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a  b  s  t  r  a  c  t

Favorite–longshot  bias  (FLB)  refers  to an  observed  tendency  whereby  “longshots”  are  over-
valued  and  favorites  are  undervalued.  We  offer  an  evolutionary  explanation  for  FLB  in
pari-mutuel  betting  using  a simple  market  model.  A bettor  is  forced  to  quit  with  some
probability  if his total  net  gain  in  one  day  is  negative.  Because  of  a positive  track  take,  the
expected returns  of any  strategy  are negative,  and so  every  agent  must  eventually  lose
and  disappear  in  the  long  run.  Those  who  favor  longshots  have  a  better  chance  of  getting
ahead  with  rare but  large  gains,  enabling  them  to  survive  for longer  than  those  who  bet  on
favorites.  This  relative  advantage  results  in overvaluation  of  longshots  in  the  long run.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Favorite–longshot bias (FLB) refers to an observed tendency whereby “longshots” are overvalued and favorites are under-
valued in various market settings. Griffith (1949) first reported that the realized average rates of return from betting on
favorites tend to be robustly and significantly greater than those from betting on long shots in American horse races. A
number of empirical studies have documented that FLB emerges at racetracks in different countries, and in other kinds of
gambling markets as well.1 Moreover, FLB is not restricted to gambling markets. Plott et al. (2003), Axelrod et al. (2009), and
Koessler et al. (2012) investigated pari-mutuel systems experimentally to observe FLB, and Kelly et al. (2012) studied a data
set from the Hurricane Futures Market to find FLB.

Intrigued and inspired by these findings, researchers have proposed several theoretical explanations.2 In early studies,
such as Griffith (1949), FLB is deemed to be a consequence of the misperception of probabilities or the irrationality of
agents. Subsequent studies relate FLB to particular features of agents’ preferences. For instance, Weitzman (1965) considers

� This work was supported by Ishii Memorial Securities Research Promotion Foundation and JSPS KAKENHI Grant Numbers 26245024, 16H02026 and
16K03553. We are very grateful to Aditya Goenka and Marco Ottaviani for insightful comments. We have also benefitted from the comments and suggestions
of  Jingyi Xue and two anonymous referees. The usual disclaimer applies.
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E-mail address: contact10 nabe@nabenavi.net (T. Watanabe).

1 See Thaler and Ziemba (1988) and Hausch and Ziemba (1995) for surveys. Snowberg and Wolfers (2010) found FLB in a very large data set of American
horse  races.

2 Ottaviani and Sørensen (2008) is an excellent review of theoretical attempts.
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preferences for risk taking and Ali (1977) relies on the heterogeneity of beliefs.3 Recent studies, such as Shin (1991), Hurley
and McDonough (1995), and Ottaviani and Sørensen (2010), focus on strategic behavior among both bettors and bookmakers
under asymmetric information.

American racetracks use a pari-mutuel betting system. It has been pointed out that the odds determined in such a
system can be regarded as competitive market prices.4 FLB therefore challenges the classic idea of natural selection of
profit maximizers in competitive markets articulated by several authors such as Alchian (1977) and Friedman (1953). If the
market is dominated by arbitragers who seek expected profits, the law of demand will adjust prices to equate the expected
returns from investment opportunities. In the long run, only profit maximizers will survive. Friedman (1953) states: “Let the
apparent immediate determinant of business behavior be anything at all – habitual reaction, random chance, or whatnot.
Whenever this determinant happens to lead to behavior consistent with rational and informed maximization of returns,
the business will prosper and acquire resources with which to expand; whenever it does not, the business will tend to lose
resources and can be kept in existence only by the addition of resources from outside.”5 That is, the wealth of de facto
profit-maximizing investors will eventually grow to dominate the market, and hence the market will behave as if it consists
solely of profit-maximizing traders in the long run.

The market selection process fueled by the growth of wealth was  formally modeled by Blume and Easley (1992), and then
further examined by several other works that followed. If the same logic is applied to pari-mutuel betting markets, those
who happen to favor lower than average returns, irrespective of the underlying reasons, e.g., misperception, risk preferences,
beliefs, information, or strategic behavior, will be driven out of the markets, and thus FLB will not be observed in the long
run. The previous theoretical works do not explain why these characteristics are relevant to the growth dynamics.

The aim of this paper is to understand why the compelling idea of market selection does not work. That is, we  want to
reconcile the logic of wealth dynamics with FLB to explain why  agents who  choose low expected returns tend to matter
in the long run. For this purpose, we establish a simple evolutionary model of pari-mutuel betting markets for horse races.
There are two horses in every race, and one has a higher probability of winning than the other. There is a continuum of
price-taking agents who are expected utility maximizers.6 Agents’ preferences belong to one of two  types, where one is
more risk loving than the other. We  will analyze more general preferences, but for now, to make the exposition simpler, let
us assume that all agents know the objective winning probabilities, and one type is risk neutral and the other is risk loving.

Each agent bets one unit, and after the track take is subtracted, the remaining pool of bets is paid out to the winning
bettors. The resulting odds can be seen as market clearing prices, and in a competitive equilibrium, all risk-neutral agents bet
on the favorite while all risk-loving agents bet on the longshot if FLB is exhibited. Thus, the risk-neutral agents tend to gain
more than the risk-loving agents on average because they never bet on an overvalued horse. However, note that because of
the track take, the wealth of neither type grows if the bias is only moderate. Every gambler loses in the long run. Hence, the
long-run growth of wealth does not constitute a reasonable criterion for survival. This is the crucial point of departure.

We therefore postulate the following criterion: an agent is forced to exit the market with some probability if he does not
win more than some specified amount. For the sake of exposition, let us assume that the specified amount is 0; that is, after
betting on some races, if an agent’s total net gain is positive at the end of the day, he will return to the racetrack the next day
with a fresh bank. However, if not, no matter what his past experiences on the races might be, the agent will think about
quitting, and there is some probability that he actually does quit. Then, there will be new agents from a pool of potential
agents to replace those who quit, similar to the addition of resources from outside, and the next day of races begins.

We show that in this simple environment, FLB is exhibited in the long run, under reasonable assumptions. The basic idea
is very simple. Suppose FLB does not occur, so that the expected net returns from the favorite and the long shot are the same.
However, this equality implies that the common return is negative because of the track take. Note that this also implies that
the variance in returns is larger for the longshot than for the favorite. Then, the probability of a positive return is larger for
the longshot bet because of the higher variance. For instance, in an environment where a one dollar bet results in a return
of 80 cents on average, if one keeps betting on a horse that wins with a very high probability, the realized average returns
per race will be concentrated around 80 cents. Therefore, the chance of making more than one dollar on average is very
small. Conversely, if one keeps betting on a long shot, the return will still be 80 cents on average, but the returns are more
spread out because of occasional large gains (see, Fig. 1 for illustration). Therefore, the chance of achieving a return of more
than one dollar per race is larger. Hence without FLB, the risk-loving agents are a better fit to the environment under our
criterion. FLB must occur to reduce the market fitness of risk-loving agents so that both types are equally fit in a long-run
steady state.

