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Abstract

Expansion and collapse are two key features of a financial asset bubble. Bubble expan-
sion may be modeled using a mildly explosive process. Bubble implosion may take several
different forms depending on the nature of the collapse and therefore requires some flexibility
in modeling. This paper develops analytics and studies the performance characteristics of
the real time bubble monitoring strategy proposed in Phillips, Shi and Yu (2014b,c, PSY)
under alternative forms of bubble implosion that can be represented in terms of mildly in-
tegrated processes which capture various return paths to market normalcy. We propose a
new reverse sample use of the PSY procedure for detecting crises and estimating the date
of market recovery. Consistency of the dating estimators is established and the limit theory
addresses new complications arising from the alternative forms of bubble implosion and the
endogeneity effects present in the reverse regression. Simulations explore the finite sample
performance of the strategy for dating maket recovery and an illustration to the Nasdaq stock
market is provided. A real-time version of the strategy is provided that is suited for practical
implementation.

Keywords: Bubble implosion, Dating algorithm, Limit theory, Market recovery, Nasdaq.

JEL classification: C15, C22

1 Introduction

Following the GFC there has been wide recognition of the harm that financial bubbles can inflict
on real economies. The slow recovery from the great recession in the USA and the continuing debt
crisis in Europe has alerted central bankers and regulators to the need for greater understanding
of the mechanisms by which financial bubbles form, the dynamics of their evolution and collapse,

∗Phillips acknowledges research support from the NSF under Grant No. SES 12-58258. Peter C.B. Phillips
email: peter.phillips@yale.edu. Shuping Shi, email: shuping.shi@mq.edu.au.
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and the process of contagion through which other markets and the real economy are affected.
Few national economies have been unaffected by the fallout from the GFC. The hazards have
therefore become a matter of considerable concern to central banks and policy makers.1,2

While the potentially damaging impact of financial bubbles on the real economy is widely
acknowledged, policy makers face major diffi culties in designing corrective measures and timing
their implementation. Recent econometric work has assisted the design and timing of policy
measures by providing empirical techniques that detect mildly explosive bubble-like behaviour
in asset prices. While some economists think it is impossible to see bubbles in their inflationary
phase (Cooper, 2008), recent developments in the econometric bubble literature deliver real-time
monitoring strategies, such as recursive right-sided unit root testing procedures (Phillips, Wu and
Yu, 2011, PWY; Phillips, Shi and Yu, 2013a; PSY), CUSUM monitoring techniques (Homm and
Breitung, 2012; HB), and double-recursive algorithms (Phillips, Shi and Yu, 2013b,c) that enable
bubble detection and consistent estimation of bubble origination and collapse dates.

The present paper focuses on the real-time monitoring procedure of PSY, which is an extended
version of the PWY recursive testing approach. The PSY algorithm has been applied to a wide
range of markets, including foreign exchange, real estate, commodities and financial assets, and
has attracted attention from policy makers and the financial press.3 The algorithm has been
shown (PSY, 2013a,b; HM, 2012) to have superior real time monitoring and detection performance
than other methods but nonetheless suffers from delay bias in detection.

The present paper strengthens the foundation of the PSY approach to bubble monitoring
by exploring its asymptotics and behavioral characteristics under alternative collapse scenarios
which enable more flexible modeling of bubble implosion. The paper also proposes an alternative
implementation strategy for detecting financial crises and estimating the dates of crisis collapse
origination and market recovery. The new algorithm assists in reducing the delay bias in change
point detection.

The PSY double recursion strategy is particularly designed for detection purposes when there
are periodically collapsing bubbles (Blanchard, 1979) in the data. Its asymptotic and finite
sample performance has been studied under several different bubble generating processes and
performance measures. In particular, PSY (2014c) demonstrate consistency of the strategy in
estimating the bubble origination and termination dates when either single or multiple bubbles
appear in the sample. The data generating processes considered in those exercises are based on
the model proposed in PWY where asset prices follow a random walk in normal market conditions,
switch to a mildly explosive process under bubble expansion, and return to martingale dynamics
when the bubble implodes. In that model bubbles collapse abruptly within one sample period, an
assumption made largely for analytic convenience but lacking empirical realism. Casual inspection
of the trajectories of financial asset bubbles typically reveal a more complex process of market

1Federal Reserve policymakers should deepen their understanding about how to combat speculative bubbles to
reduce the chances of another financial crisis. —Donald Kohn, Former Vice Chairman of the Federal Reserve
Board, March 2010.

2How do we know when irrational exuberance has unduly escalated asset values? —Alan Greenspan, Formal
Chairman of Federal Reserve, December 1996 .

3See, for example, Bohl et al. (2013), Etienne et al. (2013), Chen and Funke (2013), Meyer (2013), Gutierrez
(2013), and Yiu et al (2012).
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Figure 1: The monthly price-dividend ratio of the NASDAQ composite index for the sample
period from January 1991 to December 2005, showing the bubble period detected by the PWY
algorithm.

correction and reversion. For instance, Figure 1 shows monthly Nasdaq price-dividend ratio from
January 1991 to December 2005 with origination and termination dates as determined in PWY.
The observed trajectory shows that the collapse process of the Nasdaq in the early 2000s is a
complex one that is neither immediate nor monotonic. Implosion of the famous dot-com bubble4

does not conclude within a single time period but involves many months of realignment.
Historical episodes of collapse have been classified in the literature into ‘sudden’, ‘disturbing’,

or ‘smooth’crisis events (Rosser, 2000; Huang et al., 2010). ‘Sudden crises’characterize precipi-
tate declines and correspond to the PWY model of abrupt declines in prices. In ‘smooth crises’
(a somewhat oxymoronic description used in the literature), prices fall smoothly with a moderate
but persistent decline. ‘Disturbing crises’are considered to be intermediate in form between these
two extremes.

One aim of the present paper is to examine the limit behavior and finite sample performance
of the PSY strategy under a more realistic bubble generating process that allows for various forms
of implosion that fall into the above categories. The process considered here, given in (1) below, is
an extension of the model proposed in PWY (2011) and used recently in Harvey, Leybourne, and
Sollis (2012; HLS). The model involves normal market and bubble exuberance dynamics similar
to the PWY model, whereas bubble implosion is modeled by a (stationary) mildly integrated
process that is intended to capture elements of the mean reversion process that occur as prices
collapse to normal market levels concordant with past and present fundamentals. This extension
of the bubble collapse mechanism to allow for transitional dynamics was envisaged in the original
formulation of the PWY model5 but was not pursued in that work. Figure 2 displays a typical
realization of the PWY process and several realizations of the new process (1) with different
collapse speeds and durations. As is evident in these graphs, the new bubble model is flexible
and can produce richer dynamic trajectories in the collapse period.

4The presence of speculative bubble behavior in the dot-com market around this sample period has been docu-
mented in PWY.

5See the discussion following equation (14) of PWY.
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Figure 2: Typical bubble collapse patterns generated by a mildly integrated process, giving
sudden, disturbing, and smooth correction trajectories. Model parameters in (2) are set as T =
100, η = 1, α = 0.7, dBT = 0.2, β = 0.1, dCT = b0.01T e for sudden collapse, β = 0.5, dCT =
b0.10T e for disturbing crash, and β = 0.9, dCT = b0.20T e for smooth collapse.

An important feature of the new model is the embodiment of a recovery date break point in
the process. Market recovery is defined as the date asset prices return to their normal martingale
path, effectively the switch point from the mildly integrated collapse process to the martingale
path. A second aim of the paper is to address the econometric issues associated with consistent
estimation of the recovery date. For the simplified PWY bubble process, market recovery coincides
with bubble implosion because immediate market correction ensures that the asset price returns
abruptly to its martingale path up to a term of Op (1) . In the new model, the date of bubble
implosion (the switch point from exuberant behavior to market correction behavior) differs from
the bubble implosion date. By construction, the market recovery date of the new process is the
conclusion point of the mildly integrated collapsing process (see Figure 3). This feature of the
model leads to new practical issues such as the existence and nature of the collapsing regime and
the econometric estimation of the crisis recovery date.

Figure 3: Turning points of different bubble generating processes showing abrupt correction
(PWY) and mildly integrated correction with a separate market recovery date.

Econometric detection of the crisis regime is possible because the collapse process, modeled
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here by a mildly integrated process, is embedded in a long sample period that includes multiple
regimes of martingale and explosive behavior. Doubly-recursive tests like those in PSY are well
suited to deal with such break analysis. In an important related literature on testing for station-
arity Leybourne, Taylor (2007) suggested doubly-recursive tests for unit roots against stationary
alternatives. In their work on bubble break point testing HLS (2013) perform sequential proce-
dures based on PWY tests, HB (2012) Chow tests, and a union of rejections strategy (combining
PWY and HB tests) to identify bubble behavior. That procedure starts by estimating the regime
switching points and is followed by the use of unit root tests (against different alternatives) within
each regime. A challenging aspect with this approach is feasibility. Often bubble expansions and
contractions are short-lived, producing insuffi cient observations for unit root tests to have good
performance. In addition, the HLS model uses a simple collapse process like that of PWY - either
an abrupt collapse (like PWY) or an immediate transition to normal market behavior (a unit
root process initialized at the last period of the explosive regime). Further, their procedure is
designed for cases where the number of bubbles in the sample period is known to the practitioner.
In work that is much closer in spirit to that of the present paper and the extension suggested in
PWY, HLS (2012) use a 4-regime model that incorporates an intermediate stationary regime to
model a collapsing bubble. Their approach involves ex post dating of the regime change points
rather than recursive procedures, so it is not intended for real time bubble identification or date
stamping.

The present paper proposes a new method for detecting crises and estimating their associated
multiple turning points. Specifically, we recommend applying the recursive (or doubly-recursive)
PSY test to a data series which is arranged in reverse order of the original data series. This new
strategy is suitable for cases with either a single crash or multiple (known or unknown number
of) crashes. In contrast to PSY and PWY (2011) but similar to HLS (2012), the procedure is
primarily designed for ex post analysis rather than real-time monitoring. We demonstrate that
this procedure consistently estimates the origination, termination, and recovery dates of crises.
It has good finite sample performance in simulations and helps to reduce bias in some of the date
estimates. A real-time version of the strategy is provided that is suited for practical implemen-
tation and ongoing policy analysis. In view of the technical complications arising from multiple
collapse processes, from the presence of a unknown recovery date, and from the endogeneity intro-
duced by reverse regression, the limit theory of the date stamping procedures involves substantial
extension of earlier work in PWY (2011) and PSY (2014c).

We illustrate the use of the new strategy in both bubble monitoring and crisis detection
settings with an application to the Nasdaq stock market over 1973:M1-2013:M8. The tests suggest
that the dot-com bubble originated in August 1995. Implosion occured in Februrary 2000 and the
market recovered from November 2000, with a further correction in 2004M01-M05. In this long
historical series, the testing procedures also identify several other bubble/crisis incidents: the
1973 and 1976 stock market crashes, the 1983 bubble episode, and the subsequent 1980s bubble
leading up to the famous ‘black Monday’crash of 1987.

The rest of the paper is organized as follows. Section 2 introduces the PSY procedure for
bubble monitoring and crisis detection. Section 3 derives the limit theory for the PSY strategy in
both settings under the new bubble generating process that allows for flexibility in the collapse
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mechanism. Finite sample performance is studied in Section 4. An empirical application to
long historical Nasdaq series is conducted in Section 5. Section 6 concludes. Two appendices
contain supporting lemmas and derivations for the limit theory presented in the paper. Complete
details of the derivations and supporting lemmas are given in a technical supplement to the paper
(Phillips and Shi, 2014).

2 Econometric Methods

The following development uses models in which a single bubble occurs. Extension of the methods
to cases where there are multiple bubbles may be established using PSY (2014b, 2014c) and for
brevity these are not provided here.

We denote the bubble origination and collapse dates by Te and Tc, so that B = [Te, Tc] is the
bubble period and N0 = [1, Te) and N1 = (Tc, T ] represent normal periods before and after the
bubble episode. In this change point framework, the PWY bubble model has the form

Xt =


Xt−1 + εt, t ∈ N0
δTXt−1 + εt, t ∈ B
X∗Tc +

∑t
i=Tc+1

εi, t ∈ N1
, εt ∼ iid

(
0, σ2

)
(1)

where t = 1, 2, . . . , T , δT = 1 + c1T
−α with c1 > 0 and α ∈ [0, 1) , X∗Tc = XTe + X∗ with

X∗ = Op (1), and X0 = op (1). Asset prices are assumed to be a pure random walk during normal
periods. During market exuberance, asset prices follow a mildly explosive process. An abrupt
collapse occurs at Tc, which brings the asset price back to the level when the bubble originated
(i.e. XTe) plus a random perturbation X∗. The asset price then continues its martingale path
towards the end of the sample period.

The new generating process considered here differs from the PWY model in three respects.
First, it includes an asymptotically negligible drift in the martingale path during normal periods.
Second, the collapse process is modeled directly as a transient mildly integrated process (Phillips
and Magdalinos, 2007) that covers an explicit period of market collapse. Third, a market recovery
date is introduced to capture the return to normal market behavior. The model has the following
specification

Xt =


dT−η +Xt−1 + εt, t ∈ N0 ∪N1
δTXt−1 + εt, t ∈ B
γTXt−1 + εt, t ∈ C

, (2)

where B = [Te, Tc] is the bubble episode as before, C = (Tc, Tr] is the collapse period, Tr is the date
of market recovery, and N0∪N1 = [1, Te)∪ (Tr, T ] are the normal market periods. Following PSY
(2014a), the asset price process during N0∪N1 involves an asymptotically negligible deterministic
trend (d t

T η with constant d and some η > 1/2) which adds a small drift to the normal martingale
path. Both autoregressive coeffi cients δT = 1 + c1T

−α (with c1 > 0 and α ∈ [0, 1)) and γT =
1− c2T−β (with c2 > 0 and β ∈ [0, 1)) involve mild deviations from unity in the sense of Phillips
and Magdalinos (2007), one (δT ) in the explosive direction and the other (γT ) in the stationary
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direction. For given c2 > 0, the speed of collapse is controlled by the parameter β. The smaller
is β, the faster is the implosion rate during the collapse period C. 6

The specification γT = 1− c2T−β for the autoregressive coeffi cient during the collapse period
allows for flexibility in possible collapse trajectories while retaining a vicinity of unity or near
martingale flavor. In particular, the data generating process (2) is capable of generating abrupt
collapses like the PWY process (1) if the value of β is small and the collapse duration (i.e. Tr−Tc)
is short. But the model can also generate smooth, slow or turbulent trajectories of correction for
which the market collapse duration lasts longer, corresponding to quite different collapse processes
in practice. Figure 2 shows a realization of the PWY process against some typical realizations of
the mechanism (2) for various values of the parameters that indicate some of these possibilities.

