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Abstract

While monotonicity is a necessary and almost sufficient condition for Nash imple-

mentation and often a demanding one, almost any (non-monotonic, for instance) social

choice rule can be implemented using undominated Nash or subgame perfect equilib-

rium. By requiring solution concepts to have closed graph in the limit of complete

information, Chung and Ely (2003) show that only monotonic social choice rules can

be implemented in the closure of the undominated Nash equilibrium correspondence.

In this paper, we show that only monotonic social choice rules can be implemented in

the closure of the subgame perfect equilibrium/sequential equilibrium correspondence.

Our robustness result helps understand the limits of subgame pefect implementation,

which is widely used in applications. We discuss the implications of our result for the

literature on incomplete contracts.
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1 Introduction

Suppose that the society has a social choice rule which associates with each environment

a subset of possible outcomes. The theory of implementation is concerned with charac-

terizing the relationship between the structure of the institution (or mechanism) through

which individuals interact and the outcome of that interaction, given a social choice rule

and a domain of environments.

Maskin (1999) shows a condition called monotonicity is necessary and almost sufficient

for Nash implementation. It turns out that monotonicity is quite a demanding condition

and the literature tried to obtain less restrictive characterizations using refinements of

Nash equilibrium. Using subgame perfect equilibrium, Moore and Repullo (1988) dispense

with monotonicity and provide a sufficient condition for subgame perfect implementation.1

As a different refinement, Palfrey and Srivastva (1991) propose undominated Nash equilib-

rium and prove that almost any social choice rule is implementable in undominated Nash

equilibrium. Therefore, allowing for the use of refinements of Nash equilibrium, one can

significantly expand the class of implementable social choice rules.

Chung and Ely (2003) investigate the robustness of undominated Nash implementation

to incomplete information.2 In so doing, they require that solution concepts have closed

graph in the limit of complete information. Then, Chung and Ely (2003) conclude that

when preferences are strict (or more generally hedonic), only monotonic social choice rules

can be implemented in the closure of the undominated Nash equilibrium correspondence.

Following the approach by Chung and Ely (2003), this paper investigates the robustness

of any subgame perfect implementing mechanism to incomplete information. We show

that only monotonic social choice rules can be implemented in the closure of the subgame

perfect/sequential equilibrium correspondence. Hence, our result implies that there might

be little difference between sequential mechanisms and static mechanisms, once we insist

on robustness. This is due to the fact that a small amount of incomplete information

expands the set of consistent beliefs of players along the game tree and so allows to
1Abreu and Sen (1990) further refine the analysis of Moore and Repullo (1988) and obtain a necessary

and almost sufficient condition for subgame perfect implementation. Finally, Vartiainen (2007) obtains a

full characterization.
2The type of perturbation used in Chung and Ely (2003) weakens common knowledge into common

p-belief with p close to 1. Common p-belief is introduced in Monderer and Samet (1989). This is a

“smaller”perturbation and less demanding than the one used for instance in Oury and Tercieux (2009).

See also Kunimoto (2008) for a characterization of the perturbation used in this paper.
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sustain additional sequential equilibria. The failure of monotonicity allows us to turn a

“bad” Nash outcome into a “bad” sequential equilibrium outcome. Related observations

have been made in the game theory literature by Fudenberg, Kreps, and Levine (1988).

While similar in spirit, we make a very distinct argument. In this paper, we fix the payoff

space and perturb only agents’ beliefs over the fixed payoff space. This guarantees that

the set of messages in the mechanism remains cheap-talk. Fudenberg, Kreps, and Levine

(1988), on the other hand, are concerned with the situation in which the set of payoff

states is not common knowledge, i.e., there are “crazy” types.

We put our result in a broader perspective. Since the early works of Grossman and Hart

(1986) and Hart and Moore (1990), the incomplete contracts literature often cites inde-

scribable contingencies as a major obstacle to the creation of complete contracts. Maskin

and Tirole (1999a,b), however, argue that the literature’s justification for incomplete con-

tracts is conceptually problematic. Using the agents’ minimum foresight concerning the

possible payoff contingencies, they show that the inability to describe future contingencies

by itself places no constraints on contracting. This is the so-called irrelevance theorem.

To show this, Maskin and Tirole (1999a) reduce their task to checking sufficient con-

ditions for subgame perfect implementation. Then, our result enables us to assess the

robustness of Maskin and Tirole’s irrelevance theorem. In fact, we can conclude that their

implementing mechanism is not robust because a small amount of incomplete information

necessitates that we should focus only on monotonic social choice rules. The paper by

Moore and Repullo (1988) had a large impact and it is not difficult to find many other

applications of subgame perfect implementation in the literature. For instance, Miyagawa

(2002) shows that while many axiomatic bargaining solutions are not monotonic, they can

be implemented in subgame perfect equilibrium by a four-stage sequential mechanism.

Miyagawa’s (2002) mechanism to implement bargaining solutions cannot also escape from

our robustness argument.

There is a related paper by Aghion, Fudenberg, and Holden (henceforth, AFH) (2009).

They also consider the question of subgame perfect implementation with almost complete

information. AFH (2009) focus on a special class of mechanisms (henceforth, the Moore-

Repullo mechanism) in the spirit of the one defined in Section 5 of Moore and Repullo

(1988).3 Under the assumption of complete information, given any social choice rule,
3In Section 4.1 of their paper, AFH (2009) go beyond the Moore-Repullo mechanism and obtain the

same conclusion in mechanisms satisfying the following properties:(1) there are three stages; (2) there are

3



the Moore-Repullo mechanism guarantees that telling the truth is the unique subgame

perfect equilibrium. In the same Moore-Repullo mechanism, however, AFH (2009) exhibit

some social choice rules where telling the truth is not an (sequential) equilibrium when

introducing a small amount of incomplete information. Loosely speaking, AFH (2009)

stress the failure of the lower hemi-continuity of the equilibrium correspondence in the

limit of complete information. On the contrary, our paper shows that the introduction of

a small amount of incomplete information may induce new “bad” equilibria, i.e. equilibria

that do not implement. This corresponds to the failure of the upper hemi-continuity of

the equilibrium correspondence in the limit of complete information. When considering

implementation problems, we believe that this is a meaningful requirement that indeed

follows previous approaches (see Chung and Ely (2003)). While the motivation in AFH

(2009) is similar to the present paper in spirit, our “robustness tests” are different and

the results are also very different: (1) Our result is mechanism-free: we do not consider

a fixed mechanism but a very general class of mechanisms that contains the one studied

by AFH (2009); (2) our non-robustness result applies to any social choice rule that is

not monotonic, while AFH (2009) focus on some social choice functions that fails their

robustness test. Thus, we are able to relate the non-robust feature of any subgame perfect

implementing mechanism to non-monotonicity of social choice rules.

The rest of the paper is organized as follows: In Section 2 we introduce the preliminary

notation and definitions. Section 3 defines robust subgame perfect implementation. In

Section 4, we state the main theorem and illustrate the main idea of this paper through

an example. Section 5 concludes and illustrates the implications of our result for the

incomplete contract literature through a hold-up problem. Finally, the proof of our main

theorem is provided in the Appendix.

