2 yt−1∆ut

)
=

[
un − u1

δun + γ1 − γ0 + op (1)

]
,

and (
n 0
0 n2

)( ∑n
t=2 1

∑n
t=2 yt−1∑n

t=2 yt−1
∑n

t=2 y
2
t−1

)−1(
1 0
0 n

)
=

(
1 δ/2
δ/2 δ2/3

)−1

+Op
(
n−1

)
=

(
4 −6/δ
−6/δ 12/δ2

)
+Op

(
n−1

)
.

Hence, (
n 0
0 n2

)(
α̃− δ
β̃ − 1

)
=

(
4 −6/δ
−6/δ 12/δ2

)(
un − u1

δun + (γ1 − γ0)

)
+ op (1)
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which leads to the result in (a).

(b) Note that se
(
β̃
)
takes the form of

se
(
β̃
)

=

(0 1
)( ∑n

t=2 1
∑n

t=2 yt−1∑n
t=2 yt−1

∑n
t=2 y

2
t−1

)−1(
0
1

)
∑n

t=2

(
yt − α̃− β̃yt−1

)2

n− 3




1/2

.

As yt = δt+ ut = δ + yt−1 + ∆ut and
(
α̃, β̃

)
p−→ (δ, 1), it can be proved that

n−1
n∑
t=2

(
yt − α̃− β̃yt−1

)2
= n−1

n∑
t=2

(∆ut)
2 + op (1) = 2 (γ0 − γ1) + op (1) .

Note that (
0 n2

)( ∑n
t=2 1

∑n
t=2 yt−1∑n

t=2 yt−1
∑n

t=2 y
2
t−1

)−1(
0
n

)
=

(
0 1

)(n 0
0 n2

)( ∑n
t=2 1

∑n
t=2 yt−1∑n

t=2 yt−1
∑n

t=2 y
2
t−1

)−1(
1 0
0 n

)(
0
1

)
=

(
0 1

)( 4 −6/δ
−6/δ 12/δ2

)(
0
1

)
+Op

(
n−1

)
.

We then have

n3
[
se
(
β̃
)]2

=
(
0 n2

)( ∑n
t=2 1

∑n
t=2 yt−1∑n

t=2 yt−1
∑n

t=2 y
2
t−1

)−1(
0
n

)
∑n

t=2

(
yt − α̃− β̃yt−1

)2

n− 1


= 24 (γ0 − γ1) /δ2 + op (1) .

Together with the limit of n2
(
β̃ − 1

)
, it is obtained that

√
ntβ̃ = n2

(
β̃ − 1

)
/
[
n3/2se

(
β̃
)]

=
−12 (γ0 − γ1) /δ2 + 6 (un + u1) /δ√

24 (γ0 − γ1) /δ2
+ op (1)

which leads to the result in (b) directly.

Proof of Theorem 2.3: For simplicity, we give only the proof for the regression with
k = 1. The same approach can be applied straightforwardly to prove the results in general
cases where k > 1. When k = 1, the regression (8) becomes

yt = α̌+ β̌yt−1 + ψ̌1∆yt−1 + ět.

The fact of ∆yt−1 = δ + ∆ut−1 makes α̌ and ψ̌1 not consistent, which causes diffi culty to
derive the limits of β̌ and tβ̌. Hence, we turn to study an alternative LS regression:

yt = α̌∗ + β̌
∗
yt−1 + ψ̌

∗
1∆ut−1 + ě∗t , (23)

31



where
(
α̌∗, β̌

∗
, ψ̌
∗
1

)
are the LS coeffi cients. It is easy to see that

 α̌

β̌

ψ̌1

 = D′

α̌∗β̌∗
ψ̌
∗
1

 and se
(
β̌
)

= se
(
β̌
∗)

with D =

 1 0 0
0 1 0
−δ 0 1


where se

(
β̌
)
and se

(
β̌
∗)
are the standard errors of β̌ and β̌

∗
, respectively. Therefore,

β̌ = β̌
∗
and tβ̌ =

β̌ − 1

se
(
β̌
) =

β̌
∗ − 1

se
(
β̌
∗) = tβ̌∗ ,

where tβ̌∗ is the t statistic associated with β̌
∗
. We now focus on the regression (23) to

study the limits of β̌
∗
and tβ̌∗ as n→∞.

(a) As yt = δ + yt−1 + ∆ut, the centered LS estimator of the regression (23) is

α̌∗ − δβ̌
∗ − 1

ψ̌
∗
1 − 0

 =


∑n

t=3
1

∑n

t=3
yt−1

∑n

t=3
∆ut−1∑n

t=3
yt−1

∑n

t=3
y2
t−1

∑n

t=3
yt−1∆ut−1∑n

t=3
∆ut−1

∑n

t=3
yt−1∆ut−1

∑n

t=3
(∆ut−1)2


−1 

∑n

t=3
∆ut∑n

t=3
yt−1∆ut∑n

t=3
∆ut−1∆ut

 .
With the limit of n−1

∑n

t=3
yt−1∆ut obtained in the proof of Theorem (2.1), we have

1 0 0
0 n−1 0
0 0 n−1




∑n

t=3
∆ut∑n

t=3
yt−1∆ut∑n

t=3
∆ut−1∆ut

 =

 un − u2

δun + γ1 − γ0

2γ1 − γ0 − γ2

+ op (1) .

Note that

1

n

∑n

t=3
yt−1∆ut−1 =

1

n

∑n

t=3
[δ (t− 1) + ut−1] ∆ut−1

=
δ

n

[
(n− 1)uT−1 −

∑n−2

t=2
ut − 2u1

]
+

1

n

∑n

t=3
ut−1∆ut−1

= δuT−1 + γ0 − γ1 + op (1) .