We emphasize that both types survive in the long run, and it is the heterogeneity of the preferences of bettors that induces
FLB in a steady state. The heterogeneity in our model can arise from various combinations of heterogeneous risk attitudes
and beliefs. Therefore, in principle our analysis accommodates the static analysis relying on heterogeneous risk attitudes
such as Weitzman (1965) and Quandt (1986), as well as those relying on heterogeneous beliefs such as Ali (1977), Blough

3 See also Snowberg and Wolfers (2010).
4 See Snyder (1978).
5 Friedman (Friedman, 1953), page 22.
6 The model can accommodate more general non-expected utility maximizers.
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Fig. 1. Distribution of average returns without FLB.

(1994) and Watanabe (1997). In other words, our analysis explains why heterogeneity arises despite natural selection, while
the existing literature assumes some degree of persistent heterogeneity a priori.

We do not regard the survival of risk-loving preferences as peculiar or irrational. In an environment where the objective
of a decision-maker is to achieve some difficult target value within a specified period, it is often optimal to select a strategy
to maximize the variance of random outcomes even for a risk-averse decision-maker, as is explained in Dubins and Savage
(1965). When the target is too high to reach by playing safely, it is better to adopt a risky strategy that offers some chance of
success. Therefore, risk lovers are optimizing when no FLB exists, and in this sense, it is not the irrationality of agents that
creates the bias in our model.

We  are also interested in how the size of the long-run bias changes as the size of the track take increases. We  show
that when it is sufficiently small, FLB increases as the track take increases. However, this relation is ambiguous if the track
take is large. Here, the bias might decrease as the track take increases. We  speculate that this might explain why FLB is not
clearly observed at Japanese racetracks where the track take is larger than that in comparable countries.7 Theoretically, this
reversal occurs because a large track take forces a large proportion of agents to exit, and hence the property of the long-run
steady-state population is primarily determined by the property of the potential pool of agents replacing the losers.

The rest of the paper is organized as follows. The basic pari-mutuel market model is set up in Section 2, where we discuss in
detail how it can be viewed as a competitive equilibrium. Section 3 summarizes the properties of the evolutionary dynamics
we consider, taking the exit rule and the replacement rule as exogenously given. The exit criterion that we  propose above
is formally described in Section 4, and we show that FLB occurs as a unique and stable long-run equilibrium. Section 5 is
devoted to a comparative statics exercise, and we conclude with a discussion on the generality of our idea beyond racetracks
in Section 6.

2. Simple pari-mutuel racetrack model

We  begin with a very simple static model of racetracks with a pari-mutuel system. There are two horses, Favorite (F) and
Long shot (L). Horse F wins with probability p and horse L wins with probability 1 − p, where 1/2 < p < 1.

There is a continuum of agents of total size one who  are price takers. Each agent is an expected utility maximizer with
an increasing and continuous von Neumann Morgenstern utility function u with u(0) = 0 and lim

z→∞
u (z) = +∞, and has a

subjective probability q ∈ (0, 1) on horse F to win. By assumption, each agent must bet a fixed amount  ̌ on either horse F or
horse L. Because we have normalized the total size of agents to be one, the total amount of bets is ˇ.

There is a track take of � per betting unit, 0 ≤ � < 1. That is, ˇ(1 − �) is paid out to the winning bettors. Thus, let B be
the total number of agents who bet on horse F. Then, the gross return per unit bet on F is ˇ(1 − �)/ˇB = (1 − �)/B if F wins.
Similarly, the gross return per unit bet on L is (1 − �)/(1 − B).

The price-taking assumption implies that each agent effectively takes the total bet B on horse F as given because B
completely determines the odds. Each agent bets on the horse with a higher subjective expected utility by assumption. An
agent (u, q) is indifferent between the two horses if

u
(

1 − �

B

)
q = u

(
1 − �

1 − B

)
(1 − q) (1)

holds because we normalize u(0) = 0. Because u is increasing, continuous, and lim
z→∞

u (z) = +∞, there is a unique solution for

the above equation, which we denote by B*(u, q) ∈ [0, 1]. It can be shown that B*(u, q) is increasing in q, and that it increases

7 See Snowberg and Wolfers (2010) and references therein.
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Table  1
Summary of bets of types f and �.

Range of y Equilibrium Type f bet Type � bet

B∗
f

< y B = B∗
f

B∗
f

on F, y − B∗
f

on L on L

B∗
�

≤ y ≤ B∗
f

B = y on F on L

y  < B∗
�

B = B∗
�

on F 1 − B∗
�

on L, B∗
�

− y on F

if u becomes more risk averse when q ≥ 1
2 .8 As u becomes more risk loving, B*(u, q) decreases to its lower bound 1

2 . It is
convenient to regard the limit case B∗ = 1

2 as the variance maximizer, which is a form of extreme risk loving; if an agent is
interested in maximizing the variance of the returns, he will bet on L as long as B > 1

2 .9

Example 1. CRRA utility functions

Suppose that the utility function of agents is represented by the CRRA utility function u(x) = x1−�

1−� . Then,

B∗(u, q) = q1/(1−�)

q1/(1−�) + (1 − q)1/(1−�)
.

If the agents are risk neutral (� = 0), B*(u, q) = q. If the agents are risk loving (� < 0), B*(u, q) < q, and � → −∞ implies B∗(u, q) → 1
2

(i.e., 1
2 corresponds to extremely risk loving). If the agents are risk averse (� > 0), B*(u, q) > q, and � → 1 implies B*(u, q) → 1.

An agent (u, q) bets on F if B < B∗ (u, q) and bets on L if B > B∗ (u, q), and the specific functional forms of u or q are irrelevant
to the agents’ behavior.10 Therefore, from now on, we identify each agent with the corresponding threshold value B*.

We assume that there are two types of agents, with threshold values B∗
f

and B∗
�
, where B∗

f
> B∗

�
. We  call them type f and

type �, respectively. Thus, for instance, when all agents have the same vNM utility function, type f assigns a higher probability
to horse F winning than type � does. When they have the same subjective probability, a type-f agent is more risk averse than
a type-� agent.

Let y, 0 ≤ y ≤ 1, be the number of type-f agents at the racetrack; thus, 1 − y is the number of type-� agents by construction.
Then, parameter y completely characterizes the property of competitive equilibria as follows.