2 Setting

There is a finite setN = {1, ..., n} of players, and a set A of social alternatives, or outcomes.

There is a finite set Θ of states of nature. Associated with each state θ is a preference profile

�θ which is a list (�θ
1, ...,�θ

n). Players do not observe the state directly, but are informed of

the state via signals. Player i’s signal set is Si which, for simplicity, we identify with Θ. A

two equally likely states of nature; (3) only one agent moves at each stage; and (4) pure strategies are only

considered.
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signal profile is an element s = (s1, ..., sn) ∈ S ≡ ×i∈NSi. When the realized signal profile

is s, each player i observes only his own signal si. We let μ denote the prior probability over

Θ×S, and let P be the set of all such priors. We note μ(· | si) for the probability measure

over Θ × S conditional on si. Let sθ be the signal profile in which each player’s signal is

sθ
i . Complete information refers to the environments in which μ(θ, s) = 0 whenever s �= sθ

(μ will be then referred to as a complete information prior). Under complete information,

the state, and hence the full profile of preferences is always common knowledge among

agents. We will assume for each i and θ : μ(sθ
i ) ≡ [margSi

μ](sθ
i ) > 0 so that Bayes rule is

well-defined. Given a prior μ over Θ×S, we will sometimes abuse notations and write μ(θ)

for [margΘμ](θ). Besides, given s−i ∈ S−i, we will also write μ(s−i) as [margS−i
μ](s−i).

Finally, given some arbitrary countable space X, δx will denote the probability measure

that puts probability 1 on {x} ⊂ X.

A social choice correspondence (SCC) is a mapping F which associates a subset of A

with each θ ∈ Θ. A single-valued social choice correspondence is a social choice function

(SCF) denoted f . Hence, any selection of SCC F is a social choice function. A mechanism

is an extensive game form Γ = (H,M, g) where H is a set of histories h. M = M1×· · ·×Mn

and Mi = ×h∈HMi(h) for all i. An element of M(h) = M1(h) × · · · ×Mn(h), say m(h) =

(m1(h), ...,mn(h)) is a message profile at h while mi(h) is i’s message at h. If #Mi(h) > 1

and #Mj(h) > 1 then agents i and j move simultaneously after history h, whereas if

#Mi(h) > 1 and #Mj(h) = 1 for all j �= i then agent i is the only one to move. Histories

and messages are tied together by the property that M(h) = {m : (h,m) ∈ H}. An

element of Mi is a pure strategy; and an element of M is a pure strategy profile. We

sometimes write m |h= (m1 |h, ...,mn |h) for the profile of pure strategies starting from

history h.

There is an initial history ∅ ∈ H, and each history ht is represented by a sequence

with finite length t : (∅,m1,m2, ...,mt−1) = ht where for each k : mk ∈ M(hk).4 If for

t′ ≥ t+1 : ht′ = (ht,m
t, ...,mt′−1), then ht′ follows history ht. As Γ contains finitely many

stages, there is a set of terminal histories5 HT ⊂ H such that HT = {h ∈ H :there is no h′

following h}. Given any strategy profile m and any history h, there is a unique terminal
4As Moore and Repullo (1988), we restrict ourselves to mechanisms with finitely many stages. We

allow agents to move simultaneously at some nodes, so mechanisms need not be with perfect information.

However, at each node, all agents are assumed to know the entire history of the play.
5Note that M(h) = {m : (h, m) ∈ H} = ∅ for any h ∈ HT .
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history denoted hT [m,h]. Formally, let Z : M ×H → H be the mapping where

Z[m,h] =

{
(h,m(h)) if h /∈ HT

h otherwise

is the history that immediately follows h whenever possible given that strategy profile m

has been played; and so hT [m,h] = limk→∞Zk[m,h] where Zk[m,h] = Z[m,Zk−1[m,h]].

Finally, the outcome function g : HT → A specifies an outcome for each terminal history.

We will also note g(m;h) for the outcome that obtains when agents use strategy profile

m starting from history h i.e. g(m;h) = g(hT [m,h]).

Assumption 1 Mi(h) is countable for each i and h.

Remark: This assumption is useful when using sequential equilibrium and avoids

technical complications due to the use of measures over uncountable spaces. We, however,

do not believe that our results critically depend on the countability assumption. We refer

the reader to Duggan (1997) for the treatment of general (uncountable) message spaces.

In addition, in our setting where the set of states has been assumed to be finite, the famous

mechanism by Moore and Repullo (1988, Section 5) uses only a finite set of messages.

A stage mechanism Γ together with a profile θ ∈ Θ defines an extensive game Γ(θ).

A (pure strategy) Nash equilibrium for the game Γ(θ) is an element m∗ ∈ M such that,

for each agent i, g(m∗; ∅) �θ
i g((mi,m

∗
−i); ∅) for all mi ∈ Mi. A (pure strategy) subgame

perfect equilibrium for the game Γ(θ) is an element m∗ ∈ M such that, for each agent i,

g(m∗;h) �θ
i g((mi,m

∗
−i);h) for all mi ∈ Mi and all h ∈ H\HT . Let SPE(Γ(θ)) denote

the set of subgame perfect equilibria of the game Γ(θ). Let also NE(Γ(θ)) denote the set

of Nash equilibria of the game Γ(θ).

Given a prior μ, the mechanism determines a Bayesian game Γ(μ) in which each

player’s type is his signal, and after observing his signal, player i selects a (pure) strategy

from the set Mi. A strategy profile σ = (σ1, ..., σn) lists a strategy for each player i

where σi : Si → Mi and σi(ht, si) is the message in Mi(ht) given history ht and signal

si. Alternatively, we will sometimes let σi be a (mixed) behavior strategy i.e. a function

that maps the set of possible histories and signals into the set of probability distributions

over messages: σi(· | ht, si) ∈ Δ(Mi(ht)) is the probability distribution over Mi(ht) given

history ht and signal si.
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An act is a mapping α : Θ×S → A. Let A be the set of acts. A belief is a probability β

on Θ×S. In order to analyze incomplete information games, we must extend the original

preferences to the ones under uncertainty. We assume that for each belief β each player

i has a preference relation �β
i over acts. We make the following assumption (which is

obviously satisfied by expected utility models but much weaker than that) on this order:

Assumption 2 Let α and α̂ be two acts, and β a belief. Then

[α(θ, s) �θ
i α̂(θ, s) for all (θ, s) ∈ supp(β)] ⇒ α �β

i α̂,

where supp(β) denotes the support of β.

Let σ be a pure strategy profile. Given a profile of pure strategies σ = (σ1, ..., σn), we

will note g(σ;h) for the act that obtains when each agent i uses strategy σi starting after

history h occurred, i.e. each pair (θ, s) is mapped to g(σ(s);h) ∈ A. The act αΓ
σ induced

by σ under the mechanism Γ is defined by αΓ
σ(θ, s) = g(σ(s); ∅) for any (θ, s).