We now have

n 0 0
0 n2 0
0 0 1




∑n

t=3
1

∑n

t=3
yt−1

∑n

t=3
∆ut−1∑n

t=3
yt−1

∑n

t=3
y2
t−1

∑n

t=3
yt−1∆ut−1∑n

t=3
∆ut−1

∑n

t=3
yt−1∆ut−1

∑n

t=3
(∆ut−1)2


−11 0 0

0 n 0
0 0 n



=

 1 δ/2 un−1 − u2

δ/2 δ2/3 δuT−1 + γ0 − γ1

0 0 2 (γ0 − γ1)

−1

+ op (1) .
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Consequently, we haven 0 0
0 n2 0
0 0 1

α̌∗ − δβ̌
∗ − 1

ψ̌
∗
1 − 0

 =

 1 δ/2 un−1 − u2

δ/2 δ2/3 δuT−1 + γ0 − γ1

0 0 2 (γ0 − γ1)

−1  un − u2

δun + γ1 − γ0

2γ1 − γ0 − γ2

+ op (1)

which shows that n2
(
β̌
∗ − 1

)
= Op (1). Hence, n2

(
β̌ − 1

)
= Op (1).

(b) Note that

1

n

∑n

t=3
(ě∗t )

2 =
1

n

∑n

t=3

(
yt − α̌∗ − β̌

∗
yt−1 − ψ̌

∗
1∆ut−1

)2

=
1

n

∑n

t=3

(
∆ut − (α̌∗ − δ)−

(
β̌
∗ − 1

)
yt−1 − ψ̌

∗
1∆ut−1

)2

=
1

n

∑n

t=3

(
∆ut − (α̌∗ − δ)−

(
β̌
∗ − 1

)
yt−1 − ψ̌

∗
1∆ut−1

)
∆ut

=
1

n

∑n

t=3
(∆ut)

2 − ψ̌∗1
1

n

∑n

t=3
∆ut−1∆ut +Op

(
n−2

)
=

4 (γ0 − γ1)2 − (2γ1 − γ0 − γ2)2

2 (γ0 − γ1)
+ op (1)

where the second equation is from yt = δ + yt−1 + ∆ut, the third equation comes from
first-order conditions of LS regression, and the fourth equation is based on the asymptotic
results obtained in the proof of (a). Hence,

n3
[
se
(
β̌
∗)]2

=
(
0 n2 0

)
∑n

t=3
1

∑n

t=3
yt−1

∑n

t=3
∆ut−1∑n

t=3
yt−1

∑n

t=3
y2
t−1

∑n

t=3
yt−1∆ut−1∑n

t=3
∆ut−1

∑n

t=3
yt−1∆ut−1

∑n

t=3
(∆ut−1)2


−10

n
0

∑n

t=3
(ě∗t )

2

n− 5

=
12

δ2

[
4 (γ0 − γ1)2 − (2γ1 − γ0 − γ2)2

2 (γ0 − γ1)

]
+ op (1) .

Finally, we have

√
ntβ̌ =

√
ntβ̌∗ =

n2
(
β̌
∗ − 1

)
n3/2se

(
β̌
∗) = Op (1) .

B Proof of theorems in Section 3

Proof of Theorem 3.1: (a) From Model (10), we have ∆yt = −δ + 2δt+ ∆ut. Hence,

β̂ − 1 =

∑n
t=2 yt−1∆yt∑n
t=2 y

2
t−1

=

∑n
t=2 yt−1 (−δ + 2δt+ ∆ut)∑n

t=2 y
2
t−1

.

Based on the results in Lemma A.1, it can be obtained that

n−3
n∑
t=2

yt−1 =
1

n3

n∑
t=2

[
δ (t− 1)2 + ut−1

]
= δ/3 +Op

(
n−1

)
,
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n−4
n∑
t=2

tyt−1 =
1

n4

n∑
t=2

t
[
δ (t− 1)2 + ut−1

]
= δ/4 +Op

(
n−1

)
,

n−2
n∑
t=2

(∆ut) yt−1 =
δ

n2

n∑
t=2

(∆ut) (t− 1)2 +
1

n2

n∑
t=2

(∆ut)ut−1

=
δ

n2

(
(n− 1)2 un − 2

n∑
t=2

(t− 1)ut−1 +
n∑
t=2

ut−1

)
+Op

(
n−1

)
= δun +Op

(
n−1/2

)
and

n−5
n∑
t=2

y2
t−1 = n−5

n∑
t=2

(
δ2 (t− 1)4 + u2

t−1 + 2δ (t− 1)2 ut−1

)
= δ2/5 +Op

(
n−1

)
.

Consequently, we have

n
(
β̂ − 1

)
=
n−4

∑n
t=2 yt−1 (−δ + 2δt+ ∆ut)

n−5
∑n

t=2 y
2
t−1

=
2δ (δ/4) +Op

(
n−1

)
δ2/5 +Op (n−1)

=
5

2
+Op

(
1

n

)
.

(b) Note that

n−3
n∑
t=2

(∆yt)
2 = n−3

n∑
t=2

(−δ + 2δt+ ∆ut)
2 =

4δ2

n3

n∑
t=2

t2 +Op
(
n−1

)
=

4δ2

3
+Op

(
n−1

)
.

Then, we have

n3
[
se
(
β̂
)]2

=
n3

n− 2

∑n
t=2

(
yt − β̂yt−1

)2∑n
t=2 y

2
t−1

=
n3

n− 2

∑n
t=2

[
∆yt −

(
β̂ − 1

)
yt−1

]2∑n
t=2 y

2
t−1

=
n3

n− 2

[∑n
t=2 (∆yt)

2∑n
t=2 y

2
t−1

−
(
β̂ − 1

)2
]

=
4δ2/3

δ2/5
−
(

5

2

)2

+Op
(
n−1

)
=

5

12
+Op

(
n−1

)
.

As a result,

t
β̂√
n

=
n
(
β̂ − 1

)
n3/2se

(
β̂
) p−→ 5/2√

5/12
=
√

15.