By definition, a competitive equilibrium occurs at B where the total amount of bets on F given B coincides with B itself. The

total amount of bets on L given B is exactly 1 − B by Walras’ law. Clearly, B ∈
[

B∗
�
, B∗

f

]
must hold in equilibrium otherwise all

the agents will bet on the same horse. When B∗
�

≤ y ≤ B∗
f
, B must be equal to y in a competitive equilibrium, where all type-f

agents bet on F and all type-� agents bet on L. When y ≥ B∗
f
, in particular when y = 1, some type-f agents must bet on L, so B

must be equal to B∗
f

in a competitive equilibrium to maintain indifference between F and L. Indeed, B = B∗
f

is an equilibrium
where B∗

f
type-f agents bet on F, y − B∗

F type-F agents bet on L, and all the type-� agents bet on L. Similarly, when y ≤ B∗
�
,

B = B∗
�

is a unique competitive equilibrium. Table 1 summarizes these cases. We  emphasize that it is the threshold values
B∗

f
and B∗

�
that determine the market equilibrium, and so the market might “predict” the objective probability p even when

none of the market participants has a correct belief about p.

At B ∈
[

B∗
�
, B∗

f

]
, the payout per unit bet on horse F is (1 − �)/B with probability p, and that on horse L is (1 − �)/ (1 − B)

with probability 1 − p. The objective expected payouts are equalized when B = p holds. This means that this static market
exhibits FLB in equilibrium, i.e., the expected payout for the favorite F is higher than that for the longshot L, if and only if
B < p.

Although the above characterization is valid for any B∗
�

and B∗
f
, some natural requirements should be added to our model

in order to understand why FLB emerges in the long run despite market selection. FLB should be exhibited in some equilibria
and no bias should arise in others in our model, otherwise our analysis using this model would be vacuous. From Table 1, it
can be seen that the property holds if B∗

f
≥ p> B∗

�
. In addition, if one type is driven out of the market by natural selection, the

market should exhibit no bias, otherwise natural selection is seemingly an inappropriate explanation for FLB. The previous
inequalities imply that type � alone, i.e., when y = 0, would result in FLB, so in effect the market equilibrium should predict
the objective probability when y = 1, which requires B∗

f
= p > B∗

�
. Therefore, we make the following assumption throughout

the rest of this paper:

Assumption 1. B∗
f

= p > B∗
�
.

Assumption 1 holds when type-f agents are risk neutral and have a correct belief about the winning probability of the
favorite, and type-� agents are risk neutral but overestimate the winning probability of the long shot, or also have a correct

8 A proof is given in Appendix A for completeness.
9 Thus, our model accommodates models of both heterogeneous risk attitudes, such as Weitzman (1965) and Quandt (1986), and heterogeneous beliefs,

such  as Ali (1977), Blough (1994), and Watanabe (1997).
10 Thus, we  can readily accommodate a more general nonlinear increasing utility function u (z, q).
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belief but are more risk loving than type-� agents. This may  hold even when both types are risk averse and overestimate
the winning probability of the favorite differently: if they share the same belief, type-f agents are more risk averse than
type-� agents, i.e., type-� agents are relative risk lovers and type-f agents are relatively risk averse. Thus Assumption 1 can
accommodate various kinds of risk preferences and beliefs.

3. Simple evolutionary dynamics and FLB

3.1. The evolutionary model

We  are interested in whether or not FLB arises in the long run. In the setup outlined in the previous section, it is equivalent
to ask whether the fraction of type-f agents is smaller than the winning probability p of the favorite. Therefore, let yt denote
the fraction of type-f agents and 1 − yt denote that of type-� agents on day t where t = 1, 2, .. .. Because the outcome of the
competitive model is uniquely determined by the fraction of type-f agents at the time, it suffices to describe how yt changes
over time as follows.

At the end of each day, some agents are no longer able to bet and quit the racetrack for good. Agents might be forced to
exit for financial reasons, or they might lose interest in betting after a bad experience. We  elaborate on how these factors
are related to the equilibrium odds in the betting market in the next section. Let qf and q� denote the number of type-f and
type-� agents, respectively, quitting the betting market. Because, by definition, the behavior of agents is independent of past
history, we might as well assume that the quit rates on day t depend only on yt. Therefore, we can write qf (y) and q� (y) for
the quit rates when the fraction of type-f agents is y, and we  assume that these are continuous functions on [0, 1], taking
values in (0, 1). By construction, the total number of agents quitting at the end of day t, zt, is given by:

zt = qf (yt)yt + q�(yt)(1 − yt). (2)

There are some natural requirements on the quit rates. First, the performance of each bettor should depend on which
horse he bets on, not his type per se. Therefore, we can use �F and �L to denote the chance of quitting for those who  bet on
horse F and horse L, respectively, and these rates should depend on the equilibrium price B. Because an increase in B makes
the market less favorable for those betting on F and more favorable for those betting on L, it is reasonable to expect that �F

is decreasing and �L is increasing in B.
As can be seen in Table 1, when y ∈

[
B∗

�
, p

]
, B = y holds in equilibrium and all type-f agents bet on F and all type-�

agents bet on L. Consequently, the quit rate for type-f (type-�) agents should equal that for horse F (horse L). Therefore, it
is reasonable to require that qf = �F and q� = �� hold. In contrast, when y > p or B∗

�
> y, the equilibrium odds do not depend

on y, and agents of the same type behave differently in equilibrium. When y > p, B = p holds, and all type-� agents bet on L.
Conversely, the proportion of type-f agents betting on F is p

y , and that of agents betting on L is 1 − p
y . Because the equilibrium

returns on horses are the same as those in the case where y = p, the performance, and thus the quit rate, of an agent should
only depend on which horse he bets on. Because there is a continuum of agents, it seems reasonable to assume that the quit
rate for type-f agents is equal to the average quit rate, p

y �F (p) + (1 − p
y )�L(p), and that for type-� agents is �L(p). A symmetric

argument applies when y < B∗
�
.11

In summary, we make the following assumption throughout the rest of the paper:

Assumption 2. There exist functions �F and �L, defined on
[
B∗

�
, p

]
, where �F is increasing and �L is decreasing, such that

qf(y) and q�(y) can be written as

qf (y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�F

(
B∗

�

)
y < B∗

�
,

�F (y) B∗
�

≤ y ≤ p,

p

y
�F (p) + (1 − p

y
)�L(p) y > p,

ql (y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − B∗
�

1 − y
�L(B∗

�) + (1 − 1 − B∗
�

1 − y
)�F (B∗

�) y < B∗
�
,

�L(y) B∗
�

≤ y ≤ p,

�L(p) y > p.

At the beginning of each day, new agents arrive to keep the total population equal to one. The number of type-f agents
replacing those who have just quit is denoted by r. We  assume that r depends only on the returns on the horses prevailing
on the day, which equivalently means that r depends only on the fraction of type-f agents when y ∈

[
B∗

�
, p

]
. For analytical

convenience, we assume that it is a continuous function of y on [0, 1] and that r(y) ∈ (0, 1) for any y ∈ [0, 1]. We  refer to
function r as the replacement rule.

