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Abstract. Palfrey and Srivastava (1991) show that almost any social choice correspondence
(SCC) is implemented in undominated Nash equilibrium, a refinement of Nash equilibrium. By
requiring solution concepts to have closed graph in the limit of complete information, Chung and
Ely (2003) investigate the robustness of undominated Nash implementation. Their robustness
test concludes that when preferences are strict (or more generally, hedonic), only monotonic SCCs
can be implemented in the closure of the undominated Nash (equilibrium) correspondence.

This paper re-examines this robustness test. I show that almost any SCC is implemented
in the closure of the undominated Nash correspondence, provided that the planner is certain
that there is “approximate” common knowledge. I also show that only monotonic SCCs can be
implemented in the closure of the undominated Nash correspondence, provided that the planner
is only nearly certain that there is approximate common knowledge. Therefore, this robustness
test, on the one hand, generates new restrictions imposed on the set of implementable SCCs,
and on the other hand, clarifies the extent to which the permissive implementation results are
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1 Introduction

Let us consider a society consisting of a finite set of individuals. The society has a social
choice rule (or correspondence) which associates with each state of the world a subset
of possible outcomes. A goal of implementation theory is to characterize the relation-
ship between the structure of the institution (or mechanism) through which individuals
interact and the outcome of that interaction, given a social choice rule and a domain
of environments. This paper addresses complete information environments and asks the
question of full and exact implementation: the search for mechanisms whose entire set
of equilibrium outcomes “exactly” coincides with the given rule. In Section 6, I briefly
discuss virtual (approximate) implementation, which only requires that the entire set of
equilibrium outcomes “approximate” the rule.

The fundamental work on Nash implementation is initiated by Maskin (1999).3

Maskin (1999) shows that a condition called monotonicity is necessary and almost suf-
ficient for Nash implementation. It turns out that monotonicity is quite a demanding
condition and the literature tried to obtain less restrictive characterizations using refine-
ments of Nash equilibrium. In particular, Palfrey and Srivastava (1991) introduce a new
solution concept, undominated Nash equilibrium and prove that almost any social choice
correspondence (SCC) is implemented in undominated Nash equilibrium when there are
at least three players. This is a striking result in that it says that for almost any so-
cial choice rule, it is possible to construct a decentralizing procedure whose resulting
outcomes are precisely those prescribed by the rule. However, Jackson, Palfrey, and Sri-
vastava (1994) argue that the power of this permissive result derives from the fact that
we have not imposed any restrictions on the implementing mechanism. They propose a
condition, “boundedness,” which requires that if an action is weakly dominated, then it
is weakly dominated by an undominated action. Jackson et al (1994) characterize a set
of SCCs which are implemented in undominated Nash equilibrium by bounded mecha-
nisms. While the restriction to bounded mechanisms eliminates some SCCs which are
undominated Nash implemented with “unbounded” mechanisms, the remaining set of
implementing SCCs is still larger than that for Nash implementation.

Chung and Ely (2003) elaborate on the power of the permissive result from a dif-
ferent perspective. Their argument is based on the consideration of “robustness” of
implementability to the relaxation of the complete information assumption. The mecha-
nisms used in the proofs of those classical results make conspicuous use of the assumption
of complete information. Complete information entails common knowledge of payoffs,
an assumption generally taken to be at best a simplifying assumption, but often a less
innocuous one. Chung and Ely address the following question. Suppose that the planner
acknowledges that complete information is an idealization and that in the true environ-
ment players may be uncertain about the state of the world. Then, one asks: what SCCs
can be implemented by mechanisms that provide the desired outcome in all equilibria of
environments that are “close” to complete information? Chung and Ely conclude that

3The original paper had been circulated since 1977.
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this type of robustness test yields surprisingly strong restrictions on implementability.
Without imposing any restrictions on the mechanism used, they show that only mono-
tonic SCCs can be robustly implemented. This means that even when all the equilibrium
outcomes under complete information yield the planner’s desired outcomes, there may
be environments close to complete information with equilibrium outcomes far from the
desired set.

This paper revisits Chung and Ely (2003) and characterizes the class of nearby envi-
ronments which is sufficient to obtain the monotonicity-as-a-necessary-condition result.
First, I look at the class of nearby environments where the planner is certain that there
is approximate common knowledge in the sense of Monderer and Samet (1989) (I will
define this in Section 2.3). In this class of nearby environments, I show that if prefer-
ences are strict, the undominated Nash equilibrium correspondence has closed graph in
the limit of complete information (Theorem 1). Furthermore, in the same class of nearby
environments, I show that if preferences are strict, the undominated Nash equilibrium
correspondence is lower hemi-continuous in the limit of complete information (Theorem
2). Combining Palfrey and Srivastva’s (1991) mechanism with Theorems 1 and 2, I
show that almost any SCC is implementable in the closure of the undominated Nash
equilibrium correspondence (Corollary 3). Second, I look at a larger class of nearby
environments where the planner is nearly certain that there is approximate common
knowledge. In this larger class of nearby environments, it can be shown that the undom-
inated Nash equilibrium correspondence exhibits a discontinuity in the limit of complete
information in any mechanism that implements a non-monotonic SCC in undominated
Nash equilibrium (Theorem 4). This is indeed Chung and Ely’s theorem 1 and this
paper’s contribution lies in clarifying exactly “when” the monotonicity-as-a-necessary-
condition result applies. Moreover, I extend the result to social choice “correspondences.”
Therefore, there is a big discrepancy between “certainty” and “near certainty” for the
corresponding robustness requirements. This also explains how delicately the permissive
implementation results of undominated Nash implementation rely on complete informa-
tion. Thus, I propose a way of checking the robustness of the permissive implementation
results and show that the robustness test, on the one hand, generates new restrictions
imposed on the set of implementable SCCs, and on the other hand, clarifies the extent
to which the permissive implementation results are sustained.

A final word is called for regarding some related but different concept of robust
implementation. Following the approach of Bergemann and Morris (2005), Bergemann
and Morris (2010) propose a different concept of robust full (exact) implementation.
Their robustness is the requirement that implementation succeed in “all” type spaces
coherent with a given payoff type space. Their approach is similar to this paper in
that the payoff type space is embedded in a richer type space. However, I stress two
differences: (1) their robustness test is global in the sense that they make no assumptions
about players’ higher order beliefs. That is, the planner takes into account that players
can have any beliefs. On the other hand, this paper’s robustness test substantially
restrict players’ admissible beliefs to be close to complete information. In this sense,
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this paper’s robustness is much less demanding than theirs. (2) Bergemann and Morris
assume that each player always knows his own payoff type4, while this paper allows for
the possibility that some player does not even know his own payoff type. In this sense,
this paper’s robustness is more demanding than theirs. Hence, logically speaking, this
paper’s robustness is neither stronger nor weaker than theirs.

The rest of the paper is organized as follows. In section 2, I formalize the setup and
definitions. In section 3, I illustrate the main idea of the paper by example. In section 4, I
show the main results: Theorem 1 identifies the conditions under which the undominated
Nash correspondence has closed graph in the limit of complete information and Theorem
2 shows that under the same conditions identified by Theorem 1, the undominated Nash
correspondence is also lower hemi-continuous in the limit of complete information. In
section 5, I use the main results of the previous section and propose a way of checking
the robustness of implementation results. Section 6 gives concluding remarks and the
Appendix contains omitted proofs from the text.

2 The Basic Setup

2.1 The Environment

There is a finite set N = {1, . . . , n} of players. Each player i has a bounded utility
function ui : A×Θ → R, where Θ = {θ1, . . . , θK} denotes the finite set of payoff states,
and A denote the set of pure outcomes.5 I assume that for each player i ∈ N , any θ ∈ Θ,
and any a, a′ ∈ A, ui(a; θ) = ui(a′; θ) if and only if a = a′. This is the assumption of strict
preferences.6 A social choice correspondence (SCC) is a mapping F which associates a
subset of A with each θ ∈ Θ. A single-valued social choice correspondence is a social
choice function (SCF) denoted f . Hence, any selection of SCC F is a social choice
function.

2.2 Type Space

While maintaining that the payoff space Θ is common knowledge, I want to allow for
players to have richer beliefs about the payoff state than complete information prescribes.
To do so, I embed the payoff space Θ into a state space Ω, where Ω is the finite set of
states of the world.7 Throughout the paper, I fix the state space Ω, which is perfectly
general in the sense of the degree and nature of the information structures that it permits.
Associated with each embedding is an onto mapping ξ : Ω → Θ. Let Ξ be the set of
all such mappings from Ω → Θ. Let Ψ be the space of all partitions of Ω, the elements

4Artemov, Kunimoto, and Serrano (2010) call this the coherence assumption. In other words, this
coherence assumption will be violated in this paper’s analysis.

5All the results in the current paper do not depend upon a particular representation of ui(·).
6Strict preferences can be extended to more general hedonic preferences, as Chung and Ely (2003)

did. I find strict preferences easier to explain the results and opt for this formulation.
7When I only consider finite mechanisms, I can also handle the countably infinite Ω in the rest of the

paper.

3



of which are in 2Ω\{∅}. For each Πi ∈ Ψ and ω ∈ Ω, I denote by Πi(ω) the element
of Πi which contains ω. I call Πi ∈ Ψ player i’s partition correspondence. Denote
Π = (Πi)i∈N ∈ Ψn. I call (Π, ξ) ∈ Ψn × Ξ a type space and fix it throughout.

2.3 Mechanisms

A mechanism Γ = (M,g) consists of a message space M and an outcome function g :
M → A. Here M ≡ ×i∈NMi and Mi is player i’s message space. Throughout the paper,
I will impose the following restriction on the class of mechanisms considered.

Assumption 1 (M1: Countability) Mi is countable for each i ∈ N

Remark: Since Ω is assumed to be finite, by M1, the pure strategy space is at most
countable. Thus, I find M1 very useful to define the convergence in the pure strategy
space. See also the remark after Proposition 1. In addition to its technical usefulness, M1
is also rich enough to encompass the integer games or devices alike when one constructs
mechanisms. Note that the integer game is the one in which each player has to announce
an integer and becomes the dictator when his integer is the largest one. This is an
important inclusion because most of canonical mechanisms in the literature use devices
like integer games.