2.1 The PSY strategy for bubble origination and collapse dates

The null hypothesis of the PSY (2014a) test is a unit root process with an asymptotically negligible
drift, namely

Xt = kT−γ +Xt−1 + εt, with constant k and γ > 1/2. (3)

The PSY strategy conducts a backward sup Dickey Fuller (BSDF) test for each observation of
interest, which we briefly explain here for completeness. Let f1 and f2 be the (fractional) starting
and ending points of the DF regression. The regression model includes an intercept but no time
trend7 such that

∆Xt = α+ βXt−1 + εt, εt
i.i.d∼

(
0, σ2

)
, (4)

where t = bf1T c , . . . , bf2T c. The corresponding DF statistic sequence is DF f2f1 .
Suppose interest focuses on the properties of the generating process at observation t := bfT c

where f is the sample fraction corresponding to t.We are particularly interested in whether there
is a unit or explosive root in the process at this observation, therefore focusing attention on the
upper tail (right side) of the distribution. The backward sup DF test (denoted BSDF ) therefore
calculates the sup of the DF statistics computed recursively over a sample sequence whose end
point (expressed in fractional form) f2 is fixed at f and whose start point f1 runs from backwards
from f − f0 to 0, where f0 is the smallest window size in these regressions. Specifically, we define

BSDFf (f0) = sup
f1∈[0,f−f0],f2=f

{
DF f2f1

}
, with f ∈ [f0, 1] ,

giving the statistic at t (or sample fraction f) using a minimum window of size f0.
To identify a mildly explosive bubble episode, the BSDF statistic is compared to its corre-

sponding right-tail critical value. Let scv (βT ) be the (1− βT ) 100% critical value of the BSDFf
statistic and assume that scv (βT )→∞ as βT → 0. The origination (termination) date of bubble
expansion is then calculated as the first chronological observation whose BSDF statistic exceeds

6The process of Harvey, Leybourne and Sollis (2013) is similar but without the drift term in the random walk
process. In addition, the AR coeffi cients in their model deviate discretely from unity so that in their model
δT = 1 + d1 and γT = 1− d2, where d1 > 0 and d2 > 0 are constant parameters.

7See Phillips, Shi and Yu (2014a) for a detailed discussion of regression model specification for right-tailed unit
root tests.
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(falls below) its corresponding critical value. The (fractional) dates of bubble emergence (origi-
nation) and collapse are denoted by fe and fc with corresponding estimates f̂e and f̂c which are
defined in terms of first crossing times. Specifically,

f̂e = inf
f∈[f0,1]

{f : BSDFf (f0) > scv (βT )} , (5)

f̂c = inf
f∈[f̂e+LT ,1]

{f : BSDFf (f0) < scv (βT )} . (6)

It is often useful to define a bubble as having a required minimum duration to eliminate potentially
misleading information from short term blips in the data. PSY (2013a) used a minimum duration
based on a slowly varying function such as log T to distinguish bubbles. In sample fraction form
we can set LT = δ log (T ) /T where δ is a sample-frequency dependent parameter (so that δ is
greater for monthly data than quarterly or annual data). The sample fraction LT is used in
defining the collapse date f̂c in (2) as the first crossing time following the minimum duration
period of the bubble, f̂e + LT , when the test sequence recursion BSDFf (f0) falls below the
critical value scv (βT ) .

2.2 Reverse recursion tests for crisis origination and termination

For identifying crisis episodes, we suggest applying the BSDF test to data X∗t arranged in reverse
order to the original series Xt, so that X∗t = XT+1−t, for t = 1, 2, . . . , T. If asset prices follow
model (2), the reversed series X∗t satisfies the following dynamics

X∗t =


−dT−η +X∗t−1 + vt, t ∈ N0 ∪N1
δ−1T X∗t−1 + δ−1T vt, t ∈ B
γ−1T X∗t−1 + γ−1T vt, t ∈ C

. (7)

with vt = −εT−(t−2). In (7) the original mildly integrated collapse process transforms to a mildly
explosive process and vice versa. Hence, detecting crisis episodes in Xt is equivalent to testing
for mildly explosive behavior in X∗t .

The BSDF statistic for crisis episode detection is defined as

BSDF ∗g (g0) with g ∈ [g0, 1] and g = 1− f,

where BSDF ∗g (g0) is the BSDF statistic for observation (fraction) g of X∗t where the recursion
(in reverse direction) initiates with a minimum window size g0. The market recovery date (fr)
and crisis origination date (fc), both expressed in fractions of the original series sequence are then
calculated as follows:

f̂r = 1− ĝe, where ĝe = inf
g∈[g0,1]

{
g : BSDF ∗g (g0) > scv∗ (βT )

}
(8)

f̂c = 1− ĝc, where ĝc = inf
g∈[ĝe,1]

{
g : BSDF ∗g (g0) < scv∗ (βT )

}
, (9)
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where scv∗ (βT ) is the (1− βT ) 100% critical value of the BSDF ∗g (g0) statistic, with scv∗ (βT )→
∞ as βT → 0. According to these crossing times, market recovery (f̂r) following a crash begins
when normal market behavior changes to exuberance in the reverse series (ĝe). Similarly, market
collapse in the original series begins when exuberance in the reverse series shifts to collapse at (ĝc).
In many applications restrictions on crisis duration via the presence of a slowly varying function
LT in these crossing time expressions will not be needed, especially when there is interest in the
detection of abrupt crisis movements in the data.

Notice that the information set for calculating the BSDF ∗g (g0) statistic in the original series
is IRf = {Tf , Tf + 1, . . . , T} with T − Tf ≥ bTg0c, the minimum window size used in the reverse
recursion. In the reverse time series X∗t this data corresponds to I

R
g = {1, 2, . . . , Tg = bTgc}

where g = 1 − f. Clearly, at any point in the sample t < T the information set {t, t+ 1, . . . , T}
contains future observations up to the sample end point T . Accordingly, we can regard this crisis
detection strategy as an ex post identification tool. Nevertheless, there is a real time detector
version of this algorithm that may be implemented in practical work as we now explain.

Specifically, the algorithm may be implemented on subsets of the data from any end point
K < T. For example, suppose in the original series a bubble has been detected in the expansionary
phase in real time so that K > bfT c. Then a question of major importance to all market
participants and regulators is the timing of a market correction. To test for correction the above
procedure may be implemented in reverse order from any sample point t to assess evidence of
a correction. In particular, suppose the current observation is t = bκT c = K for some κ > 0.
Reversing the series and writing X∗s = XK+1−s for s = 1, ..., bgKc with g ∈ [0, 1], the recursive
statistics BSDF ∗g (g0) may be calculated from {X∗s }

bgKc
s=1 starting from some minimal window

size g0. In real time applications, g0 will need to be small (in sample observation terms perhaps
bg0T c ≥ 6) so that evidence for possible market correction is collected as early as possible. The
main advantage of this approach (rather than testing for correction in the original series) is that
right-sided unit root tests are typically much more sensitive to departures from the null than
left-sided tests. In other words, the hypothesis of market correction is the existence of a mildly
explosive process in the reverse series.

3 Asymptotics

From PSY (2014c), the asymptotic distribution of the BSDFf (f0) statistic under the null hy-
pothesis (3) has the form

Ff (W, f0) := sup
f1∈[0,f−f0]


fw

[∫ f
f1
W (s) ds− 1

2fw

]
−
∫ f
f1
W (s) ds.

∫ f
f1
dW

f
1/2
w

{
fw
∫ f
f1
W (s)2 ds−

[∫ f
f1
W (s) ds

]2}1/2
 ,

where W is a standard Wiener process. The reverse regression asymptotics are given in the
following form.
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Theorem 1 When the regression model includes an intercept and the null hypothesis is (3), the
limit distribution of the BSDF ∗g (g0) statistic is:

Fg (W, g0) := sup
g1∈[0,g−g0]


gw

[∫ 1−g1
1−g W (s) dW + 1

2gw

]
+
∫ 1−g1
1−g W (s) ds.

∫ 1−g1
1−g dW

g
1/2
w

{
gw
∫ 1−g1
1−g W (s)2 ds−

[∫ 1−g1
1−g W (s) ds

]2}1/2
 .

See Appendix A and the Supplement for the proof. Notice that the BSDF ∗g (g0) statistic
has a noncentral asymptotic distribution. The noncentrality arises from the endogeneity induced
by the non-martingale implications of reverse regression, viz., the error component

∑T
j=2X

∗
j−1vj

which, by virtue of the construction of the series X∗t and vt, equals −
∑T

j=2XT−j+2εT−j+2 for
which E (XT−j+2εT−j+2) 6= 0.

3.1 The BSDFf (f0) statistic

The asymptotic properties of the BSDF statistic under the PWY bubble model are given in PSY
(2014c). Here we derive the limit theory for the BSDF statistic under the more realistic bubble
process (2) allowing for various forms of financial contraction captured by the parameterization
within the collapse process. The derivations involve a non-trivial extension of the limit theory
of PSY (2014c) to account for the additional regime, the drift in the normal martingale process,
and the new bubble collapse process.

Theorem 2 (BSDF detector) Under the alternative hypothesis of mildly explosive behavior in
model (2), the limit forms of the BSDFf (f0) statistic are as follows:

BSDFf (f0) ∼



Ff (W, f0) if f ∈ N0
Op
(
T 1−α/2

)
→ +∞ if f ∈ B

Op
(
Tω(α,β)

)
=


Op
(
Tα/2

)
→ −∞ if α > β and 1 + β < 2α

Op
(
T (1−α+β)/2

)
→ −∞ if α > β and 1 + β > 2α

Op
(
T (1−β+α)/2

)
→ −∞ if α < β and 1 + α > 2β

Op
(
T β/2

)
→ +∞ if α < β and 1 + α < 2β

if f ∈ C

Theorem 2 shows that the BSDF statistic diverges to infinity at rate Op
(
T 1−α/2

)
when

f ∈ B and is Op
(
Tω(α,β)

)
when f ∈ C where the order ω (α, β) depends on the values of

the rate parameters (α, β) . These results differ from those under the PWY model analyzed in
PSY (2014c) where the BSDF statistic diverges to infinity at rate Op

(
T 1−α/2

)
when f ∈ B, as

above, but diverges to negative infinity at rate Op
(
T (1−α)/2

)
when f ∈ C in contrast to the rate

Op
(
Tω(α,β)

)
above, which depends on the relative strengths (α, β) of the bubble and collapse

processes. In particular, when the collapse regime follows a mildly integrated process (rather
than an abrupt collapse), for f ∈ C the limit form of the BSDF statistic may diverge to positive
or negative infinity depending on the relative speeds of the bubble expansion and collapse, which
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are controlled by the rate parameters α and β. These parameters then play a major role in the
conditions for consistent estimation of the bubble origination and termination dates, as shown in
the following result.

Theorem 3 (BSDF detector) Suppose f̂e and f̂c are the date estimates obtained from the
backward sup DF statistic crossing times (5). Under the alternative hypothesis of mildly explosive
behavior in model (2), if the following conditions hold

Tα/2

scvβT
+ scvβT

T 1−α/2
→ 0 if α > β and 1 + β < 2α

T (1−α+β)/2

scvβT
+ scvβT

T 1−α/2
→ 0 if α > β and 1 + β > 2α

T (1−β+α)/2

scvβT
+ scvβT

T 1−α/2
→ 0 if α < β and 1 + α > 2β

Tβ/2

scvβT
+ scvβT

T 1−α/2
→ 0 if α < β and 1 + α < 2β

.

we have f̂e
p→ fe and f̂c

p→ fc as T →∞.

Theorem (3) shows that consistent estimation of the dates of bubble origination and collapse
requires certain conditions on the expansion rate of the test critical value scv (βT ) . In particu-
lar, depending on the values of the rate parameters (α, β) , the critical value scv (βT ) needs to
lie respectively in the intervals

(
Tα/2, T 1−α/2

)
,
(
T (1−α+β)/2, T 1−α/2

)
,
(
T (1−β+α)/2, T 1−α/2

)
, and(

T β/2, T 1−α/2
)
according as {α > β and 1 + β < 2α}, {α > β and 1 + β > 2α}, {α < β and

1 +α > 2β,} and {α < β and 1 +α < 2β}. These conditions are more restrictive than the simple
condition that applies in the PWY bubble model, where the expansion rate of scv (βT ) is only
required to be lower than T 1−α/2. Importantly, theorem (3) reveals that the conditions become
increasingly restrictive as the rate of bubble collapse becomes slower with larger values of the
collapse rate parameter β. In this case, as might be expected, when the collapse is slow rather
than rapid, large values of β make it harder for the algorithm to distinguish the explosive bubble
regime from the collapse regime.

3.2 The BSDF ∗g (g0) statistic

We first derive the limit properties of the BSDF ∗g (g0) under the data generating process (7).
Note that the volatility of X∗t differs in regimes B and C, as is clear from the reverse model
specification (7), and there is a switch in the interpretation of the regimes since the autoregressive
coeffi cients for the explosive and stationary regimes are now γ−1T ∼ 1+c2T

−β and δ−1T ∼ 1−c1T−α,
respectively. The mildly explosive rate is now governed by the parameter β and the collapse rate
is controlled by α.

