
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

8-2012

Toward a Mobile Platform for Pervasive Games Toward a Mobile Platform for Pervasive Games

Inseok HWANG

Youngki LEE
Singapore Management University, YOUNGKILEE@smu.edu.sg

Taiwoo PARK

Junehwa SONG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
HWANG, Inseok; LEE, Youngki; PARK, Taiwoo; and SONG, Junehwa. Toward a Mobile Platform for
Pervasive Games. (2012). Proceedings of the 1st ACM International Workshop on Mobile Gaming
(MobiGame '12). 19-24.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2077

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2077&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Toward a Mobile Platform for Pervasive Games
Inseok Hwang*, Youngki Lee*, Taiwoo Park*, Junehwa Song

Dept. of Computer Science, Korea Advanced Institute of Science and Technology
Daejeon, Republic of Korea

{ inseok | youngki | twpark | junesong }@nclab.kaist.ac.kr
* The first three authors are listed in alphabetical order.

ABSTRACT
Emerging pervasive games will be immersed into real-life
situations and leverage new types of contextual interactions
therein. For instance, a player’s punching gesture, running
activity, and fast heart rate conditions can be used as the
game inputs. Although the contextual interaction is the core
building blocks of pervasive games, individual game
developers hardly utilize a rich set of interactions within a
game play. Most challenging, it is significantly difficult for
developers to expect dynamic availability of input devices
in real life, and adapt to the situation without system-level
support. Also, it is challenging to coordinate its resource
use with other gaming logics or applications. To address
such challenges, we propose Player Space Director (PSD),
a novel mobile platform for pervasive games. PSD
facilitates the game developers to incorporate diverse
contextual interactions in their game without considering
complications in player’s real-life situations, e.g.,
heterogeneity, dynamics or resource scarcity of input
devices. We implemented the PSD prototype on mobile
devices, diverse set of sensors, and actuators. On top of
PSD, we developed three exploratory applications,
ULifeAvatar, Swan Boat, U-Theater, and showed the
effectiveness of PSD through extensive deployment of
those games.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems; C.5.3 [Computer System
Implementation]: Microcomputers – Portable devices;
K.8.0 [Personal Computing]: General – Games.

General Terms
Design, Experimentation, Human Factors.

Keywords
Pervasive Game, Platform, Mobile

1. INTRODUCTION
We are at the dawn of making the pervasive computing
true reality. Following today’s wide penetration of mobile

devices such as smartphones, subsequent proliferation of
advanced wearable devices and sensors will give rich
digital interactivity on our surrounding environments, our
daily activities, our social interactions, and so on. And we
believe that, it will hugely expand the ways of interaction
between us and what we call games today, building the
concept of pervasive games.
We envision that the pervasive games will be mostly
distinguished by the immersion into every facet of our real
lives. Getting out of the virtual world inside a small screen
with dedicated controllers, a pervasive game will be
running 24 hours a day, integrating a player’s every gesture,
every footstep, every items around him, and even every
place he visits into a part of the game. We imagine a
pervasive version of MMORPG (massively multiplayer
online role-playing game), where the player develops and
strengthens his avatar through his everyday real world
interactions. Every stair he climbs, his avatar becomes
stronger. Every time he eats fresh vegetable, his avatar
regains stamina. Every new place he visits, his avatar
explores a new place. Every time he breathes dusty air, his
avatar loses a few hit points (HP). Every new person he
shakes hands with, their avatars becomes friends to each
other, and so on.
Developing such pervasive games closely integrated with
the player’s real life introduces a number of challenges and
considerations. First, the game requires high level semantic
definitions of the player’s behaviors to be used as game
interactions, e.g. climbing stairs or shaking hands. Second,
the game should be highly flexible in the way to monitor
and classify such input semantics. Hardcoding the device
types would harm the ubiquity of the game for many
players with different device availability in different
surrounding environments. For example, climbing stairs
can be detected by monitoring the player’s shoe-embedded
accelerometers, or by utilizing the building’s indoor
localization infrastructure, or maybe by monitoring the
altitude from the barometer built in his smartphone. Third,
the underlying monitoring process should be energy-aware
and situation-adaptive. The game would not be the sole
application which can monopolize all the devices and
resources. Continuous use of smartphone-embedded
sensors would rapidly exhaust the smartphone’s battery,
limiting the player’s usage of his phone for the remaining
hours of the day before coming back home. Switching to
using internal localizations where available would be
energy-efficient alternative.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MobiGames’12, August 13, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1487-9/12/08... $15.00.