11 It will become clear that the essence of our analysis remains the same as long aits is some weighted average of �F(p) and �L(p).
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It seems reasonable to assume that r is non-increasing; an increase in y makes the market more crowded with type-f
agents, thus making conditions less favorable for type-f agents, so type-f agents are not encouraged to enter the market.
Therefore, we make the following assumption throughout the rest of the paper:

Assumption 3. (i) r is non-increasing, and (ii) r (y) ≤ y if y ≥ p and r (y) ≥ y if y ≤ B∗
�
.

Condition (ii) above is a mild boundary requirement in our view. For instance, if r (y) > y holds when y > p, type-f agents,
who are already dominant in the market, will welcome an even larger proportion of newcomers, and so the power of market
selection will be exaggerated.

We  offer two examples of the replacement rule which satisfy Assumption 3.

Example 2. simple replicator

New agents are chosen according to the relative fitness of the surviving agents on the previous day, measured by the quit
rates: for y ∈

[
B∗

�
, p

]
,

r(y) = q�(y)
q�(y) + qf (y)

, (3)

where r (y) = r
(

B∗
�

)
if y < B∗

�
and r (y) = r (p) if y > p. Here, the number of new type-f agents increases if type-f agents are

more resilient (i.e., qf is smaller) on the previous day. This can be regarded as an environment in which it is more likely that
the newcomers will adopt the behavior of well-performing agents.12

Example 3. fixed rate

New agents are chosen at random from an underlying pool of potential agents where the proportion of type-f agents is
ı, ı ∈

[
B∗

�
, p

]
: for any y ∈ [0, 1] ,

r(y) = ı. (4)

This may  be interpreted as an environment in which the newcomers do not take their predecessors’ performance into
account.

Assumption 3 is trivially satisfied in Example 3. In Example 2, it is satisfied under Assumption 2 when B∗
�

≤ q�(B∗
�
)

q�(B∗
�
)+qf (B∗

�
)

and q�(p)
q�(p)+qf (p) ≤ p hold.

Now we are ready to describe the population dynamics. The fraction of type-f agents changes from time t to time t + 1 as
follows:

yt+1 = (1 − qf (yt))yt + r(yt)zt. (5)

Substituting (2) into (5), we have an evolutionary dynamics given by

yt+1 = �(yt), t = 1, 2, . . .,  (6)

where the policy function � is given by

�(y) = (1 − qf (y))y + r(y){qf (y))y + q�(y)(1 − y)}
= y − (1 − r(y))qf (y)y + r(y)q�(y)(1 − y).

(7)

To see the long-run outcome of our betting environment, let y* be a steady state of dynamics (6). As discussed in the
previous section, FLB is exhibited in the long run if and only if y* < p holds. Setting y* = yt = yt+1 in equation (6) and collecting
terms, we find that y* ∈ (0, 1) is obtained as a solution to the following equation:

y∗ = r(y∗)q�(y∗)
(1 − r(y∗))qf (y∗) + r(y∗)q�(y∗)

. (8)

Note that y* belongs to (0, 1) because 0 < qf, q�, f < 1 . Eq. (8) can also be understood as follows: r(y∗)q�(y∗) (1  − y∗) can be
thought as the flow of agents from the type-� population to the type-f population. Similarly, (1 − r(y*))qf(y*)y* is the flow of
agents in the other direction. By definition, these flows must cancel each other out at a steady state, and indeed (8) says that
these two flows are equated.

3.2. FLB in the long run

To show the existence and uniqueness of a steady state y* smaller than p, i.e., FLB is exhibited at a unique steady state,
we have the following simple criterion:

12 Alternatively, r(y) = 1−qf (y)

(1−q�(y))+(1−qf (y))
can be found in a similar manner.
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Proposition 4. If qf(p) > q�(p), there exists a unique steady state y* such that y* < p.

A proof is given in Appendix A. The driving force behind this result can be roughly described as follows. The condition
qf(p) > q�(p) says that type F is less fit at y = p > 1

2 . Therefore, type-f agents must exit the market more often than type-�
agents. Thus, p cannot be a steady state. It can be shown that the boundary behavior of the functions stated in Assumptions
2 and 3 does not allow the fitness of type-f agents to improve when the market is more crowded with type-f agents, and
so there will be no steady state larger than p. However, if y is sufficiently small, i.e., the market is crowded with type-�
agents, type � is less fit, and so a steady state must exist somewhere between these alternatives by continuity. The boundary
behavior implies that there will be no steady state smaller than B∗

�
. Then, the monotonicity properties stated in Assumptions

2 and 3 imply the condition of uniqueness.
Next, we enquire whether the steady state found in Proposition 4 is stable, possibly in some restricted area. We  fix a

non-empty interval
[
y, ȳ

]
and assume that all the relevant functions are continuously differentiable on

(
y, ȳ

)
, and report

the following technical result13:

Lemma  5. Assume that q′
f

> 0 and q′
�

< 0 on
(

y, ȳ
)

. Suppose that: (a) there is a constant � > 0 such that

max
{

|q′
f (y) |, |q′

� (y) |
}

≤ � max
{

qf (y) , q� (y)
}

at any y ∈
(

y, ȳ
)

; (b) |r′| is bounded by a constant � > 0 on
(

y, ȳ
)

; and (c) quitting probabilities qf(y) and q�(y) are sufficiently
small such that

maxy ∈ [y,ȳ]

(
max

{
qf (y), q�(y)

})
<

1
1 + � + �

.

Then, a steady state y∗ ∈ (y, ȳ), if it exists, is stable in the sense that the dynamics converges monotonically to y* from any initial

value y0 ∈
[
y, ȳ

]
.

Lemma  5 says that if quitting probabilities qf (y) and q� (y) are small enough uniformly in
(

y, ȳ
)

, the steady state is stable.
A proof for this result is given in Appendix A.

4. The gambler’s fate under positive track take

4.1. The survival criterion

The dynamic analysis in the previous section assumes that the quitting rates, qf and q�, as well as the replacement rule r,
are exogenously given. We  now relate these rates to the basic static competitive market model to argue that FLB will emerge
in the betting market.

With a positive track take, all types of gamblers will lose on average, and the expected loss becomes indefinitely large
if an agent continues playing and the markets are efficient. Thus, technically, a standard criterion of growth in wealth over
the long run is not appropriate for survival in gambling markets. We  postulate instead that the gamblers at the racetrack
are there to enjoy the races, and they are satisfied if they are ahead of some target after a certain period. In other words, the
gamblers who quit must be those who fall short of their target.

We contend that although our postulate of target-seeking behavior is crude, it is a plausible criterion to approximate the
behavior of lovers of horse racing: the majority are rational people with self-control, and their primary purpose in betting
is not to make money out of the races but rather to test their ability to evaluate horses. Most of them know, through logic or
from experience, that betting is not a good way to raise money. It is the feeling of winning, not the money won, that induces
them to continue betting.