Theorem 4 (The BSDF ∗g (g0) statistic) Under the alternative hypothesis of mildly explosive
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behavior in model (7), the limit behavior of the BSDF ∗g (g0) statistic is as follows:

BSDF ∗g (g0) ∼a



Fg (W, g0) if g ∈ N1{
Op
(
T 1/2

)
→ +∞ if α > β

Op
(
T 1−β/2

)
→ +∞ if α < β

if g ∈ C

Op
(
Tω
∗(α,β)

)
=


Op
(
Tα/2

)
→ +∞ if α > β and 1 + β < 2α

Op
(
T (1−α+β)/2

)
→ −∞ if α > β and 1 + β > 2α

Op
(
T (1−β+α)/2

)
→ −∞ if α < β and 1 + α > 2β

Op
(
T β/2

)
→ −∞ if α < β and 1 + α < 2β

if g ∈ B

;

Like the BSDF statistic, the BSDF ∗g (g0) statistic diverges to positive infinity when X∗ is in
the explosive regime (i.e. when g ∈ C ). The rate of divergence is faster when α < β (i.e. T 1−β/2)
than it is when α > β (i.e. T 1/2). In this case, the divergence rate Op

(
T 1−β/2

)
of the statistic

also increases as β decreases. Intuitively, as β and α decrease both the collapse rate and bubble
expansion rate increase, making detection of the collapse easier. In regime B, the limiting form
of the BSDF ∗ statistic has magnitude Op

(
Tω
∗(α,β)

)
, which is the same as that for the BSDF

statistic in regime C, so in this case the reverse and forward regressions are balanced.

Theorem 5 (The BSDF ∗g detector) Suppose f̂c and f̂r are the date estimates obtained from
the BSDF ∗g (g0) statistic crossing times rules (9). Under the alternative hypothesis of mildly
explosive behavior in model (2), if

Tα/2

scv∗(βT )
+ scv∗(βT )

T 1/2
→ 0 if α > β and 1 + β < 2α

T (1−α+β)/2

scv∗(βT )
+ scv∗(βT )

T 1/2
→ 0 if α > β and 1 + β > 2α

T (1−β+α)/2

scv∗(βT )
+ scv∗(βT )

T 1−β/2
→ 0 if α < β and 1 + α > 2β

Tβ/2

scv∗(βT )
+ scv∗(βT )

T 1−β/2
→ 0 if α < β and 1 + α < 2β

.

we have f̂r
p→ fr and f̂c

p→ fc as T →∞.

To obtain consistent estimators of the crisis origination and termination dates, the expansion
rate of scv∗ (βT ) is required to fall respectively in the intervals

(
Tα/2, T 1/2

)
,
(
T (1−α+β)/2, T 1/2

)
,(

T (1−β+α)/2, T 1−β/2
)
, and

(
T β/2, T 1−β/2

)
for the cases {α > β and 1 + β < 2α} , {α > β and 1 + β > 2α} ,

{α < β and 1 + α > 2β}, and {α < β and 1 + α < 2β}. Despite their apparent complexity, these
conditions generally accord with intuition because they tend to be less restrictive in the following
cases: (i) as the value of α decreases (that is, as the collapse rate for X∗t becomes faster, or
the mildly explosive rate for Xt increases); and (ii) as the value of β decreases (that is, as the
explosive rate for X∗t increases, or the collapse rate of Xt increases).

4 Simulation Evidence

Extensive simulation studies were conducted in PSY (2014a,b) showing that the PSY dating
strategy performs well under the PWY data generating process compared with other strategies.
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These simulations are extended here to explore finite sample performance under the new bubble
generating process (2) that allows for multiple forms of collapse regime. We consider bubble
detection performance as well as bubble origination and collapse date determination. These
findings complement those of PSY for abrupt collapse conditions. We also investigate performance
characteristics of the BSDF ∗ test for crisis detection under the new bubble generating process.

The base parameter settings used here are the same as those in PSY (2014b), namely y0 = 100,
σ = 6.79, and c = c1 = c2 = 1, where y0 and σ are selected to match the initial value and sample
standard deviation of the normalized S&P 500 price-dividend ratio examined in PSY. Bubbles
were identified using respective finite sample 95% quantiles obtained from simulations with 2,000
replications. The minimum window size has 24 observations and lag order is set to zero. The
simulations explore the effects of various settings for the mildly explosive and collapse regime rate
parameters (α, β) that enter the new process (2).

4.1 The BSDF test for bubble origination and collapse dates

As in PSY (2014c) we examine the proportion of successful bubble detection, along with the
empirical mean and standard deviation (given in parentheses in the following tables) of the
estimated origination and collapse dates. Successful detection of a bubble is defined as an outcome
where the estimated origination date is greater than or equal to the true origination date and
smaller than the true collapse date of that particular bubble (i.e. fie ≤ f̂ie < fic). So the narrower
is the interval (fie, fic) the more challenging is the requirement.

Table 1: Detection rate and estimation of the origination and collapse dates (for different drift
values). Parameters are set to: y0 = 100, σ = 6.79, c = c1 = c2 = 1, α = 0.60, β = 0.1, dBT =
b0.20T c , dCT = b0.01T c , fe = 0.4, T = 100. Figures in parentheses are standard deviations.

DGP (PWY) DGP (PSY)
η = 0.6 η = 1 η = 2

Detection Rate (B) 0.90 0.91 0.90 0.90
f̂e − fe 0.07 (0.04) 0.07 (0.04) 0.07 (0.04) 0.07 (0.04)
f̂c − fc -0.00 (0.01) -0.00 (0.01) -0.00 (0.01) -0.00 (0.01)

Note: Calculations are based on 2,000 replications. The minimum window has 24 observations.

The first step is to investigate the impact of drift in the unit root process on bubble detection
accuracy. The PSY estimate of the bubble origination date depends solely on past information.
So when there is a single bubble in the sample period, the later mildly integrated collapse regime
should have no impact on the accuracy of the bubble origination estimate. But the presence
of drift, even asymptotically negligible drift, in the unit root process that characterizes normal
periods may well impact bubble origination detection.

In the simulation, we fix β at 0.1 and the duration of bubble collapse dCT at b0.01T e. This
setting delivers an instantaneous one-period collapse when the sample size T = 100, which re-
sembles the abrupt collapse pattern of PWY. We let η take the values {0.6, 1, 2}, which give
corresponding drift values of {0.063, 0.010, 0.000}. For each parameter constellation, 2,000 repli-
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cations were employed. As evident in Table 1, the parameter η has no material impact on bubble
detection when η > 0.5 as here, which is concordant with asymptotic theory. Thus, the PSY
strategy continues to deliver consistent estimates despite the inclusion of this type of drift. How-
ever, under these parameter settings, there is an seven-observation delay in detecting the bubble,
indicating some upward bias in the date estimates. On the other hand, just as in PSY, due to
the sudden one-period collapse, the termination date of the bubble expansion is estimated with
great accuracy.

The next step is to explore the influence of a mildly integrated collapse regime. The model
specification of this regime allows for processes with different collapse speeds and durations. We
consider three collapse patterns here: sudden collapse (i.e β = 0.1 and dCT = b0.01T e), disturbing
collapse (i.e. β = 0.5 and dCT = b0.10T e), and smooth collapse (i.e. β = 0.9 and dCT = b0.20T e).
We let η = 1, α = 0.6, dBT = 0.2. Figure 2 plots one typical realization of these three collapse
processes.

Table 2 displays the estimation results of the PSY strategy under different data generating
processes. We observe an increasing delay in bubble collapse date estimates (viz., fc) as the
collapse process becomes smoother. For instance, the bias (f̂c − fc) is one observation in a
disturbing collapse regime but increases to nine observations for a smooth collapse. The bubble
origination date is mainly unaffected by the collapse regime dynamics, as expected and indicated
above.

Table 2: Detection rate and estimation of the origination and collapse dates (under different
collapse patterns). Parameters are set to: y0 = 100, σ = 6.79, c = c1 = c2 = 1, α = 0.70, dBT =
b0.20T c , fe = 0.4, T = 100, β = 0.1, dCT = b0.01T e for sudden collapse, β = 0.5, dCT = b0.10T e
for disturbing crash, and β = 0.9, dCT = b0.20T e for smooth collapse. Figures in parentheses are
standard deviations.

PWY Sudden Disturbing Smooth
Detection Rate (B) 0.90 0.90 0.91 0.91
f̂e − fe 0.07 (0.04) 0.07 (0.04) 0.07 (0.04) 0.07 (0.04)
f̂c − fc -0.00 (0.01) -0.00 (0.01) 0.02 (0.01) 0.09 (0.04)

Note: Calculations are based on 2,000 replications. The minimum window has 24 observations.

4.2 The BSDF ∗ test for crisis origination and market recovery dates

In the case of a bubble-led crisis such as model (2), the origination date of the crisis coincides with
the date of collapse. Successful detection of a bubble-led crisis may then be defined as an outcome
where the estimated collapse date is greater than or equal to the true bubble origination date
and smaller than the true recovery date of that particular crisis (i.e. fie ≤ f̂ic < fir). As earlier,
we report the detection rate of a crisis, along with the empirical mean and standard deviation
(shown in parentheses) of the estimated crisis origination and termination dates.

Table 3 reports the performance characteristics of the BSDF ∗ test under sudden, disturbing,
and smooth collapse processes with different bubble expansion rates. As is evident in the Table,

14



Table 3: Detection rate and estimation of the collapse and recovery dates (with various expansion
and collapse patterns). Parameters are set to: y0 = 100, σ = 6.79, c = c1 = c2 = 1, dBT =
b0.20T c , fe = 0.4, T = 100, β = 0.1, dCT = b0.01T e for sudden collapse, β = 0.5, dCT = b0.10T e
for disturbing crash, and β = 0.9, dCT = b0.20T e for smooth collapse. Figures in parentheses are
standard deviations.

Sudden Disturbing Smooth
α = 0.6
Detection Rate (C) 0.33 0.96 0.66
f̂c − fc -0.00 (0.01) -0.03 (0.02) 0.00 (0.05)
f̂r − fr 0.00 (0.02) -0.03 (0.03) -0.12 (0.06)

α = 0.7
Detection Rate (C) 0.37 0.92 0.64
f̂c − fc -0.01 (0.02) -0.04 (0.02) -0.01 (0.07)
f̂r − fr 0.00 (0.02) -0.04 (0.03) -0.15 (0.08)

α = 0.8
Detection Rate (C) 0.35 0.88 0.58
f̂c − fc -0.01 (0.03) -0.04 (0.03) -0.02 (0.08)
f̂r − fr 0.00 (0.02) -0.05 (0.03) -0.17 (0.09)

Note: Calculations are based on 2,000 replications. The minimum window has 24 observations.

the crisis detection rate is highest for disturbing collapses (96% when α = 0.6) and lowest for
sudden collapses (41% when α = 0.6). These findings are explained by the fact that sudden crises
have short duration and collapse date estimates come late, whereas in a disturbing crisis there is
a delay before recovery which aids crisis detection. The crisis detection rate increases with the
rate of bubble expansion. As a case in point, when α decreases from 0.8 to 0.6, the detection rate
for disturbing collapses rises from 88% to 96%.

In addition, we see that the estimated crisis origination date is generally bias downward.
Moreover, the bias (i.e. f̂c − fc) is larger for disturbing collapses than sudden and smooth
collapses. Interestingly, the estimation accuracy of the crisis origination date also depends on the
bubble expansion rate. Namely, the bias is marginal larger when the bubble expansion rate is
slower. This is consistent with our earlier finding for the BSDF test where the estimated crisis
origination (or bubble collapse) date is affected by the collapse pattern.

Estimates of the recovery date evidently highly accurate for sudden collapses, whereas there
is substantial downward bias for smooth collapses. For instance, when α = 0.6, there is a twelve-
period bias (earlier than the true date) in the estimates of fr under a smooth collapse, which
accounts for 60% of the collapse duration. The bias for disturbing collapses is much smaller and
is close to the near zero bias for sudden collapses. For both disturbing and smooth collapses, the
bias increases as the bubble expansion rate becomes slower (with larger α).
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Table 4: Detection rate and collapse and recovery date estimation (for different collapse rates and
collapse durations). Parameters are set to: y0 = 100, σ = 6.79, c = c1 = c2 = 1, α = 0.7, dBT =
b0.20T c , ro = 0.4, T = 100, β = 0.1, dCT = b0.01T e for sudden collapse, β = 0.5, dCT = b0.10T e
for disturbing crash, and β = 0.9, dCT = b0.20T e for smooth collapse. Figures in parentheses are
standard deviations.

dCT = b0.05T c dCT = b0.10T c dCT = b0.15T c
β = 0.3
Detection Rate (C) 0.96 0.97 0.96
r̂c − rc -0.04 (0.02) -0.04 (0.02) -0.04 (0.02)
r̂r − rr -0.02 (0.02) -0.04 (0.02) -0.08 (0.02)

β = 0.5
Detection Rate (C) 0.91 0.96 0.93
r̂c − rc -0.01 (0.02) -0.03 (0.02) -0.03 (0.02)
r̂r − rr -0.02 (0.03) -0.03 (0.03) -0.05 (0.03)

β = 0.7
Detection Rate (C) 0.71 0.90 0.91
r̂c − rc -0.01 (0.04) -0.01 (0.03) -0.01 (0.03)
r̂r − rr -0.03 (0.04) -0.05 (0.04) -0.06 (0.05)

Note: Calculations are based on 2,000 replications. The minimum window has 24 observations.

For further investigation, we extend the parameter specification in the case of disturbing
collapses by varying β from 0.3 to 0.7 and dCT from 5% of the total sample to 15%. Consistent with
expectations, the BSDF ∗ strategy provides higher crisis detection rates when bubbles collapse
faster (Table 4). For instance, with a collapse duration of b0.05T c, the detection rate increases
from 71% to 96% when the value of β declines from 0.7 to 0.3 (corresponding to faster collapse
in the mildly integrated process over this period). Moreover, the crisis termination date is more
accurately estimated when there is shorter collapse duration. For example, assuming β = 0.3,
the estimated recovery date is two observations earlier than the true recovery date when dCT =
b0.05T c. However, it increases to eight observations when the duration increases to 15% of the
total sample. The bias direction in these estimates is consistent with the reverse regression
scenario underlying the BSDF ∗ detection strategy.