Proof of Theorem 3.2: (a) From Model (10), we have yt = −δ + yt−1 + 2δt + ∆ut.
Hence, the centered LS estimator takes the form of(

α̃+ δ

β̃ − 1

)
=

( ∑n
t=2 1

∑n
t=2 yt−1∑n

t=2 yt−1
∑n

t=2 y
2
t−1

)−1( ∑n
t=2 (2δt+ ∆ut)∑n

t=2 yt−1 (2δt+ ∆ut)

)
.
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Based on the asymptotic results obtained in the proof of Theorem 3.1, we have(
n−2 0

0 n−4

)( ∑n
t=2 (2δt+ ∆ut)∑n

t=2 yt−1 (2δt+ ∆ut)

)
=

[
δ

δ2/2

]
+Op

(
n−1

)
,

and (
n−1 0

0 n

)( ∑n
t=2 1

∑n
t=2 yt−1∑n

t=2 yt−1
∑n

t=2 y
2
t−1

)−1(
n2 0
0 n4

)
=

(
1 δ/3
δ/3 δ2/5

)−1

+Op
(
n−1

)
.

Hence,(
n−1 0

0 n

)(
α̃+ δ

β̃ − 1

)
=

(
1 δ/3
δ/3 δ2/5

)−1 [
δ

δ2/2

]
+Op

(
n−1

)
=

[
3δ/8
15/8

]
+Op

(
n−1

)
.

(b) Let ηt = 2δt+ ∆ut = ∆yt + δ. We have

1

n3

n∑
t=2

(ηt)
2 = 4δ2/3 +Op

(
n−1

)
,

1

n2

n∑
t=2

ηt = δ +Op
(
n−1

)
, and

1

n4

n∑
t=2

yt−1ηt = 2δ
1

n4

n∑
t=2

tyt−1 +Op
(
n−2

)
= δ2/2 +Op

(
n−1

)
,

Together with the limits of (α̃+ δ) /n and n
(
β̃ − 1

)
, we have

1

n3

n∑
t=2

ẽ2
t =

1

n3

n∑
t=2

(
yt − α̃− β̃yt−1

)2
=

1

n3

n∑
t=2

[
ηt − (α̃+ δ)−

(
β̃ − 1

)
yt−1

]2

=
1

n3

n∑
t=2

[
ηt − (α̃+ δ)−

(
β̃ − 1

)
yt−1

]
ηt = δ2/48 +Op

(
n−1

)
,

where the third equation is from the first-order conditions of LS regression. Therefore,

n3
[
se
(
β̃
)]2

=
(
0 n

)( ∑n
t=2 1

∑n
t=2 yt−1∑n

t=2 yt−1
∑n

t=2 y
2
t−1

)−1(
0
n4

)( ∑n
t=2 ẽ

2
t

n2 (n− 3)

)
=

(
0 1

)( 1 δ/3
δ/3 δ2/5

)−1(
0
1

)
δ2

48
+Op

(
n−1

)
=

15

64
+Op

(
n−1

)
.

Consequently, we have

tβ̃/
√
n =

n
(
β̃ − 1

)
n3/2se

(
β̃
) =

15/8√
15/64

+Op
(
n−1

) p−→
√

15.

Proof of Theorem 3.3: We first prove the results for the regression (8) with k = 1 in
details. Then, for simplicity, we give the outline of the proof for general case with k > 1.

(a) For Model (10), we have ∆2yt = 2δ + ∆2ut which leads to

yt = 2δ + yt−1 + ∆yt−1 + ∆2ut
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Hence, the centered LS estimator of the regression (8) with k = 1 isα̌− 2δ

β̌ − 1

ψ̌1 − 1

 =


∑n

t=3
1

∑n

t=3
yt−1

∑n

t=3
∆yt−1∑n

t=3
yt−1

∑n

t=3
y2
t−1

∑n

t=3
yt−1∆yt−1∑n

t=3
∆yt−1

∑n

t=3
yt−1∆yt−1

∑n

t=3
(∆yt−1)2


−1 

∑n

t=3
∆2ut∑n

t=3
yt−1∆2ut∑n

t=3
∆yt−1∆2ut

 .
Note that

n−2
∑n

t=3
yt−1∆2ut = n−2

∑n

t=3

[
δ (t− 1)2 + ut−1

]
∆2ut

= n−2
∑n

t=3

[
δ (t− 1)2

]
[∆ut −∆ut−1] +Op

(
n−1

)
= δn−2

[
(n− 1)2 ∆un − 2

∑n−1

t=2
t∆ut +

∑n−1

t=3
∆ut

]
+Op

(
n−1

)
= δ∆un +Op

(
n−1

)
and

n−1
∑n

t=3
∆yt−1∆2ut = n−1

∑n

t=3
(2δt− 3δ + ∆ut−1) ∆2ut

= 2δn−1
∑n

t=3
t∆2ut + n−1

∑n

t=3
∆ut−1∆2ut +Op

(
n−1

)
= 2δn−1 (n∆un) + n−1

∑n

t=3
∆ut−1∆2ut +Op

(
n−1

)
= 2δ∆un + (4γ1 − 3γ0 − γ2) + op (1) .

Hence,1 0 0
0 n−2 0
0 0 n−1




∑n

t=3
∆2ut∑n

t=3
yt−1∆2ut∑n

t=3
∆yt−1∆2ut

 =

 ∆un −∆u2

δ∆un
2δ∆un + (4γ1 − 3γ0 − γ2)

+ op (1) .

Next, note that n−2
∑n

t=3
∆yt−1 = n−2 (yn−1 − y2) = δ +Op

(
n−1

)
,

n−4
∑n

t=3
yt−1∆yt−1 = n−4

∑n

t=3

[
δ (t− 1)2 + ut−1

]
[2δt− 3δ + ∆ut−1]

= 2δ2n−4
∑n

t=3
t3 +Op

(
n−1

)
= δ2/2 +Op

(
n−1

)
and

n−3
∑n

t=3
(∆yt−1)2 = n−3

∑n

t=3
(2δt− 3δ + ∆ut−1)2

=
4δ2

n3

n∑
t=2

t2 +Op
(
n−1

)
=

4δ2

3
+Op

(
n−1

)
.