Recall that a type space (Π, ξ) is fixed throughout. Fix a mechanism Γ satisfying M1.
Player i’s pure strategy σi is a mapping from Ω to Mi, which is Πi-measurable. I will
denote the space of player i’s pure strategies by Σi. The space of pure strategy profiles
is denoted Σ = Σ1 × · · · × Σn with generic element σ. Denote Σ−i ≡ Σ1 × · · · × Σi−1 ×
Σi+1×· · ·×Σn.8 Throughout I assume that for each i ∈ N , Σi is a countable space with
the discrete topology. Let Σ be endowed with the product topology.9 I shall show below
that if Σ is endowed with the discrete topology, the mechanism is well-behaved.

Let P be the space of all priors over Ω. Let supp(μ) ≡ {ω ∈ Ω|μ(ω) > 0}. Throughout
the paper, I assume that any prior μ ∈ P has full support on Θ: for any θ ∈ Θ, there
exists ω ∈ supp(μ) with ξ(ω) = θ.

For any ω, ω′ ∈ Ω, define player i’s belief over Ω conditional on Πi(ω) as follows:

μ(ω′|Πi(ω)) =

{
μ(ω′)

/ ∑
ω̃∈Πi(ω) μ(ω̃) if ω′ ∈ Πi(ω) and ω′ ∈ supp(μ)
0 otherwise.

When considering decision making under uncertainty, I assume that each player’s pref-
erences under uncertainty are represented by expected utility.10 I define player i’s best

8Similar notation will be used for products of other sets.
9Then, even with the discrete topology, M1 guarantees that the pure strategy space maintains nice

topological properties, such as σ-compactness and separability. This is no longer true if Σ is uncountable.
10Most of the results can be extended from expected utility to much more general representations for

preferences under uncertainty. Some additional assumptions I need for the results are very similar to
Assumptions 1 and 2 of Chung and Ely (2003).
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response correspondence as bΓi : P × Σ−i → Σi: for any μ ∈ P and σ−i ∈ Σ−i,

bΓi (μ, σ−i) =

{
σi ∈ Σi

∣∣∣∣∣
∑

ω̃∈Ω μ(ω̃|Πi(ω))
[
ui(g(σ(ω̃)); ξ(ω̃)) − ui(g(σ

′
i(ω̃), σ−i(ω̃)); ξ(ω̃))

]
≥ 0

∀ω ∈ supp(μ), ∀σ′
i ∈ Σi

}
.

The way I introduce players’ beliefs over Ω into the analysis reveals that the common
prior assumption (CPA) is maintained throughout. One important question is whether
or not the CPA is necessary. Theorems 1 and 2, however, are intact as long as the
common support assumption, which is implied by the CPA, is fulfilled.11 Therefore, I
conclude that the CPA is crucial to the extent that the common support assumption is
indispensable for Theorems 1 and 2.12 Next, I define the best response correspondence
as ψBR

Γ : P × Σ → Σ as follows: for any μ ∈ P and σ ∈ Σ,

ψBR
Γ (μ, σ) = {σ̃ ∈ Σ| σ̃i ∈ bΓi (μ, σ−i) ∀i ∈ N}.

The graph of ψBR
Γ is just the subset of P × Σ × Σ, defined by

graph ψBR
Γ ≡ {

(μ, σ, σ̂) ∈ P × Σ × Σ| σ̂ ∈ ψBR
Γ (μ, σ)

}
.

I say that {μk}∞k=1 is an elaboration of a prior μ if, for any ω ∈ Ω, |μk(ω)−μ(ω)| → 0
as k → ∞. This is the point-wise convergence of priors over Ω. The next proposition
shows that if there exists {(μk, σk)}∞k=1 with σk → σ and μk → μ such that for each k, σk

is a Bayesian Nash equilibrium of the game Γ(μk), then σ is a Bayesian Nash equilibrium
of the game Γ(μ). Note that under complete information, this σ is not necessarily a
Nash equilibrium but rather induces a correlated equilibrium distribution because the
players may correlate their actions via information in the elaborations. See the example
of Section 3.3 for this correlation effect. In fact, if C1 holds (to be defined in Section
2.4), Theorem 1 of this paper will show that this σ reduces to a Nash equilibrium of the
complete information game.

Proposition 1 (Γ is well-behaved) Let Γ be a mechanism such that Σ is endowed
with the discrete product topology. Then, Γ is well-behaved in the following sense: for
any (μ, σ) ∈ P×Σ, (μ, σ, σ) ∈ graph ψBR

Γ whenever there exists a sequence {(μk, σk)}∞k=1

such that (i) (μk, σk, σk) ∈ graph ψBR
Γ for each k and (ii) (μk, σk) → (μ, σ) as k → ∞.

Remark: The fact that Γ is well-behaved is consistent with the use of the integer games
because there exists “no” Nash equilibrium in the integer game. Hence, requiring that
Γ be well-behaved is far weaker than requiring that for any μ ∈ P, there always exist

11The common support assumption says that if some player assigns zero probability to a certain event,
then all other players assign zero probability to the same event.

12For example, Theorem 1 of this paper cannot be true without the common support assumption, i.e.,
one can modify the example in Section 3.1 by dropping the common support assumption in which the
undominated Nash equilibrium correspondence exhibits a discontinuity at a complete information even
if all the sufficient conditions for Theorem 1 are satisfied. I am grateful to an anonymous referee for
pointing this out.
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a Bayesian Nash equilibrium in the game Γ(μ). Notice that M1 makes the use of the
discrete topology reasonable when I consider the convergence in the pure strategy space
Σ.

Proof of Proposition 1: Consider a sequence {(μk, σk)}∞k=1 such that (μk, σk, σk) ∈
graph ψBR

Γ for each k and (μk, σk) → (μ, σ) as k → ∞. Since σk → σ in the discrete
product topology, we obtain that σk = σ for each k large enough. This implies that
(μk, σ, σ) ∈ graph ψBR

Γ for each k large enough. What we want to show is that (μ, σ, σ) ∈
graph ψBR

Γ . Suppose, on the contrary, that (μ, σ, σ) /∈ graph ψBR
Γ . Then, there exist

i ∈ N, σ′
i, and ω ∈ supp(μ) such that

∑
ω̃∈Ω

μ(ω̃|Πi(ω))
[
ui(g(σ

′
i(ω̃), σ−i(ω̃)); ξ(ω̃)) − ui(g(σ(ω̃)); ξ(ω̃))

]
> 0.

By the continuity of expected utility, for each k large enough, we also obtain∑
ω̃∈Ω

μk(ω̃|Πi(ω))
[
ui(g(σ

′
i(ω̃), σ−i(ω̃)); ξ(ω̃)) − ui(g(σ(ω̃)); ξ(ω̃))

]
> 0.

This implies that (μk, σk, σk) /∈ graph ψBR
Γ for each k large enough, which is a contra-

diction. �

2.4 Embedding Complete Information into Incomplete Information Struc-
tures

In order to talk about complete and near-complete information, I define complete in-
formation priors and notions of closeness to complete information in terms of topology
over the set of priors P. To define those, I need some definitions. This paper uses Mon-
derer and Samet’s (1989) concept of “common p-belief” as an approximation to common
knowledge, which is common 1-belief.

Fix a type space (Π, ξ) and a prior μ ∈ P. Let Bq
i (E) ≡ {ω ∈ Ω|μ(E|Πi(ω)) ≥ q}

denote the set of states in which player i assigns probability at least q to the event E.
I call this player i’s q-belief operator. In particular, when q = 1, I call B1

i player i’s
1-belief operator corresponding to player i’s knowledge operator. An event E is said to
be q-evident if E ⊂ Bq

i (E) for all i ∈ N . This means that whenever E is true, everyone
believes with probability at least q that E is true. An event E is said to be common
q-belief at ω if there exists a q-evident event F such that ω ∈ F ⊂ ⋂

i∈N Bq
i (E). For any

event E, define CBq(E) ≡ ⋂
i∈N Bq

i (E). I will loosely say that an event E is approximate
common knowledge at ω if E is common q-belief at ω, for q close to 1. In particular,
an event E is said to be common knowledge at ω if it is common 1-belief at ω, that is,
ω ∈ E ⊂ CB1(E).

For any θ ∈ Θ, define Gθ ≡ {ω ∈ Ω| ξ(ω) = θ} as the set of states that corresponds
to the payoff state θ. Next, I define complete information.

6



Definition 1 μ ∈ P is said to be a complete information prior if, for any ω ∈ Ω,
μ(ω) = 0 whenever ω /∈ ⋃

θ∈ΘCB
1(Gθ).

The above requirement says that it is always common knowledge which payoff state
is being realized. Let Γ(θ) denote a complete information game in which θ is common
knowledge. Fixing a type space (Π, ξ), this paper concerns an elaboration {μk}∞k=1

converging to a complete information prior μ.13 Throughout the paper, I maintain the
following restriction on the class of elaborations. I will mention it wherever I do not need
this assumption.

Assumption 2 (C1: Consistency) Every elaboration {μk}∞k=1 of a complete informa-
tion prior μ is consistent in the following sense: for any θ ∈ Θ, there exists q ∈ (0, 1)
such that for any q ∈ [q, 1] and any i ∈ N , there exists ω ∈ supp(μ) with ξ(ω) = θ for
which Bq

i (Gθ) = Πi(ω).

Remark: C1 says that at all states where player i believes with high probability that
some payoff state is realized, he can only choose one action (or message) uniformly
over those states. Then, a violation of C1 may introduce extra correlations so that
the focus on Nash equilibrium might be inadequate.14 In Section 3.3, I will show by
example that without C1, one can construct a Bayesian Nash equilibrium that induces
a correlated equilibrium distribution of the complete information game whose support
involve a non-Nash equilibrium. This implies that C1 cannot be completely dispensed
with for the undominated Nash equilibrium correspondence to have closed graph in the
limit of complete information.15

Define as G(ε) the set of all states in which there is a common (1 − ε)-belief about
which payoff state being realized as follows:

G(ε) =
{
ω ∈ Ω

∣∣ ∃θ ∈ Θ such that Γ(θ) is common (1 − ε)-belief at ω
}
.