We will also assume that in the game induced by a stage mechanism, for each player

best replies are always well-defined in the neighborhood of complete information when

the opponents are playing according to some Nash equilibrium. In general, best-responses

need not be well-defined since we allow Mi(h) to be countably infinite. For instance,

integer games are such an example with countably infinite message spaces in which best

replies need not be well defined.6 The next assumption ensures that in the neighborhood

of complete information, against any Nash equilibrium strategy of his opponents, each

player i has a strategy that is optimal at histories in some given set H and equal to some

fixed strategy at every other histories.

Assumption 3 A sequential mechanism Γ has well-defined best replies: for any player

i, any set of histories H ⊆ H, any θ ∈ Θ, any (mi,m−i) ∈ NE(Γ(θ)), there ex-

ists ξ̄(i,H, θ,mi,m−i) > 0 such that for any β ∈ Δ(Θ × S−i) with β(θ, sθ
−i) ≥ 1 −

ξ̄(i,H, θ,mi,m−i), there exists σ∗i [i,H, θ,mi,m−i, β], or simply σ∗i , satisfying

h /∈ H ⇒ σ∗i (h; s
θ
i ) = mi(h);

h ∈ H ⇒ g((σ∗i , σ−i);h) �β
i g((σ

′
i, σ−i);h)

6If there is some player for whom there is no maximum with respect to his preference order at some

state of nature, then best-replies are indeed not well-defined at this state in standard integer games.
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for any σ
′
i that differs from σ∗i only at h and any σ−i such that σ−i(s−i) = m−i for any

s−i with β(s−i) > 0.

Remark: Note that Assumption 3 jointly restricts preference orders under uncertainty

and the class of mechanisms to be considered. Provided that order of preferences are

complete and transitive, Assumption 3 is vacuously satisfied in finite mechanisms, as for

instance, the simple mechanism in Section 5 of Moore and Repullo (1988) that uses a

finite set of messages. 7 If the mechanism is not finite but the set of outcomes is, again

Assumption 3 is vacuously satisfied. Finally, we note that Assumption 3 is not needed

in sequential mechanisms in which each agent moves only once. 8 Moore (1992) defines

a simple sequential mechanism as a mechanism where each agent moves only once and

moreover, only one agent moves at each stage. Although these simple mechanisms are

considered to possess an even stronger justification for the use of subgame perfection,

they are not robust to incomplete information in our sense.

When we perturb a complete information situation introducing a slight incomplete

information, we must specify the equilibrium concept we use. In this paper we will focus

on sequential equilibrium. Since our result provides necessary conditions, it will hold for

any coarser equilibrium concept as for instance perfect Bayesian equilibrium, subgame

perfect equilibrium. We now recall the definition of sequential equilibrium as defined in

Kreps and Wilson (1982).

Sequential Equilibrium:

A system of beliefs of agent i is defined as a function φi : Si ×H → Δ(Θ × S−i). Let

φi[(θ, s−i) | si, ht] denote agent i’s belief that the state (θ, si, s−i) is realized when agent

i’s signal is si and the observed history is ht. We will henceforth abuse notations and

sometimes consider φi[(θ, s−i) | si, ht] as an element of Δ(Θ× S). We also say a vector of

beliefs φ = (φ1, . . . , φn) is Bayes consistent with a strategy profile σ if beliefs are updated

from one stage to the next using Bayes’ rule whenever possible (see Fudenberg and Tirole
7Recall that we have assumed that the set of state of nature is finite.
8One can directly check this in the definition of strategy σ (Σ2) used in the proof of Theorem 1. More

specifically, it can be checked there that for each player, Assumption 3 is only used at histories where

this player has to choose a message and at which he has previously deviated from the equilibrium. By

definition, in a simple sequential mechanism, there is no such history.
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(1991) for its precise definition). An assessment is a pair (φ, σ) consisting of a profile of

beliefs and a pure behavior strategy profile.

Definition 1 A sequential equilibrium is an assessment (φ, σ) that satisfies condition (S)

and (C):

(S) Sequential rationality: for all i ∈ N, si ∈ Si, ht ∈ H :

g(σ, ht) �φi[·|si,ht]
i g((σ′i, σ−i), ht)

for each σ′i.

(C) Consistency: there exists a sequence of totally mixed strategy profiles (σk
1 , ..., σ

k
n)

converging to (σ1, ..., σn) with Bayes consistent beliefs φk converging to φ. 9

For our main theorem, we need one more assumption.

Assumption 4 (One-Shot Deviation Principle) A sequential mechanism Γ satisfies

the one-shot deviation principle if, for every i ∈ N, si ∈ Si, ht ∈ H and consistent

assessment (φ, σ): whenever

g(σ;ht) �φi[·|si,ht]
i g((σ′i, σ−i);ht)

for every σ′i that differs from σi only at ht (local sequential rationality), it follows that

g(σ;ht) �φi[·|si,ht]
i g((σ′i, σ−i);ht)

for every σ′i (sequential rationality).

Remark: Assumption 4 also jointly restricts the class of mechanisms considered as

well as preference orders under uncertainty. Hendon, Jacobsen, and Sloth (1996) indeed

show that the one-shot deviation principle holds for sequential equilibria in finite stage

games as long as agents are expected utility maximizers.10 However, this paper uses
9Convergence in the definition of consistency is taken uniformly over messages and histories. Given

that the set of messages (and so the set of histories) can be countably infinite, two natural convergence

notions can be used: point-wise convergence or uniform convergence. The set of sequential equilibria is

smaller when one assumes uniform convergence. Hence, the use of uniform convergence strengthens our

main result.
10Hendon, Jacobsen, and Sloth (1996) assume that for each i and h, Mi(h) is finite. It is easy to check

that their argument goes through in case Mi(h) is countably infinite.
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a class of preference orders under uncertainty that is weaker than the expected utility

representation. In Appendix B, we provide very weak conditions on preference orders

under uncertainty so that the one-shot deviation principle holds. Note also that the one-

shot deviation principle trivially holds in mechanisms where each agent moves only once.

3 SPE-implementation

Henceforth, we assume that A is an arbitrary topological space, and that A = AΘ×S

is endowed with the product topology. Given a mechanism Γ, we denote the sequential

equilibrium correspondence by ψSE
Γ : P → A where each element α of ψSE

Γ (μ) is an act cor-

responding to some sequential equilibrium outcome of Γ(μ), which describes the alternative

α(θ, s) that will result for each (θ, s) (where SE stands for sequential equilibrium). For-

mally, ψSE
Γ (μ) ≡ {

α ∈ A : α = αΓ
σ where (φ, σ) is a sequential equilibrium for some φ

}
.

Let

graph ψSE
Γ ≡ {(μ,α) : α ∈ ψSE

Γ (μ)}.

The following notation will be convenient. If B is a set of acts such that for any selection

f of F , there is α ∈ B for which α(θ, s) = f(θ) for any (θ, s) ∈ supp(μ), then we will

write B �μ F . Further, if B is a set of acts such that α(θ, s) ∈ F(θ) for each α ∈ B and

any (θ, s) ∈ supp(μ), then we will write B �μ F . If B �μ F and B �μ F , then we write

B =μ F .