4.3 Real Time Monitoring of Market Correction

The goal of this use of reverse regression is to aid the ongoing detection of market recovery dates.
We propose to implement the reverse procedure repeatedly for each observation starting from the
date of the bubble collapse, that is Tc in chronological time. The dating rules in (8) and (9) can
always be rewritten as
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f̂c = inf
f∈[0,1−g0]

{
f : BSDF ∗∗f (g0) > scv∗∗ (βT )

}
(10)

f̂r = inf
f∈[f̂c,1−g0]

{
f : BSDF ∗∗f (g0) > scv∗∗ (βT )

}
(11)

where BSDF ∗∗f (g0) and scv∗∗ (βT ) are the reverse series of BSDF ∗g (g0) and scv∗ (βT ). Suppose
we conduct the reverse PSY test on a sample period running from some initial (reverse) obser-
vation 1 through to K (which includes observation Tc in chronological time) and identify one
occurrence of market correction, namely BSDF ∗∗t′−1 > scv∗∗ with BSDF ∗∗t′ < scv∗∗ and t′ ≥ Tc
for some given critical value scv∗∗ in the reverse regression. Suppose, in addition, that no market
correction is detected in samples from 1 to s, with s < K. Then, we conclude that t′ is the date
of market recovery (i.e. f̂r = t′/T ) and K is the date at which the correction is detected in the
data.

Table 5 reports the average delay of the estimated market recovery date (f̂r − fr) and the
average delay in detecting this correction (DD = K/T − f̂r). By construction, the delay in
detecting the market correction is bounded below by the minimum window size f0. For early
detection, one would need to consider setting f0 to be a small value. On the other hand, choosing
too small a value for f0 may result in inaccurate estimation of model parameters and lead to
corresponding distortions in the market recovery date estimates. Hence, the choice of f0 is
important for performance of the monitoring procedure. In simulations we allowed the minimum
window size to vary from half a year to two years (i.e f0 varies from 0.06 to 0.24) to assess
sensitivies to choice of f0. The number of replications was 2,000.

Table 5: The estimated dates of market recovery and the delays in detecting market correction.
Parameters are set to: y0 = 100, σ = 6.79, c = c1 = c2 = 1, α = 0.6, dBT = b0.20T c , fe = 0.4, T =
100. Figures in parentheses are standard deviations.
(1) Disturbing Crises

f0 = 0.06 f0 = 0.08 f0 = 0.12 f0 = 0.24
Detection Rate 0.99 0.98 0.98 0.97
f̂r − fr -0.23 (0.28) -0.19 (0.28) -0.06 (0.14) -0.06 (0.13)
DD 0.21 (0.08) 0.20 (0.10) 0.12 (0.10) 0.22 (0.15)
(2) Smooth Crises

f0 = 0.06 f0 = 0.08 f0 = 0.12 f0 = 0.24
Detection Rate 0.91 0.90 0.90 0.86
f̂r − fr -0.19 (0.28) -0.22 (0.23) -0.27 (0.27) -0.28 (0.31)
DD 0.20 (0.10) 0.09 (0.24) 0.17 (0.24) 0.28 (0.32)

Note: Calculations are based on 2,000 replications.

As expected, the procedure does not perform well in detecting market recovery dates for
smooth crises. Nevertheless, for disturbing crises (perhaps the most frequently observed type
in practical work), best performance is achieved with 12 observations in the minimum window,
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which corresponds to f0 = 0.12. As is evident in the table, with this setting the average bias of
the market recovery date estimates is −0.06 (or six observations early) and the average delay in
detecting the correction is the minimum window size (12 observations).

5 Empirical Applications

We examine NASDAQ stocks as in PWY (2011), extending the sample period to August 2013.
The NASDAQ composite index and NASDAQ dividend yield are obtained in monthly frequency
from Datastream International, starting from January 1973. The dividend index at the current
period (t), which is included as a proxy for stock market fundamentals, is calculated by multiplying
the price index and dividend yield at period t+ 1.

We apply BSADF and BSADF∗ tests to the NASDAQ price-dividend ratio. The smallest
window size has 24 observations (2 years). The lag order in the ADF regression is selected using
BIC with a maximum lag order of 4. Bubble duration is restricted to be no less than one year.

Figure 4: The NASDAQ stock market

Figure 4 plots the recursive BSADF and BSADF∗ statistics against their corresponding 95%
critical value sequences separately in panels (a) and (b). The test procedures identify several
bubble and crisis episodes. There are two bubble episodes with abrupt collapses: 1983M04-
1984M03 and 1986M02-1987M11. Enlarged plots for these two episodes are displayed in Figure
5, the first panel showing the bubble episode in 1983 and the second the ‘black Monday’episode in
1987. The BSADF∗ procedure does not detect collapses for these two episodes, which is perhaps
unsurprising becasue simulations show that the crisis detection rate is lower when the collapse is
rapid with short duration as in these two case.

The most interesting episode identified by the tests is the famous dot-com bubble in the late
1990s, displayed in enlarge form in Figure 6. The origination of the bubble episode is detected
(using BSADF) as August 1995, close to the original estimate obtained in PWY of July 1995. The
estimated collapse dates obtained from the BSADF and BSADF∗ procedures are 2000M11 and
2000M2, respectively. Notice that the peak of the dot-com bubble is 2000M03, so the BSADF∗

test anticipates the crash (but does so using the ex post subsequent crash data, of course). The
collapse process for the dot-com bubble episode is much smoother than the previous two episodes,
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Figure 5: The 1983 and 1986 bubble episodes

which partly explains the detective capability of the BSADF∗ test since the date of the bubble
collapse clearly differs from the date of later market recovery. According to the BSADF∗ test,
the crash lasts from March to November 2000, followed by a further correction in January 2004
and full return to normal market conditions in May 2004.

Figure 6: The dot-com bubble episode

Enlarged details of the 1973/74 and 1976 stock market downturn episodes are shown in Figure
7. According to the BSADF∗ test, the 1973/74 episode lasts for 17 months (starting from February
1973) and the 1976 episode lasts from September to November 1976. The procedure also identifies
three minor downturns in late 1982, mid of 1993M04 and 1995M02.

Finally, we conduct a pseudo-real-time monitoring exercise to assess market collapse and
recovery for the dot-com bubble episode. Specifically, we start implementing the reverse procedure
repeatedly for each observation between March 2000 (the peak of the episode) and December
2006. Specifically, we conduct the reserve dating technique first for the window running from
January 1973 to March 2000 to see whether any market correction has occurred. If affi rmative, we
calculate the date of market recovery and record March 2000 as the data detecting this correction.
Otherwise, we expand the sample one observation forward and apply the same technique to the
expanded sample period until detecting the occurence of market correction. One can either stop
the investigation upon detection of market correction or continue the procedure for possible futher
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Figure 7: The 1973 and 1976 stock market crashes

correction. Here, we choose the latter and stop the pseudo-real-time investigation in December
2006. The minimum window size has 12 observations and the lag length is fixed at one. Similar
to the ex-post identification strategy, we identify two episodes of market correction within this
sample period. The first correction is in October 2000 (detected by the procedure in November
2002) and the other one is in May 2004 (detected in October 2005).

6 Conclusion

Financial bubbles are typically characterized by mildly explosive expansions and subsequent con-
tractions that can be abrupt, extended, or various combinations of the two. In this work we
have modeled financial contractions using a mildly integrated process that can capture a variety
of forms of reversion to normal martingale behavior in a financial market. The resulting model
has multiple break points corresponding to the bubble origination and peak, the implosion of the
bubble, and the reversion to normality. This framework is intended to be more realistic than
simpler models that assume an abrupt collapse of a bubble to normality and is therefore suited to
a wider range of practical applications. The limit theory shows that the bubble dating strategy of
Phillips, Shi and Yu (2013a,b) delivers consistent date estimates within this more realistic bubble
generating framework and simulations corroborate its advantages in finite samples.

The new reverse regression implementation of the PSY strategy developed here helps to detect
crises and estimate their associated turning points. The strategy is suited to cases of a single
crash or multiple crashes and provides consistent estimates of the origination, termination, and
recovery dates of a crisis. Crisis detection methodology of this type can be applied when crises
occur in seemingly normal periods that are not prefaced by an expansionary bubble phase. In
applying these methods to the Nasdaq stock market over 1973-2013, the tests identify several crisis
incidents, including the 1973 and 1976 stock market crashes and the famous ‘black Monday’crash
of 1987, in addition to the 1990s Nasdaq bubble episode.
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Appendix: Limit Theory and Proofs of Main Results

This Appendix has two main sections (A and B). The first provides limit theory for the
BSADF∗ statistic under the null based on the reverse regression model formulation (7). The
second gives limit theory for the BSADF and BSADF∗ statistics under the alternative. Supporting
lemmas are stated here. Complete details of the derivations and the supporting lemmas are given
in Phillips and Shi (2014, PS) which provides a full technical supplement to the paper. The general
framework of the derivations follows PSY (2014b&c) but important differences arise because of
the treatment of the reverse regression statistic, the endogeneity involved in that regression, and
the presence of an asymptotically negligible drift in the time series.

A The limit behaviour of the BSADF∗ statistic under the null

Lemmas A1 and A2 below provide some standard partial sum asymptotics that hold under the
following assumption, where the input process εt is assumed to be iid for convenience but may
be extended to martingale differences with appropriate changes to the limit theory. These results
mirror those given in PSY (2014b).

Assumption (EC) Let ut = ψ (L) εt = Σ∞j=0ψjεt−j , where Σ∞j=0j
∣∣ψj∣∣ <∞ and {εt} is an i.i.d

sequence with mean zero, variance σ2 and finite fourth moment.

Lemma A.1 Suppose ut satisfies error condition EC. Define MT (g) = 1/T
∑[Tg]

s=1 us with r ∈
[g0, 1] and ξt =

∑t
s=1 us. Let g2, gw ∈ [g0, 1] and g1 = g2 − gw. The following hold:

(1)
∑t

s=1 us = ψ (1)
∑t

s=1 εs + ηt − η0, where ηt =
∑∞

j=0 αjεt−j, η0 =
∑∞

j=0 αjε−j and
αj = −

∑∞
i=1 ψj+i, which is absolutely summable.

(2) 1
T

∑bTg2c
t=bTg1c ε

2
t

p→ σ2gw.

(3) T−1/2
∑[Tg]

t=1 εt
L→ σW (g) .

(4) T−1
∑bTg2c

t=bTg1c
∑t−1

s=1 εsεt
L→ σ2

[∫ g2
g1
W (s) dW − 1

2gw

]
.

(5) T−3/2
∑bTg2c

t=bTg1c εtt
L→ σ

[
g2W (g2)− g1W (g1)−

∫ g2
g1
W (s) ds

]
.

(6) T−1
∑bTg2c

t=bTg1c
(
ηt−1 − η0

)
εt

p→ 0.

(7) T−1/2
(
η[Tg] − η0

)
p→ 0.

(8)
√
TMT (g)

L→ ψ (1)σW (g) .

(9) T−3/2
∑bTg2c

t=bTg1c ξt−1
L→ ψ (1)σ

∫ g2
g1
W (s) ds.

(10) T−5/2
∑bTg2c

t=bTg1c ξt−1t
L→ ψ (1)σ

∫ g2
g1
W (s) sds.

(11) T−2
∑bTg2c

t=bTg1c ξ
2
t−1

L→ σ2ψ (1)2
∫ g2
g1
W (s)2 ds.

(12) T−3/2
∑bTg2c

t=bTg1c ξtεt−j
p→ 0, ∀j = 0,±1,±2, ...
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Lemma A.2 Define X∗t = −αTψ (1) t +
∑t

s=1 ωs, where αT = cT−η with η > 1/2 and ωt =
−uT+2−t = ψ (L) vt. Let ut satisfy condition EC. Then

(a) T−1
bTg2c∑
t=bTg1c

X∗t−1vt
L→ ψ (1)σ2

[∫ 1−g1

1−g2
W (s) dW +

1

2
gw

]
.

(b) T−3/2
bTg2c∑
t=bTg1c

X∗t−1
L→ ψ (1)σ

∫ 1−g1

1−g2
W (s) ds.

(c) T−2
bTg2c∑
t=bTg1c

X∗2t−1
L→ σ2ψ (1)2

∫ 1−g1

1−g2
W (s)2 ds.

(d) T−3/2
bTg2c∑
t=bTg1c

X∗t−1vt−j
p→ 0, j = 0, 1, · · · .

(e) T−1/2
bTg2c∑
t=bTg1c

vt
L→ −σ

∫ 1−g1

1−g2
dW (s) .

With these results and using standard weak convergence methods, we can derive the as-
ymptotic distribution of the BSADF ∗g (g0) statistic given in Theorem 3.1. A complete proof of
Theorem 3.1 is provided in the technical supplement (PS, 2014).

B The limit behaviour of the BSDF statistic under the Alterna-
tive

B.1 Notation

• The bubble period B = [Te, Tc], where Te = bTfec and Tc = bTfcc.

• The crisis period C = (Tc, Tr], where Tr = bTfrc.

• The normal market periods N0 = [1, Te) and N1 = [Tr + 1, T ], where T is the last observa-
tion of the sample.

• The data generating process is specified as

Xt =


cT−η +Xt−1 + εt, constant c, η > 1/2, t ∈ N0 ∪N1

δTXt−1 + εt, t ∈ B
γTXt−1 + εt, t ∈ C

, (12)

where εt ∼ N
(
0, σ2

)
, X0 = Op (1), δT = 1 + c1T

−α and γT = 1 − c2T−β with c1, c2 > 0
and α, β ∈ [0, 1). If α > β, the rate of bubble collapse is faster than that of the bubble
expansion. If α < β, the rate of bubble collapse is slower than that of the bubble expansion.
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• Let X∗t = XT+1−t. The dynamics of X∗t are

X∗t =


−cT−η +X∗t−1 + vt, constant c, η > 1/2, t ∈ N0 ∪N1
γ−1T X∗t−1 + γ−1T vt, t ∈ C
δ−1T

[
X∗t−1 + vt

]
, t ∈ B

, (13)

where vt = −εT+2−t ∼ N
(
0, σ2

)
and X∗0 = XT+1.

• Let τ1 = bTg1c and τ2 = bTg2c be the start and end points of the regression. We have
T1 = T + 1− τ2, T2 = T + 1− τ1 and τw = bTgwc be the regression window size.

• Let τ e = bTgec, τ r = bTgrc, and τ c = bTgcc, where ge = 1 − fr, gc = 1 − fc, gr = 1 − fe.
This suggests that N1 = [1, τ e), C = [τ e, τ c), B = [τ c, τ r], N0 = (τ r, T ].

B.2 Dating Bubble Expansion

Lemma B.1 Under the data generating process (12):
(1) For t ∈ N0, Xt=bTpc ∼a T 1/2B (p).
(2) For t ∈ B, Xt=bTpc = δt−TeT XTe {1 + op (1)} ∼a T 1/2δt−TeT B (fe) .
(3) For t ∈ C,

Xt=bTpc = γt−TcT XTc +

t−Tc−1∑
j=0

γjT εt−j ∼a T
1/2δTc−TeT γt−TcT B (fe) + T β/2Xc2 .