Now, I am ready to introduce a special class of elaborations called d∗-elaborations
below:

13While this looks a very similar argument in Fudenberg, Kreps, and Levine (1988), Dekel and Fu-
denberg (1990), and Kajii and Morris (1997a), I make a very distinct argument. In this paper, I fix the
payoff space and perturb only the players’ beliefs over the fixed payoff space so that the set of messages
in the mechanism remain cheap talk and do not enter directly into the payoff functions. These authors
are, on the other hand, concerned with the situation in which the set of payoff states is not common
knowledge, i.e., there are “crazy” types.

14The reader is referred to Section 2.3 of Kajii and Morris (97a) for similar arguments.
15Let μ be a complete information prior and σ be a Bayesian Nash equilibrium of the game Γ(μ).

Indeed, C1 guarantees that σ is a Bayesian Nash equilibrium of the game Γ(μ) if and only if σ(ω) is a
Nash equilibrium of the complete information game Γ(ξ(ω)) for any ω ∈ supp(μ). I consider the type
space of Chung and Ely (2003): Let Ω = Ω1 × · · · × Ωn, where Ωi = Θ for each i ∈ N is considered i’s

private signal space. For each θ ∈ Θ, ξ(θ, . . . , θ) = θ. For each i ∈ N and all ω,ω
′ ∈ Ω, Πi(ω) �= Πi(ω

′
)

if and only if ωi �= ω
′
i . Hence, C1 holds trivially in their setup.
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Definition 2 {μk}∞k=1 is said to be a d∗-elaboration of a complete information prior
μ if it is an elaboration of μ and there exists the corresponding sequence {εk}∞k=1 such
that εk ≥ 0 and μk(G(εk)) = 1 for each k and εk → 0 as k → ∞.

d∗-elaborations describe a situation where the planner is “certain” that there is ap-
proximate common knowledge. In order to ask for a more demanding robustness test, I
define a slightly coarser elaboration, which is called a d∗∗-elaboration.

Definition 3 {μk}∞k=1 is said to be a d∗∗-elaboration of a complete information prior
μ if it is an elaboration of μ and there exists the corresponding sequence {εk}∞k=1 such
that εk ≥ 0 and μk(G(εk)) ≥ 1 − εk for each k and εk → 0 as k → ∞.

d∗∗-elaborations describe a situation where the planner is “nearly certain” that there
is approximate common knowledge. In the Appendix, I show that d∗-elaborations and
d∗∗-elaborations each generate a different topology, respectively.16 Moreover, it can be
easily seen that there is a one-to-one correspondence between the topologies for a set X
and the convergence classes on it. Since any d∗-elaboration is a d∗∗-elaboration as well,
but the converse is not true, the topology induced by d∗∗-elaborations is strictly coarser
(weaker) than the one induced by d∗-elaborations.

2.5 Domination and Equilibrium

Recall that a type space (Π, ξ) is fixed throughout. Given a prior μ ∈ P, the mechanism
Γ determines a Bayesian game Γ(μ) in which each player i’s type is Πi(ω) in state ω
and after observing his type, player i selects a message from the set Mi. Player i’s
pure strategy in the game Γ(μ) is a function σi : Ω → Mi which is Πi-measurable. Let
σ ≡ (σ1, . . . , σn) be a strategy profile in the game Γ(μ). With these notations, I shall
define Nash equilibrium (NE) and Bayesian Nash equilibrium (BNE), respectively.

Definition 4 A strategy profile σ is a Bayesian Nash equilibrium (BNE) of Γ(μ) if
for each i ∈ N , state ω ∈ Ω, and strategy σ

′
i, we have∑

ω̃∈Ω

μ(ω̃|Πi(ω))
[
ui(g(σ(ω̃)); ξ(ω̃)) − ui(g((σ

′
i, σ−i)(ω̃)); ξ(ω̃))

]
≥ 0.

By C1 (consistency), it is clear that under a complete information prior μ, a strategy
profile σ is a Bayesian Nash equilibrium of Γ(μ) if and only if, for any ω ∈ supp(μ), σ(ω)
is a Nash equilibrium of the complete information game Γ(ξ(ω)).17 The following is a
definition of weak dominance.

16Monderer and Samet (1989) use d∗∗-elaborations for their robust equilibrium analysis in complete
information games. Kajii and Morris (1998) and Monderer and Samet (1996) extend d∗∗-elaborations
into general incomplete information games. All three papers analyze the “lower” hemi-continuity of (ε-)
Bayesian Nash equilibrium correspondence. Theorem 2 of this paper is along this line.

17In Section 3.3, I will show by example that this equivalence breaks down if C1 (consistency) is
violated.
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Definition 5 Let Γ(μ) be an incomplete information game. A strategy σi is dominated
for some ω ∈ supp (μ) if there exists a strategy σ

′
i such that for every strategy profile σ−i

for j �= i, ∑
ω̃∈Ω

μ(ω̃|Πi(ω))
[
ui(g((σ

′
i, σ−i)(ω̃)); ξ(ω̃)) − ui(g(σ(ω̃)); ξ(ω̃))

]
≥ 0.

with strict inequality for at least one σ−i. A strategy σi is undominated if it is not
dominated for any ω ∈ supp(μ).

Finally I shall define undominated Bayesian Nash equilibrium, which, once again by
C1 (consistency), is equivalent to undominated Nash equilibrium under any complete
information prior μ.

Definition 6 A strategy profile σ is an undominated Bayesian Nash equilibrium
(U) of Γ(μ) if it is a Bayesian Nash equilibrium (BNE) of Γ(μ) for which σi is undomi-
nated for each i ∈ N .

2.6 The Closure of the Solution Correspondences

Recall that a type space (Π, ξ) is fixed throughout. Given a mechanism Γ, I denote the
undominated Bayesian Nash equilibrium correspondence by ψU

Γ : P → Σ where each
element σ of ψU

Γ (μ) is an undominated Bayesian Nash equilibrium of Γ(μ) (where U
stands for undominated Bayesian Nash equilibrium). That is,

ψU
Γ (μ) = {σ ∈ Σ| ∃ undominated Bayesian Nash equilibrium σ of Γ(μ)} .

And let the graph of ψU
Γ be the subset of P × Σ, defined by

graph ψU
Γ ≡ {

(μ, σ) ∈ P × Σ| σ ∈ ψU
Γ (μ)

}
.

Note that Chung and Ely (2003) take the set of outcomes A as a Hausdorff topological
space, define A ≡ AΩ as a product set, and endow A with the product topology. Then,
they define ψCE

Γ : P → A as their undominated Bayesian Nash equilibrium correspon-
dence. Consider a convergent sequence {(μk, σk)}∞k=1 such that (μk, g ◦σk) ∈ graph ψCE

Γ

for each k and (μk, g ◦ σk) → (μ,α) ∈ P × A as k → ∞. While g ◦ σk does converge to
α by hypothesis, this does not necessarily mean that σk converges to some σ as k → ∞.
Therefore, Chung and Ely implicitly consider a much coarser topology on Σ than this
paper’s discrete topology on Σ. As I argued, M1 (countability) makes the discrete topol-
ogy a reasonable choice for Σ. I consider this difference as an advantage of this paper’s
approach.

This paper asks the following question: What SCCs can be implemented by mecha-
nisms that provide the desired outcomes in “all” equilibria in “all” environments that are
close to complete information? If the planner is concerned with this question, he must
consider the possibility that there may be environments close to complete information
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where the set of equilibrium outcomes is undesirably large. At the same time, the planner
wants to make sure that in “all” environments that are close to complete information,
there always exists at least one equilibrium outcome that coincides with any selection
of the SCC. Thus, as in Chung and Ely (2003), I consider the “closure” of the solution
correspondence ψU

Γ . First, I define the closure of the graph ψU
Γ :

Definition 7 Let Γ be a mechanism such that Σ is endowed with the discrete topology.
Then, we say that (μ, σ) ∈ [

graph ψU
Γ

]∗ if there exists a sequence {(μk, σk)}∞k=1 such
that (i) (μk, σk) ∈ graph ψU

Γ for each k; (ii) (μk, σk) → (μ, σ); and (iii) {μk}∞k=1 is a
d∗-elaboration. Similarly, we can define (μ, σ) ∈ [

graph ψU
Γ

]∗∗ by instead requiring that
{μk}∞k=1 be a d∗∗-elaboration.

Next, with the above definition, define the following two different closures of the
undominated Bayesian Nash equilibrium correspondence: for any μ ∈ P,[

ψU
Γ

]∗
(μ) =

{
σ ∈ Σ

∣∣ (μ, σ) ∈ [
graph ψU

Γ

]∗}
; and[

ψU
Γ

]∗∗
(μ) =

{
σ ∈ Σ

∣∣ (μ, σ) ∈ [
graph ψU

Γ

]∗∗}
.

In the next section, by way of example, I construct a mechanism Γ∗ such that
[ψU

Γ∗ ]∗∗(μ) �= ψU
Γ∗(μ) at any complete information prior μ. I will postpone a much more

general result (Theorem 4) until Section 5.2. In Section 4, on the other hand, I will iden-
tify conditions under which for any mechanism Γ, [ψU

Γ ]∗(μ) = ψU
Γ (μ) at any complete

information prior μ (Corollary 2).

3 Illustration

Let me illustrate the main idea of this paper through a series of examples. In Section 3.1,
I will estabilish the discontinuity of the undominated Nash correspondence with respect
to d∗∗-elaborations. In Section 3.2, I can explicitly construct a d∗-elaboration satisfying
C1 (consistency). Finally, in Section 3.3, I will show that C1 cannot be completely
dispensed with for the undominated Nash correspondence to have closed graph in the
limit of complete information.