Together with the limits of n−3
∑n

t=3
yt−1 and n−5

∑n

t=3
y2
t−1 obtained in the proof of

Theorem (3.1), we haven 0 0
0 n3 0
0 0 n2




∑n

t=3
1

∑n

t=3
yt−1

∑n

t=3
∆yt−1∑n

t=3
yt−1

∑n

t=3
y2
t−1

∑n

t=3
yt−1∆yt−1∑n

t=3
∆yt−1

∑n

t=3
yt−1∆yt−1

∑n

t=3
(∆yt−1)2


−11 0 0

0 n2 0
0 0 n



36



=

 1 δ/3 δ
δ/3 δ2/5 δ2/2
δ δ2/2 4δ2/3

−1

+Op
(
n−1

)
As a result, we haven 0 0

0 n3 0
0 0 n2

α̌− 2δ

β̌ − 1

ψ̌1 − 1

 =

 1 δ/3 δ
δ/3 δ2/5 δ2/2
δ δ2/2 4δ2/3

−1  ∆un −∆u2

δ∆un
2δ∆un + (4γ1 − 3γ0 − γ2)

+ op (1)

which leads to n3
(
β̌ − 1

)
= Op (1).

(b) Note that yt = 2δ + yt−1 + ∆yt−1 + ∆2ut. Together with the fact that α̌, β̌, and
ψ̌1 are all consistent, it can be proved that

1

n

∑n

t=3
(ět)

2 =
1

n

∑n

t=3

(
yt − α̌− β̌yt−1 − ψ̌1∆yt−1

)2
=

1

n

∑n

t=3

(
∆2ut

)2
+ op (1)

= 6γ0 − 8γ1 + 2γ2 + op (1) .

As a result, we have

n5
[
se
(
β̌
)]2

= n5
(
0 1 0

)
∑n

t=3
1

∑n

t=3
yt−1

∑n

t=3
∆yt−1∑n

t=3
yt−1

∑n

t=3
y2
t−1

∑n

t=3
yt−1∆yt−1∑n

t=3
∆yt−1

∑n

t=3
yt−1∆yt−1

∑n

t=3
(∆yt−1)2


−10

1
0

∑n

t=3
(ět)

2

n− 5

=
(
0 1 0

) 1 δ/3 δ
δ/3 δ2/5 δ2/2
δ δ2/2 4δ2/3

−10
1
0

 [6γ0 − 8γ1 + 2γ2] + op (1) .

Therefore,
√
ntβ̌ =

n3
(
β̌ − 1

)
n5/2se

(
β̌
) = Op (1) .

For the regression (8) with k = 2 :

yt = α̌+ β̌yt−1 + ψ̌1∆yt−1 + ψ̌2∆yt−2 + ět,

it is confronted with the problem of perfect multi-collinearity as ∆yt−1 = 2δt−3δ+∆ut−1

and ∆yt−2 = 2δt − 5δ + ∆ut−2. Note that ∆yt−2 − ∆yt−1 + 2δ = −∆2ut−1. We now
consider the regression

yt = α̌∗ + β̌
∗
yt−1 + ψ̌

∗
1∆yt−1 + ψ̌

∗
2

(
−∆2ut−1

)
+ ě∗t . (24)

It can be proved that
α̌

β̌

ψ̌1

ψ̌2

 = D′


α̌∗

β̌
∗

ψ̌
∗
1

ψ̌
∗
2

 with D =


1 0 0 0
0 1 0 0
0 0 1 0
2δ 0 −1 1


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which leads to β̌ = β̌
∗
. It is also easy to prove that tβ̌ = tβ̌∗ . Note that the regression

(24) does not face the problem of perfect multi-collinearity, and includes the true DGP of

yt when
(
α̌∗ β̌

∗
ψ̌
∗
1 ψ̌

∗
2

)
=
(
2δ 1 1 0

)
. It can be proved that n3

(
β̌
∗ − 1

)
= Op (1)

and
√
ntβ̌∗ = Op (1).

The same method can be extended to prove the results in the regression (8) with k > 2.

We will still have n3
(
β̌
∗ − 1

)
= Op (1) and

√
ntβ̌∗ = Op (1), but the form of the limiting

distributions may change as k varies.

C Proof of theorems in Section 4

Proof of Theorem 4.1: (a) From Model (13), we have ∆yt = δ − 3δt + 3δt2 + ∆ut.
Hence,

β̂ − 1 =

∑n
t=2 yt−1∆yt∑n
t=2 y

2
t−1

=

∑n
t=2 yt−1

(
δ − 3δt+ 3δt2 + ∆ut

)∑n
t=2 y

2
t−1

.

Based on the results in Lemma A.1, it is obtained that

n−4
n∑
t=2

yt−1 =
1

n4

n∑
t=2

[
δ (t− 1)3 + ut−1

]
= δ/4 +Op

(
n−1

)
,

n−5
n∑
t=2

tyt−1 =
1

n5

n∑
t=2

t
[
δ (t− 1)3 + ut−1

]
= δ/5 +Op

(
n−1

)
,

n−6
n∑
t=2

t2yt−1 =
1

n6

n∑
t=2

t2
[
δ (t− 1)3 + ut−1

]
= δ/6 +Op

(
n−1

)
,

n−3
n∑
t=2

(∆ut) yt−1 = n−3
n∑
t=2

(∆ut)
[
δ (t− 1)3 + ut−1

]
= δun +Op

(
n−1/2

)
and

n−7
n∑
t=2

y2
t−1 = n−7

n∑
t=2

[
δ (t− 1)3 + ut−1

]2
= δ2/7 +Op

(
n−1

)
.

Consequently, we have

n
(
β̂ − 1

)
=

(3δ)n−6
∑n

t=2 t
2yt−1

n−7
∑n

t=2 y
2
t−1

=
3δ (δ/6) +Op

(
n−1

)
δ2/7 +Op (n−1)

=
7

2
+Op

(
1

n

)
.

(b) Note that

n−5
n∑
t=2

(∆yt)
2 =

(3δ)2

n5

n∑
t=2

t4 +Op
(
n−1

)
=

9δ2

5
+Op

(
n−1

)
.

Then, we have

n3
[
se
(
β̂
)]2

=
n3

n− 2

∑n
t=2

(
yt − β̂yt−1

)2∑n
t=2 y

2
t−1

=
n3

n− 2

∑n
t=2

[
∆yt −

(
β̂ − 1

)
yt−1

]2∑n
t=2 y

2
t−1
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=
n3

n− 2

[∑n
t=2 (∆yt)

2∑n
t=2 y

2
t−1

−
(
β̂ − 1

)2
]

=
9δ2/5

δ2/7
−
(

7

2

)2

+Op
(
n−1

)
=

7

20
+Op

(
n−1

)
.