Here, we illustrate the role of our postulate in the market dynamics. Assume that B = p, and assume that a type-f agent
bets on F and a type-� agent bets on L. Then, the net expected returns on F and L are the same because B = p, but the variance
from betting on F, 	2

F , is smaller than that from betting on L, 	2
L , because p > 1

2 . For the sake of illustration, imagine that
these returns are normally distributed, that is, the returns on F and L are normally distributed with a common mean 
 and
variances 	2

F and 	2
L , respectively, where 	2

F < 	2
L .

Suppose that the gambler’s target is 0, i.e., they might quit if they experience negative returns. Recall that because of the
track take, 
 < 0 must hold, and hence the probability of a negative return is larger for F than for L, because the distribution
of returns from F is more concentrated around 
. Thus, the chance of quitting is higher for type-f agents, i.e., type f is less fit
than type �. This means that when the target is sufficiently ambitious, an agent betting on F is more likely to quit than an
agent betting on L at y = p.

13 Differentiability is not essential, but it makes the analysis very simple.



A. Kajii, T. Watanabe / Journal of Economic Behavior & Organization 140 (2017) 56–69 63

Table  2
Expected returns and the variance in the gross returns.

Expected net returns Variances

Horse F 
F = p(1−�)
B − 1 	2

F
= p(1−p)(1−�)2

B2

Horse L 
L = (1−p)(1−�)
(1−B) − 1 	2

L
= p(1−p)(1−�)2

(1−B)2

Indifference B = p B = 1/2

4.2. The gambler’s ruin problem

Here, we present the simple illustration provided above more carefully and rigorously, utilizing the normal approximation
of binary returns in our market model. Imagine that there are numerous races run on a given day, and let K be the number
of races run each day. We  regard a single day as the period after which the agents review their performance. The races are
identical, and the outcomes are independent.14 Each agent bets one unit of money on each race and has a target rate of
return from gambling of x̂. Because the races are iid, assume that the betting strategy is the same throughout the day, and
the same equilibrium occurs in every race.

If an agent has won more than the target amount of x̂K at the end of the day, it is an enjoyable day for him and he is
determined to return to the racetrack on a subsequent day. Conversely, if the agent’s gain is not more than x̂K , he is severely
discouraged, and doubts whether he should ever return to the racetrack. We call such an agent a loser, and assume that
some losers actually quit gambling. In reality, the size of the loss might influence the decision, but for simplicity we  assume
that quitting takes place with a common probability � for all losers independently. Technically, the size of � is related to
stability, and is not crucial for eliciting FLB. If a loser happens to remain involved, he forgets all his prior troubles and returns
to the racetrack with a fresh mind and a fresh bank.

Now, let us determine the number of quitting agents in this scenario. Let WF and WL represent the agents’ terminal wealth
after betting all day on horses F and L, respectively. We  denote the chance of an agent exiting the racetrack by �j(B) when
an agent bets on horse j = F, L for the entire day, where B ∈

[
B∗

�
, p

]
. From these functions, the quit rates, qf (y) and q� (y), are

constructed for y ∈ [0, 1] to meet Assumption 2. According to our postulate about the quitting rule described above, �j(B)
is given by

�j(B) = �Pr
[
Wj ≤ x̂K

]
for j = F, L.15

Recall that when the proportion of money bet on F is B, the mean 
j and the variance 	2
j

of the returns from betting on
horse j (j = F, L) in each race are shown in Table 2.

After assuming that there are numerous races, let us further assume that WF and WL are independent normal random
variables; that is, Wj can be regarded as the normal distribution of the mean 
jK and the variance 	2

j
K .16 Standardizing the

wealth per bet by

zj(B) = KB − 
jK

	j

√
K

, (9)

one can express �j(B) as

�j(B) = ��(zj(B)) = �

∫ zj(B)

−∞
(u)du

for j = F, L, where � and  are the cumulative probability distribution function and the density function for the standard
normal distribution, respectively. Substituting (2) into (9), zj can be written as

zF (B) =
√

K

p(1 − p)

{
1 + x̂

1 − �
B − p

}
,

zL(B) =
√

K

p(1 − p)

{
1 + x̂

1 − �
(1 − B) − (1 − p)

}
.

(10)

14 Obviously, in a particular race, the outcomes of horses F and L are perfectly negatively correlated, so implicitly we are assuming that this model is an
abstraction of numerous races at several different racetracks.

15 This may  be seen as an extremely simplified version of the so-called Gambler’s Ruin problem. In principle, one should be able to replace �j with the
probability of reaching x̂k at some k ≤ K, which will make the analysis more complicated. However, we conjecture that the basic message remains the same.

16 Of course, if these agents bet on exactly the same races, their wealth will be correlated. In principle, the analysis can be carried out while considering
correlation, but we believe that such an analysis only blurs our message.
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It can then be readily verified that �F is increasing and �L is decreasing on
[
B∗

�
, p

]
. Therefore, we have constructed quit rates,

qf and q�, that satisfy Assumption 2.

4.3. Emergence of FLB

In the above setup, we verify that FLB emerges as a steady state of evolutionary dynamics when the replacement rule
satisfies Assumption 3. Because the quit rates constructed in the previous subsection satisfy Assumption 2, Proposition 4
reduces the problem to finding a condition that implies qf(p) > q�(p). In fact, there is a simple and intuitive condition. As a
reference point, we find ŷ using the rule

ŷ = 1
2

+ (2p  − 1)(1 − �)
2(1 + x̂)

,

and then zF (ŷ) = zL(ŷ) by (10). That is, ŷ is a unique number where �F

(
ŷ
)

= �L

(
ŷ
)

, and y > ŷ implies that �F(y) > �L(y).
Moreover, x̂ > −� implies that p > ŷ,  hence �F(p) > �L(p) holds. Thus, we  have the following result.

Proposition 6. Suppose that x̂ > −�. Then, there exists a unique steady state y* such that y* < p.

Proof. By Proposition 4, it suffices to show that qf(p) > q�(p). By construction, we have qf (p) = �F (p) and q�(p) = �L (p). If
x̂ > −�, �F(p) > �L(p) holds, as seen above. �

Recall that when p = B, i.e., there is no bias, the expected net rate of return is −�. Hence, if x̂ ≤ −�, the target can be thought
of as modest. Therefore, Proposition 6 states that a unique steady state exhibiting FLB exists if the target x̂  is sufficiently
ambitious. This is intuitive, and the logic is identical to that in our earlier illustration because both distributions of returns are
symmetric around −�. Therefore, Proposition 6 formally provides the reason why  FLB emerges despite the natural market
selection of the target-seeking behavior and the survival rule we postulated.

To complete our analysis, we investigate the case where the unique steady state is stable, applying Lemma  5 by setting[
y, ȳ

]
=

[
B∗

�
, p

]
. Then, we need to assume that q′

f
> 0 and q′

�
< 0 on

(
B∗

�
, p

)
, thus �′

F > 0 and �′
L < 0 on

(
B∗

�
, p

)
by construc-

tion. Because they are normally distributed in the setup of this section, it is sufficient to require that the reference point ŷ
belongs to

(
B∗

�
, p

)
. Recall that ŷ < p is warranted by x̂ > −�.