3.1 [ψU
Γ ]∗∗(μ) �= ψU

Γ (μ) where μ is a complete information prior

There are two players, called Andy and Bob. There are three possible outcomes, a, b,
and c. There are two possible payoff states, called θ and θ′. I assume that the players’
preferences over the three outcomes are strict and state dependent as follows18:

Andy: uA(b; θ) > uA(a; θ) > uA(c; θ) and uA(b; θ′) > uA(a; θ′) > uA(c; θ′)
Bob: uB(a; θ) > uB(c; θ) > uB(b; θ) and uB(a; θ′) > uB(b; θ′) > uB(c; θ′)

18The example is adapted from Jackson and Srivastava (1996, Example 5), which is also used in Chung
and Ely (2003).
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Bob
Γ∗ = (M,g) mB m

′
B

Andy mA a a

m
′
A c b

Table 1: A mechanism Γ∗ that UNE implements f∗

Bob’s signal
0 1

Andy’s signal 0 1 − p 0
1 pε p(1 − ε)

Table 2: An Example of d∗∗-elaborations

The planner has an SCF f∗ : {θ, θ′} → {a, b, c} with the property that f(θ) = a and
f(θ′) = b. It is easy to see that f∗ is not monotonic (See Section 5.2 for its definition).19

This is an environment with complete information. The planner’s objective is to devise
a mechanism whose unique undominated Nash equilibrium outcome coincides with that
of f∗ in every payoff state. The mechanism Γ∗ = (M,g) (shown in Table 1) is given,
in which Andy chooses the row and Bob chooses the column. Here M = MA ×MB =
{mA,m

′
A} × {mB ,m

′
B} refers to the set of message profiles. The outcome function

g : M → {a, b, c} assigns to each message profile m an alternative g(m) ∈ {a, b, c}.
Γ∗(θ) denotes a complete information game in which the payoff state is θ. The profile

(mA,mB), leading to outcome a, is the unique undominated Nash equilibrium of the
game Γ∗(θ) and the only undominated Nash equilibrium of the game Γ∗(θ′) is (m

′
A,m

′
B)

leading to the outcome b. Note that (mA,mB) is a “dominated” Nash equilibrium of the
game Γ∗(θ′). Hence, the mechanism Γ∗ implements f∗ in undominated Nash equilibrium.

Suppose that players may be uncertain about the state of the world. To fix the idea,
I shall construct the “nearby” environments in which Andy and Bob may be uncertain
about the payoff state as shown in Table 2. There are three states of the world in the
nearby environments parameterized by ε: (0, 0), (1, 0), and (1, 1). Here (0, 0) stands for
the state where the payoff state is θ′. (1, 0) and (1, 1) stand for the states where the payoff
state is θ. With probability p, the state θ is realized and the state θ′ is realized with
probability 1− p. The row is Andy’s signal and the column is Bob’s signal. Each player
only observes his own signal.20 Note also that C1(consistency) holds for this elaboration.

19I shall prove here that f∗ is not monotonic. Suppose, by way of contradiction, that f∗ is monotonic.
Since f∗(θ) �= f∗(θ′), by monotonicity, there must exist player i and outcome y such that ui(y; θ′) >
ui(f

∗(θ); θ′) and ui(f
∗(θ); θ) ≥ ui(y; θ). Such an player must be Bob because Andy has the state uniform

preference. Because f∗(θ) = a and a is the best outcome for Bob, there is no such better y, which is a
contradiction.

20The complete information prior is embedded in this set of nearby environments when ε = 0.
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{μk}∞k=1

ψU
Γ (μ) is a singleton

[ψU
Γ ]∗∗(μ)

Σ

μ: complete info priorμ1 μ2 · · · · · ·μ3 μk · · · · · ·

ψU
Γ (μk)

Figure 1: A schematic diagram: ψU
Γ (μ) �= [ψU

Γ ]∗∗(μ)

Suppose, under this noisy information structure, that Bob has the belief that: “Andy
plays m

′
A when he receives signal 1 and plays mA when he receives signal 0.”

Given Bob’s belief specified above, playing mB after receiving signal 0 gives the
following lottery:

• a = g(mA,mB) in Γ∗(θ′) with probability (1 − p)/(1 − p+ pε);

• c = g(m
′
A,mB) in Γ∗(θ) with probability pε/(1 − p+ pε).

Given Bob’s belief specified above, playing m
′
B after receiving signal 0 gives the following

lottery:

• a = g(mA,m
′
B) in Γ∗(θ′) with probability (1 − p)/(1 − p+ pε);

• b = g(m
′
A,m

′
B) in Γ∗(θ) with probability pε/(1 − p+ pε).

It turns out that mB can be a strict best response for any ε > 0. Then, the planner is
no longer confident that mB is dominated in the game Γ∗(θ′). Especially, at (1, 0), Andy
knows the game is Γ∗(θ) but Bob believes with high probability that the game is Γ∗(θ′).
This is a sense in which these nearby environments are far from complete information, no
matter how small its likelihood is. It is not difficult to show that the nearby environments
is a d∗∗-elaboration. See also Figure 1 for the summary of this subsection.
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Public signal
0 1

Nature’s signal 0 1 − p 0
1 pε p(1 − ε)

Table 3: An Example of d∗-elaborations

{μk}∞k=1

ψU
Γ (μ) = [ψU

Γ ]∗(μ)

Σ

μ: complete info priorμ1 μ2 · · · · · ·μ3 μk · · · · · ·

ψU
Γ (μk)

Figure 2: A schematic diagram: ψU
Γ (μ) = [ψU

Γ ]∗(μ)

3.2 [ψU
Γ ]∗(μ) = ψU

Γ (μ) where μ is a complete information prior

Although I borrow most of the setups from Section 3.1, I consider alternative nearby
environments: Like the previous elaboration, there are three states such that (0, 0) cor-
responds to the payoff state θ′ and (1, 0) and (1, 1) correspond to the payoff state θ.
Unlike the previous one, the row is Nature’s signal and the column is both players’
public signal. Each player never observes Nature’s signal but both players commonly ob-
serve the public signal. Note that C1 holds for this elaboration as well. This information
structure can be described in Table 3. It is easy to show that the nearby environments
described by Table 3 is a d∗-elaboration. This example also shows that the existence of
d∗-elaborations satisfying C1 is not a vacuous assumption. In Section 4, I will formally
show that the “closedness” of the undominated Nash equilibrium correspondence can be
restored by focusing on d∗-elaborations instead. See also Figure 2 for the summary of
this subsection.
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Bob
Γ̃(θ) mB m

′
B

Andy mA 0, 0 7, 2
m

′
A 2, 7 6, 6

Table 4: Complete Information Game Γ̃(θ)

Bob’s signal
0 1

Andy’s signal 0 0 1/3
1 1/3 1/3

Table 5: An Example of d∗-elaborations that do not satisfy C1

3.3 C1 cannot be completely dispensed with

I still have the same Andy and Bob from the previous two subsections but now have an
otherwise different example: there are four outcomes A = {a, b, c, d}. Consider the fol-
lowing mechanism Γ̃ = (M,g) where MA = {mA,m

′
A}; MB = {mB ,m

′
B}; g(mA,mB) =

a; g(mA,m
′
B) = b; g(m

′
A,mB) = c; and g(m

′
A,m

′
B) = d. Assume that there is only one

payoff state θ and each player has strict preferences at that state. The complete informa-
tion Γ̃(θ) is given in Table 4. Γ̃(θ) is known to be a “game of chicken” and there are two
pure strategy Nash equilibria: (mA,m

′
B) and (m

′
A,mB). Now, I introduce three states of

the world (0, 1), (1, 0), (1, 1) such that all the states correspond to payoff state θ. The fist
component of the state is Andy’s private signal and the second component of the state
is Bob’s private signal. Given this interpretation, I have the following partition ΠA and
ΠB : ΠA(0, 1) = {(0,1)}; ΠA(1, 0) = ΠA(1, 1) = {(1,0), (1, 1)}; and ΠB(1, 0) = {(0,1)};
ΠB(1, 0) = ΠB(1, 1) = {(0,1), (1, 1)}, respectively.

I consider the nearby environments described by Table 5. Indeed, this nearby environ-
ments is a d∗-elaboration for a trivial reason. Consider the following strategy profile σ:
σA(0, 1) = mA;σA(1, 0) = σA(1, 1) = m

′
A;σB(1, 0) = mB; and σB(0, 1) = σB(1, 1) = m

′
B .

It is easy to show that σ is a Bayesian Nash equilibrium of the games. Note also
that σ induceds a correlated equilibrium distribution. For any q ∈ [0, 1], I have that
Bq

A(Gθ) = {(0,1)} ∪ {(1,0), (1, 1)} and Bq
B(Gθ) = {(1,0)} ∪ {(0,1), (1, 1)}. Hence, C1 is

violated in this elaboration. Since (m
′
A,m

′
B) is “not” a Nash equilibrium of the complete

information game Γ(θ), the associated Bayesian Nash equilibrium correspondence does
not have closed graph. Thus, C1 cannot be completely dispensed with if the undom-
inated Nash correspondence is required to have closed graph in the limit of complete
information.
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4 The Main Results

Recall that a type space (Π, ξ) is fixed throughout. I am now ready to state one of the
main results of this paper.

Theorem 1 Suppose C1 holds. Let Γ = (M,g) be a mechanism satisfying M1. Then, if
preferences are strict, [ψU

Γ ]∗(μ) ⊆ ψU
Γ (μ) at any complete information prior μ.

Proof of Theorem 1: Let {μk}∞k=1 be a d∗-elaboration of a complete information
prior μ satisfying C1 such that there exists the corresponding sequence {qk}∞k=1 converg-
ing to 1 for which there is a common qk-belief at any ω ∈ supp(μk) about which payoff
state being realized for each k.21 Let {σk}∞k=1 be the corresponding sequence of undomi-
nated Bayesian Nash equilibrium strategy profiles. By M1 (countability) and Proposition
1 (Γ is well-behaved), we can guarantee the existence of σ ∈ Σ such that σk = σ for each
k big enough. Suppose, by way of contradiction, that there exist ω̄ ∈ supp(μ) and θ ∈ Θ
with ξ(ω̄) = θ such that σ(ω̄) = m∗ is “not” an undominated Nash equilibrium of the
game Γ(θ).