Definition 2 A stage mechanism Γ SE-implements an SCC F : Θ → A under μ if

ψSE
Γ (μ) =μ F .

When μ is a complete information prior, the above definition is equivalent to the stan-

dard definition of subgame perfect implementation. The next lemma is its formalization.

We provide it with no proof.

Lemma 1 Let μ be a complete information prior. A stage mechanism Γ SE-implements

an SCC F : Θ → A under μ if and only if for each (θ, sθ) ∈ Θ × S with μ(θ, sθ) > 0, we

have g(SPE(Γ(θ)); ∅) = F(θ),

As in Chung and Ely (2003), we consider the “closure” of the solution correspondence

ψSE
Γ . Define

ψSE
Γ (μ) = {α : (μ,α) ∈ graph ψSE

Γ }.

10



Recall that (μ,α) ∈ graph ψSE
Γ if there exists a sequence {(μk, αk)}∞k=1 such that (i)

(μk, αk) ∈ graph ψSE
Γ for each k and (ii) (μk, αk) → (μ,α). The following is our definition

of robust implementation, denoted SPE-implementation.

Definition 3 A mechanism Γ SE-implements an SCC F : Θ → A under μ if ψSE
Γ (μ) =μ

F . When μ is a complete information prior, we say that Γ SPE-implements F under μ.

Finally we say that an SCC F : Θ → A is SPE-implementable under complete information

if there exists a mechanism Γ that SE-implements F under any complete information prior

μ.

The notion we defined above for sequential equilibria can be defined for any solution

concept (as done for instance in Chung and Ely (2003)). Hence, given an arbitrary solution

concept E , we will sometimes say that an SCC is E-implementable.

4 Monotonicity as a Necessary Condition

In this section, we state our main theorem and illustrate the main idea of its proof via an

example. We relegate the proof of the theorem to Appendix A.

4.1 Theorem and Illustration

We now recall the definition of monotonicity as defined in Maskin (1999).

Definition 4 An SCC F is said to be monotonic if, for any θ, θ
′ ∈ Θ and any a ∈ F(θ),

(∗) ∀i ∈ N,∀b ∈ A, a �θ
i b =⇒ a �θ

′
i b,

we have a ∈ F(θ
′
).

We are now in a position to state our main theorem.

Theorem 1 Suppose that Assumptions 1, 2, 3 and 4 are satisfied. If an SCC is SPE-

implementable under complete information, it is necessarily monotonic.

Remark: This result seems to contradict Proposition 2 of Kreps and Wilson (1982),

which shows that the sequential equilibrium correspondence is upper hemi-continuous.

This apparent inconsistency comes from the very fact that the sequential equilibrium
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correspondence is upper hemi-continuous provided that μ has full support over Θ× S (as

is assumed in Kreps and Wilson (1982)). However – as shown in our illustration – when

μ assigns probability 0 to some profile (θ, s), upper hemi-continuity may not hold.

The proof of Theorem 1 is relegated to Appendix A. Here, we rather illustrate the

main idea of the proof through the simple mechanism proposed in Section 5 of Moore and

Repullo (1988). The set of payoff states is {θ, θ′}. There are two agents, called 1 and 2.

For each i = 1, 2, agent i’s complete and transitive preference relation in state θ̃ ∈ {θ, θ′}
is given by �θ̃

i . The agents commonly observe the state, but the planer does not observe

it.

We extend the set of outcomes A to Ã ≡ A × R
2. An element of Ã is now a tuple

(a, t1, t2) where a is an outcome while for each player i : ti denotes the transfer to player

i. For any θ̃ ∈ {θ, θ′}, preferences over A are extended to (complete and transitive)

preferences over Ã denoted by �θ̃
i . We assume that transfers to player −i do not affect

player i’s ordering, hence, throughout this example, when considering i’s evaluations over

outcomes, we ignore agent j(�= i)’s monetary transfer from the expression, i.e. we will

abuse notations and for instance, simply note (a, ti) instead of (a, ti, tj). We will further

assume that for any θ̃ ∈ {θ, θ′}, a �θ̃
i b implies (a, ti)
θ̃

i (b, ti) for any ti. To fix ideas, one

instance of this extension is the setting with transfers and quasilinear preferences.

We assume that f(θ) �= f(θ′) and f : Θ → Ã is “non-monotonic” and therefore not

Nash implementable. With this, we must satisfy the following condition:

∀i,∀b ∈ Ã : f(θ)�θ
i b⇒ f(θ)�θ′

i b (∗∗)

Following Section 5 of Moore and Repullo (1988), we argue that this non-monotonic f

can be implemented as the unique subgame perfect equilibrium outcome of the following

3-stage mechanism, under some assumptions (specified further) that are naturally satisfied

in a setting with (large) transfers and quasi-linear preferences.

Stage 1: Agent 1 announces the state θ (resp., θ′). Then, the game moves to Stage 2.

Stage 2: If agent 2 agrees (i.e. announces the same state as agent 1), then the game

ends here and f(θ) (resp., f(θ′)) is chosen. If agent 2 challenges by announcing θ′ (resp.,

θ), the game moves to Stage 3.
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Stage 3: Conditioning on agent 1’s announcement θ (resp., θ′) at Stage 1, agent 1 has

to choose between x(θ) (resp., x(θ′)) and y(θ) (resp., y(θ′)) such that

x(θ) �θ
1 y(θ), and

(resp., x(θ′) �θ′
1 y(θ′), and)

y(θ) �θ′
1 x(θ).

(resp., y(θ′) �θ
1 x(θ

′).)

Further, if agent 1 chooses x(θ) (resp., x(θ′)), then agent 1 receives (x(θ),−Δ) (resp.,

(x(θ′),−Δ)); agent 2 receives (x(θ),−Δ) (resp., (x(θ),−Δ)); and the planner nets 2Δ –

whereas if agent 1 chooses y(θ) (resp., y(θ′)), then agent 1 receives (y(θ),−Δ) (resp.,

(y(θ′),−Δ)); agent 2 receives (y(θ),+Δ) (resp., (y(θ′),+Δ)); and the planner breaks

even. 11 The game stops here. It is assumed that Δ is “large enough” i.e., Δ satisfies

(f(θ′), 0)�θ′
1 (y(θ),−Δ); (y(θ),+Δ)�θ′

2 (f(θ), 0); and (f(θ′), 0)�θ′
2 (x(θ′),−Δ). Similarly,

(f(θ), 0)�θ
1(y(θ

′),−Δ); (y(θ′),+Δ)�θ
2(f(θ′), 0); and (f(θ), 0)�θ

2(x(θ),−Δ). Note that by

transitivity, this implies in particular that (f(θ′), 0)�θ′
1 (x(θ),−Δ) and

(f(θ), 0)�θ
1(x(θ

′),−Δ).

The key property of this mechanism is that whatever the state is, there is a unique

subgame perfect equilibrium where agent 1 tells the truth and agent 2 does not challenge.