As a result,

t
β̂√
n

=
n
(
β̂ − 1

)
n3/2se

(
β̂
) p−→ 7/2√

7/20
=
√

35.

Proof of Theorem 4.2: (a) From Model (13), we have yt = δ+yt−1 +f (t)+∆ut, where
f (t) = 3δt2 − 3δt. Hence, the centered LS estimator takes the form of(

α̃− δ
β̃ − 1

)
=

( ∑n
t=2 1

∑n
t=2 yt−1∑n

t=2 yt−1
∑n

t=2 y
2
t−1

)−1( ∑n
t=2 [f (t) + ∆ut]∑n

t=2 yt−1 [f (t) + ∆ut]

)
.

Based on the asymptotic results obtained in the proof of Theorem 4.1, we have(
n−3 0

0 n−6

)( ∑n
t=2 [f (t) + ∆ut]∑n

t=2 yt−1 [f (t) + ∆ut]

)
=

[
δ

δ2/2

]
+Op

(
n−1

)
,

and (
n−2 0

0 n

)( ∑n
t=2 1

∑n
t=2 yt−1∑n

t=2 yt−1
∑n

t=2 y
2
t−1

)−1(
n3 0
0 n6

)
=

(
1 δ/4
δ/4 δ2/7

)−1

+Op
(
n−1

)
.

Hence,(
n−2 0

0 n

)(
α̃− δ
β̃ − 1

)
=

(
1 δ/4
δ/4 δ2/7

)−1 [
δ

δ2/2

]
+Op

(
n−1

)
=

[
2δ/9
28/9

]
+Op

(
n−1

)
.

(b) Let ξt = 3δt2 − 3δt+ ∆ut = ∆yt − δ. We have

1

n5

n∑
t=2

(ξt)
2 = 9δ2/5 +Op

(
n−1

)
,

1

n3

n∑
t=2

ξt = δ +Op
(
n−1

)
, and

1

n6

n∑
t=2

yt−1ξt = 3δ
1

n6

n∑
t=2

t2yt−1 +Op
(
n−1

)
= δ2/2 +Op

(
n−1

)
.

Together with the limits of n−2 (α̃− δ) and n
(
β̃ − 1

)
derived above, we have

1

n5

n∑
t=2

ẽ2
t =

1

n5

n∑
t=2

(
yt − α̃− β̃yt−1

)2
=

1

n5

n∑
t=2

[
ξt − (α̃− δ)−

(
β̃ − 1

)
yt−1

]2

=
1

n5

n∑
t=2

[
ξt − (α̃− δ)−

(
β̃ − 1

)
yt−1

]
ξt = δ2/45 +Op

(
n−1

)
,
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where the third equation is from the first-order conditions of LS regression. Therefore,

n3
[
se
(
β̃
)]2

=
(
0 n

)( ∑n
t=2 1

∑n
t=2 yt−1∑n

t=2 yt−1
∑n

t=2 y
2
t−1

)−1(
0
n6

)( ∑n
t=2 ẽ

2
t

n4 (n− 3)

)
=

(
0 1

)( 1 δ/4
δ/4 δ2/7

)−1(
0
1

)
δ2

45
+Op

(
n−1

)
=

112

405
+Op

(
n−1

)
.

Consequently, we have

tβ̃/
√
n =

n
(
β̃ − 1

)
n3/2se

(
β̃
) =

28/9√
112/405

+Op
(
n−1

) p−→
√

35.

Proof of Theorem 4.3: (a) From Model (13), we have ∆2yt = 6δ (t− 1) + ∆2ut, which
leads to

yt = −6δ + yt−1 + ∆yt−1 + ωt with ωt = 6δt+ ∆2ut.

Hence, the centered LS estimator of the regression (8) with k = 1 is

α̌+ 6δ

β̌ − 1

ψ̌1 − 1

 =


∑n

t=3
1

∑n

t=3
yt−1

∑n

t=3
∆yt−1∑n

t=3
yt−1

∑n

t=3
y2
t−1

∑n

t=3
yt−1∆yt−1∑n

t=3
∆yt−1

∑n

t=3
yt−1∆yt−1

∑n

t=3
(∆yt−1)2


−1 

∑n

t=3
ωt∑n

t=3
yt−1ωt∑n

t=3
∆yt−1ωt

 .
Note that

n−2
∑n

t=3
ωt = n−2

∑n

t=3

(
6δt+ ∆2ut

)
= 3δ +Op

(
n−1

)
n−5

∑n

t=3
yt−1ωt = n−5

∑n

t=3
yt−1

(
6δt+ ∆2ut

)
= 6δn−5

∑n

t=3
yt−1t+Op

(
n−2

)
= 6δ2/5 +Op

(
n−1

)
and

n−4
∑n

t=3
∆yt−1ωt = n−4

∑n

t=3

[
4δ − 3δt+ 3δ (t− 1)2 + ∆ut−1

] [
6δt+ ∆2ut

]
= 18δ2n−4

∑n

t=3
t (t− 1)2 +Op

(
n−1

)
= 9δ2/2 +Op

(
n−1

)
Hence, n−2 0 0

0 n−5 0
0 0 n−4




∑n

t=3
ωt∑n

t=3
yt−1ωt∑n

t=3
∆yt−1ωt

 =

 3δ
6δ2/5
9δ2/2

+Op (1) .