We must consider two cases: (1) m∗ is a weakly dominated strategy profile of the
game Γ(θ); and (2) m∗ is not a Nash equilibrium of the game Γ(θ). In the rest of the
proof, we will show that for each k big enough, there exists σ̂k

i that either dominates σk
i

or is a better reply to σk
−i than σk

i , which is a contradiction.

(1) m∗ is a weakly dominated strategy profile of Γ(θ)

By our hypothesis, there exists a nonempty subset of players I ⊆ N such that for
any i ∈ I, there exists m

′
i with the following two properties:

• ui(g(m
′
i, m̃−i); θ) ≥ ui(g(m∗

i , m̃−i); θ) for any m̃−i ∈M−i;

• ui(g(m
′
i, m̂−i); θ) > ui(g(m∗

i , m̂−i); θ) for some m̂−i ∈M−i.

Choose one player i ∈ I. Without loss of generality, assume that μk(ω) > 0 for any
ω ∈ Πi(ω̄) and any k. If this is not the case, we can simply take k big enough and ignore
such states in the rest of the argument. We construct a sequence of player i’s strategies
{σ̂k

i }∞k=1 with the following properties:

• σ̂k
i (ω̄) = m

′
i;

• σ̂k
i (ω) = σk

i (ω) for any ω /∈ Πi(ω̄);

By our hypothesis, σi(ω̄) = m∗
i and σi is Πi-measurable. So, σi(ω) = m∗

i for any
ω ∈ Πi(ω̄). Since σk

i (ω̄) = m∗
i for each k big enough, it can be shown that σ̂k

i �= σk
i for

each k big enough. We shall show the following lemma.
21The existence of such an elaboration is shown to be non-vacuous in Section 3.2.

15



Lemma 1 There exists K̄ ∈ N such that for any k ≥ K̄, σ̂k
i dominates σk

i at any
ω ∈ Πi(ω̄). That is, for any ω ∈ Πi(ω̄) and k big enough, the following two conditions
hold:

1.
∑

ω̃∈Ω μ
k(ω̃|Πi(ω))

[
ui(g(σ̂k

i (ω̃), σ̃−i(ω̃)); ξ(ω̃)) − ui(g(σk
i (ω̃), σ̃−i(ω̃)); ξ(ω̃))

] ≥ 0 for
any σ̃−i;

2.
∑

ω̃∈Ω μ
k(ω̃|Πi(ω))

[
ui(g(σ̂k

i (ω̃), σ̂−i(ω̃)); ξ(ω̃)) − ui(g(σk
i (ω̃), σ̂−i(ω̃)); ξ(ω̃))

]
> 0 for

some σ̂−i.

By Lemma 1 we aim at showing that σk is “not” an undominated Bayesian Nash
equilibrium of the game Γ(μk) for any k ≥ K̄, which is a contradiction.

Proof of Lemma 1: Since preferences are strict and m∗
i is dominated by m

′
i in the

game Γ(θ), we begin by noting the following important fact.

Fact 1 For any m̃−i ∈M−i, the following two must hold:

1. g(m
′
i, m̃−i) �= g(m∗

i , m̃−i) =⇒ ui(g(m
′
i, m̃−i); θ) > ui(g(m∗

i , m̃−i); θ);

2. g(m
′
i, m̃−i) = g(m∗

i , m̃−i) =⇒ ui(g(m
′
i, m̃−i); θ̃) = ui(g(m∗

i , m̃−i); θ̃) for any θ̃.

Recall that σk
i (ω) = m∗

i at any ω ∈ Πi(ω̄) for each k big enough. Since σ̂k
i (ω) = m

′
i

for each ω ∈ Πi(ω̄) and each k, the previous fact further implies that, for any σ̃−i ∈ Σ−i,
any ω̃ ∈ Πi(ω̄), and any k big enough, the following two must be true:

g(σ̂k
i (ω̃), σ̃−i(ω̃)) �= g(σk

i (ω̃), σ̃−i(ω̃)) ⇒ ui(g(σ̂k
i (ω̃), σ̃−i(ω̃)); θ) > ui(g(σk

i (ω̃), σ̃−i(ω̃)); θ)
g(σ̂k

i (ω̃), σ̃−i(ω̃)) = g(σk
i (ω̃), σ̃−i(ω̃)) ⇒ ui(g(σ̂k

i (ω̃), σ̃−i(ω̃)); θ̃) = ui(g(σk
i (ω̃), σ̃−i(ω̃)); θ̃) ∀θ̃

Since {μk}∞k=1 is a d∗-elaboration, for each k big enough, player i is certain that the
payoff state θ is common qk-belief at any state ω ∈ Πi(ω̄).22 Recall that qk → 1 as
k → ∞. Moreover, by the continuity of expected utility, the boundedness of ui(·), and
the construction of σ̂k

i , we have the following: for any σ̃−i ∈ Σ−i, any ω ∈ Πi(ω̄), and
any k big enough,∑

ω̃∈Ω

μk(ω̃|Πi(ω))
[
ui(g(σ̂k

i (ω̃), σ̃−i(ω̃); ξ(ω̃))) − ui(g(σk
i (ω̃), σ̃−i(ω̃)); ξ(ω̃))

]
≥ 0.

Hence, Condition 1 in Lemma 1 is satisfied at any state ω ∈ Πi(ω̄) for each k big enough.
Let σ̂−i ∈ Σ−i be that σ̂−i(ω) = m̂−i for any ω ∈ Ω, as specified in our hypothesis. By
the continuity of expected utility, we have that for any ω ∈ Πi(ω̄) and any k big enough,∑

ω̃∈Ω

μk(ω̃|Πi(ω))
[
ui(g(σ̂k

i (ω̃), σ̂−i(ω̃)); ξ(ω̃)) − ui(g(σk
i (ω̃), σ̂−i(ω̃)); ξ(ω̃))

]
> 0.

22This may not be true if {μk}∞k=1 is a d∗∗-elaboration. Set ω̄ = (0, 0), ω = (1, 0), and i = B and
−i = A in the example in Section 3.1. Then, the payoff state is θ in state ω = (1, 0) and that the payoff
state is θ′ in state ω̄ = (0, 0). But player i cannot distinguish between (0, 0) and (1, 0).
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Hence, Condition 2 in Lemma 1 is also satisfied for such σ̂−i. This implies σ̂k
i dominates

σk
i for each k big enough, which is a contradiction. This completes the proof of Lemma

1.23 �

(2) m∗ is not a Nash equilibrium of Γ(θ)

By our hypothesis, there exist an player i and a message m
′
i with the following

property:

ui(g(m
′
i,m

∗
−i); θ) > ui(g(m∗); θ).

Recall that σk(ω̄) = m∗ for each k big enough. Once again, without loss of generality,
assume μk(ω) > 0 for any ω ∈ Πi(ω̄) and any k. We construct a sequence of player i’s
strategies of {σ̂k

i }∞k=1 with the following properties:

• σ̂k
i (ω̄) = m

′
i;

• σ̂k
i (ω) = σk

i (ω) for any ω /∈ Πi(ω̄);

As we already argued, σ̂k
i �= σk

i for each k big enough. We shall show the following
lemma.

Lemma 2 There exists K̄ ∈ N such that for any k ≥ K̄ and any ω ∈ Πi(ω̄), we have∑
ω̃∈Ω

μk(ω̃|Πi(ω))
[
ui(g(σ̂k

i (ω̃), σk
−i(ω̃)); ξ(ω̃)) − ui(g(σk

i (ω̃), σk
−i(ω̃)); ξ(ω̃))

]
> 0.

By Lemma 2 we aim to show that σ̂k
i is a strictly better reply to σk

−i than σk
i for

any k ≥ K̄ and any ω ∈ Πi(ω̄). Thus, this contradicts the hypothesis that σk is an
undominated Bayesian Nash equilibrium of Γ(μk) for each k.

Proof of Lemma 2: Recall that σk(ω̄) = m∗ for each k big enough. Then, for each
k big enough, we obtain

ui(g(σ̂k
i (ω̄), σk

−i(ω̄)); θ) > ui(g(σk(ω̄)); θ).

Since {μk}∞k=1 is a d∗-elaboration, player i is certain that the payoff state θ is common qk-
belief at any state ω ∈ Πi(ω̄). Recall that qk → 1 as k → ∞. Thus, by C1 (consistency),
for each k big enough, player i believes with probability qk that σk(ω) = m∗ for each
ω ∈ Πi(ω̄). By the continuity of expected utility, the boundedness of ui(·), and the
construction of σ̂k

i , we obtain the following: for any ω ∈ Πi(ω̄) and any k big enough,
∑
ω̃∈Ω

μk(ω̃|Πi(ω))
[
ui(g(σ̂k

i (ω̃), σk
−i(ω̃)); ξ(ω̃)) − ui(g(σk(ω̃)); ξ(ω̃))

]
> 0.

23It is important to note that C1 is not needed for Lemma 1.

17



We also claim that the above inequality holds even if {μk}∞k=1 is a d∗∗-elaboration. Sup-
pose that there exists Ω∗ ⊂ Ω with μk(Ω∗) ≥ qk for each k such that, by C1 (consistency),
player i believes with probability qk that σk(ω) = m∗ for any ω ∈ Πi(ω̄) ∩ Ω∗. This is
equivalent to saying that {μk}∞k=1 is a d∗∗-elaboration satisfying C1. By the continu-
ity of expected utility, the boundedness of ui(·), and the construction of σ̂k

i , the above
inequality holds even in this case.

Hence, this shows that σk is “not” a Bayesian Nash equilibrium of Γ(μk) for each k
big enough, which is a contradiction. This completes the proof of Lemma 2. �

With Lemmas 1 and 2, we complete the proof of Theorem 1. �
As I argued above, Lemma 2 is true even if {μk}∞k=1 is a d∗∗-elaboration. Moreover,

Lemma 2 does not need the assumption of strict preferences or anything as such. Thus,
I have the following corollary.

Corollary 1 Suppose C1 holds. Let Γ = (M,g) be a mechanism satisfying M1. Then,
[ψBNE

Γ ]∗∗(μ) ⊆ ψBNE
Γ (μ) at any complete information prior μ. Here ψBNE

Γ : P → Σ
denotes the Bayesian Nash equilibrium correspondence.