(4) For t ∈ N1,

Xt=bTpc =

{ ∑t−Tr−1
j=0 εt−j {1 + op (1)} ∼a T 1/2 [B (p)−B (fr)] if α > β

γTr−TcT XTc ∼a T 1/2γTr−TcT δTc−TeT B (fe) if α < β
.

Lemma B.2 Under the data generating process (12):
(1) For T1 ∈ N0 and T2 ∈ B,

1

Tw

T2∑
j=T1

Xj =
TαδT2−TeT

Twc1
XTe {1 + op (1)} ∼a Tα−1/2δT2−TeT

1

fwc1
B (fe) .

(2) For T1 ∈ N0 and T2 ∈ C,

1

Tw

T2∑
j=T1

Xj =

{
TαδTc−TeT
Twc1

XTe {1 + op (1)} ∼a Tα−1/2δTc−TeT
1

fwc1
B (fe) if α > β

XTc
Tβ

Twc2
{1 + op (1)} ∼a T β−1/2δTc−TeT

B(fe)
fwc2

if α < β
.

(3) For T1 ∈ N0 and T2 ∈ N1,

1

Tw

T2∑
j=T1

Xj =

{
TαδTc−TeT
Twc1

XTe {1 + op (1)} ∼a Tα−1/2δTc−TeT
1

fwc1
B (fe) if α > β

Tβ

Twc2
XTc {1 + op (1)} ∼a T β−1/2δTc−TeT

1
fwc2

B (fe) if α < β
.
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(4) For T1 ∈ B and T2 ∈ C,

1

Tw

T2∑
j=T1

Xj =

{
TαδTc−TeT
Twc1

XTe {1 + op (1)} ∼a Tα−1/2δTc−TeT
1

fwc1
B (fe) if α > β

XTc
Tβ

Twc2
{1 + op (1)} ∼a T β−1/2δTc−TeT

1
fwc2

B (fe) if α < β
.

(5) For T1 ∈ B and T2 ∈ N1,

1

Tw

T2∑
j=T1

Xj =

 Tαδ
Tc−T1
T

Twc1
XTe {1 + op (1)} ∼a Tα−1/2δTc−TeT

1
fwc1

B (fe) if α > β

XTc
Tβ

Twc2
{1 + op (1)} ∼a T β−1/2δTc−TeT

1
fwc2

B (fe) if α < β
.

(6) For T1 ∈ C and T2 ∈ N1,

1

Tw

T2∑
j=T1

Xj =


1
Tw

∑T2
j=Tr+1

∑j−Tr−1
i=0 εj−i {1 + op (1)} ∼a T 1/2 f2−frfw

∫ f2
fr

[B (s)−B (fr)] ds if α > β

XTc
γ
T1−Tc
T Tβ

Twc2
{1 + op (1)} ∼a T β−1/2δTc−TeT γT1−TcT

1
c2fw

B (fe) if α < β
.

Lemma B.3 Define the centered quantity X̃t = Xt − T−1w
∑T2

j=T1
Xj.

(1) For T1 ∈ N0 and T2 ∈ B,

X̃t =


−Tαδ

T2−Te
T
Twc1

XTe {1 + op (1)} if t ∈ N0[
δt−TeT − Tαδ

T2−Te
T
Twc1

]
XTe {1 + op (1)} if t ∈ B

.

(2) For T1 ∈ N0 and T2 ∈ C, if α > β

X̃t =


−TαδTc−TeT

Twc1
XTe {1 + op (1)} if t ∈ N0[

δt−TeT − TαδTc−TeT
Twc1

]
XTe {1 + op (1)} if t ∈ B[

γt−TcT XTc −
TαδTc−TeT
Twc1

XTe

]
{1 + op (1)} if t ∈ C

and if α < β,

X̃t =


− Tβ

Twc2
XTc {1 + op (1)} if t ∈ N0[

δt−TeT XTe − Tβ

Twc2
XTc

]
{1 + op (1)} if t ∈ B[

γt−TcT − Tβ

Twc2

]
XTc {1 + op (1)} if t ∈ C

.

(3) For T1 ∈ N0 and T2 ∈ N1,if α > β

X̃t =



−TαδTc−TeT
Twc1

XTe {1 + op (1)} if t ∈ N0[
δt−TeT − TαδTc−TeT

Twc1

]
XTe {1 + op (1)} if t ∈ B[

γt−TcT XTc −
TαδTc−TeT
Twc1

XTe

]
{1 + op (1)} if t ∈ C

−TαδTc−TeT
Twc1

XTe {1 + op (1)} if t ∈ N1

27



and if α < β,

X̃t =


− Tβ

Twc2
XTc {1 + op (1)} if t ∈ N0[

δt−TeT XTe − Tβ

Twc2
XTc

]
{1 + op (1)} if t ∈ B[

γt−TcT − Tβ

Twc2

]
XTc {1 + op (1)} if t ∈ C

− Tβ

Twc2
XTc {1 + op (1)} if t ∈ N1

.

(4) For T1 ∈ B and T2 ∈ C, if α > β

X̃t =


[
δt−TeT − TαδTc−TeT

Twc1

]
XTe {1 + op (1)} if t ∈ B[

γt−TcT XTc −
TαδTc−TeT
Twc1

XTe

]
{1 + op (1)} if t ∈ C

and if α < β,

X̃t =


[
δt−TeT XTe −XTc

Tβ

Twc2

]
{1 + op (1)} if t ∈ B[

γt−TcT − Tβ

Twc2

]
XTc {1 + op (1)} if t ∈ C

(5) For T1 ∈ B and T2 ∈ N1, if α > β

X̃t =



[
δt−TeT − TαδTc−TeT

Twc1

]
XTe {1 + op (1)} if t ∈ B[

γt−TcT XTc −
TαδTc−TeT
Twc1

XTe

]
{1 + op (1)} if t ∈ C

−TαδTc−TeT
Twc1

XTe {1 + op (1)} if t ∈ N1

and if α < β,

X̃t =


[
δt−TeT XTe − Tβ

Twc2
XTc

]
{1 + op (1)} if t ∈ B[

γt−TcT − Tβ

Twc2

]
XTc {1 + op (1)} if t ∈ C

− Tβ

Twc2
XTc {1 + op (1)} if t ∈ N1

(6) For T1 ∈ C and T2 ∈ N1, if α > β,

X̃t =


[
γt−TcT XTc − 1

Tw

∑T2
j=Tr+1

∑j−Tr−1
i=0 εj−i

]
{1 + op (1)} if t ∈ C[∑t−Tr−1

j=0 εt−j − 1
Tw

∑T2
j=Tr+1

∑j−Tr−1
i=0 εj−i

]
{1 + op (1)} if t ∈ N1

and if α < β,

X̃t =


[
γt−TcT − γ

T1−Tc
T Tβ

Twc2

]
XTc {1 + op (1)} if t ∈ C

−γ
T1−Tc
T Tβ

Twc2
XTc {1 + op (1)} if t ∈ N1

.
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Lemma B.4 Quadratic terms in X̃t behave as follows.
(1) For T1 ∈ N0 and T2 ∈ B,

T2∑
j=T1

X̃2
j−1 ∼a T 1+α

δ
2(T2−Te)
T

2c1
B (fe)

2 .

(2) For T1 ∈ N0 and T2 ∈ C,

T2∑
j=T1

X̃2
j−1 ∼a

{
T 1+αδ

2(Tc−Te)
T

1
2c1
B (fe)

2 if α > β

T 1+βδ
2(Tc−Te)
T

1
2c2
B (fe)

2 if α < β
.

(3) For T1 ∈ N0 and T2 ∈ N1,

T2∑
j=T1

X̃2
j−1 ∼a

{
T 1+αδ

2(Tc−Te)
T

1
2c1
B (fe)

2 if α > β

T 1+βδ
2(Tc−Te)
T

1
2c2
B (fe)

2 if α ≤ β
.

(4) For T1 ∈ B and T2 ∈ C,

T2∑
j=T1

X̃2
j−1 ∼a

{
T 1+αδ

2(Tc−Te)
T

1
2c1
B (fe)

2 if α > β

T 1+βδ
2(Tc−Te)
T

1
2c2
B (fe)

2 if α < β
.

(5) For T1 ∈ B and T2 ∈ N1,

T2∑
j=T1

X̃2
j−1 ∼a

{
T 1+αδ

2(Tc−Te)
T

1
2c1
B (fe)

2 if α > β

T 1+βδ
2(Tc−Te)
T

1
2c2
B (fe)

2 if α < β
.

(6) For T1 ∈ C and T2 ∈ N1,

T2∑
j=T1

X̃2
j−1 ∼a

 T 2 (f2 − fr)
{∫ f2

fr
[B (s)−B (fr)]

2 ds− f2−fr
fw

[∫ f2
fr

[B (s)−B (fr)] ds
]2}

if α > β

T 1+βδ
2(Tc−Te)
T γ

2(T1−Tc)
T

1
2c2
B (fe)

2 if α < β

.

(14)

Lemma B.5 Cross-product terms involving X̃t and εt behave as follows.
(1) For T1 ∈ N0 and T2 ∈ B,

T2∑
j=T1

X̃j−1εj ∼a T (1+α)/2δT2−TeT Xc1B (fe) .

(2) For T1 ∈ N0 and T2 ∈ C,

T2∑
j=T1

X̃j−1εj ∼a
{
T (1+α)/2δTc−TeT B (fe)Xc1 if α > β

T (1+β)/2δTc−TeT B (fe)Xc2 if α < β
.
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(3) For T1 ∈ N0 and T2 ∈ N1,

T2∑
j=T1

X̃j−1εj ∼a
{
T (1+α)/2δTc−TeT B (fe)Xc1 if α > β

T (1+β)/2δTc−TeT B (fe)Xc2 if α < β
.

(4) For T1 ∈ B and T2 ∈ C,

T2∑
j=T1

X̃j−1εj ∼a
{
T (1+α)/2δTc−TeT B (fe)Xc1 if α > β

T (1+β)/2δTc−TeT B (fe)Xc2 if α < β
.

(5) For T1 ∈ B and T2 ∈ N1,

T2∑
j=T1

X̃j−1εj ∼a
{
T (1+α)/2δTc−TeT B (fe)Xc1 if α > β

T (1+β)/2δTc−TeT B (fe)Xc2 if α < β
.

(6) For T1 ∈ C and T2 ∈ N1,

T2∑
j=T1

X̃j−1εj ∼a


T
{
1
2 [B (f2)−B (fr)]

2 − 1
2 (f2 − fr)σ2

−2f2−frfw
[B (f2)−B (fr)]

∫ f2
fr

[B (s)−B (fr)] ds
} if α > β

T (1+β)/2γT1−Tc−1T δTc−TeT B (fe)Xc2 if α < β

. (15)

Lemma B.6 Cross-product terms involving X̃j−1 and X̃j − δT X̃j−1 behave as follows.
(1) For T1 ∈ N0 and T2 ∈ B,

T2∑
j=T1

X̃j−1
(
X̃j − δT X̃j−1

)
∼a −Tαδ2(T2−Te)T

fe − f1
fw

B (fe)
2 .

(2) For T1 ∈ N0 and T2 ∈ C,

T2∑
j=T1

X̃j−1
(
X̃j − δT X̃j−1

)
∼a


−T 2α−βδ2(Tc−Te)T c2

f2−fc
fwc21

B (fe)
2 if α > β and 1 + β < 2α

−Tδ2(Tc−Te)T
1
2B (fe)

2 if α > β and 1 + β > 2α

−T 1+β−αδ2(Tc−Te)T
c1
2c2
B (fe)

2 if α < β

.

(3) For T1 ∈ N0 and T2 ∈ N1,

T2∑
j=T1

X̃j−1
(
X̃j − δT X̃j−1

)
∼a


−T 2α−βδ2(Tc−Te)T c2

fr−fc
fwc21

B (fe)
2 if α > β and 1 + β < 2α

−Tδ2(Tc−Te)T
1
2B (fe)

2 if α > β and 1 + β > 2α

−T 1+β−αδ2(Tc−Te)T
c1
2c2
B (fe)

2 if α < β

.
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(4) For T1 ∈ B and T2 ∈ C,

T2∑
j=T1

X̃j−1
(
X̃j − δT X̃j−1

)
∼a


−T 2α−βδ2(Tc−Te)T c2

f2−fc
fwc21

B (fe)
2 if α > β and 1 + β < 2α

−Tδ2(Tc−Te)T
1
2B (fe)

2 if α > β and 1 + β > 2α

−T 1+β−αδ2(Tc−Te)T
c1
2c2
B (fe)

2 if α < β

.

(5) For T1 ∈ B and T2 ∈ N1,

T2∑
j=T1

X̃j−1
(
X̃j − δT X̃j−1

)
∼a


−T 2α−βδ2(Tc−Te)T c2

fr−fc
fwc21

B (fe)
2 if α > β and 1 + β < 2α

−Tδ2(Tc−Te)T
1
2B (fe)

2 if α > β and 1 + β > 2α

−T 1+β−αδ2(Tc−Te)T
c1
2c2
B (fe)

2 if α < β

.

(6) For T1 ∈ C and T2 ∈ N1,

T2∑
j=T1

X̃j−1
(
X̃j − δT X̃j−1

)
∼a

 −T 2−βc2 (fr−f1)(f2−fr)
2

f2w

[∫ f2
fr

[B (s)−B (fr)] ds
]2

if α > β

−T 1+β−αδ2(Tc−Te)T γ
2(T1−Tc)
T

c1
2c2
B (fe)

2 if α < β
.

Lemma B.7 The sums of cross-product of X̃j−1 and X̃j − γT X̃j−1 behave as follows.
(1) For T1 ∈ N0 and T2 ∈ B,

T2∑
j=T1

X̃j−1
(
X̃j − γT X̃j−1

)
∼a

{
T 1+α−βδ

2(T2−Te)
T

c2
2c1
B (fe)

2 if α > β

Tδ
2(T2−Te)
T

1
2B (fe)

2 if α < β
.