It can also be proved that n−3
∑n

t=3
∆yt−1 = δ + Op

(
n−1

)
, n−6

∑n

t=3
yt−1∆yt−1 =

δ2/2 + Op
(
n−1

)
, and n−5

∑n

t=3
(∆yt−1)2 = 9δ2/5 + Op

(
n−1

)
. Together with the limits
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of n−4
∑n

t=3
yt−1 and n−7

∑n

t=3
y2
t−1 obtained in the proof of Theorem (4.1), we have

n−1 0 0
0 n2 0
0 0 n




∑n

t=3
1

∑n

t=3
yt−1

∑n

t=3
∆yt−1∑n

t=3
yt−1

∑n

t=3
y2
t−1

∑n

t=3
yt−1∆yt−1∑n

t=3
∆yt−1

∑n

t=3
yt−1∆yt−1

∑n

t=3
(∆yt−1)2


−1n2 0 0

0 n5 0
0 0 n4



=

 1 δ/4 δ
δ/4 δ2/7 δ2/2
δ δ2/2 9δ2/5

−1

+Op
(
n−1

)
As a result, we haven−1 0 0

0 n2 0
0 0 n

α̌+ 6δ

β̌ − 1

ψ̌1 − 1

 =

 1 δ/4 δ
δ/4 δ2/7 δ2/2
δ δ2/2 9δ2/5

−1  3δ
6δ2/5
9δ2/2

+Op
(
n−1

)
which leads to the result of n2

(
β̌ − 1

)
= −8.4 +Op

(
n−1

)
.

To obtain the limit of tβ̌, we first have

n−3
∑n

t=3
(ět)

2

= n−3
∑n

t=3

(
yt − α̌− β̌yt−1 − ψ̌1∆yt−1

)2
= n−3

∑n

t=3

(
ωt − (α̌+ 6δ)−

(
β̌ − 1

)
yt−1 −

(
ψ̌1 − 1

)
∆yt−1

)2
= n−3

∑n

t=3

(
ωt − (α̌+ 6δ)−

(
β̌ − 1

)
yt−1 −

(
ψ̌1 − 1

)
∆yt−1

)
ωt

= n−3
∑n

t=3
ω2
t −

(
n−1 (α̌+ 6δ) n2

(
β̌ − 1

)
n
(
ψ̌1 − 1

))
n−2

∑n

t=3
ωt

n−5
∑n

t=3
yt−1ωt

n−4
∑n

t=3
∆yt−1ωt


= 12δ2 −

 3δ
6δ2/5
9δ2/2

′  1 δ/4 δ
δ/4 δ2/7 δ2/2
δ δ2/2 9δ2/5

′−1  3δ
6δ2/5
9δ2/2

+Op
(
n−1

)
= 0.03δ2 +Op

(
n−1

)
where the third equation is from the first-order conditions of LS regression, and the five
equation comes from n−3

∑n

t=3
ω2
t = n−3

∑n

t=3

(
6δt+ ∆2ut

)2
= 12δ2 + Op

(
n−1

)
. As a

result, we have

n5
[
se
(
β̌
)]2

=
(
0 n2 0

)
∑n

t=3
1

∑n

t=3
yt−1

∑n

t=3
∆yt−1∑n

t=3
yt−1

∑n

t=3
y2
t−1

∑n

t=3
yt−1∆yt−1∑n

t=3
∆yt−1

∑n

t=3
yt−1∆yt−1

∑n

t=3
(∆yt−1)2


−1 0

n5

0

∑n

t=3
(ět)

2

n2 (n− 5)
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=
(
0 1 0

) 1 δ/4 δ
δ/4 δ2/7 δ2/2
δ δ2/2 9δ2/5

−10
1
0

(0.03δ2
)

+Op
(
n−1

)
=

21× 64

100
+Op

(
n−1

)
.

Therefore,

tβ̌/
√
n =

n2
(
β̌ − 1

)
n5/2se

(
β̌
) p−→ −

√
21/2.

(b) Considering the regression (8) with k = 2 :

yt = α̌+ β̌yt−1 + ψ̌1∆yt−1 + ψ̌2∆yt−2 + ět,

it is confronted with the problem of perfect multi-collinearity as∆yt−j = δ
[
3 (t− j)2 − 3 (t− j) + 1

]
+

∆ut−j , for j = 1, 2. From Model (13), it can be seen that ∆2yt = 6δ (t− 1) + ∆2ut which
leads to

yt = yt−1 + ∆yt−1 + 6δ (t− 1) + ∆2ut

= 6δ + yt−1 + ∆yt−1 + 6δ (t− 2) + ∆2ut−1 + ∆2ut −∆2ut−1

= 6δ + yt−1 + ∆yt−1 + ∆2yt−1 + ∆3ut

where ∆3ut = ∆2ut −∆2ut−1. We now consider the regression

yt = α̌∗ + β̌
∗
yt−1 + ψ̌

∗
1∆yt−1 + ψ̌

∗
2∆2yt−1 + ě∗t . (25)

It can be proved that
α̌

β̌

ψ̌1

ψ̌2

 = D′


α̌∗

β̌
∗

ψ̌
∗
1

ψ̌
∗
2

 with D =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 −1


which leads to β̌ = β̌

∗
. It is also easy to prove that tβ̌ = tβ̌∗ . Note that the regression

(25) does not face the problem of perfect multi-collinearity, and includes the true DGP of

yt when
(
α̌∗ β̌

∗
ψ̌
∗
1 ψ̌

∗
2

)
=
(
6δ 1 1 1

)
. It can be proved that n4

(
β̌
∗ − 1

)
= Op (1)

and
√
ntβ̌∗ = Op (1). We omit the details for simplicity.

The same method can be extended to prove the results in the regression (8) with k > 2.

We will still have n4
(
β̌
∗ − 1

)
= Op (1) and

√
ntβ̌∗ = Op (1), but the form of the limiting

distributions may change as k varies.