19

In this paper, we propose our initial design of Player Space
Director (PSD), a mobile platform for developing and
running various pervasive games. PSD effectively provides
the game designer with the definition of diverse contextual
interactions, fully reflecting player’s real-life situations. In
runtime, PSD orchestrates the interactions between a player
and game, i.e., the “player’s space”. More specifically,
PSD primarily targets:

 To interpret pervasive game interactions, recognizing
player’s gestures, actions, and surrounding contexts and
abstracting them as a meaningful game state and an input.

 To abstract and manage a large number of heterogeneous
sensors/actuators in the player’s pervasive game spaces.

 To keep track of the resource availability around the game
space, and coordinate the resource usage accordingly.

 To communicate with the game-specific logic running on
top of PSD.

 To coordinate player- / space-heterogeneities to enable in-
situ or remote multi plays among two or more PSD-
supported game players.

Figure 1 illustrates the top-level logical view of a pervasive
game with PSD. A pervasive game space is composed of a
game logic and a number of gamers interacting with the
game logic. The gamers interact with the game in their
local space which is enhanced with a number of sensors
and actuators. The gamers’ actions and gestures are
interpreted and used as meaningful gaming input, along
with the environmental situations around the gaming space.
The rest of this paper is organized as follows. Section 2
introduces the early designs of pervasive games and
discusses the efforts to support pervasive games. Section 3
proposes the initial architecture of PSD and its major
components. In section 4, we present the practical use cases
of PSD by showing our pilot implementation of pervasive
games on top of PSD. Then, we conclude this paper with
projecting the further evolution path of pervasive games.

2. RELATED WORKS
In this section, we introduce diverse pervasive game
designs that incorporate various types of interactions or
real life situations. Also, we present early platforms for
pervasive games and differentiate them with PSD.

2.1 Pervasive Games
Pervasive games enrich the player-to-game interactions far
more than those of conventional games, by harnessing a
variety of sensors devices. For instance, Wii Sports [19]
introduces gesture-based, more intuitive game plays. A
player grips Wii mote, embedding accelerometers and
gyroscopes to estimate the motion of the player’s arm or
wrist. Pirate! [4] is a proximity-based multiplayer game,
utilizing the distances between players estimated by RF-
based proximity sensors. Pulse Masters Biathlon [17] uses
the player’s heart rate as the primary interaction. The
player wearing a heartbeat sensor does whatever to change
his heart rate, which then controls an avatar playing
biathlon.
As pervasive games extend the way of interactions, the
integration of games and real life is being expedited.
REXplorer [1] is designed for tourists to play at major
tourist attractions. Tourists are given a “magic wand”, a
camera-equipped smartphone. At a historic site, they are
asked to cast a site-specific spell, i.e. a phone-recognizable
gesture. Then the phone narrates a historic story and guides
them for further progress. UbiFit Garden [6] and
Fish’n’Steps [12] uses gamificiation to promote daily
exercises. The player’s physical activities are sensed and
make the virtual garden blossom, or feed the virtual fish to
grow, respectively. Similarly, Musolesi et al., proposed a
Second Life-like virtual world which reflects users’ daily
life behavior [17].
Playful Toothbrush [5] is an educational game for
preschoolers, designed to arouse children’s interest and
help them to develop proper brushing habits.

2.2 Platforms for Pervasive Games
While pervasive games have been receiving growing
attention of research community, underlying platforms for
pervasive games have been little pioneered yet. Many
efforts have been focusing on genre-specific platforms,
such as augmented realities, tabletop, and location-based
games [7][10][15][16], rather than generic platforms. Also,
general context-aware application platforms have been
proposed [12][13][20], however, they do not mainly aim to
support diverse characteristics of pervasive games. The
pervasive game examples in Section 2.1 are best featured
by context-based interactions and the player-mobility to
support real world game play. A generic platform for
pervasive games would be required to effectively support
those features, assisting easy and rapid development.
An early framework for pervasive games was proposed in
[15], aiming at context-aware provisioning of multimedia
contents for mobile game players. A key difference of its
design from PSD is that it utilizes a server to manage the
context information. Such server-centric supervision of the
player contexts, however, may raise the privacy concerns
and security issues. Besides, the server would be heavily
burdened with the context processing, while the client