The next main result establishes the lower hemi-continuity of the undominated
Bayesian Nash equilibrium correspondence with respect to the topology induced by d∗∗-
elaborations, provided that preferences are strict and C1 (consistency) holds.

Theorem 2 Assume that C1 holds and preferences are strict. Let Γ = (M,g) be a
mechanism. Then, ψU

Γ (μ) ⊆ [ψU
Γ ]∗∗(μ) at any complete information prior μ.

Remark: Since the topology induced by d∗-elaborations is finer (stronger) than the one
induced by d∗∗-elaborations, this theorem, a fortiori, shows that ψU

Γ (μ) ⊆ [ψU
Γ ]∗(μ) at

any complete information prior μ as well. Note also that this result does not need any
restrictions on the class of mechanisms.

Proof of Theorem 2: Let μ be a complete information prior and σ ∈ ψU
Γ (μ). By our

hypothesis, we have that for any ω ∈ supp(μ), σ(ω) is an undominated Nash equilibrium
of the game Γ(ξ(ω)). We shall claim that σ ∈ [ψU

Γ ]∗∗(μ). Consider a d∗∗-elaboration
{μk}∞k=1 such that there exist the corresponding sequence {qk}∞k=1 converging to 1 and
Ω∗ ⊆ Ω with μk(Ω∗) ≥ qk for which some payoff state is common qk-belief at any ω ∈ Ω∗

for each k. The proof will be completed by the following Claims 1 and 2.

Claim 1: for each i ∈ N , σi is undominated in the game Γ(μk) for each k big enough.

Proof of Claim 1: Fix any player i ∈ N . Fix arbitrarily any θ ∈ Θ. Since μ
has full support on Θ, there exists ωθ ∈ supp(μ) such that ξ(ωθ) = θ. Without loss of
generality, assume that μk(ω) > 0 for any ω ∈ Πi(ωθ) and any k. If this is not the case,
we can simply take k big enough and ignore such states. Since σi is undominated in the
complete information game Γ(μ), for any σ′i ∈ Σi, there are only two mutually exclusive
cases:
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Case 1: there exists σ̂−i ∈ Σ−i such that

ui(g(σi(ωθ), σ̂−i(ωθ)); θ) > ui(g(σ′i(ωθ), σ̂−i(ωθ)); θ).

Case 2: for any σ̂−i ∈ Σ−i,

ui(g(σi(ωθ), σ̂−i(ωθ)); θ) = ui(g(σ′i(ωθ), σ̂−i(ωθ)); θ).

First consider Case 1. Since {μk}∞k=1 is a d∗∗-elaboration, for each k big enough,
player i is certain that the payoff state θ is common qk-belief at any ω ∈ Πi(ωθ) ∩ Ω∗.
Recall that μk(Ω∗) ≥ qk for each k and qk → 1 as k → ∞. Therefore, by C1 (consistency),
for each k big enough, player i believes with probability qk that σ̂−i(ω) = σ̂−i(ωθ) at
each ω ∈ Πi(ωθ) ∩ Ω∗. Due to the continuity of expected utility and the boundedness of
ui(·), we have the following: for any ω ∈ Πi(ωθ) and any k big enough,

∑
ω̃∈Ω

μk(ω̃|Πi(ω))
[
ui(g(σi(ω̃), σ̂−i(ω̃)); ξ(ω̃)) − ui(g(σ

′
i(ω̃), σ̂−i(ω̃)))

]
> 0.

Next consider Case 2. In this case, we can also have the following: for any σ̂−i and any
ω̃ ∈ Πi(ωθ),

ui(g(σi(ω̃), σ̂−i(ω̃)); θ) = ui(g(σ
′
i(ω̃), σ̂−i(ω̃)); θ).

Due to strict preferences, for any σ̂−i and any ω̃ ∈ Πi(ωθ), we have that g(σi(ω̃), σ̂−i(ω̃)) =
g(σ′i(ω̃), σ̂−i(ω̃)). Thus, for any σ̂−i, any ω ∈ Πi(ωθ), and any k, we have

∑
ω̃∈Ω

μk(ω̃|Πi(ω))
[
ui(g(σi(ω̃), σ̂(ω̃)); ξ(ω̃)) − ui(g(σ

′
i(ω̃), σ̂−i(ω̃)))

]
= 0.

Since the previous argument goes through with any θ, Cases 1 and 2 together show that
σi is undominated in the game Γ(μk) for each k big enough.�

Claim 2: σ is a Bayesian Nash equilibrium of the game Γ(μk) for each k big enough.24

Proof of Claim 2: Suppose, by way of contradiction, that σ is “not” a Bayesian
Nash equilibrium of the game Γ(μk) for each k. That is, for each k big enough, there
exist i ∈ N, σ

′
i, and ωθ ∈ supp(μk) ∩ Gθ with some θ ∈ Θ such that for any ω ∈

Πi(ωθ) ∩ supp(μk),

∑
ω̃∈Ω

μk(ω̃|Πi(ω))
[
ui(g(σ

′
i(ω̃), σ−i(ω̃)); ξ(ω̃)) − ui(g(σ(ω̃)); ξ(ω̃)

]
> 0,

where Gθ denotes the set of states that correspond to payoff state θ. By C1 (consistency)
and the full support of μ on Θ, we can guarantee without loss of generality that ωθ ∈

24Note that strict preferences are not needed for Claim 2.
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supp(μ)∩Gθ.25 Since {μk}∞k=1 is a d∗∗-elaboration, ui(·) is bounded, and expected utility
is continuous, we have

ui(g(σ
′
i(ωθ), σ−i(ωθ)); θ) − ui(g(σ(ωθ)); θ) > 0.

Define σ
′′
i as follows: for each ω ∈ Ω,

σ
′′
i (ω) =

{
σ

′
i(ωθ) if ω ∈ supp(μ) ∩ Gθ

σi(ω) otherwise.

This implies that for any ω ∈ supp(μ) ∩ Gθ,

ui(g(σ
′′
i (ω), σ−i(ω)); θ) > ui(g(σ(ω)); θ).

Note that by construction, for any ω, ω′ ∈ supp(μ) ∩ Gθ, we have σ
′′
i (ω) = σ

′′
i (ω′). This

contradicts the hypothesis that σ is a Nash equilibrium of the complete information
game Γ(θ). Therefore, σ is a Bayesian Nash equilibrium of the game Γ(μk) for each k
big enough.�

Claims 1 and 2 together show that σ is an undominated Bayesian Nash equilibrium
of the game Γ(μk) for each k big enough. This completes the proof of Theorem 2.�

Theorems 1 and 2 together establish the next result. This will be used for the main
result (Corollary 3) in the next section.

Corollary 2 Suppose C1 holds. Let Γ = (M,g) be a mechanism satisfying M1. Then,
if preferences are strict, [ψU

Γ ]∗(μ) = ψU
Γ (μ) at any complete information prior μ.

Proof of Corollary 2: The proof directly follows from Theorems 1 and 2. �

5 Robust Implementation

Towards robust implementation, I want this paper’s robustness criterion to satisfy the
two requirements: First, it requires that there always exist one desirable equilibrium
in “all” nearby environments. Second, it requires that no undesirable equilibria appear
in “all” nearby environments. This reduces to proposing the closure of the equilibrium
correspondence as a robustness test for implementation theory.

The following notation will be convenient. Fix a mechanism Γ = (M,g). If SΓ is a set
of strategy profiles in the mechanism Γ such that for any selection f of F , there is σ ∈ SΓ

for which g(σ(ω)) = f(ξ(ω)) for any ω ∈ supp(μ), then I will write SΓ �μ F . Further, if
SΓ is a set of strategy profiles in the mechanism Γ such that g(σ(ω)) ∈ F (ξ(ω)) for each
σ ∈ SΓ and any ω ∈ supp(μ), then we will write SΓ �μ F . If SΓ �μ F and SΓ �μ F ,
then we write SΓ =μ F .

25Here C1 is essential. Without C1, it is possible that Πi(ωθ) ∩ supp(μ) = ∅. In this case, we are
unable to complete the rest of the argument. See also Kajii and Morris (1997b) in which they show
by Example 4 that C1 cannot be dispensed with for the lower hemi-continuity of the Bayesian Nash
equilibrium correspondence. However, in their Example 4, Kajii and Morris explicitly consider mixed
strategies, which are ruled out in the current paper.

20



Definition 8 A mechanism Γ [UNE]∗-implements an SCC F under a complete infor-
mation prior μ if [ψU

Γ ]∗(μ) =μ F . Similarly, a mechanism Γ [UNE]∗∗-implements an
SCC F under a complete information prior μ if [ψU

Γ ]∗∗(μ) =μ F

An SCC F is said to be [UNE]∗-implementable if there exists a mechanism Γ such
that [ψU

Γ ]∗(μ) =μ F at any complete information prior μ. [UNE]∗∗-implementation can
be also analogously defined.

Remark: [UNE]∗-implementation consists of two components: (i) [ψU
Γ ]∗(μ) �μ F and

(ii) [ψU
Γ ]∗(μ) �μ F . Requirement (i) says that for any selection f of F and “any”

nearby environment, there always exists an equilibrium whose outcome coincides with f .
Requirement (ii) says that in “all” nearby environments, every equilibrium outcome is
consistent with F . The same argument can apply to [UNE]∗∗-implementation as well.

Palfrey and Srivastava (1991) show that almost any SCC is undominated Nash imple-
mentable. As a corollary combined with Theorems 1 and 2 of this paper, I will show that
almost any SCC is [UNE]∗-implementable (Corollary 3). Thus, this paper’s robustness
test gives us a way of sustaining the permissive result of Palfrey and Srivastava (1991).
By contrast, Chung and Ely (2003) show that only monotonic SCFs can be robustly
undominated Nash implementable in their sense. Then, I show that Chung and Ely’s
robustness requirement is indeed [UNE]∗∗-implementability and clarify when Chung and
Ely’s monotonicity-as-a-necessary-condition result applies (Theorem 4). Moreover, I also
extend this monotonicity-as-a-necessary-condition result to social choice correspondences.