In addition, if agent 1 lies announcing θ̃, then agent 2 challenges and at stage 3 agent 1

chooses y(θ̃) while if he tells the truth, he chooses x(θ̃). This can be formally described

as follows.

Denote by m∗
i (θ̃;h) agent i’s strategy in state θ̃ ∈ {θ, θ′} at history h.

• m∗
1(θ; ∅) = θ and m∗

1(θ
′; ∅) = θ′;

• m∗
2(θ; θ) = θ;m∗

2(θ
′; θ′) = θ′,m∗

2(θ; θ
′) = θ; and m∗

2(θ
′; θ) = θ′; and

• m∗
1(θ; (θ, θ

′)) = x(θ);m∗
1(θ; (θ

′, θ)) = y(θ′);m∗
1(θ

′; (θ′, θ)) = x(θ′); andm∗
1(θ

′; (θ, θ′)) =

y(θ).

To see that m∗ constitutes the unique subgame perfect equilibrium. First, note that

m∗ prescribes the outcome where agent 1 will announce the true state and agent 2 will
11The existence of such x(·) and y(·) is guaranteed by the following weak domain restriction: there are

a, b ∈ A and an agent i for whom a �θ
i b and b �θ′

i a (preference reversal).
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not challenge. Suppose that agent 1 announces the state θ (resp., θ′). If agent 1 lies, then

agent 2 can challenge her with the truth, and at stage 3, agent 1 will choose y(θ) (resp.,

y(θ′)). This is so by construction. Given the choice of Δ, this must be worse for agent 1

than what the social choice function f offers if agent 1 tells the truth. Equally, given the

definition of Δ, agent 2 will be satisfied with his reward of Δ. On the other hand, if agent

1 tells the truth, then agent 2 will not (falsely) challenge, since agent 1 would now choose

x(θ) (resp., x(θ′)) at Stage 3, which incurs a penalty of Δ for agent 2.

Hence, the above mechanism implements the SCF f in subgame perfect equilibria.

By Maskin (1999), it is not implemented in Nash equilibria since f is non-monotonic.

Thus, there is a Nash equilibrium outcome that does not yield the right outcome. We

will show that the introduction of an arbitrarily small incomplete information (together

with the failure of monotonicity) makes this “bad” Nash equilibrium outcome a sequential

equilibrium outcome.

The complete information setting described above is seen as an incomplete information

situation where agents have a common prior such that μ(θ, sθ
1, s

θ
2) = p and μ(θ′, sθ′

1 , s
θ′
2 ) =

1 − p, where 0 < p < 1. Now let us introduce the following perturbation of the complete

information structure νε.12

νε sθ
1, s

θ
2 sθ

1, s
θ′
2 sθ′

1 , s
θ
2 sθ′

1 , s
θ′
2

θ p(1 − ε) pε/2 pε/2 0

θ′ 0 0 0 1 − p

Observe that νε → μ as ε → 0. In the following lines, we show that the failure

of monotonicity allows us to turn the “bad” Nash equilibrium outcome into a “bad”

sequential equilibrium outcome. We propose the following strategy profile σ∗ of the game

Γ(νε) under which agent 1 claims that the true state is θ independently of his signal and

player 2 never challenges player 1. More precisely, the description of the strategy is given

by:

• σ∗1(s
θ
1, ∅) = σ∗1(s

θ′
1 , ∅) = θ;

• σ∗2(s2, θ̃) = θ for any θ̃ ∈ {θ, θ′} and any s2 ∈ {sθ
2, s

θ′
2 }; and

• σ∗1(s
θ
1, (θ, θ

′)) = x(θ);σ∗1(s
θ′
1 , (θ, θ

′)) = x(θ);σ∗1(s
θ
1, (θ

′, θ)) = y(θ′); and σ∗1(s
θ′
1 , (θ

′, θ)) =

x(θ′).
12The common prior assumption is completely dispensable for the rest of arguments.
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Note that, αΓ
σ∗ , the act induced by σ∗, is such that αΓ

σ∗(θ′, sθ′
1 , s

θ′
2 ) = f(θ). Hence, if

each player i receives a signal sθ′
i and plays according to σ∗i , the outcome provided is f(θ).

Indeed, this σ∗ constitutes a (bad) Nash equilibrium.

Now we turn to the description of beliefs of players. The fundamental property we

need is that when agent i has the opportunity to move after a history that is not consistent

with his opponent choosing an equilibrium strategy, then this agent will assign probability

one to (θ, sθ
−i). This proposed system of beliefs will turn out to be perfectly consistent as

explained further. Let us be more formal. For each player i, his belief φ∗i is defined as

follows:

• φ∗i [·|si, ∅] = νε(·|si) for each i = 1, 2 and each si ∈ {sθ
i , s

θ′
i };

• φ∗2[·|s2, θ] = νε(·|s2) for each s2 ∈ {sθ
2, s

θ′
2 }; and φ∗2[·|s2, θ′] = δ(θ,sθ

1) for each s2 ∈
{sθ

2, s
θ′
2 };

• φ∗1
[·∣∣s1, (θ, θ′)] = δ(θ,sθ

2) for each s1 ∈ {sθ
1, s

θ′
1 }; and φ∗1[·|s1, (θ′, θ)] = νε(·|s1) for any

s1 ∈ {sθ
1, s

θ′
1 }.

What we want to show is that the proposed assessment (φ∗, σ∗) constitutes a se-

quential equilibrium of the game Γ(νε) for any ε > 0 small enough. In this case, since

αΓ
σ∗(θ′, sθ′

1 , s
θ′
2 ) = f(θ) and νε(θ′, sθ′

1 , s
θ′
2 ) = 1 − p > 0, this shows that with probability

1−p, a bad outcome is provided (i.e. f(θ) instead of f(θ′)); this is indeed enough to show

that the mechanism provided in this section does not SPE-implements f .

First, we will check sequential rationality of (φ∗, σ∗). At h3 = (θ, θ′), agent 1 has to

choose between x(θ) and y(θ). Due to the construction of φ∗1, regardless of the signal

received, agent 1 believes with probability one that the state is θ. Then, by Assumption 2

and13 by construction of x(θ) and y(θ), it is optimal for her to choose x(θ). Let h3 = (θ′, θ).

Suppose agent 1 received sθ
1. In this case, by construction of φ∗1 and νε(·|sθ1), agent 1 knows

that the state is θ. Here, agent 1 has to choose between x(θ′) and y(θ′). By construction

(and Assumption 2), it is optimal for her to choose y(θ′), regardless of ε. Suppose that

agent 1 received sθ′
1 . Due to the construction of φ∗1 and small enough ε > 0, agent 1 believes

13Assumption 2 ensures that preferences in this degenerate incomplete information case (where player i

believes with probability one that the state is θ) are the same as under complete information, namely as

�
θ
i .
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with high probability that the state is θ′. With an additional assumption of continuity of

preferences, we proceed to argue that it is optimal for her to choose x(θ′). 14

With this in mind, we move to Stage 2. Suppose that h2 = θ. In this case, if agent 2

chooses θ′, he knows that agent 1 will choose x(θ). Assume that agent 2 received sθ
2. In

this case, by construction of φ∗2 and νε(·|sθ2), agent 2 knows that the state is θ. But since

(f(θ), 0)�θ
2(x(θ),−Δ), by Assumption 2, we can conclude that it is optimal for agent 2 to

choose θ.