PSDPSD

Ubiquitous
Game Logic
Ubiquitous
Game Logic

PSDPSD

PSDPSD

Game Input/
Feedback

Sensed
Data

Actuation
Message

Player Space
Director

Sensed
Data

Actuation
Message

Player Space
Director

Player Space
Director

Player
Space

Sensors Actuators

Figure 1. General model for a pervasive game

20

devices mostly remain as simple viewers. In addition, the
transmission of voluminous sensor data would quickly
drain the clients’ battery. PSD, on the other hand, operates
on the player’s device and directly processes player’s
contexts. It prevents many possible privacy breaches. The
game server, if any, is free from low-level context
processing, and just subscribe for events needed for multi-
player coordination. The overall communication can be
greatly saved as well.
In terms of interactions, STARS [16] targets computer-
augmented board games where multiple input or output
modes are available. STARS aids game developers to
choose effective means of interactions by evaluating proper
combination of interaction modes fitting to the developer’s
criteria. PSD provides the developers with ‘player context
vocabulary’, which predefines commonly used interactions
in pervasive games. However, PSD provides much richer
vocabulary set covering diverse interactions with extensive
devices to support diverse real world activities. Note that
STARS only targets screen-based interactions in PDAs.

3. PLAYER SPACE DIRECTOR
PSD is a mobile game platform to support contextual
interaction and diverse input modalities and thereby
facilitate the development and operation of diverse
pervasive games. It supports game designers to define a
rich set of pervasive game interactions for their own use.
Such defined pervasive game interactions are automatically
interpreted and processed by PSD runtime environment.
The PSD platform also orchestrates player spaces,
abstracting and managing diverse heterogeneous devices in
pervasive game spaces.

3.1 PSD API
PSD provides game developers with simple and intuitive
API, to facilitate the specification of contextual inputs.
registerCIQ() is the key API. Using registerCIQ(),
applications specify contextual inputs to use in the game in
the form of Contextual Interaction Query (CIQ). CIQ is an
intuitive query language that supports rich semantics for a
wide range of contextual inputs. PSD provides well-
abstracted context vocabulary used in CIQ (see Table 1 for
whole vocabulary of contextual inputs in PSD) Using CIQ,
game developers easily leverage diverse contextual inputs
needed for game interactions. They do not have to consider
the details of underlying complications in its sensor usage
and data processing.
For example, a game developer wants to utilize every user
gesture when the user is running. Then, he can simply
register a CIQ as follows.

GAMEINPUT gesture
CONDITION (activity==running)
REPORT Immediate

CIQ supports diverse types of result reporting. Currently,
we support three types: Once, Periodic, and Immediate. In

the Once mode, PSD reports a result once only when CIQ
is issued. With Periodic mode, applications are reported
upon every configured time period. If Immediate type is
used, a result is reported whenever a new result is available.

3.2 Context Processor
Context processor of PSD process CIQs that request about
player’s activity, physical condition and surrounding
situations. Note that player’s gesture is separately handled
due to its unique characteristics. Inside the context
processor, PSD incorporates diverse processing modules,
which are used to extract a variety of contextual inputs
from raw sensor data. For instance, it includes diverse
feature extractors such as FFT (Fast Fourier Transform),
MFCCs (Mel-frequencly Cepstral Coefficients), and
statistics processing modules, to extract summarized
features from raw sensing data. Furthermore, it includes
diverse classifiers such as decision tree, HMM (Hidden
Markov Model), GMM (Gaussian Mixture Model), to
extract and classify high level contextual input from
summarized feature data.
PSD internally abstracts each processing pipeline to handle
a CIQ as a processing plan. A processing plan is a pipeline
of processing tasks and used as a unit of resource allocation.
A plan often involves a set of sensing, feature extraction,
and context recognition tasks over distributed devices.
Specifically, the input device-side processor performs
early-stage of the context processing pipeline such as
sensing tasks and optional feature extraction tasks. The
processor in the mobile device executes the rest, i.e.,
feature extraction and context recognition tasks or the latter
only, and completing plan execution. Note that PSD

Table 1. Possible contextual inputs in pervasive games

Player’s gesture Punching, clapping, shaking hands, waving, kicking

Player’s activity Running, walking, sitting, brushing, bicycling

Player’s physical
condition

Heart rate, blood pressure, sweating,
body temperature

Player’s surrounding
situation

Location, air temperature, wind speed, humidity,
loudness

Game Input
Devices

Local Wireless Communicat ion
(e.g., Bluetooth, Zigbee)

Mobile Computing Device (e.g., Smartphone, tablet, MID)

Pervasive Games

API

Player
Space

Director

Game Input Device Orchestrator

Context
Processor

Gesture
Processor

Game
Input

Balancer

Remote
Interaction
Supporter

Game
Server
3G,
4G,

WiBro,
WiFi

Wearable or
On-body Sensors

Space-embedded
Sensors

Smart
Devices

Figure 2. PSD architecture overview

21

prepares multiple processing plans for a contextual input
and selectively utilize them according to sensor availability
and contentions in sensor resource use.