D Proof of theorems in Section 5

Proof of Theorem 5.1: (a) We only give the proof for the regression (16) with k = 1.
It can be extended straightforwardly to the regression with k ≥ 1.
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When the true DGP is yt = yt−1 + εt with εt ∼ iid
(
0, σ2

)
, and the regression (16)

with k = 1 is done, the centered LS estimator is α̌− 0

β̌ − 1

ψ̌1 − 0

 =

 n∑
t=2

 1 yt−1 εt−1

yt−1 y2
t−1 yt−1εt−1

εt−1 yt−1εt−1 ε2
t−1

−1 ∑n
t=2 εt∑n

t=2 yt−1εt∑n
t=2 εt−1εt


Based on the results in Lemma (A.1) and the large sample theory for unit root process
developed in the literature (see, for example, Phillips (1987) and Phillips and Perron
(1989)), it can be proved thatn−1/2 0 0

0 n−1 0
0 0 n−1

 ∑n
t=2 εt∑n

t=2 yt−1εt∑n
t=2 εt−1εt

⇒
 σW (1)

σ2
∫ 1

0 W (r) dW (r)
0


and n1/2 0 0

0 n 0
0 0 1

 n∑
t=2

 1 yt−1 εt−1

yt−1 y2
t−1 yt−1εt−1

εt−1 yt−1εt−1 ε2
t−1

−1n1/2 0 0
0 n 0
0 0 n


⇒

 1 σ
∫ 1

0 W (r) dr σW (1)

σ
∫ 1

0 W (r) dr σ2
∫ 1

0 [W (r)]2 dr σ2
∫ 1

0 W (r) dW (r) + σ2

0 0 σ2

−1

≡ Π−1.

Hence, √n (α̌− 0)

n
(
β̌ − 1

)(
ψ̌1 − 0

)
⇒ Π−1

 σW (1)

σ2
∫ 1

0 W (r) dW (r)
0

 ,

which leads to(√
n (α̌− 0)

n
(
β̌ − 1

) )⇒ (
1 σ

∫ 1
0 W (r) dr

σ
∫ 1

0 W (r) dr σ2
∫ 1

0 [W (r)]2 dr

)−1(
σW (1)

σ2
∫ 1

0 W (r) dW (r)

)
and

n
(
β̌ − 1

)
⇒
∫ 1

0 W (r) dW (r)−W (1)
∫ 1

0 W (r) dr∫ 1
0 [W (r)]2 dr −

(∫ 1
0 W (r) dr

)2 .

Considering that the regression (16) with k = 1 covers the true DGP and all parameters
are consistently estimated, it can be shown that

1

n− 4

n∑
t=2

ě2
t =

1

n− 4

n∑
t=2

(
yt − α̌− β̌yt−1 − ψ̌1∆yt−1

)2
=

1

n− 4

n∑
t=2

ε2
t + op (1)

p−→ σ2.
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Consequently,

n2
[
se
(
β̌
)]2

=
[
0 n 0

]  n∑
t=2

 1 yt−1 εt−1

yt−1 y2
t−1 yt−1εt−1

εt−1 yt−1εt−1 ε2
t−1

−1 0
n
0

 ∑n
t=2 ě

2
t

n− 4

⇒
[∫ 1

0
[W (r)]2 dr −

(∫ 1

0
W (r) dr

)2
]−1

.

Together with the limit of n
(
β̌ − 1

)
, we have

tβ̌ =
n
(
β̌ − 1

)
n
[
se
(
β̌
)] ⇒ ∫ 1

0 W (r) dW (r)−W (1)
∫ 1

0 W (r) dr{∫ 1
0 [W (r)]2 dr −

(∫ 1
0 W (r) dr

)2
}1/2

.

The results in Part (b) are the standard results of augmented Dickey-Fuller tests as
given in Dickey and Fuller (1979). The results in Part (c) have already been obtained in
Theorem (2.3), Theorem (3.3) and Theorem (4.3).

(d) For simplicity, we only prove the limits of n
(
β̌ − 1

)
and tβ̌ =

(
β̌ − 1

)
/se

(
β̌
)
based

on the regression (16) with k = 1. The results for the regression with k > 1 can be
proved similarly. We also assume ut = εt ∼ iid

(
0, σ2

)
. With the use of the large sample

theory of mildly explosive process with serially dependent errors developed in Phillips and
Magdalinos (2005) and Magdalinos (2012), the same approach can be straightforwardly
applied to prove the results when ut is a weakly stationary process.

Given yt−1 = ρnyt−2 +ut−1 with ρn = 1+c/nθ, Phillips and Magdalinos (2007) showed
yn = Op

(
ρnnn

θ/2
)
. We then have

∆yt−1 = yt−1 − ρ−1
n (yt−1 − ut−1) =

ρn − 1

ρn
yt−1 + ρ−1

n ut−1 =
c

nθρn
yt−1 + ρ−1

n ut−1

where the first term dominates the second term when t is large. Hence, the regression
(16) with k = 1 faces the problem of perfect multi-collinearity. We turn to consider the
transformed regression as

yt = α̌∗ + β̌
∗
yt−1 + ψ̌

∗
1

(
ρ−1
n ut−1

)
+ ě∗t , (26)

whose centered LS estimators have the following relationship with the centered LS esti-
mators of the regression (16) with k = 1 : α̌− 0

β̌ − ρn
ψ̌1 − 0

 = D′

 α̌∗ − 0

β̌
∗ − ρn
ψ̌
∗
1 − 0

 with D =

1 0 0
0 1 0
0 − c

nθρn
1

 ,

which leads to
β̌ − ρn =

(
β̌
∗ − ρn

)
− c

nθρn

(
ψ̌
∗
1 − 0

)
.
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Note that α̌∗ − 0

β̌
∗ − ρn
ψ̌
∗
1 − 0

 =

 n∑
t=2

 1 yt−1 ρ−1
n ut−1

yt−1 y2
t−1 yt−1

(
ρ−1
n ut−1

)(
ρ−1
n ut−1

)
yt−1

(
ρ−1
n ut−1

) (
ρ−1
n ut−1

)2
−1 ∑n

t=2 ut∑n
t=2 yt−1ut∑n

t=2

(
ρ−1
n ut−1

)
ut

 .
With the assumption of ut = εt ∼ iid

(
0, σ2

)
, Phillips and Magdalinos (2007) proved that

n−2θρ−2n
n

n∑
t=2

y2
t−1 ⇒

η2

4c2
and n−θρ−nn

n∑
t=2

yt−1ut ⇒
ηξ

2c

where η and ξ are two independent and standard normally distributed random variables.
We then have

n−θρ−nn

n∑
t=2

yt−1

(
ρ−1
n ut−1

)
= n−θρ−nn

(
n∑
t=2

yt−2ut−1 + ρ−1
n

n∑
t=2

ut−2ut−1

)