We are now ready to state a stability result, which says that if the chance of quitting, �, for losers is sufficiently small, the
unique steady state is stable.

Proposition 7. Suppose that x̂ > −� and ŷ ≥ B∗
�

holds, and |r′| is bounded on
[
B∗

�
, p

]
. Then, there is a unique steady state

y* ∈ (B∗
�
, p), and there exists �̄ > 0 such that y* is globally stable in (B∗

�
, p) for any chance of quitting � < �̄.

A proof, which is an application of Lemma  5, can be found in Appendix A.
The requirement ŷ ≥ B∗

�
in Proposition 7 is not necessarily restrictive. Recall that ŷ ≥ B∗

�
holds if the degree of risk loving

is sufficiently large or overestimates (underestimates) the winning probability of the longshot (favorite). As a benchmark,
consider the case where type-� agents have a correct belief and are extremely risk loving such that B∗

�
= 1

2 . Thus, ŷ ≥ B∗
�

automatically holds because ŷ < 1/2 for x̂ > −�.
The boundedness condition for r′ in Proposition 7 is also not very restrictive. For instance, it trivially holds in the case

of constant replacement. For the simple replicator, note that r is independent of �, as is r′, because both q�(y) and qf(y) are
given by the standard normal distribution multiplied by the same �. In addition, as 1

�

(
q�(y) + qf (y)

)
is bounded away from

zero, r′(y) can be continuously extended on [B∗
�
, p), and thus it is bounded on

[
B∗

�
, p

]
.

5. Comparative statics: the role of the track take

A positive track take together with our behavioral postulate is the main driving force behind our FLB results. Therefore,
it is interesting to examine how the size of the track take affects the magnitude of the bias. Because the track take is the
source of the bias, one might expect that the bias would increase as the track take increases. However, this is not necessarily
the case. In the following section, we concentrate on the extreme case of B∗

�
= 1/2 to explain why the comparative statics

might be delicate.
To facilitate a comparative statics analysis of the steady state, let functions qf, q�, and r depend on an exogenous variable

 ̨ in some prespecified interval I ⊆ R, and denote them by qf(y, ˛), q�(y, ˛), and r(y, ˛). The corresponding policy function (7)
is denoted by �(y, ˛). We  use y*(˛) to represent the unique steady state when the exogenous parameter is set at ˛. Letting
�(y, ˛) = �(y, ˛) − y, equation (8) implies that the steady state y*(˛) satisfies

�(y∗(˛), ˛) = 0. (11)

Applying the Implicit Function Theorem to (11), we have

�y(y∗(˛), ˛)
d

d˛
y∗(˛) + �˛(y∗(˛), ˛) = 0,
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where �y and �˛ are partial derivatives of � by y and ˛, respectively, as long as �y does not vanish at (y*(˛), ˛). Assume
�y(y*(˛), ˛) < 0, which is the case if qf

(
1
2

)
< q�

(
1
2

)
.17 Hence, d

d˛ y∗(˛) and �˛(y*(˛), ˛) have the same sign, and thus we have
the following result.

Lemma  8. The steady state y*(˛) is increasing (decreasing) as the exogenous parameter  ̨ ∈ I increases if �˛(y*(˛), ˛) is positive
(negative).

Now we are ready to examine how the track take affects FLB in the setup of normally distributed wealth. Let

 ̨ = (1 + x̂)/(1 − �) (12)

and substitute  ̨ into (10). Then, the critical values zF and zL can be rewritten as

zF (B, ˛) =
√

K

p(1 − p)
(˛B − p),

zL(B, ˛) =
√

K

p(1 − p)
(˛(1 − B) − (1 − p)).

(13)

We  shall regard �F and �L as functions of y and  ̨ from now on.
When the replacement rule is a constant (4), we have the following result.

Lemma  9. Suppose that r(y, ˛) = ı for any (y, ˛), where ı ∈
[

1
2 , p

]
, and let I ⊆ [1, + ∞)  be an open interval. Then, y*(·) is decreasing

(increasing) at  ̨ in I if −(1 − ı)(zF (y∗(˛), ˛))(y∗(˛))2+ı(zL(y∗(˛), ˛))(1 − y∗(˛))2 < 0 holds (> holds).

Now we focus on the special case of ı = p, i.e., the arrival rate of type-f agents is equal to the probability that horse F wins.
Although the ratio of arriving agents can sustain the efficiency of the betting market, Proposition 6 shows that FLB emerges
when x̂ > −�.18 In this special case, we have a clear comparative statics result as follows:

Proposition 10. Suppose that r(y, ˛) = p for any (y, ˛). Then, for sufficiently small � > 0, y*(˛) is decreasing in  ̨ ∈ [1, 1 + �].

Proposition 10 is a local result, and does not assert that the bias is increasing globally in �. One might expect that such an
assertion would be true because the track take represents market friction. However, in general, this is not the case. In fact,
the intuition is very simple. Consider an extreme case where � is so high that it is impossible to win  at all. Then, the market
is always filled with newly arriving agents, even in the long run, and hence the steady state will inherit the property of the
pool of potential agents, and the results of past races will not matter much; that is, the property of the steady state will be
governed by the property of r. In particular, FLB caused by market friction will diminish in the range where � is extremely
large.

For instance, under a constant replacement rule with ı = p, the steady state will approach p, which means that at some
point the bias starts to decrease as the track take � increases. Indeed, let � → 1, i.e., let  ̨ → +∞ in (12), and observe that
zF(y*(˛), ˛) and zL(y*(˛), ˛) approach ∞ by (13), and qf(y*(˛), ˛) and q�(y*(˛), ˛) approach 1. Then, by (8), y*(˛) approaches
r(y*(˛)), and so y*(˛) → p holds when r(y) = p everywhere.

To show this phenomenon numerically, Fig. 2 depicts the relationship between � and y* when p = r(y, ˛) = 0.9, � = 0.1,
K = 30, and x̂  = 0. Therefore, FLB occurs if y* is less than 0.9. As can be seen from the figure, FLB does not exist when � = 0.
Then, y* decreases and the degree of FLB increases in the neighborhood of � = 0 when � increases, as Proposition 10 showed.
In contrast, y* increases when � ≥ 1.3 and the size of FLB decreases in �.

Of course, that FLB vanishes in this case does not imply that the market learns more and becomes more efficient as the
track take increases. The limit probability approaches ı, rather than p. Thus, it is more accurate to say that as � increases,
the market loses its learning power and the property of the entering population matters more.