3.3 Gesture Processor
The gesture processor supports hand gesture input which is
a natural and promising user interface modality for mobile
and pervasive games. It utilizes wearable and on-body
motion sensors such as wristwatch-type accelerometers and
gyroscopes to obtain users’ hand motion data. Unlike
conventional keyboard- and touch screen-based interaction,
hand gestures can simplify on-the-move interaction by
reducing the need to concentrate much on mobile devices.
With the support of a flexible and programmable gesture-
based game interaction, a user can seamlessly interact with
various mobile and pervasive games.

The gesture processor actively copes with two important
challenges in developing mobile and pervasive gesture
interaction system: users’ mobility and limited energy of
sensor and mobile devices. Traditional gesture processing
pipelines (usually based on HMM) not designed for mobile
and pervasive use may quickly drain the batteries of sensor
and mobile devices or fail to accurately recognize users’
gestural inputs. First, the gesture processor uses sensor-side
gesture pre-filtering scheme to save energy for continuous
motion data transmission, based on sporadic nature of hand
gestural inputs. Second, it supports mobility-resilient
gesture recognition by multi-mobility situation-based
HMM training scheme. The key idea of the scheme is to
train HMM using gesture samples from a set of
representative mobility situations.

3.4 Game Input Device Orchestrator
Given the registered CIQs, the game input device
orchestrator decides how to process the requests with the
available input devices and their resources. It includes two
major sub-components: the plan generator and the plan
selector. The plan generator dynamically updates
applicable plans based on available input devices and their
processing capabilities. Among the generated plans, the
plan selector decides a set of plans to execute to support
registered CIQs. The selection changes adaptively,
reflecting dynamic availability of input devices and their
resources.

For effective resource use planning, it is critical to acquire
the resource information. The resource monitors keep track
of available resource status of input devices and a mobile
device itself. They continuously monitor the status of CPU,
memory, energy, and bandwidth. The status is periodically
reported to the plan selector for runtime adaptation. The
monitors are designed to minimize monitoring overhead
while providing reasonable accuracy.

3.5 Game Input Balancer
The game input balancer is designed to enable pervasive
game players to closely synchronize with each other with

different input modalities. Imbalances in gaming
performance caused by different input modalities can
significantly degrade users’ sense of synchronization and
fun. For example, we imagine an exercise-based racing
game, which offers a large variety of options in sensor-
embedded exercise equipment, ranging from treadmills or
stationary cycles to a handy jump rope. To enable multi-
player games between players with different choices, the
game input balancer gives proper advantages or
disadvantages for each input modality, based on the
characteristics of input modalities such as rapidness and
accuracies while changing game values. These balancing
schemes should be carefully applied by analyzing core
mechanics of given games. To this end, we provide game
designers with the characteristics of input modalities and
help them to choose appropriate balancing mechanism for
core mechanics of their games.

3.6 Remote Interaction Supporter
The remote interaction supporter provides communication
mediums such as video and audio channels to facilitate
social interactions during game play. It selectively supports
various modes of communications on-demand, namely
peer-to-peer, team, and all-player communications. It also
supports communication between game applications and a
game server while effectively suppressing unfairness in
game play due to the differences in network delay variation
among players.

4. IMPLEMENTATION
We have implemented a PSD prototype, carefully
implementing the current PSD architecture introduced in
Section 3. Currently, the prototype is implemented in C++
on a Linux and Java on an Android platform. Sensor device
implementation is based on NesC over TinyOS.

Deploying PSD requires three important hardware sets:
mobile devices, sensors, and actuators. Figure 3 shows a

Figure 3. PSD prototype hardware settings

22

snapshot of currently used hardware. First, we have
deployed the PSD prototype on NexusOne Android phone
and an Ultra Mobile PC with 1.33 GHz CPU and 1GB
RAM. For sensor nodes, we used multiple KNodes and
USS-2400 [11] nodes with diverse sensing modules such as
accelerometers, gyroscopes, GPS, environmental sensors,
and bio-medical sensors (Blood Volume Pressure sensor
and Galvanic Skin Response sensor, ECG sensor). In
particular, we attach an acceleration sensor in a glove for
hand gesture detection; the glove is easy to wear in real
game situation. They are equipped with Atmega 128L MCU,
CC2420 RF module supporting 2.4GHz band ZigBee
protocol, and TinyOS as operating system.
To create fun pervasive games, we also incorporate diverse
types of application-specific actuators. Along with our
prototype applications, we developed an application-
controllable smart treadmill. It has a built-in socket
interface to receive commands from applications, such as
acceleration or inclination. In addition, it can detect the
runner’s over- or under-pace by an infrared sensor
measuring the distance from the runner.