(2) For T1 ∈ N0 and T2 ∈ C,

T2∑
j=T1

X̃j−1
(
X̃j − γT X̃j−1

)
∼a


T 1+α−βδ

2(Tc−Te)
T

c2
2c1
B (fe)

2 if α > β

Tδ
2(Tc−Te)
T

1
2B (fe)

2 if α < β and 1 + α > 2β

T 2β−αδ
2(Tc−Te)
T c1

fc−fe
fwc22

B (fe)
2 if α < β and 1 + α < 2β

.

(3) For T1 ∈ N0 and T2 ∈ N1,

T2∑
j=T1

X̃j−1
(
X̃j − γT X̃j−1

)
∼a


T 1+α−βδ

2(Tc−Te)
T

c2
2c1
B (fe)

2 if α > β

Tδ
2(Tc−Te)
T

1
2B (fe)

2 if α < β and 1 + α > 2β

T 2β−αδ
2(Tc−Te)
T c1

fc−fe
fwc22

B (fe)
2 if α < β and 1 + α < 2β

.

(4) For T1 ∈ B and T2 ∈ C,

T2∑
j=T1

X̃j−1
(
X̃j − γT X̃j−1

)
∼a


T 1+α−βδ

2(Tc−Te)
T

c2
2c1
B (fe)

2 if α > β

Tδ
2(Tc−Te)
T

1
2B (fe)

2 if α < β and 1 + α > 2β

T 2β−αδ
2(Tc−Te)
T c1

fc−f1
fwc22

B (fe)
2 if α < β and 1 + α < 2β

.
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(5) For T1 ∈ B and T2 ∈ N1,

T2∑
j=T1

X̃j−1
(
X̃j − δT X̃j−1

)
∼a


T 1+α−βδ

2(Tc−Te)
T

c2
2c1
B (fe)

2 if α > β

Tδ
2(Tc−Te)
T

1
2B (fe)

2 if α < β and 1 + α > 2β

T 2β−αδ
2(Tc−Te)
T c1

fc−f1
fwc22

B (fe)
2 if α < β and 1 + α < 2β

.

(6) For T1 ∈ C and T2 ∈ N1,
T2∑
j=T1

X̃j−1
(
X̃j − γT X̃j−1

)

∼ a

 T 2−βc2 (f2 − fr)
{∫ f2

fr
[B (s)−B (fr)]

2 ds+ (f2−fr)(f2−fr−2fw)
f2w

[∫ f2
fr

[B (s)−B (fr)] ds
]2}

if α > β

T βδ
2(Tc−Te)
T γ

2(T1−Tc)
T

f2−fr
fwc2

B (fe)
2 if α < β

.

Lemma B.8 The sums of cross-product of X̃j−1 and X̃j − X̃j−1 behave as follows.
(1) For T1 ∈ N0 and T2 ∈ B,

T2∑
j=T1

X̃j−1
(
X̃j − X̃j−1

)
∼a Tδ2(T2−Te)T

1

2
B (fe)

2 .

(2) For T1 ∈ N0 and T2 ∈ C,

T2∑
j=T1

X̃j−1
(
X̃j − X̃j−1

)
∼a


−T 2α−βδ2(Tc−Te)T c2

f2−fc
fwc21

B (fe)
2 if α > β and 1 + β < 2α

−Tδ2(Tc−Te)T
1
2B (fe)

2 if α > β and 1 + β > 2α

−Tδ2(Tc−Te)T
1
2B (fe)

2 if α < β and 1 + α > 2β

T 2β−αδ
2(Tc−Te)
T c1

fe−f1
fwc22

B (fe)
2 if α < β and 1 + α < 2β

.

(3) For T1 ∈ N0 and T2 ∈ N1,

T2∑
j=T1

X̃j−1
(
X̃j − X̃j−1

)
∼a



−T 2α−βδ2(Tc−Te)T c2
f2−fc
fwc21

B (fe)
2 if α > β and 1 + β < 2α

op

(
Tδ

2(Tc−Te)
T

)
if α > β and 1 + β > 2α

op

(
Tδ

2(Tc−Te)
T

)
if α < β and 1 + α > 2β

T 2β−αδ
2(Tc−Te)
T c1

fc−fe
fwc22

B (fe)
2 if α < β and 1 + α < 2β

.

(4) For T1 ∈ B and T2 ∈ C,

T2∑
j=T1

X̃j−1
(
X̃j − X̃j−1

)
∼a



−T 2α−βδ2(Tc−Te)T c2
f2−fc
fwc21

B (fe)
2 if α > β and 1 + β < 2α

op

(
Tδ

2(Tc−Te)
T

)
if α > β and 1 + β > 2α

op

(
Tδ

2(Tc−Te)
T

)
if α < β and 1 + α > 2β

T 2β−αδ
2(Tc−Te)
T c1

fc−f1
fwc22

B (fe)
2 if α < β and 1 + α < 2β

.
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(5) For T1 ∈ B and T2 ∈ N1,

T2∑
j=T1

X̃j−1
(
X̃j − X̃j−1

)
∼a



−T 2α−βδ2(Tc−Te)T c2
f2−fc
fwc21

B (fe)
2 if α > β and 1 + β < 2α

op

(
Tδ

2(Tc−Te)
T

)
if α > β and 1 + β > 2α

op

(
Tδ

2(Tc−Te)
T

)
if α < β and 1 + α > 2β

T 2β−αδ
2(Tc−Te)
T c1

fc−f1
fwc22

B (fe)
2 if α < β and 1 + α < 2β

.

(6) For T1 ∈ C and T2 ∈ N1,

T2∑
j=T1

X̃j−1
(
X̃j − X̃j−1

)
∼a

 −T 2−βc2 (fr−f1)(f2−fr)
2

f2w

[∫ f2
fr

[B (s)−B (fr)] ds
]2

if α > β

−Tδ2(Tc−Te)T γ
2(T1−Tc)
T

1
2B (fe)

2 if α < β
.

B.2.1 Test asymptotics

The fitted regression model for the recursive unit root tests is

Xt = α̂f1,f2 + ρ̂f1,f2Xt−1 + ε̂t,

where the intercept α̂f1,f2 and slope coeffi cient ρ̂f1,f2 are obtained using data over the subperiod
[f1, f2].

Remark 1 Based on Lemma B.4 and Lemma B.6, we can obtain limit forms of ρ̂f1,f2− δT using

ρ̂f1,f2 − δT =

∑T2
j=T1

X̃j−1
(
X̃j − δT X̃j−1

)
∑T2

j=T1
X̃2
j−1

.

When T1 ∈ N0 and T2 ∈ B
ρ̂f1,f2 − δT ∼a −

1

T
2c1

fe − f1
fw

.

When T1 ∈ C and T2 ∈ N1,

ρ̂f1,f2 − δT ∼a

 −T
−β c2

(fr−f1)(f2−fr)
f2w

[∫ f2
fr
[B(s)−B(fr)]ds

]2{∫ f2
fr
[B(s)−B(fr)]2ds− f2−frfw

[∫ f2
fr
[B(s)−B(fr)]ds

]2} if α > β

−T−αc1 if α < β

.

and for all other cases

ρ̂f1,f2 − δT ∼a


−Tα−β−12c2 f2−fcfwc1

if α > β and 1 + β < 2α

−T−αc1 if α > β and 1 + β > 2α
−T−αc1 if α < β
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Remark 2 Based on Lemma B.4 and Lemma B.7, we can obtain limit forms of ρ̂f1,f2−γT using

ρ̂f1,f2 − γT =

∑T2
j=T1

X̃j−1
(
X̃j − γT X̃j−1

)
∑T2

j=T1
X̃2
j−1

.

When T1 ∈ N0 and T2 ∈ B

ρ̂f1,f2 − γT ∼a
{
T−βc2 if α > β
T−αc1 if α < β

.

When T1 ∈ C and T2 ∈ N1,

ρ̂f1,f2 − γT ∼a

 T−βc2

{∫ f2
fr
[B(s)−B(fr)]2ds+ (f2−fr)(f2−fr−2fw)

f2w

[∫ f2
fr
[B(s)−B(fr)]ds

]2}
∫ f2
fr
[B(s)−B(fr)]2ds− f2−frfw

[∫ f2
fr
[B(s)−B(fr)]ds

]2 if α > β

2 1T
f2−fr
fw

if α < β

.

and for all other cases

ρ̂f1,f2 − γT ∼a


T−βc2 if α > β
T−βc2 if α < β and 1 + α > 2β

T β−α−12c1
fc−fe
fwc2

if α < β and 1 + α < 2β

Remark 3 Based on Lemma B.4 and Lemma B.8, we can obtain limit forms of ρ̂f1,f2 − 1 using

ρ̂f1,f2 − 1 =

∑T2
j=T1

X̃j−1
(
X̃j − X̃j−1

)
∑T2

j=T1
X̃2
j−1

.

When T1 ∈ N0 and T2 ∈ B
ρ̂f1,f2 − 1 ∼a

c1
Tα

.

When T1 ∈ C and T2 ∈ N1,

ρ̂f1,f2 − 1 ∼a

 −T
−βc2

(fr−f1)(f2−fr)
f2w

[∫ f2
fr
[B(s)−B(fr)]ds

]2{∫ f2
fr
[B(s)−B(fr)]2ds− f2−frfw

[∫ f2
fr
[B(s)−B(fr)]ds

]2} if α > β

−T−βc2 if α < β

.

When T1 ∈ N0 and T2 ∈ C

ρ̂f1,f2 − 1 ∼a


−Tα−β−12c2 f2−fcfwc1

if α > β and 1 + β < 2α

−c1T−α if α > β and 1 + β > 2α
−c2T−β if α < β and 1 + α > 2β

T β−α−12c1
fe−f1
fwc2

if α < β and 1 + α < 2β
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And for all other cases

ρ̂f1,f2 − 1 ∼a


−Tα−β−12c2 f2−fcfwc1

if α > β and 1 + β < 2α

op (T−α) if α > β and 1 + β > 2α
op
(
T−β

)
if α < β and 1 + α > 2β

T β−α−12c1
fe−f1
fwc2

if α < β and 1 + α < 2β

Based on the above three remarks, one can see that the quantity ρ̂f1,f2−δT diverges to negative
infinity and the quantity ρ̂f1,f2 − γT diverges to positive infinity. In other words, the estimated
value of ρ̂f1,f2 is bounded by δT and γT . Furthermore, the quantity ρ̂f1,f2−1 diverges to positive
infinity when T1 ∈ N0 and T2 ∈ B and negative infinity when T1 ∈ C and T2 ∈ N1.

Lemma B.9 To obtain the asymptotic behavior of the Dickey-Fuller t-statistic, we first obtain
the equation standard error of the regression over [T1, T2] is

σ̂f1f2 =

T−1w
T2∑
j=T1

(
X̃j − ρ̂f1,f2X̃j−1

)2
1/2

.

(1) When T1 ∈ N0 and T2 ∈ B,

σ̂2f1f2 = Op

(
T−1δ

2(T2−Te)
T

)
(2) When T1 ∈ N0 and T2 ∈ C,

σ̂2f1f2 =



Op

(
T 2α−2β−1δ

2(Tc−Te)
T

)
if α > β and 1 + β < 2α

Op

(
T−βδ

2(Tc−Te)
T

)
if α > β and 1 + β > 2α

Op

(
T−αδ

2(Tc−Te)
T

)
if α < β and 1 + α > 2β

Op

(
T 2β−2α−1δ

2(Tc−Te)
T

)
if α < β and 1 + α < 2β

(3) When T1 ∈ N0 and T2 ∈ N1,

σ̂2f1f2 ∼a



Op

(
T 2α−2β−1δ

2(Tc−Te)
T

)
if α > β and 1 + β < 2α

Op

(
T−βδ

2(Tc−Te)
T

)
if α > β and 1 + β > 2α

Op

(
T−αδ

2(Tc−Te)
T

)
if α < β and 1 + α > 2β

Op

(
T 2β−2α−1δ

2(Tc−Te)
T

)
if α < β and 1 + α < 2β

.

(4) When T1 ∈ B and T2 ∈ C,

σ̂2f1f2 ∼a



Op

(
T 2α−2β−1δ

2(Tc−Te)
T

)
if α > β and 1 + β < 2α

Op

(
T−βδ

2(Tc−Te)
T

)
if α > β and 1 + β > 2α

Op

(
T−αδ

2(Tc−Te)
T

)
if α < β and 1 + α > 2β

Op

(
T 2β−2α−1δ

2(Tc−Te)
T

)
if α < β and 1 + α < 2β

.
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(5) When T1 ∈ B and T2 ∈ N1,

σ̂2f1f2 ∼a



Op

(
T 2α−2β−1δ

2(Tc−Te)
T

)
if α > β and 1 + β < 2α

Op

(
T−βδ

2(Tc−Te)
T

)
if α > β and 1 + β > 2α

Op

(
T−αδ

2(Tc−Te)
T

)
if α < β and 1 + α > 2β

Op

(
T 2β−2α−1δ

2(Tc−Te)
T

)
if α < β and 1 + α < 2β

(6) When T1 ∈ C and T2 ∈ N1,

σ̂2f1f2 ∼a

{
Op
(
T 1−2β

)
if α > β

Op

(
T β−2αδ

2(Tc−Te)
T γ

2(T1−Tc)
T

)
if α < β

.

The asymptotic distribution of the Dickey-Fuller t statistic can be calculated as follows

DF tf1,f2 =

(∑T2
j=T1

X̃2
j−1

σ̂2f1f2

)1/2 (
ρ̂f1,f2 − 1

)
.

Notice that the sign of the DF statistics depend on that of ρ̂f1,f2 − 1.

Remark 4 (1)When T1 ∈ N0 and T2 ∈ B,

DF tf1,f2 =

(∑T2
j=T1

X̃2
j−1

σ̂2f1f2

)1/2 (
ρ̂f1,f2 − 1

)
= Op

(
T 1−α/2

)
→ +∞.

When T1 ∈ C and T2 ∈ N1

DF tf1,f2 =

(∑T2
j=T1

X̃2
j−1

σ̂2f1f2

)1/2 (
ρ̂f1,f2 − 1

)
=

{
Op
(
T 1/2

)
→ −∞ if α > β

Op
(
T 1/2+α−β

)
→ −∞ if α < β

.