The idea is similar in the case of a replicator type replacement. Both q� and qf go to one, as nobody can survive in the
limit. This means that both types are extremely unsuccessful at the racetrack, but are still equally fit. Hence, the replacement
rule supplies roughly the same amounts of each type from the population. Consequently, when the target for survival is
severe, the steady state y* will approach 0.5. Fig. 3 depicts the relationship between � (see (12)) and y* when p = 0.75, � = 0.2,
and K = 30 when the replacement rule is given by (3). Thus, FLB occurs if y* is less than 0.75. In contrast to the case of p =
r(y, ˛), FLB exists even when � = 0. As � rises, i.e., as the target becomes increasingly severe, FLB increases monotonically and
y* approaches 0.5.

6. Concluding remarks

Using a simple evolutionary market model, we demonstrate that FLB arises in the long run. The driving force behind this
result is the fact that under the exit rule we postulated, relative risk lovers are a better fit than relatively risk-averse bettors
when the markets are not biased.

17 See the proof of Proposition 4 where �(y, ˛) − y is shown to be decreasing in the relevant domain.
18 When � = 0 and x̂ = 0, q�(p) = qf(p), and so FLB does not occur.
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Fig. 2. Equilibrium odds and track take for a fixed replacement rate.

Fig. 3. Equilibrium odds and track take for the replicator rule.

The competitive equilibrium prices do not fully elicit the underlying information about the winning probability of the
horses in our model. On the other hand, the so called efficient market hypothesis (EMH) asserts that in competitive markets,
the market price of a financial asset would contain all relevant information about its returns. Thus we  have an instance
of robust failure of the EMH. However, a horse is a very peculiar financial asset and the agents are completely myopic in
our model, and hence the implication of this phenomenon is limited. We  speculate nonetheless that a dynamic analysis
with some exit rule such as ours is worth pursuing to ask the informativeness of the prices in more sophisticated financial
markets.

Under our exit rule, one must earn more than a target value to survive. We justified this rule in the context of gambling
markets, but it might be questionable when the market returns are positive. Nevertheless, let us tentatively suppose that
the track take � is negative, and so the market returns are positive in the absence of FLB, but the same exit rule applies.
Note that the steady state y* is effectively determined by  ̨ in (12), and so even if � is negative, FLB can still arise with a
high target x̂. The intuition is simple, and the same as before: without FLB, both types will earn the same average returns,
and the distribution of returns for the relative risk lovers has a fatter tail. Therefore, if the target is higher than average, the
relative risk lovers have a better chance of meeting the target, and so they are a better fit. A bias must arise to offset this
survival advantage. That is, we have an evolutionary model whereby wealth increases but some bias persists. Returning to
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the discussion on natural selection in Section 1, the growth-based argument against FLB fails once the target-based survival
criterion is accepted.

We are therefore tempted to speculate more generally that in a market environment where the survival of some large
proportion of agents is conditional on achieving a higher than average target value, the markets tend to exhibit some degree
of bias in favor of low-risk alternatives. For instance, imagine an environment in which the performance of fund managers is
evaluated first in terms of whether the fund outperformed some benchmark number that represents some form of average
returns. Those managers who do not achieve the target face the possibility of having their career terminated. To outperform
the average, the fund managers are naturally interested in riskier alternatives, and the logic of our analysis indicates that
such preferences will exaggerate the market returns of less risky assets.

In conclusion, we contend that the implications of target-driven behavior are worth investigating beyond the racetrack.

Appendix A. Property of function B*

Property of function B*

We  show that B*(u, q), defined by (1), increases in q and also increases as utility function u becomes more risk averse
when q ≥ 1

2 . To simplify the notation, we write B* = B*(u, q).
If q′ > q, then u

(
1−�
B∗

)
q′ > u

(
1−�
1−B∗

)
(1 − q′), and so the threshold value must increase to obtain the equality.

Let h be an increasing and concave function with h(0) = 0, and set û = h ◦ u. It suffices to show that û
(

1−�
B∗

)
≥ û

(
1−�
1−B∗

)
(1−q)

q .

The concavity of h and h(0) = 0 imply that h(tx) ≥ th(x) for any t ∈ [0, 1] and x > 0. By construction u
(

1−�
B∗

)
= u

(
1−�
1−B∗

)
(1−q)

q

and (1−q)
q ∈ [0,  1]. Thus, û

(
1−�
B∗

)
= h

(
u
(

1−�
B∗

))
= h

(
u
(

1−�
1−B∗

)
(1−q)

q

)
≥ h

(
u
(

1−�
1−B∗

))
(1−q)

q = û
(

1−�
1−B∗

)
(1−q)

q .

Proofs for the results in Section 3

Proof of Proposition 4
If qf(p) > q�(p), from (7),

�(p) − p = −(1 − r(p))qf (p)p + r(p)q�(p)(1 − p)
< −(1 − r(p))qf (p)p + r(p)qf (p)(1 − p)
= qf (p) (r (p) − p) .

Since r (p) ≤ p by Assumption 3, we conclude that �(p) − p < 0. This shows that p is not a steady state. Moreover, because
�(0) = r(0)q�(0) ≥ 0, a continuous function y �→ �(y) − y must attain 0 at some y* in [0, p) by the intermediate value theorem.

Because a steady state is a zero of the function y �→ �(y) − y, it suffices to show that the function crosses zero only once
from above somewhere in (0, p). Recall that �(y) − y is expressed as

�(y) − y = −(1 − r(y))qf (y)y + r(y)q�(y)(1 − y).

Observe that �(0) − 0 = r(0)q�(0) > 0.
First, we show that �(y) − y < 0 for any y ∈ [p, 1], so that there is no steady state in [p, 1]. Because qf(p) > q�(p), by

Assumption 2, q�(y) = q�(p) and qf(y) is decreasing on [p, 1]. Therefore,

�(y) − y < −(1 − r(y))qf (p)y + r(y)qf (p)(1 − y)
= qf (p)(r(y) − y).

Because r(y) − y ≤ 0 on [p, 1] by Assumption 3, we have shown the desired inequality.
Next, consider the case where qf

(
B∗

�

)
≥ q�

(
B∗

�

)
. By Assumption 2, qf is increasing and q� is decreasing on

[
B∗

�
, p

]
. On [0,  B∗

�
],

qf (y) = qf (B∗
�
) and q�(y) is non-increasing because qf

(
B∗

�

)
≥ q�

(
B∗

�

)
. Therefore, qf is non-decreasing and q� is non-increasing

on [0, p]. Because the product of positive decreasing functions is decreasing, we conclude that �(y) − y is decreasing on
[0, p]. Because �(0) − 0 >0, we have shown the desired property.

It remains to consider the case where qf

(
B∗

�

)
< q�

(
B∗

�

)
. Arguing as above, �(y) − y is decreasing on

[
B∗

�
, p

]
. Because

qf

(
B∗

�

)
< q�

(
B∗

�

)
, we have

�(B∗
�
) − B∗

�
> −(1 − r(B∗

�
))qf (B∗

�
)y + r(y)qf (B∗

�
)(1 − y)

= qf (B∗
�
)(r(B∗

�
) − B∗

�
).