From a developer’s standpoint, developing pervasive
games is quite simpler with PSD; we only need to define
the game logics and design user interfaces. Many game
interactions are signaled by gestures mimicking real actions,
like shaking an arm wearing an accelerometer to toss an
item in the game. The complexities in processing
accelerometer readings and recognizing the gestures are
completely handled by PSD while the game logics can be
reduced to a simple CIQ registration on PSD.

5. PROTOTYPE GAMES
5.1 ULifeAvatar
ULifeAvatar is a sample lifestyle pervasive game which
generates an avatar reflecting characteristics of players’
real lives, as described in Section 1. More specifically,
avatars have several attributes such as strength, dexterity,
intelligence and charisma, which are common stats in many
role playing games. These attributes are gradually affected
on avatars by the players’ daily activities. For example, the
game continuously monitors players’ walking and running
speed and log the maximum and average speed. Then the
logged values are converted into the avatar’s average and
instant maximum dexterity, which can be used in other
pervasive social games. The game also monitors the
number of people which players meet daily, accumulates

the number day by day, and changes the charisma value for
corresponding avatars. In Swan Boat racing game which
will be explained later, a player with a higher charisma
value has higher possibility to obtain a booster item.

5.2 U-Theater
U-theater is a group-interactive gaming environment for
public places with a large screen, like conventional movie
theaters. (It has been introduced in our previous work [12])
We suppose typical games in U-theater are likely played by
tens of players at the same time as shown in Figure 4. Each
player wears sensors, watches the screen, and plays the
game with gestures. U-theater would introduce a unique
gaming experience of group collaboration or competition
involving physical activities. We have developed three
game applications for U-theater: “Cheer together!”,
“Smash the beehive!”, and “Jump, Jump!” Here we only
elaborate “Smash the beehive!” due to the page limit. A
beehive with a lot of bees swarming around is shown on
the screen. When the bees are swarming, the players should
freeze not to get stung by the bees. Then, suddenly there
comes a moment when no bees fly. The players should take
that chance to punch the beehive. The quickest gets points.
The amount of points is proportional to the strength value
of the avatar of the quickest player. If more than two
players hit the beehive at the same time, the player which
has an avatar with higher dexterity value wins.
To study end-user experiences, we held a public event to
demonstrate U-theater. 32 elementary students within 3rd
through 6th grade participated in the event. It was a single
day event, and they were divided into two groups with 16
players each. To instantly generate avatars’ attribute values,
we gave players 100 points and ask them to distribute
among attributes, and used the answers as the attribute
values for their avatars. Each group experienced all three
U-theater games we developed. We have observed and
analyzed their behaviors both on-site and from video
recordings.
Prior to the event, we expected that the unique fun factors
obtainable from PSD-based games were two-fold: the
gesture-based game plays and the group gaming experience.
From these standpoints, the players have shown behaviors
closely concurring with our expectation. Moreover, a
notable discovery is that both fun factors are not just valid
but also highly correlated. To be specific, the gestures,
which are the prime modes of interaction in PSD-based
games, essentially enable active social interaction. As the
game interactions are merged with into natural motions,
our games give more freedom of motions than classical
games. Particularly, relieving eyes and limbs of excessive
game controls enables intensive interaction with neighbor
players involving eye contacts and physical signals. Even
though those players are actually from different schools
and do not know each other, playing physical activities
together seems to expedite ice-breaking and promote
conversations.