5.1 How Robust is Undominated Nash Implementation?

An SCC F is said to be UNE-implementable if there exists a mechanism Γ such that
ψU

Γ (μ) =μ F at any complete information prior μ. Nash-implementation can be analo-
gously defined as well. To state Palfrey and Srivastava (1991)’s result on UNE imple-
mentation, I need one requirement called “no-veto-power.”

Definition 9 An SCC F satisfies no-veto-power if, for any θ ∈ Θ, whenever ui(a; θ) ≥
ui(b; θ) for any b ∈ A and any i ∈ I ⊆ N with |I| ≥ n− 1 players, we have a ∈ F (θ).

Palfrey and Srivastava (1991) establish the following very permissive result for UNE
implementation.

Theorem 3 (Palfrey and Srivastava (1991)) Suppose that there are at least three
players. Then, if an SCC F satisfies no-veto-power, it is UNE implementable.

The result below is a robust version of Palfrey and Srivastava’s (1991) permissive
result.
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Corollary 3 Suppose that C1 holds and the set of outcomes A is a separable space.
Assume further that there are at least three players and preferences are strict. Then, if
an SCC F satisfies no-veto-power, it is [UNE]∗-implementable.

Proof of Corollary 3: We build on a canonical mechanism proposed in the proof
of Theorem 2 of Palfrey and Srivastava (1991). Since A is a separable space, we can take
A∗ as a countable dense subset of A and it suffices to focus on this A∗ in the rest of the
argument. In their canonical mechanism ΓPS = (M,g), Palfrey and Srivastava (1991)
construct the following message space. For each i ∈ N , let

Mi = M1
i ×M2

i ×M3
i ×M4

i ×M5
i and M = M1 × · · · ×Mn

where

M1
i = {(a, θ) ∈ A∗ × Θ| a ∈ F (θ)} ;

M2
i = Θ

M3
i = {−4,−3,−2,−1, 0, 1, . . . }

M4
i = {0, 1, . . . }

M5
i = Θ

We omit the specification of the outcome function here. Since Θ is assumed to be finite,
the message space M is at most countable. Hence, M1 holds for this mechanism. Palfrey
and Srivastava (1991) show that ∅ �= ψU

ΓPS (μ) =μ F for any complete information prior
μ. By Corollary 2, we can also show that ∅ �= ψU

ΓPS (μ) = [ψU
ΓPS ]∗(μ) =μ F for any

complete information prior μ. �

This corollary clarifies the extent to which Palfrey and Srivastava’s permissive im-
plementation result can be sustained. I do not think that the permissive [UNE]∗-
implementation result necessarily lend much support to the use of Palfrey and Srivas-
tava’s mechanism. Rather, this robustness test gives us a precise sense in which the Pal-
frey and Srivastava’s mechanism is very fragile if we believe that [UNE]∗-implementation
is a weak requirement. Indeed, I claim that the restrictiveness of d∗-elaborations is one
of the reasons why undominated Nash implementation is very permissive. Because it ex-
plains how crucially Palfrey and Srivastava’s result exploits the assumption of complete
information.

Jackson, Palfrey, and Srivastava (1994) characterize “separable” environments within
which they can design a mechanism that UNE implements any SCF, regardless of the
number of players.26 Hence, in separable environments with strict preferences, I conclude
that any SCF is [UNE]∗-implementable irrespective of the number of players.

26See Jackson et al (1994) for the definition of separable environments.
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5.2 When is Monotonicity Necessary?

The example in Section 3.1 exhibits the discontinuity of the undominated Bayesian Nash
equilibrium correspondence. This result can be substantially generalized. More specif-
ically, I will show that for any mechanism Γ that UNE implements a non-monotonic
SCC, it follows that [ψU

Γ ]∗∗(μ) �= ψU
Γ (μ) at any complete information prior μ. That is,

monotonicity is a necessary condition for [UNE]∗∗-implementation. First, I give the
formal definition of monotonicity.

Definition 10 An SCC F is monotonic if for every pair of states θ and θ
′
and any

a ∈ F (θ) such that

(∗) ∀i ∈ N, ∀b ∈ A, ui(b; θ′) ≥ ui(a; θ′) =⇒ ui(b; θ) ≥ ui(a; θ),

we have a ∈ F (θ
′
).

Maskin (1999) shows that monotonicity is a necessary and almost sufficient condition
for Nash implementation. I shall show below that monotonicity is a necessary condition
for [UNE]∗∗-implementation as well.

Theorem 4 Suppose that preferences are strict. If an SCC F is [UNE]∗∗-implementable,
it is necessarily monotonic.27

Proof of Theorem 4: Suppose that F is a [UNE]∗∗-implementable SCC with the
implementing mechanism Γ = (M,g). Fix any θ, θ

′ ∈ Θ and any a ∈ F (θ). Suppose θ
and θ

′
are two possible states satisfying (∗) in the condition of monotonicity (Definition

10). We will show that a ∈ F (θ
′
).

Since the mechanism Γ UNE implements F by our hypothesis, there exists an undom-
inated Nash equilibrium m∗ of Γ(θ) such that g(m∗) = a. We claim that m∗ is a Nash
equilibrium of Γ(θ

′
). If not, there must exist an player i and a message mi such that

ui(g(mi,m
∗
−i); θ

′) > ui(g(m∗); θ′). But by monotonic transformation (∗), this implies
that ui(g(mi,m

∗
−i); θ) > ui(g(m∗); θ), which is a contradicts the hypothesis that m∗ is a

Nash equilibrium of Γ(θ).
To avoid a trivial case where we can automatically conclude that a ∈ F (θ

′
), we must

assume that m∗ is dominated in Γ(θ
′
). Then let I ⊂ N be the nonempty set of players

for whom m∗
i is dominated in Γ(θ

′
) for each i ∈ I. With abuse of notations, we use the

expression that |I| = I ≥ 1. We decompose the set of players of N into the following:

N = I ∪ J = {i1, . . . , iI , j1, . . . , jJ},

where I = {i1, . . . , iI}, J = {j1, . . . , jJ} and I ∩ J = ∅. Again with abuse of notation,
we use the expression that |J | = J .

27This result does not impose any restrictions on the class of mechanisms.
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The proof builds on Chung and Ely’s (2003) Theorem 1.28 For ε > 0 sufficiently
small, we construct a type space (Π, ξ) with the following properties: for 2 + I possible
states, let Ω̃ = {ω0, ω1, ω2, . . . , ω1+I} ⊂ Ω; ξ : Ω → Θ satisfies the following: ξ(ω0) = θ

′

and ξ(ωk) = θ for each k = 2, . . . , I + 1. For any θ̃ �= θ, θ′, there exists ωθ̃ such that
Gθ̃ = {ω ∈ Ω|ξ(ω) = θ̃} = {ωθ̃}. That is, for any ω /∈ Ω̃, the payoff state is common
knowledge.

We can define the partition correspondence for each player i ∈ I as follows:

Πi(ω0) = Πi(ω1+i) = {ω0, ω1+i}
Πi(ω1) = Πi(ω1+k) for all k ∈ I\{i}

= {ω1, . . . , ω1+I}\{ω1+i}
We can also define the partition correspondence for each player j ∈ J as follows:

Πj(ω0) = {ω0}
Πj(ω1) = Πj(ω2) = · · · = Πj(ω1+I)

= {ω1, . . . , ω1+I}
Fix the above type space (Π, ξ) throughout. Let μ be a complete information prior

such that, for any ω ∈ Ω̃, μ(ω) > 0 if and only if ω = ω0, ω1. Let {με}ε be an elaboration
of a complete information prior μ with the following properties: με(ω0) = μ(ω0);με(ω1) =
(1 − ε)μ(ω1); and με(ωk) = εμ(ω1)/I for each k = 2, . . . , I, where ε > 0. Note that C1
holds for this elaboration {με}. This simply strengthens the result.

Define {εk}∞k=1 such that εk > 0 for each k and εk → 0 as k → ∞. Let μk ≡ μεk
for

each k. Then, {μk}∞k=1 is an elaboration of the complete information prior μ, which is
the same as the one constructed in the proof of Theorem 1 of Chung and Ely (2003).29

Next, we will show that {μk}∞k=1 is a d∗∗-elaboration of the complete information prior
μ. The claim below will show that with probability εμ(ω1), there is no approximate
common knowledge at ω2, . . . , ω1+I about what payoff state being realized.

Lemma 3 There is no approximate common knowledge at ω2, . . . , ω1+I about what pay-
off state is to be realized.

The proof of Lemma 3 is left to the reader. Then, Lemma 3 shows that {μk}∞k=1 is a
d∗∗-elaboration of the complete information prior μ. The rest of the proof is taken care
of by Chung and Ely’ Theorem 1. �

Theorem 4 is a characterization of Chung and Ely’s (2003) perturbation in their
Theorem 1. One implication of this result is that [UNE]∗∗-implementation essentially

28The reason why I rewrite their proof is that it allows us to characterize the class of elaborations needed
for their argument. Besides, the current proof can handle the case of social choice “correspondences” as
well as functions.

29When I set I = {Andy}, and J = {Bob} and μ(ω0) = 1 − p and μ(ω1) = p, this is exactly the same
elaboration constructed in Section 3.1.
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implies Nash implementation. This paper and Chung and Ely (2003) do not impose any
restrictions on the mechanism but rather require that the mechanism be robust to incom-
plete information. Jackson, Palfrey, and Srivastava (1994), on the contrary, argue that
some of the power of the permissive undominated Nash implementation results derives
from the fact that we have not imposed any restrictions on the implementing mecha-
nism. They require that the implementing mechanism satisfy some “nice” properties.
Specifically, they require that the implementing mechanisms be “bounded” and satisfy
“the best response property.” A mechanism is said to be bounded if whenever a mes-
sage is weakly dominated, then it is weakly dominated by an undominated message. A
mechanism is said to satisfy the best response property if each player has a best response
to any message profiles of the other players in any state.30 With these qualifications
on the mechanisms, Jackson et al (1994) show that the chained condition, which is a
non-trivial restriction but still weaker than monotonicity, is necessary for undominated
Nash implementation. It is interesting to know whether or not there is an intermedi-
ate elaboration between d∗ and d∗∗ relative to which the chained condition is necessary
for implementation in the closure of the undominated Nash equilibrium correspondence.
This remains an open question.