Assume that agent 2 received sθ′
2 . As we argued before, agent 2 knows that agent 1 will

choose x(θ). We also know that (f(θ), 0)�θ
2(x(θ),−Δ). By condition (∗∗), we can obtain

that (f(θ), 0)�θ′
2 (x(θ),−Δ) as well. Since νε(·|sθ′2 ) assigns strictly positive weights only to

(θ, sθ
1, s

θ′
2 ) and (θ′, sθ′

1 , s
θ′
2 ), by Assumption 2, we can conclude that it is again optimal for

agent 2 to choose θ.

Suppose that h2 = θ′. In this case, due to the construction of φ∗2, agent 2 believes

with probability one that the state is θ and that agent 1 will choose y(θ′) at Stage 3. But

we know that (y(θ′),+Δ)�θ
2(f(θ′), 0). By Assumption 2, we can conclude that for any

s2 ∈ {sθ
2, s

θ′
2 }, it is optimal for agent 2 to choose θ.

Finally, we move to Stage 1. If agent 1 chooses θ, she knows that agent 2 will choose

θ so that f(θ) is chosen. On the other hand, suppose agent 1 chooses θ′. Assume also

that she received sθ
1. Then, she knows that the state is θ and that agent 2 will choose

θ at Stage 2 and she herself will choose either x(θ′) or y(θ′) at Stage 3. We know that

(f(θ), 0)�θ
1(x(θ

′),−Δ) and (f(θ), 0)�θ
1(y(θ

′),−Δ), hence, (by Assumption 2) we can con-

clude that it is optimal for her to choose θ.

Assume, on the contrary, that agent 1 received sθ′
1 . If agent 1 deviates to θ′, she knows

that agent 2 will choose θ at Stage 2 and she herself will choose either x(θ′) or y(θ′)

at Stage 3. As we argued above, we have chosen Δ > 0 so that (f(θ), 0)�θ
1(x(θ

′),−Δ)

and (f(θ), 0)�θ
1(y(θ

′),−Δ). By condition (∗∗), we also obtain (f(θ), 0)�θ′
1 (x(θ′),−Δ) and

(f(θ), 0)�θ′
1 (y(θ′),−Δ). Since φ∗1[·|sθ

′
1 , ∅] assigns strictly positive weights only to (θ, sθ′

1 , s
θ
2)

and (θ′, sθ′
1 , s

θ′
2 ), by Assumption 2, we can conclude that it is optimal for agent 1 to choose

θ at Stage 1.
14As shown in the proof of Theorem 1, the same argument can go through even if (perhaps due to the

lack of continuity of preferences) y(θ′) is a best reply. In general, what really matters here is the existence

of a best response for agent 1, and this is where Assumption 3 plays a role. We checked, by means of an

example, that our construction of the “bad” sequential equilibrium in the proof of Theorem 1 fails when

Assumption 3 is dropped; the example is available upon request.
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We conclude that (φ∗, σ∗) so constructed satisfies sequential rationality.

Next we will check consistency of (φ∗, σ∗). Roughly, given that agent 1 pools at stage 1

(i.e. agent 1 plays θ independently of his signal), if agent 2 receives an opportunity to move

when agent 1 has deviated from the equilibrium path, his beliefs induced by sequences of

mixed strategies converging to σ∗ are going to depend on the likelihood ratio of making

“mistakes” (i.e. of playing θ′ for agent 1 at stage 1) for one signal over another. For

instance, in case it is infinitely more likely that agent 1 makes a mistake when receiving

signal sθ
1 rather than when she receives sθ′

1 , then, when agent 2 has an opportunity to

move after agent 1 has deviated from the equilibrium path, he will (Bayes-consistently)

believe with probability one that agent 1 has received signal sθ
1 and so by construction that

the true state must be θ. Since agent 2 also pools at stage 2, a similar argument applies

for agent 1’s beliefs at stage 3. Hence, many different off-the-equilibrium-path beliefs are

going to satisfy consistency, and in particular the one we built above. In general, this

shows that a small amount of incomplete information may induce large changes on the set

of consistent beliefs.

We now move to the more technical part and construct the appropriate sequence of

completely mixed strategies. Let {ηk}∞k=1 be a sequence such that ηk > 0 for each k and

ηk → 0 as k → ∞. Let a sequence of totally mixed strategy profiles {σk}∞k=1 be defined

as follows:

σk
1(θ | ∅, sθ

1) = 1 − ηk

σk
1(θ | ∅, sθ′

1 ) = 1 − η2
k

σk
2 (θ | θ, sθ

2) = σk
2(θ | θ′, sθ

2) = 1 − ηk

σk
2 (θ | θ, sθ′

2 ) = σk
2(θ | θ′, sθ′

2 ) = 1 − η2
k

and

σk
1 (x(θ) | (θ, θ′), sθ

1) = 1 − ηk

σk
1 (y(θ′) | (θ′, θ), sθ

1) = 1 − ηk

σk
1 (x(θ) | (θ, θ′), sθ′

1 ) (resp., σk
1 (x(θ′) | (θ′, θ), sθ′

1 ) = 1 − η2
k

Note that σk → σ∗ by construction. We can define the Bayes consistent belief profile

φk associated with σk. We claim that φk → φ∗ as k → ∞. For simplicity, we only pay

attention to checking beliefs of each player i after histories in which i’s opponent did not
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play according to his equilibrium strategies. This can be done by explicitly computing the

following:

φk
1 [(θ, s

θ
2)|sθ1, (θ, θ′)]

=
νε(θ, sθ

1, s
θ
2) × σk

1(θ | ∅, sθ
1) × σk

2 (θ′ | θ, sθ
2)

νε(θ, sθ
1, s

θ
2) × σk

1 (θ | ∅, sθ
1) × σk

2 (θ′ | θ, sθ
2) + νε(θ, sθ

1, s
θ′
2 ) × σk

1 (θ | ∅, sθ
1) × σk

2 (θ′ | θ, sθ′
2 )

=
p(1 − ε)(1 − ηk)ηk

p(1 − ε)(1 − ηk)ηk + (pε/2)(1 − ηk)η2
k

=
p(1 − ε)

p(1 − ε) + pεηk/2
→ 1 (as k → ∞)

φk
1 [(θ, s

θ
2)|sθ

′
1 , (θ, θ

′)] =
(pε/2)(1 − η2

k)(ηk)
(pε/2)(1 − η2

k)(ηk) + (1 − p)(1 − η2
k)η

2
k

=
pε/2

pε/2 + (1 − p)ηk
→ 1 (as k → ∞)