Figure 4. Playing Swan Boat (left) and U-theater (right)

23

5.3 Swan Boat
Swan Boat [1] is a multiplayer game designed to add fun to
treadmill running which can be otherwise extremely boring.
Two runners form a team, which simulates a two-seater
pedalo, i.e. the pedal-powered recreational boat. A course
is given to the teams. Team mates should tightly
collaborate to maneuver their boat to clear the course faster.
The basic means of propulsion and steering are their paces.
A differential pace between them steers the boat to port or
starboard. Matching their paces propels the boat straight.
To implement Swan Boat, we used an interactive treadmill
which automatically adjusts its speed to users’ desired
running speed [9]. Optionally, we also allowed players to
use other smart exercise devices reporting exercise speed in
real-time, such as jump rope, hula hoop, and stationary
cycle, as described in [19]. (See Figure 4)
Items and gestures even more encourage dynamic
interaction and team-competition. Various items with
indigenous effects are drifting on the water. Gestures also
enrich realistic game play. For example, a punch can be
used to attack a nearby boat, hindering their play.
We installed four interactive treadmills for Swan Boat to
study players’ experiences and recruited 11 university
students within the ages of 20 to 25 years old. We asked
them to play Swan Boat for one week, and conducted an
open-ended exit interview. The overall impressions were
fairly positive and most of the participants strongly agreed
that Swan Boat helped them to be better immersed in
running. They elaborated that major fun factors were active
participation and competition utilizing intuitive physical
interactions.

6. CONCLUSION
We have presented our concept and initial prototype of
Player Space Director (PSD), a mobile platform for
pervasive games, targeting to fully reflect player’s real-life
situations. PSD provides an intuitive, declarative query
language, CIQ, to specify diverse contextual interactions,
facilitating the designers to develop pervasive games. PSD
flexibly orchestrates game input devices in awareness of
device availability and resource status. Given CIQs and
device availability, PSD incorporates diverse processing
modules for player space contexts, gestures, etc. PSD also
provides in-situ or remote multi-player support with
heterogeneous devices. We implemented a prototype
system on mobile devices with a diverse set of sensors and
actuators. PSD is applied in real pervasive game
development, and those prototype games are experienced
by lots of publicly recruited players.

In conclusion, PSD has well demonstrated an initiative
toward the mobile pervasive game platform. The next step
of PSD is to get out of the lab settings and immerse it into
diverse real life situations.

7. REFERENCES
[1] Ahn, M., et al. Running or gaming, In Proc. ACE 2009,

ACM.
[2] Ballagas, R. A., et al. REXplorer: a mobile, pervasive spell-

casting game for tourists. Ext. Abstracts CHI 2007.
[3] Bao, L. and Intille, S.S. Activity recognition from user-

annotated acceleration data. Pervasive 2004.
[4] Bjork, S., et al. Pirates! Using the physical world as a game

board. Interact 2001.
[5] Chang, Y., et al. Playful toothbrush: ubicomp technology for

teaching tooth brushing to kindergarten children. CHI 2008.
[6] Consolvo, et al. Activity sensing in the wild: a field trial of

ubifit garden. CHI 2008
[7] Ferreira, P., et.al. A Middleware Architecture for Mobile and

Pervasive Large Scale Augmented Reality Games. CNSR
2007.

[8] FFTW. http://www.fftw.org
[9] Frevola. http://www.r1solution.com
[10] Grønbæk, K., et.al. iGameFloor - a Platform for Co-Located

Collaborative Games. ACE 2007.
[11] HUINS. http://www.huins.com
[12] Kang, S., et al., Seemon: scalable and energy-efficient

context monitoring framework for sensor-rich mobile
environments, MobiSys 2008.

[13] Lee, Y., et al., MobiCon: A Mobile Context-Monitoring
Platform. Communications of the ACM, 55 (2012), 54—65

[14] Lin, J.J., et al. Fish‘n’Steps: Encouraging Physical Activity
with an Interactive Computing Game. UbiComp 2006.

[15] Linner, D., et al. Context-aware Multimedia Provisioning for
Pervasive Games. IEEE ISM 2005.

[16] Magerkurth, C., et al. A Multimodal Interaction Framework
for Pervasive Game Applications. AIMS 2003.

[17] Musolesi, M., et al. The Second Life of a Sensor: Integrating
Real-world Experience in Virtual Worlds using Mobile
Phones. EmNets 2008.

[18] Nenonen, V., et al. Using Heart Rate to Control an
Interactive Game. CHI 2007.

[19] Park, T., et al. Exerlink – Enabling Pervasive Social
Exergames with Heterogeneous Exercise Devices, MobiSys
2012.

[20] Ravindranath, L., et al. Code In The Air: Simplifying
Sensing and Coordination Tasks on Smartphones, Hotmobile
2012.

[21] Wii Sports, http://www.nintendo.com/games/
detail/1OTtO06SP7M52gi5m8pD6CnahbW8CzxE

24

	Toward a Mobile Platform for Pervasive Games
	Citation

	Toward a mobile platform for pervasive games