5.3 [NE]∗∗-implementation

Given what I have obtained for [UNE]∗- and [UNE]∗∗-implementation, it is natural to
investigate the question of [NE]∗∗-implementation. The current paper can offer some
partial answer to this question. An SCC F is [NE]∗∗-implementable if there exists a
mechanism Γ such that [ψBNE

Γ ]∗∗(μ) =μ F at any complete information prior μ. The
next result establishes a sufficiency result for [NE]∗∗-implementation.

Corollary 4 Suppose that C1 holds and the set of outcomes A is a complete separable
space. Assume further that there are at least three players and preferences are strict.
Then, if an SCC F satisfies monotonicity and no-veto-power, it is [NE]∗∗-implementable.

Remark: Corollary 4 shows that under some conditions, there is no difference between
[NE]∗∗-implementation and the standard Nash implementation. Nevertheless, it still
remains an open question whether or not one can obtain more general results for [NE]∗∗-
implementation.

Proof of Corollary 4: We build on a canonical mechanism proposed in the proof of
Theorem 3 of Maskin (1999). Since A is a separable space, we can take A∗ as a countable
dense subset of A and it suffices to focus on this A∗ in the rest of the argument. In his
canonical mechanism ΓM = (M,g), Maskin constructs the following message space. For
each i ∈ N , let

Mi = M1
i ×M2

i ×M3
i and M = M1 × · · · ×Mn

30See their paper for the exact definitions
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where M1
i = Θ; M2

i = A∗; and M3
i = {1, 2, . . . }.

We omit the specification of the outcome function here. Since Θ is assumed to be
finite, the message space M is at most countable. Hence, this mechanism satisfies M1
(countability). Maskin (1999) shows that if n ≥ 3, and F satisfies monotonicity and
no-veto-power, it follows that ∅ �= ψNE

ΓM (μ) =μ F for any complete information prior μ.
By Corollary 1 and Theorem 2, we can also show that ∅ �= ψNE

ΓM (μ) = [ψBNE
ΓM ]∗∗(μ) =μ F

for any complete information prior μ. This completes the proof.�

6 Concluding Remarks

This paper proposes a robustness test for implementation results near complete infor-
mation. I show that this robustness test, on the one hand, generates new restrictions
imposed on the set of implementable SCCs, and on the other hand, clarifies the extent
to which the permissive implementation results are sustained. I obtain two main results:
(1) almost any SCC is [UNE]∗-implementable (Corollary 2); and (2) Only monotonic
SCCs are [UNE]∗∗-implementable (Theorem 4 and Chung and Ely’s (2003) Theorem 1).
I will conclude this paper with two related topics: subgame perfect implementation and
virtual implementation.

Aghion, Fudenberg, Holden, Kunimoto and Tercieux (2010) show that when the
planner is only nearly certain that there is approximate common knowledge (i.e., he is
subject to d∗∗-elaborations), only monotonic SCCs can be subgame perfect implemented
in the closure of the sequential equilibrium correspondence. Note that this result does
not need the assumption of strict preferences. Therefore, many implementation results
using refinements of Nash equilibria are not robust to incomplete information. On the
other hand, if one is only concerned with virtual or approximate (as opposed to ex-
act) implementation, Kunimoto (2010) shows that, in quasilinear environments (or some
generalization of it) where there are at least three players, any SCF is virtually (or
approximately) implementable in iteratively undominated strategies even under almost
complete information. Recall that the current paper focuses on “exact” (as opposed to
virtual) implementation. Therefore, once the robustness to almost complete information
is taken into account, there is a big difference between exact and virtual implementation.

7 Appendix

7.1 Topology Induced by d∗-Elaborations

Fix a type space (Π, ξ) throughout. Recall that Ω is finite. I consider the notion of the
closeness of priors. Define d0 by the rule

d0(μ, μ
′
) = max

ω∈Ω
|μ(ω) − μ

′
(ω)|.

Note that d0(μ, μ
′
) = 0 if and only if μ = μ

′
. Fix two priors μ and μ

′
. I will require

extra conditions on conditional probabilities. Recall that G(ε) is the set of all states in

26



which there is a common (1 − ε)-belief about what game being played. Let

d1(μ) = min{ε | μ (G(ε)) = 1}, and
d∗(μ, μ

′
) = max{d0(μ, μ

′
), d1(μ), d1(μ

′
)}.

Note that d1(μ) = 0 when μ is a complete information prior. By construction, d∗ is non-
negative and symmetric. However, it might be the case that d∗(μ, μ) > 0 unless μ is a
complete information prior. This implies that d∗ is not even a pseudo-metric. Therefore,
I find it convenient to define a topology by specifying what nets converge to which points.
I use Theorem 9 of Kelley (1955) (in p74 ) which shows that every convergence class is
actually derived from a topology. Then, it remains to prove that any convergent net
according to d∗-elaborations belongs to some convergence class.

Definition 11 Let C be a class consisting of pairs (S, s), where S is a net in X and s
a point. C is a convergence class for X if it satisfies the conditions listed below. We say
that S converges (C ) to s or that limk Sk ≡ s (C ) if and only if (S, s) ∈ C .

1. If S is a net such that Sn = s for each n, then S converges (C ) to s.

2. If S converges (C ) to s, then so does each subnet of S.

3. If S does not converge (C ) to s, then there is a subnet of S, no subnet of which
converges (C ) to s.

4. Let D be a directed set, let Em be a directed set for each m ∈ D, let F be
the product D × ∏

m∈D Em and for (m, f) ∈ F , let R(m, f) = (m, f(m)). If
limm limn S(m,n) ≡ s (C ), then S ◦ R converges (C ) to s. Here, S(m,n) is a
member of a topological space for each m in D and each n in Em.

Let C ∗ be a class consisting of all d∗-elaborations {μk}∞k=1 of some complete infor-
mation prior μ such that d∗(μk, μ) → 0 as k → ∞.

Proposition 2 Let C ∗ be a class given above. Then, C ∗ is a convergence class for P,
where P is the space of all priors over Ω.

Proof of Proposition 2: Recall that we fix a type space (Π, ξ) throughout. We
must check four properties for the convergence class. Let μ be a complete information
prior. Set {μk}∞k=1 as μk = μ for each k. Then, we have that d∗(μk, μ∗) = 0 for each k,
therefore, ({μk}, μ) ∈ C ∗. Thus, C ∗ satisfies property 1. Let d∗(μk, μ) → 0 as k → ∞
for some complete information prior μ, that is, μk → μ (C ∗). It is straightforward to
see that any subnet of {μk} also converges to μ (C ∗). Hence, property 2 is satisfied for
C ∗. Suppose that μk does not converge to μ as k → ∞ according to C ∗. Then, there
exists δ > 0 for which there exists k̄ such that d∗(μk, μ) ≥ δ for each k ≥ k̄. Consider
a subnet {μl}∞l=1 ≡ {μk}∞

k=k̄
. By construction, there is δ > 0 such that d∗(μl, μ) ≥ δ

for each l. Then, it is straightforward to see that no subnet of {μl}∞l=1 converges to
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μ according to C ∗. Thus, property 3 is satisfied for C ∗. Let a double indexed net
S(k, l) ≡ {{μkl}∞l=1}∞k=1. Now we know by our hypothesis that for any ε > 0, there exist
k̄ and l̄ such that d∗(μkl , μ) < ε for any k ≥ k̄ and any l ≥ l̄. Then, in order to check if
property 4 is satisfied, it remains to show that, for any ε, we are able to find a member
(k, f) ∈ F such that, if (n, g) ≥ (k, f), then d∗(μng(n) , μ) < ε. By our hypothesis we
can choose k ∈ D so that d∗(liml μ

nl , μ) < ε for any n ≥ k. For each such n, choose a
member f(n) ∈ En such that d∗(μnl , μ) < ε for any l ≥ f(n). If n is a member of D
which does not follow k, let f(n) be an arbitrary member of En. If (n, g) ≥ (k, f), then
n ≥ k, hence d∗(μnl , μ) < ε, and since g(n) ≥ f(n), we have that d∗(μng(n) , μ) < ε. Thus,
property 4 is satisfied.�

Theorem 9 of Kelley (1955): Let C be a convergence class for a set X, and for each
subset A of X, let Ac be the set of all points s such that, for some net S in A, S
converges (C ) to s. Then c is a closure operator, and (S, s) ∈ C if and only if S
converges to s relative to the topology associated with c.

7.2 Topology Induced by d∗∗-Elaborations

I consider a slightly coarser topology than that induced by d∗-elaborations. Fix two
priors μ and μ

′
. Let

d̃1(μ) = min
{
ε
∣∣μ (G(ε)) ≥ 1 − ε

}
.

Define d∗∗(μ, μ′
) as follows:

d∗∗(μ, μ
′
) = max

{
d0(μ, μ

′
), d̃1(μ), d̃1(μ

′
)
}
.

Note that d∗∗ is non-negative and symmetric. However, it might be the case that
d∗∗(μ, μ) > 0 unless μ is a complete information prior. As I argued for d∗, this im-
plies that d∗∗ is not even a pseudo-metric. Once again, I find it convenient to define a
topology via convergence class. Clearly, any convergent net according to d∗-elaborations
is always a convergent net according to d∗∗. But the converse is not generally true.
Let C ∗∗ be a class consisting of all d∗∗-elaborations {μk}∞k=1 of some complete informa-
tion prior μ such that d∗∗(μk, μ) → 0 as k → ∞. In the previous section, I establish
the equivalence between the topology induced by d∗-elaborations and the corresponding
convergence class C ∗. Analogously, I can show that C ∗∗ is a convergence class for the
set of information priors, P. Applying Theorem 9 of Kelley (1955), I conclude that the
convergence class C ∗∗ indeed generates a topology over P. Furthermore, it can seen from
the proof of Kelley’s Theorem 9 that there is a one-to-one correspondence between the
topologies for a set P∗(P∗∗) and the convergence classes on it. Therefore, the topology
induced by d∗∗-elaborations is strictly coarser than the one induced by d∗-elaborations.
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