φk
2 [(θ, s

θ
1)|sθ2, θ′] =

p(1 − ε)ηk

p(1 − ε)ηk + (pε/2)η2
k

=
p(1 − ε)

p(1 − ε) + pεηk/2
→ 1 (as k → ∞)

φk
2 [(θ, s

θ
1)|sθ

′
2 , θ

′] =
(pε/2)ηk

(pε/2)ηk + (1 − p)η2
k

=
pε/2

pε/2 + (1 − p)ηk
→ 1 (as k → ∞)

5 Concluding Remarks

In this paper, we prove a necessary condition result focusing on subgame perfect imple-

mentation which is similar to the one found by Chung and Ely (2003) for undominated

Nash implementation. It is natural to check what strengthening of Maskin’s monotonic-

ity would ensure SPE-implementation. Given that we will have to assume monotonicity,

there is probably very little gain to build a sequential mechanism, a static one would most

likely be enough. Chung and Ely (2003) have provided a slight strengthening of Maskin’s

sufficient conditions for Nash implementability15 under which UNE-implementation is en-

sured (where UNE stands for undominated Nash equilibrium). Following their proof, it

is very easy to check that their sufficient conditions actually imply NE-implementation

which in the static case is equivalent to our notion of SPE-implementation.

To prove our main theorem, we restricted our attention to a class of mechanisms

where best-responses are well-defined (Assumption 3). This assumption is useful in our

construction and allows us to build a sequential equilibrium that does not provide the

desired outcomes. There might be some possibility for non-monotonic SCCs to be SPE-

implementable using mechanisms where best-responses are not well-defined. While this
15This sufficient condition is provided under a slight strengthening of the assumptions on preference

orders.
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is an interesting (open) theoretical question, such a robustness result would critically use

the fact that the mechanism is not well-behaved and so should not be taken too seriously.

As a final remark, we investigate the relevance of our result to the hold-up problem,

through an example. 16 This is indeed the main theme of AFH (2009). Therefore, from

the outset, we shall clarify the difference between what we do and AFH (2009). In Section

5.2 of their paper, AFH (2009) show that the first-best investment cannot be achieved

in the Moore-Repullo mechanism because they can take into account the fact that the

truth-telling cannot be an equilibrium in nearby games. On the other hand, we argue that

SPE implementation requires that an SCF be monotonic, and in particular, constant

in the example discussed below. Then, we can conclude that the first-best investment

cannot be achieved because we have to consider only constant SCFs (non-contingent con-

tracts).17 Furthermore, we can also show that when SPE-implementation is considered,

the optimal contract must be non-contingent. Arguably, non-contingent contracts are in-

complete, which exhibits a stark contrast with very sophisticated contracts Maskin and

Tirole (1999a) proposed. Note that Maskin and Tirole’s (1999a) argument is based on the

standard subgame perfect implementation.

We come to the analysis. There are two parties, a buyer (B) and seller (S) of a single

unit of an indivisible good. If trade occurs, then B’s payoff is VB = θ − p, where θ is the

value of the good and p is the price. S’s payoff is VS = p. The good can be of either high

or low quality. If it is high quality, then B values the good at θ = θH = 14, and if it is

low quality, then θ = θL = 10.

The set of social alternatives in this economy can be defined as

A =
{
(q, yB , yS) ∈ [0, 1] × R

2| yB + yS = 0
}
,

where q denotes the probability that the good is transferred from S to B and yB(yS)

denotes the amount of money received by B(S). Agents are assumed to value (non-

deterministic) outcomes through expected utility.
16The example is adapted from AFH (2007) who acknowledge that their example is based on the one of

Hart and Moore (2003).
17Following Fudenberg, Kreps, and Levine (1988), AFH (2009) argue that the hold-up problem disap-

pears for some crazy type perturbations, which is much richer perturbations than this paper admits (See

also a brief discussion on this point in our introduction). On the other hand, they argue that the hold-up

problem remains for some common p-belief perturbations, which we use as the same class of perturbations.

The reader should be referred to AFH (2009) for the details.
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First, we claim that only constant SCFs are monotonic. Let an arbitrary SCF f∗ be

that f∗(θL) = (q∗, y∗B, y
∗
S) ∈ A. Let θ = θL and θ

′
= θH . Let b = (q, yB , yS) ∈ A.

f∗(θL) �θL
B b and f∗(θL) �θL

S b

=⇒ 10q∗ + y∗B ≥ 10q + yB and y∗S ≥ yS

=⇒ y∗B ≥ 10(q − q∗) + yB and y∗S ≥ yS

=⇒ −y∗S ≥ 10(q − q∗) + yB and y∗S ≥ yS because y∗B + y∗S = 0

=⇒ −yS ≥ 10(q − q∗) + yB and y∗S ≥ yS because y∗S ≥ yS iff −yS ≥ −y∗S
=⇒ 0 ≥ 10(q − q∗) because yB + yS = 0

=⇒ q∗ ≥ q and 10q∗ + y∗B ≥ 10q + yB

=⇒ q∗ ≥ q and 14q∗ + y∗B ≥ 14q + yB

=⇒ f∗(θL) �θH
B b and f∗(θL) �θH

S b

This implies that (∗) in the definition of monotonicity holds between θL and θH . Then,

monotonicity requires that f∗(θL) = f∗(θH).

Second, we embed this example into the hold-up problem. Here, any implementing

mechanism is interpreted as a contract. In this example, any monotonic SCF corresponds

to a non-contingent contract. There are four dates in this contractual relationship: At date

1, the two parties sign a contract, i.e., propose a mechanism and agree on playing it later.

At date 2, S makes a “non-contractible” (relation-specific) investment. At date 3, the

parties receive the signals. At date 4, the parties play the mechanism which is proposed at

date 1. We shall enlarge on the investment stage of the model. After a contract is signed,

only S makes a non-contractible investment eS , which increases the probability that the

good entails high value.18 For simplicity, there are only two levels of investment: either

eS = 1 (investment) or eS = 0 (no investment). The cost of investment c(eS) is given as:

c(eS) = 1/3 if eS = 1 and c(eS) = 0 if eS = 0. It is common knowledge that the likelihood
18Here the seller’s investment entails direct externalities à la Che and Hausch (1999). This externality

is important for the rest of the argument because if the buyer instead makes investment (i.e., selfish

investment), there is no underinvestment in the hold-up problem, given the monotonic (and so constant)

SCF. Clearly, this is due to the property that, in the present setting, a monotonic SCF is constant; whether

this is a general property in hold-up problems is left as an open question.
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of the states of the world depend upon signal realizations at date 3 and S’s investment:

μ(θL, s
θL
B , sθL

S |eS = 0) = μ(θH , s
θH
B , sθH

S |eS = 0) = 1/2

μ(θL, s
θL
B , sθL

S |eS = 1) = 1/3

μ(θH , s
θH
B , sθH

S |eS = 1) = 2/3

Let a monotonic SCF f∗∗ be such that f∗∗(θL) = f∗∗(θH) = (1,−10, 10). Note that we

already have argued that only constant SCFs are monotonic. This f∗∗ is S’s best contract

that satisfies both ex post individual rationality and monotonicity.19 Our Theorem 1

shows that this SCF f∗∗ is S’s best contract among all ex post individually rational SCFs

that are SPE-implementable.20 It is rather trivial to realize that the SCF f∗∗ is easily

implementable in any equilibrium because it is a constant SCF and there is no need to

extract information from the agents. Given the SCF f∗∗, it is optimal for S to make