When T1 ∈ N0 and T2 ∈ C

DF tf1,f2 =

(∑T2
j=T1

X̃2
j−1

σ̂2f1f2

)1/2 (
ρ̂f1,f2 − 1

)
=


Op
(
Tα/2

)
→ −∞ if α > β and 1 + β < 2α

Op
(
T (1−α+β)/2

)
→ −∞ if α > β and 1 + β > 2α

Op
(
T (1−β+α)/2

)
→ −∞ if α < β and 1 + α > 2β

Op
(
T β/2

)
→ +∞ if α < β and 1 + α < 2β

.

For all other cases

DF tf1,f2 =

(∑T2
j=T1

X̃2
j−1

σ̂2f1f2

)1/2 (
ρ̂f1,f2 − 1

)
=


Op
(
Tα/2

)
→ −∞ if α > β and 1 + β < 2α

op
(
T (1−α+β)/2

)
if α > β and 1 + β > 2α

op
(
T (1−β+α)/2

)
if α < β and 1 + α > 2β

Op
(
T β/2

)
→ +∞ if α < β and 1 + α < 2β

.
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Given that f2 = f and f1 ∈ [0, f − f0], the asymptotic behavior of the backward sup DF
statistic under the alternative hypothesis are:

BSDFf (f0) ∼



Ff (W, f0) if f ∈ N0
Op
(
T 1−α/2

)
→ +∞ if f ∈ B

Op
(
Tω(α,β)

)
=


Op
(
Tα/2

)
→ −∞ if α > β and 1 + β < 2α

Op
(
T (1−α+β)/2

)
→ −∞ if α > β and 1 + β > 2α

Op
(
T (1−β+α)/2

)
→ −∞ if α < β and 1 + α > 2β

Op
(
T β/2

)
→ +∞ if α < β and 1 + α < 2β

if f ∈ C

This proves Theorem 3.2. Following the standard probability arguments (see PSY), we deduce

that Pr
{
|f̂e − fe| > η

}
→ 0 and Pr

{
|f̂c − fc| > γ

}
→ 0 for any η, γ > 0 as T → ∞, provided

that 
Tα/2

scvβT
+ scvβT

T 1−α/2
→ 0 if α > β and 1 + β < 2α

T (1−α+β)/2

scvβT
+ scvβT

T 1−α/2
→ 0 if α > β and 1 + β > 2α

T (1−β+α)/2

scvβT
+ scvβT

T 1−α/2
→ 0 if α < β and 1 + α > 2β

Tβ/2

scvβT
+ scvβT

T 1−α/2
→ 0 if α < β and 1 + α < 2β

.

Therefore, f̂e and f̂c are consistent estimators of fe and fc. This proves Theorem 3.3.

B.3 Dating Bubble Contractions

Define the demeaned quantity as X̃∗t ≡ X∗t − 1
τw

∑τ2
j=τ1

X∗j . Since τw = Tw and
∑τ2

j=τ1
X∗j =∑T2

i=T1
Xi, we have

X̃∗t = X∗t −
1

Tw

T2∑
j=T1

X∗j = XT+1−t −
1

Tw

T2∑
i=T1

Xi = X̃T+1−t.

Based on this linkage, we derive the next two lemmas.

Lemma B.10 Quadratic terms in X̃∗t behave as follows.
(1) For τ1 ∈ B and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗2j−1 =

T2∑
j=T1

X̃2
j+1 ∼a T 1+αδ

2(T2−Te)
T

1

2c1
B (fe)

2 .

(2) For τ1 ∈ C and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗2j−1 =

T2∑
j=T1

X̃2
j+1 ∼a

{
T 1+αδ

2(Tc−Te)
T

1
2c1
B (fe)

2 if α > β

T 1+βδ
2(Tc−Te)
T

1
2c2
B (fe)

2 if α < β
.
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(3) For τ1 ∈ N1 and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗2j−1 =

T2∑
j=T1

X̃2
j+1 ∼a

{
T 1+αδ

2(Tc−Te)
T

1
2c1
B (fe)

2 if α > β

T 1+βδ
2(Tc−Te)
T

1
2c2
B (fe)

2 if α ≤ β
.

(4) For τ1 ∈ C and τ2 ∈ B,

τ2∑
j=τ1

X̃∗2j−1 =

T2∑
j=T1

X̃2
j+1 ∼a

{
T 1+αδ

2(Tc−Te)
T

1
2c1
B (fe)

2 if α > β

T 1+βδ
2(Tc−Te)
T

1
2c2
B (fe)

2 if α < β
.

(5) For τ1 ∈ N1 and τ2 ∈ B,

τ2∑
j=τ1

X̃∗2j−1 =

T2∑
j=T1

X̃2
j+1 ∼a

{
T 1+αδ

2(Tc−Te)
T

1
2c1
B (fe)

2 if α > β

T 1+βδ
2(Tc−Te)
T

1
2c2
B (fe)

2 if α < β
.

(6) For τ1 ∈ N1 and τ2 ∈ C,

τ2∑
j=τ1

X̃∗2j−1 =

T2∑
j=T1

X̃2
j+1 ∼a

 T 2 (f2 − fr)
{∫ f2

fr
[B (s)−B (fr)]

2 ds− f2−fr
fw

[∫ f2
fr

[B (s)−B (fr)] ds
]2}

if α > β

T 1+βδ
2(Tc−Te)
T γ

2(T1−Tc)
T

1
2c2
B (fe)

2 if α < β

.

Lemma B.11 Cross-product terms involving X̃∗t and vt behave as follows.
(1) For τ1 ∈ B and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗j−1vj ∼a −T (1+α)/2δT2−TeT Xc1B (fe) .

(2) For τ1 ∈ C and τ2 ∈ N0,
τ2∑
j=τ1

X̃∗j−1vj ∼a
{
−T (1+α)/2δTc−TeT B (fe)Xc1 if α > β

−T (1+β)/2δTc−TeT B (fe)Xc2 if α < β
.

(3) For τ1 ∈ N1 and τ2 ∈ N0,
τ2∑
j=τ1

X̃j−1vj ∼a
{
−T (1+α)/2δTc−TeT B (fe)Xc1 if α > β

−T (1+β)/2δTc−TeT B (fe)Xc2 if α < β
.

(4) For τ1 ∈ C and τ2 ∈ B,
τ2∑
j=τ1

X̃∗j−1vj ∼a
{
−T (1+α)/2δTc−TeT B (fe)Xc1 if α > β

−T (1+β)/2δTc−TeT B (fe)Xc2 if α < β
.
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(5) For τ1 ∈ C and τ2 ∈ N0,
τ2∑
j=τ1

X̃∗j−1vj ∼a
{
−T (1+α)/2δTc−TeT B (fe)Xc1 if α > β

−T (1+β)/2δTc−TeT B (fe)Xc2 if α < β
.

(6) For τ1 ∈ C and τ2 ∈ N1,

τ2∑
j=τ1

X̃∗j−1vj ∼a


−T

{
1
2 [B (f2)−B (fr)]

2 + 1
2 (f2 − fr)σ2

−f2−fr
fw

[B (f2)− 2B (fr) +B (f1)]
∫ f2
fr

[B (s)−B (fr)] ds
} if α > β

−T (1+β)/2γT1−TcT δTc−TeT B (fe)Xc2 if α < β

Lemma B.12 Cross-product terms involving X̃∗j−1 and X̃
∗
j − γ−1T X̃∗j−1 behave as follows.

(1) For τ1 ∈ B and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗j−1

(
X̃∗j − γ−1T X̃∗j−1

)
∼a

{
−T 1+α−βδ2(T2−Te)T

c2
2c1
B (fe)

2 if α > β

−Tδ2(T2−Te)T
1
2B (fe)

2 if α < β
.

(2) For τ1 ∈ C and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗j−1

(
X̃∗j − γ−1T X̃∗j−1

)
∼a


−T 1+α−βδ2(Tc−Te)T

c2
2c1
B (fe)

2 if α > β

−Tδ2(Tc−Te)T
1
2B (fe)

2 if α < β and 1 + α > 2β

−T 2β−αδ2(Tc−Te)T c1
fc−fe
fwc22

B (fe)
2 if α < β and 1 + α < 2β

.

(3) For τ1 ∈ N1 and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗j−1

(
X̃∗j − γ−1T X̃∗j−1

)
∼a


−T 1+α−βδ2(Tc−Te)T

c2
2c1
B (fe)

2 if α > β

−Tδ2(Tc−Te)T
1
2B (fe)

2 if α < β and 1 + α > 2β

−T 2β−αδ2(Tc−Te)T c1
fc−fe
fwc22

B (fe)
2 if α < β and 1 + α < 2β

.

(4) For τ1 ∈ C and τ2 ∈ B,

τ2∑
j=τ1

X̃∗j−1

(
X̃∗j − γ−1T X̃∗j−1

)
∼a


−T 1+α−βδ2(Tc−Te)T

c2
2c1
B (fe)

2 if α > β

−Tδ2(Tc−Te)T
1
2B (fe)

2 if α < β and 1 + α > 2β

−T 2β−αδ2(Tc−Te)T c1
fc−f1
fwc22

B (fe)
2 if α < β and 1 + α < 2β

.

(5) For τ1 ∈ N1 and τ2 ∈ B,

τ2∑
j=τ1

X̃∗j−1

(
X̃∗j − γ−1T X̃∗j−1

)
∼a


−T 1+α−βδ2(Tc−Te)T

c2
2c1
B (fe)

2 if α > β

−Tδ2(Tc−Te)T
1
2B (fe)

2 if α < β and 1 + α > 2β

−T 2β−αδ2(Tc−Te)T c1
fc−f1
fwc22

B (fe)
2 if α < β and 1 + α < 2β

.
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(6) For τ1 ∈ N1 and τ2 ∈ C,
τ2∑
j=τ1

X̃∗j−1

(
X̃∗j − γ−1T X̃∗j−1

)

∼ a

 −T 2−βc2 (f2 − fr)
{∫ f2

fr
[B (s)−B (fr)]

2 ds+ (f2−fr)(f2−fr−2fw)
f2w

[∫ f2
fr

[B (s)−B (fr)] ds
]2}

if α > β

−T βδ2(Tc−Te)T γ
2(T1−Tc)
T

f2−fr
fwc2

B (fe)
2 if α < β

.

Lemma B.13 The sums of cross-product of X̃∗j−1 and X̃
∗
j − δ−1T X̃∗j−1 behave as follows.

(1) For τ1 ∈ B and τ2 ∈ N0,
τ2∑
j=τ1

X̃∗j−1

(
X̃∗j − δ−1T X̃∗j−1

)
∼a Tαδ2(T2−Te)T

fe − f1
fw

B (fe)
2 .

(2) For τ1 ∈ C and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗j−1

(
X̃∗j − δ−1T X̃∗j−1

)
∼a


T 2α−βδ

2(Tc−Te)
T c2

f2−fc
fwc21

B (fe)
2 if α > β and 1 + β < 2α

Tδ
2(Tc−Te)
T

1
2B (fe)

2 if α > β and 1 + β > 2α

T 1+β−αδ
2(Tc−Te)
T

c1
2c2
B (fe)

2 if α < β

.

(3) For τ1 ∈ N1 and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗j−1

(
X̃∗j − δ−1T X̃∗j−1

)
∼a


T 2α−βδ

2(Tc−Te)
T c2

fr−fc
fwc21

B (fe)
2 if α > β and 1 + β < 2α

Tδ
2(Tc−Te)
T

1
2B (fe)

2 if α > β and 1 + β > 2α

T 1+β−αδ
2(Tc−Te)
T

c1
2c2
B (fe)

2 if α < β

.

(4) For τ1 ∈ C and τ2 ∈ B,

τ2∑
j=τ1

X̃∗j−1

(
X̃∗j − δ−1T X̃∗j−1

)
∼a


T 2α−βδ

2(Tc−Te)
T c2

f2−fc
fwc21

B (fe)
2 if α > β and 1 + β < 2α

Tδ
2(Tc−Te)
T

1
2B (fe)

2 if α > β and 1 + β > 2α

T 1+β−αδ
2(Tc−Te)
T

c1
2c2
B (fe)

2 if α < β

.

(5) For τ1 ∈ N1 and τ2 ∈ B,

τ2∑
j=τ1

X̃∗j−1

(
X̃∗j − δ−1T X̃∗j−1

)
∼a


T 2α−βδ

2(Tc−Te)
T c2

fr−fc
fwc21

B (fe)
2 if α > β and 1 + β < 2α

Tδ
2(Tc−Te)
T

1
2B (fe)

2 if α > β and 1 + β > 2α

T 1+β−αδ
2(Tc−Te)
T

c1
2c2
B (fe)

2 if α < β

.

(6) For τ1 ∈ N1 and τ2 ∈ C,
τ2∑
j=τ1

X̃∗j−1

(
X̃∗j − δ−1T X̃∗j−1

)
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∼ a

 T 2−αc1 (f2 − fr)
{∫ f2

fr
[B (s)−B (fr)]

2 ds+ (f2−fr)(f2−fr−2fw)
f2w

[∫ f2
fr

[B (s)−B (fr)] ds
]2}

if α > β

T 2β−αδ
2(Tc−Te)
T γ

2(T1−Tc)
T c1

f2−fr
fwc22

B (fe)
2 if α < β

.

Lemma B.14 The sums of cross-product of X̃∗j−1 and X̃
∗
j − X̃∗j−1 behave as follows.

(1) For τ1 ∈ B and τ2 ∈ N0,
τ2∑
j=τ1

X̃∗j−1

(
X̃∗j − X̃∗j−1

)
∼a Tδ2(T2−Te)T

1

2
B (fe)

2 .

(2) For τ1 ∈ C and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗j−1

(
X̃∗j − X̃∗j−1

)
∼a



T 2α−βδ
2(Tc−Te)
T c2

f2−fc
fwc21

B (fe)
2 if α > β and 1 + β < 2α

op

(
Tδ

2(Tc−Te)
T

)
f α > β and 1 + β > 2α

op

(
Tδ

2(Tc−Te)
T

)
if α < β and 1 + α > 2β

−T 2β−αδ2(Tc−Te)T c1
fc−fe
fwc22

B (fe)
2 if α < β and 1 + α < 2β

.