Because r(B∗
�
) − B∗

�
≥ 0 by Assumption 3, we conclude that �(B∗

�
) − B∗

�
> 0, and consequently �(y) − y crosses zero only once

from above in
(

B∗
�
, p

)
. Thus, the proof is complete if we can show that �(y) − y > 0 for y ∈

[
0, B∗

�

]
. Assumption 2 implies
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that qf (y) = qf

(
B∗

�

)
and q� (y) = 1−B∗

�
1−y �L(B∗

�
) +

(
1 − 1−B∗

�
1−y

)
�F (B∗

�
) is increasing on

[
0, B∗

�

]
and q� (0) =

(
1 − B∗

�

)
q�(B∗

�
) +

B∗
�
qf

(
B∗

�

)
> qf

(
B∗

�

)
because qf

(
B∗

�

)
< q�

(
B∗

�

)
. Therefore, for y ∈

[
0, B∗

�

]
, we have

�(y) − y = −(1 − r(y))qf (y)y + r(y)q�(y)(1 − y)
> −(1 − r(y))qf (B∗

�
)y + r(y)qf (B∗

�
)(1 − y)

= qf (B∗
�
) (r(y) − y) ,

and r(y) − y ≥ 0 for y ∈
[
0, B∗

�

]
by Assumption 3. �

Proof of Lemma 5
As is well known, if 0 < �′ (y) < 1 on

(
y, ȳ

)
and y∗ = �(y∗) ∈

(
y, ȳ

)
, then starting from any initial point y0 in

(
y, ȳ

)
, the

dynamics y (t  + 1) = � (y (t)) t = 0, 1, 2, .. ., converges monotonically to a unique steady state y*. It therefore suffices to show
that the following inequalities hold for any y ∈

(
y, ȳ

)
:

1 > �′(y) > 1 − (1 + � + �) maxy ∈ [y,ȳ]

(
max

{
qf (y) , q� (y)

})
.

Because r is non-increasing, 0 ≤ −r′ (y) ≤ � must hold for all y ∈
(

y, ȳ
)

. Define � = maxy ∈ [y,ȳ]

(
max

{
qf (y) , q� (y)

})
. So

at any y ∈ [y, ȳ],  0 ≤ qf (y) , q� (y) ≤ � and 0 ≤ q′
f (y) ≤ ��,  0 ≥ q′

� (y) ≥ −��.
From (7), �′(y) can be computed directly as follows:

�′(y) = 1 −
{

(1 − r(y))qf (y) + r(y)q�(y)
}

+
{

r′(y)qf (y)y + r′(y)q�(y)(1 − y)
}

−
{

(1 − r(y))yq′
f
(y) − r(y)q′

�
(y)(1 − y)

}
.

Observe that because qf (y) , q� (y) ≤ �, we have

−
{

(1 − r(y))qf (y) + r(y)q�(y)
}

≥ −�,{
yqf (y) + (1 − y) q�(y)

}
≤ �,

and because −r′ is bounded, as pointed out above, the second inequality gives us:

{
r′(y)qf (y)y + r′(y)q�(y)(1 − y)

}
≥ −��.

Finally, note that using 0 ≤ q′
f (y) ≤ ��,  0 ≥ q′

� (y) ≥ −��,  we obtain

−
{

(1 − r(y))yq′
f
(y) − r(y)q′

�
(y)(1 − y)

}
≥ −(1 − r(y))y�� − r(y)(1 − y)��
= −��

{
(1 − r(y))y + r(y)(1 − y)

}
≥ −��

{
(1 − r(y)) max

{
y, 1 − y

}
+ r(y) max

{
y, 1 − y

}}
≥ −��.

The desired result is established by combining the above inequalities.

Proofs for the results in Section 4

Proof of Proposition 7
We apply Lemma  5 for

[
y, ȳ

]
=

[
B∗

�
, p

]
. Because the constructed qf and q� satisfy Assumption 2, q′

f
> 0 and q′

�
< 0 on(

y, ȳ
)

holds in particular. Moreover, they are given by the quitting probability � times the cumulative distribution function

of the standard normal distribution, so we can find a constant � > 0 independently of � such that max
{

|q′
f
(y)|, |q′

�
(y)|

}
≤

� max
{

qf (y), q�(y)
}

on (B∗
�
, p).

If we choose a positive number �̄ with �̄ < 1
1+�+� , all the conditions in Lemma 5 are satisfied because

maxy ∈ [y,ȳ]

(
max

{
qf (y), q�(y)

})
≤ � ≤ �̄.
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(14) Proofs for the results in Section 5

(14) Proof of Lemma 9
By Lemma 8, we only have to examine the sign of �˛(y*(˛), ˛). Because y* belongs to [ 1

2 , p], we  set qf(y*(˛), ˛)
= �F(y*(˛), ˛) and q�(y*(˛), ˛) = �L(y*(˛), ˛). Hence, �(y, ˛) is expressed as

�(y, ˛) = −(1 − ı)�F (y, ˛)y + ı�L(y, ˛)(1 − y).

Differentiating �F(y, ˛) and �L(y, ˛) by ˛, we have

∂�F

∂˛
= (zF (y, ˛))

�
√

K√
p(1 − p)

y,
∂�L

∂˛
= (zL(y, ˛))

�
√

K√
p(1 − p)

(1 − y). (14)

Therefore, differentiating �(y, ˛) with respect to  ̨ and evaluating it at y = y*(˛),

�˛(y∗(˛), ˛)

= −(1 − ı)
∂

∂˛
�F (y∗(˛), ˛)y∗(˛) + ı

∂
∂˛

�L(y∗(˛), ˛)(1 − y∗(˛))

= �
√

K√
p(1 − p)

{
−(1 − ı)(zF (y∗(˛), ˛))(y∗(˛))2

+ı(zL(y∗(˛), ˛))(1 − y∗(˛))2} .

Hence, the sign of �˛(y*(˛), ˛) is determined as stated.

Proof of Proposition 10
Note that  ̨ = 1 in (12) implies that x̂ = −�. It is readily confirmed that y* = p is a unique solution to � (y, 1) = 0. Therefore,

y∗ (1) = p, and zF (y∗ (1) , 1) = zL(y∗ (1) , 1).
To apply Lemma  9, it suffices to show that −(1 − p)(zF (y∗(˛), ˛))(y∗(˛))2 +p(zL(y∗(˛), ˛))(1 − y∗(˛))2 is negative for ˛

close to one. By direct computation, we have:

−(1 − p)(zF (y∗(1),  1))(y∗(1))2 + p(zL(y∗(1), 1))(1 − y∗(1))2

= −p2(1 − p)(zF (y∗(1), 1)) + p(1 − p)2(zF (y∗(1), 1))
= p(1 − p)(1 − 2p)(zF (y∗(1),  1)) < 0.

Hence, the desired conclusion follows by continuity.
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