= n−θρ−nn

(
n∑
t=2

yt−1ut + y0u1 − yn−1un + ρ−1
n

n∑
t=2

ut−2ut−1

)

= n−θρ−nn

n∑
t=2

yt−1ut + op (1)⇒ ηξ

2c

Together with the result in Wang and Yu (2016) that

n−3θ/2ρ−nn

n∑
t=2

yt−1 ⇒
η

c
√

2c
,

we now haven−1/2 0 0
0 n−θρ−nn 0
0 0 n−1

 ∑n
t=2 ut∑n

t=2 yt−1ut∑n
t=2

(
ρ−1
n ut−1

)
ut

⇒
σW (1)
ηξ/ (2c)

0

 ,

and n1/2 0 0
0 nθρnn 0
0 0 1

 n∑
t=2

 1 yt−1 ρ−1
n ut−1

yt−1 y2
t−1 yt−1

(
ρ−1
n ut−1

)(
ρ−1
n ut−1

)
yt−1

(
ρ−1
n ut−1

) (
ρ−1
n ut−1

)2
−1n1/2 0 0

0 nθρnn 0
0 0 n


⇒

1 0 σW (1)
0 η2/

(
4c2
)

ηξ/ (2c)
0 0 σ2

−1

As a result,n1/2 0 0
0 nθρnn 0
0 0 1

 α̌∗ − 0

β̌
∗ − ρn
ψ̌
∗
1 − 0

⇒
1 0 σW (1)

0 η2/
(
4c2
)

ηξ/ (2c)
0 0 σ2

−1σW (1)
ηξ/ (2c)

0


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which leads to

nθρnn

(
β̌
∗ − ρn

)
⇒ 2c

ξ

η
and ψ̌

∗
1

p−→ 0.

Consequently, we have

n
(
β̌ − 1

)
= n

(
β̌ − ρn

)
+ n (ρn − 1)

= n
(
β̌
∗ − ρn

)
− nc

nθρn

(
ψ̌
∗
1 − 0

)
+ n (ρn − 1)

= n
(
β̌
∗ − ρn

)
− nc

nθρn

(
ψ̌
∗
1 − 0

)
+ n

c

nθ

= n
(
β̌
∗ − ρn

)
+
nc

nθ

(
1− ρ−1

n ψ̌
∗
1

)
−→ +∞

where the last limit comes from the fact that

n
(
β̌
∗ − ρn

)
= Op

(
n

nθρnn

)
= op (1) and

(
1− ρ−1

n ψ̌
∗
1

)
p−→ 1.

To prove the limit of tβ̌ =
(
β̌ − 1

)
/se

(
β̌
)
, we first study the limit of se

(
β̌
)
. It is easy

to prove that

1

n

n∑
t=2

(ět)
2 =

1

n

n∑
t=2

[
yt − α̌− β̌yt−1 − ψ̌1∆yt−1

]2
=

1

n

n∑
t=2

[
yt − α̌∗ − β̌

∗
yt−1 − ψ̌

∗
1

(
ρ−1
n ut−1

)]2
=

1

n

n∑
t=2

(ě∗t )
2

Given that the true DGP of yt is covered by the transformed regression (26) and the LS
estimates of the parameters are consistent, it can be shown that

1

n

n∑
t=2

(ě∗t )
2 =

1

n

n∑
t=2

(ut)
2 + op (1)

p−→ σ2.

Note that

n2θ
[
0 1 0

]  n∑
t=2

 1 yt−1 ∆yt−1

yt−1 y2
t−1 yt−1∆yt−1

∆yt−1 yt−1∆yt−1 (∆yt−1)2

−1 0
1
0


= n2θ

[
0 1 0

]
D′

 n∑
t=2

D

 1 yt−1 ∆yt−1

yt−1 y2
t−1 yt−1∆yt−1

∆yt−1 yt−1∆yt−1 (∆yt−1)2

D′

−1

D

0
1
0


= n2θ

[
0 1 − c

nθρn

] n∑
t=2

 1 yt−1 ρ−1
n ut−1

yt−1 y2
t−1 yt−1

(
ρ−1
n ut−1

)(
ρ−1
n ut−1

)
yt−1

(
ρ−1
n ut−1

) (
ρ−1
n ut−1

)2
−1  0

1
− c
nθρn


= n2θ

[
0 1 − c

nθρn

]n−1/2 0 0
0 n−θρ−nn 0
0 0 1



1 0 σW (1)

0 η2/
(
4c2
)

ηξ/ (2c)
0 0 σ2

−1

+ op (1)


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×

n−1/2 0 0
0 n−θρ−nn 0
0 0 n−1

 0
1

− c
nθρn


= n2θ

[
0 n−θρ−nn − c

nθρn

]
1 0 σW (1)

0 η2/
(
4c2
)

ηξ/ (2c)
0 0 σ2

−1

+ op (1)


 0
n−θρ−nn
− c
n1+θρn



=
[
0 ρ−nn − c

ρn

]
1 0 σW (1)

0 η2/
(
4c2
)

ηξ/ (2c)
0 0 σ2

−1

+ op (1)


 0
ρ−nn
− c
nρn


p−→

[
0 0 −c

]1 0 σW (1)
0 η2/

(
4c2
)

ηξ/ (2c)
0 0 σ2

−1 0
0
0

 = 0

Hence, we have

n2θ
[
se
(
β̌
)]2

= n2θ
[
0 1 0

]  n∑
t=2

 1 yt−1 ∆yt−1

yt−1 y2
t−1 yt−1∆yt−1

∆yt−1 yt−1∆yt−1 (∆yt−1)2

−1 0
1
0

 ∑n
t=2 (ě)2

n− 4

p−→ 0.

Therefore, as n→∞,

tβ̌ =
β̌ − 1

se
(
β̌
) =

nθ
(
β̌ − 1

)
nθse

(
β̌
) =

nθ
(
β̌ − ρn

)
+ nθ (ρn − 1)

nθse
(
β̌
)

=
op (1) + c

op (1)

p−→ +∞.
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