(3) For τ1 ∈ N1 and τ2 ∈ N0,

τ2∑
j=τ1

X̃∗j−1

(
X̃∗j − X̃∗j−1

)
∼a



T 2α−βδ
2(Tc−Te)
T c2

f2−fc
fwc21

B (fe)
2 if α > β and 1 + β < 2α

op

(
Tδ

2(Tc−Te)
T

)
f α > β and 1 + β > 2α

op

(
Tδ

2(Tc−Te)
T

)
if α < β and 1 + α > 2β

−T 2β−αδ2(Tc−Te)T c1
fc−fe
fwc22

B (fe)
2 if α < β and 1 + α < 2β

.

(4) For τ1 ∈ C and τ2 ∈ B,

τ2∑
j=τ1

X̃∗j−1

(
X̃∗j − X̃∗j−1

)
∼a



T 2α−βδ
2(Tc−Te)
T c2

f2−fc
fwc21

B (fe)
2 if α > β and 1 + β < 2α

op

(
Tδ

2(Tc−Te)
T

)
f α > β and 1 + β > 2α

op

(
Tδ

2(Tc−Te)
T

)
if α < β and 1 + α > 2β

−T 2β−αδ2(Tc−Te)T c1
fc−fe
fwc22

B (fe)
2 if α < β and 1 + α < 2β

.

(5) For τ1 ∈ N1 and τ2 ∈ B,

τ2∑
j=τ1

X̃∗j−1

(
X̃∗j − X̃∗j−1

)
∼a


T 2α−βδ

2(Tc−Te)
T

f2−fr
fwc2

B (fe)
2 if α > β and 1 + β < 2α

−Tδ2(Tc−Te)T
1
2B (fe)

2 f α > β and 1 + β > 2α

−Tδ2(Tc−Te)T
1
2B (fe)

2 if α < β and 1 + α > 2β

−T 2β−αδ2(Tc−Te)T c1
fc−f1
fwc22

B (fe)
2 if α < β and 1 + α < 2β

(6) For τ1 ∈ N1 and τ2 ∈ C,
τ2∑
j=τ1

X̃∗j−1

(
X̃∗j − X̃∗j−1

)
∼a

 T 2−βc2
(fr−f1)(f2−fr)2

f2w

[∫ f2
fr

[B (s)−B (fr)] ds
]2

if α > β

Tδ
2(Tc−Te)
T γ

2(T1−Tc)
T

1
2B (fe)

2 if α < β
.
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B.3.1 Test asymptotics

The fitted regression model for the recursive unit root tests is

X∗t = α̂+ ρ̂g1,g2X
∗
t−1 + v̂t,

where the intercept α̂ and slope coeffi cient ρ̂g1,g2 are obtained using data over the subperiod
[g1, g2].

Remark 5 Based on Lemma B.10 and Lemma B.12, we can obtain limit forms of γ̂−1T − γ
−1
T

using

ρ̂g1,g2 − γ
−1
T =

∑τ2
j=τ1

X̃∗j−1

(
X̃∗j − γ−1T X̃∗j−1

)
∑τ2

j=τ1
X̃∗2j−1

.

When τ1 ∈ B and τ2 ∈ N0,

ρ̂g1,g2 − γ
−1
T ∼a

{
−c2T−β if α > β
−c1T−α if α < β

.

when τ1 ∈ N1 and τ2 ∈ C,

ρ̂g1,g2 − γ
−1
T ∼a


−T−βc2

{∫ f2
fr
[B(s)−B(fr)]2ds+ (f2−fr)(f2−fr−2fw)

f2w

[∫ f2
fr
[B(s)−B(fr)]ds

]2}
{∫ f2

fr
[B(s)−B(fr)]2ds− f2−frfw

[∫ f2
fr
[B(s)−B(fr)]ds

]2} if α > β

−2T−1 f2−frfw
if α < β

for all other cases, we have

ρ̂g1,g2 − γ
−1
T ∼a


−T−βc2 if α > β
−T−βc2 if α < β and 1 + α > 2β

−T β−α−12c1 fc−fefwc2
if α < β and 1 + α < 2β

.

Remark 6 Based on Lemma B.10 and Lemma B.13, we can obtain limit forms of ρ̂g1,g2 − δ
−1
T

using

ρ̂g1,g2 − δ
−1
T =

∑τ2
j=τ1

X̃∗j−1

(
X∗j − δ−1T X∗j−1

)
∑τ2

j=τ1
X̃∗2j−1

.

When τ1 ∈ B and τ2 ∈ N0,
ρ̂g1,g2 − δ

−1
T ∼a

1

T
2c1

fe − f1
fw

;

When τ1 ∈ C and τ2 ∈ N0,

ρ̂g1,g2 − δ
−1
T ∼a

 T−α
c1

{∫ f2
fr
[B(s)−B(fr)]2ds+ (f2−fr)(f2−fr−2fw)

f2w

[∫ f2
fr
[B(s)−B(fr)]ds

]2}
∫ f2
fr
[B(s)−B(fr)]2ds− f2−frfw

[∫ f2
fr
[B(s)−B(fr)]ds

]2 if α > β

2T β−α−1c1
f2−fr
fwc2

if α < β

;
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For all other cases

ρ̂g1,g2 − δ
−1
T ∼a


Tα−β−1K if α > β and 1 + β < 2α
c1T

−α if α > β and 1 + β > 2α
c1T

−α if α < β
;

where K is a constant which equals 2c1c2
fr−fc
fwc21

when τ1 ∈ N1 and τ2 ∈ N0 and when τ1 ∈ N1 and
τ2 ∈ B and equals 2c1c2

f2−fc
fwc21

when τ1 ∈ C and τ2 ∈ B and when τ1 ∈ C and τ2 ∈ N0.

Remark 7 Based on Lemma B.10 and Lemma B.13, we can obtain limit forms of ρ̂g1,g2−1 using

ρ̂g1,g2 − 1 =

∑τ2
j=τ1

X̃∗j−1

(
X∗j −X∗j−1

)
∑τ2

j=τ1
X̃∗2j−1

.

When τ1 ∈ B and τ2 ∈ N0,
ρ̂g1,g2 − 1 ∼a

c1
Tα

.

when τ1 ∈ N1 and τ2 ∈ C,

ρ̂g1,g2 − 1˜

 T−βc2

(fr−f1)(f2−fr)
f2w

[∫ f2
fr
[B(s)−B(fr)]ds

]2
∫ f2
fr
[B(s)−B(fr)]2ds− f2−frfw

[∫ f2
fr
[B(s)−B(fr)]ds

]2 if α > β

T−βc2 if α < β

when τ1 ∈ N1 and τ2 ∈ B,

ρ̂g1,g2 − 1 ∼a


Tα−β−12c1

f2−fr
fwc2

if α > β and 1 + β < 2α

−c1T−α f α > β and 1 + β > 2α
−T−βc2 if α < β and 1 + α > 2β

−T β−α−12c1 fc−f1fwc2
if α < β and 1 + α < 2β

for all other cases, we have

ρ̂g1,g2 − 1 ∼a


Tα−β−12c1

f2−fr
fwc2

if α > β and 1 + β < 2α

op (T−α) f α > β and 1 + β > 2α
op
(
T−β

)
if α < β and 1 + α > 2β

−T β−α−12c1 fc−f1fwc2
if α < β and 1 + α < 2β

Based on the above three remarks, one can see that the quantity ρ̂g1,g2 − γ−1T diverges to
negative infinity and the quantity ρ̂g1,g2 − δ

−1
T diverges to positive infinity. In other words, the

estimated value of ρ̂g1,g2 is bounded by γ
−1
T and δ−1T . Furthermore, the quantity ρ̂g1,g2−1 diverges

to positive infinity when τ1 ∈ B and τ2 ∈ N0 and when τ1 ∈ N1 and τ2 ∈ C. For all other cases,
the quantity ρ̂g1,g2 − 1 diverges to positive infinity when bubble collapsing speed is much faster
than expansion rate (i.e. 1 + β < 2α) and to negative infinity otherwise.
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Lemma B.15 To obtain the asymptotic behavior of the Dickey-Fuller t-statistic, we first obtain
the equation standard error of the regression over [T1, T2] is

σ̂g1g2 =

τ−1w
τ2∑
j=τ1

(
X̃∗j − ρ̂g1,g2X̃

∗
j−1

)2
1/2

.

(1) When τ1 ∈ B and τ2 ∈ N0,

σ̂2g1g2 = Op

(
T−1δ

2(T2−Te)
T

)
.

(2) When τ1 ∈ C and τ2 ∈ N0,

σ̂2g1,g2 =



Op

(
T 2α−2β−1δ

2(Tc−Te)
T

)
if α > β and 1 + β < 2α

Op

(
T−βδ

2(Tc−Te)
T

)
f α > β and 1 + β > 2α

Op

(
T−αδ

2(Tc−Te)
T

)
if α < β and 1 + α > 2β

Op

(
T 2β−2α−1δ

2(Tc−Te)
T

)
if α < β and 1 + α < 2β

(3) When τ1 ∈ N1 and τ2 ∈ N0,

σ̂2g1,g2 =



Op

(
T 2α−2β−1δ

2(Tc−Te)
T

)
if α > β and 1 + β < 2α

Op

(
T−βδ

2(Tc−Te)
T

)
f α > β and 1 + β > 2α

Op

(
T−αδ

2(Tc−Te)
T

)
if α < β and 1 + α > 2β

Op

(
T 2β−2α−1δ

2(Tc−Te)
T

)
if α < β and 1 + α < 2β

(4)When τ1 ∈ C and τ2 ∈ B,

σ̂2g1,g2 =



Op

(
T 2α−2β−1δ

2(Tc−Te)
T

)
if α > β and 1 + β < 2α

Op

(
T−βδ

2(Tc−Te)
T

)
f α > β and 1 + β > 2α

Op

(
T−αδ

2(Tc−Te)
T

)
if α < β and 1 + α > 2β

Op

(
T 2β−2α−1δ

2(Tc−Te)
T

)
if α < β and 1 + α < 2β

(5) When τ1 ∈ N1 and τ2 ∈ B,

σ̂2g1,g2 =



Op

(
T 2α−2β−1δ

2(Tc−Te)
T

)
if α > β and 1 + β < 2α

Op

(
T−βδ

2(Tc−Te)
T

)
f α > β and 1 + β > 2α

Op

(
T−αδ

2(Tc−Te)
T

)
if α < β and 1 + α > 2β

Op

(
T 2β−2α−1δ

2(Tc−Te)
T

)
if α < β and 1 + α < 2β
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(6) When τ1 ∈ N1 and τ2 ∈ C,

σ̂2g1,g2 =

{
Op
(
T 1−2β

)
if α > β

Op

(
T−1δ

2(Tc−Te)
T γ

2(T1−Tc)
T

)
if α < β

The asymptotic distribution of the Dickey-Fuller t statistic

DF tg1,g2 =

(∑τ2
j=τ1

X̃∗2j−1

σ̂2

)1/2 (
ρ̂g1,g2 − 1

)
can be calculated as follows. Notice that the sign of the DF statistic is determined by the quantity
ρ̂g1,g2 − 1.

Remark 8 When τ1 ∈ B and τ2 ∈ N0,

DF tg1,g2 =

(∑τ2
j=τ1

X̃∗2j−1

σ̂2

)1/2 (
ρ̂g1,g2 − 1

)
= Op

(
T 1−α/2

)
→ +∞

when τ1 ∈ N1 and τ2 ∈ C,

DF tg1,g2 =

(∑τ2
j=τ1

X̃∗2j−1

σ̂2

)1/2 (
ρ̂g1,g2 − 1

)
=

{
Op
(
T 1/2

)
→ +∞ if α > β

Op
(
T 1−β/2

)
→ +∞ if α < β

.

when τ1 ∈ N1 and τ2 ∈ B,

DF tg1,g2 =

(∑τ2
j=τ1

X̃∗2j−1

σ̂2

)1/2 (
ρ̂g1,g2 − 1

)
∼a


Op
(
Tα/2

)
→ +∞ if α > β and 1 + β < 2α

Op
(
T (1−α+β)/2

)
→ −∞ if α > β and 1 + β > 2α

Op
(
T (1−β+α)/2

)
→ −∞ if α < β and 1 + α > 2β

Op
(
T β/2

)
→ −∞ if α < β and 1 + α < 2β

.

for all other cases

DF tg1,g2 =

(∑τ2
j=τ1

X̃∗2j−1

σ̂2

)1/2 (
ρ̂g1,g2 − 1

)
∼a


Op
(
Tα/2

)
→ +∞ if α > β and 1 + β < 2α

op
(
T (1−α+β)/2

)
if α > β and 1 + β > 2α

op
(
T (1−β+α)/2

)
if α < β and 1 + α > 2β

Op
(
T β/2

)
→ −∞ if α < β and 1 + α < 2β

.

Given that g2 = g and g1 ∈ [0, g − g0], the asymptotic behavior of the backward sup DF
statistic under the alternative hypothesis are:

BSDF ∗g (g0) ∼a



Fg (W, g0) if g ∈ N1{
Op
(
T 1/2

)
→ +∞ if α > β

Op
(
T 1−β/2

)
→ +∞ if α < β

if g ∈ C

Op
(
Tω
∗(α,β)

)
=


Op
(
Tα/2

)
→ +∞ if α > β and 1 + β < 2α

Op
(
T (1−α+β)/2

)
→ −∞ if α > β and 1 + β > 2α

Op
(
T (1−β+α)/2

)
→ −∞ if α < β and 1 + α > 2β

Op
(
T β/2

)
→ −∞ if α < β and 1 + α < 2β

if g ∈ B

;
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This proves Theorem 3.4. Following the standard probability arguments (see PSY), we deduce
that Pr {|ĝe − ge| > η} → 0 and Pr {|ĝc − gc| > γ} → 0 for any η, γ > 0 as T →∞, provided that

Tα/2

scv∗(βT )
+ scv∗(βT )

T 1/2
→ 0 if α > β and 1 + β < 2α

T (1−α+β)/2

scv∗(βT )
+ scv∗(βT )

T 1/2
→ 0 if α > β and 1 + β > 2α

T (1−β+α)/2

scv∗(βT )
+ scv∗(βT )

T 1−β/2
→ 0 if α < β and 1 + α > 2β

Tβ/2

scv∗(βT )
+ scv∗(βT )

T 1−β/2
→ 0 if α < β and 1 + α < 2β

.

Therefore, f̂r = 1− ĝe and f̂c = 1− ĝc are consistent estimators of fr and fc. This proves Theorem
3.5.
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