“no” investment. Thus, SPE-implementability makes the hold-up problem to involve

underinvestment. Che and Hausch (1999) obtain the same conclusion (their Proposition

2) in a more general setup. They assume that the parties cannot credibly commit not to

renegotiate the initial non-contingent contract. These contract terms can be renegotiated

to ex post efficient quantity after the parties realize the state. Restricting attention to the

initial non-contingent contracts with ex post renegotiation, they show that when the degree

of cooperative nature of investments is sufficiently high, any non-contingent contract has

no value, i.e., the same as no contract. Indeed, within this example, we show that there is

no loss of generality to restrict attention to non-contingent contracts if we require SPE-

implementation for the initial contract. This can be a support to the property rights

approach of Grossman and Hart (1986) and Hart and Moore (1990).21

19Ex post individual rationality guarantees that each player receives at least the utility of no trade at

each state of nature.
20To be exact, this is the case, provided that the implementing mechanism satisfies Assumption 3.
21One way to get positive results would be to weaken the requirement of “exact” implementation to

“virtual” implementation where non-deterministic mechanisms are used and we only require the SCR to

be implemented with high probability. By Abreu and Matsushima (1992), we know that we can virtually

implement almost any SCF using rationalizability as the solution concept. One can indeed show that

if a SCF is (virtually) R-implementable (i.e. using rationalizability as the solution concept) then, it is

also (virtually) R̄-implementable (see Kunimoto (2009) for details). While definitely of great theoretical

importance, on a practical viewpoint, the Abreu and Matsushima’s approach has several drawbacks. First,

mechanisms used there are demanding from the agents’ viewpoint. Indeed, Glazer and Rosenthal (1992)

argue that these mechanisms will not perform as predicted because it may involve many rounds of iterated
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Appendix

A Proof of Theorem 1

Let μ be a complete information prior such that μ(θ̃, sθ̃) > 0 for all θ̃ ∈ Θ, and let F be

a SPE-implementable SCC with implementing mechanism Γ. Fix any θ, θ
′ ∈ Θ and any

a ∈ F(θ). Suppose θ and θ′ are two possible states satisfying (∗) in Definition 4 (p.11).

We will show that a ∈ F(θ′).

Since Γ SPE-implements F , it must also SPE-implements F . Thus, by Lemma 1,

there exists a subgame perfect equilibrium m∗
θ in Γ(θ) such that g(m∗

θ) = a. Clearly, m∗
θ is

actually a Nash equilibrium of Γ(θ). From (∗), it follows thatm∗
θ is also a Nash equilibrium

of Γ(θ′). Recall that H denotes the set of all possible histories. For each t ≥ 0, let h∗t be

the history induced by m∗
θ up to date t and denote H∗ for the set of all such histories. In

addition, for each player i, let H∗
−i be the set of histories h along which every player j �= i

has chosen the message m∗
θ,j(h

′); formally, H∗
−i ≡ {h ∈ H : h = (∅,m1,m2, ...,mt−1) for

some t and mt′
j = m∗,t′

j,θ for all t′ ≤ t− 1 and all j �= i}. Note that h∗t ∈ H∗
−i for each t ≥ 1.

Consider the following family of information structure νε. For each player i, let τi
represent the profile of signals s = (s1, ..., sn) defined by si = sθ′

i and sj = sθ
j for all j �= i.

For all i, νε describes

νε(θ, τi) =
ε

n
μ(θ, sθ);

νε(θ, sθ) = (1 − ε)μ(θ, sθ); and

νε(θ̃, sθ̃) = μ(θ̃, sθ̃) ∀θ̃ �= θ.

In this information structure when the state is anything other than θ or θ′, the state

is common knowledge. Furthermore, when a player observes θ, he knows that the state is

θ. Obviously, νε → μ as ε→ 0. 22 The support of νε is denoted

supp(νε) = {(θ̃, sθ̃) : θ̃ ∈ Θ} ∪ {(θ, τi) : i ∈ N}.
dominance, suspecting that players may sometimes “abandon the logic of iterated dominance in favor of

a focal point in the game”. This intuition is indeed supported by experimental evidence; see Sefton and

Yavas (1996). Second, and more importantly, these mechanisms may provide ex post an outcome arbitrarily

inefficient, unfair, or, more generally, far from the desired alternative. For these reasons, these mechanisms

have not been considered of great practical importance and, a fortiori, have not been considered as putting

into question the foundation of incomplete contracts.
22We use exactly the same information structures as in Chung and Ely (2003).
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Fix ε > 0 to be sufficiently small so that νε((θ′, sθ′
−i) | sθ′

i ) ≥ 1−ξ̄(i,H∗
−i\H∗, θ′,m∗

i,θ,m
∗
−i,θ)

where ξ̄(i,H∗
−i\H∗, θ′,m∗

i,θm
∗
−i,θ) is in Assumption 3.

We build a sequential equilibrium (φ, σ) of Γ(νε) where σ induces an act αΓ
σ for which

αΓ
σ(θ′, sθ′) = a. Hence, this will show that (νε, αΓ

σ) ∈ graph ψSE
Γ for all ε > 0 small

enough. Although σ may depend on ε, we will see that the induced act αΓ
σ does not.

Hence, (νε, αΓ
σ) → (μ,αΓ

σ) ∈ graph ψSE
Γ as ε → 0. Thus since, by our hypothesis, Γ ψSE

Γ -

implements F under μ and μ(θ′, sθ′) > 0, we must have a = αΓ
σ(θ′, sθ′) ∈ F(θ′), which will

complete the proof.

In the following lines, we define a strategy σ and a family of system of beliefs Φ so

that σ induces an act αΓ
σ for which αΓ

σ(θ′, sθ′) = a. In addition, we will show that (φ, σ) is

a sequential equilibrium of Γ(νε) for some φ ∈ Φ. Φ and σ are defined as follows:

Definition of Φ:

φ ∈ Φ if and only φ satisfies the following three properties.

Φ1. Fix any i ∈ N , any ht /∈ H∗
−i,

φi

[
·|sθ′

i , ht

]
= δ(θ,sθ

−i)

also

supp
(
φi

[
·|sθ

i , ht

])
⊆ supp

(
νε
[
·|sθ

i

])
and for all l �= i with ht ∈ H∗

−l : (i.e., l has deviated)

φi[(θ, τl) | sθ
i , ht] = 0.

Φ2. For any i ∈ N , any ht ∈ H∗
−i, any si ∈ {sθ

i , s
θ′
i } :

φi[·|si, ht] = νε(·|si).

Φ3. For any i ∈ N , any ht ∈ H and any sθ̃
i /∈ {sθ

i , s
θ′
i }, we just assume that φi

[
· | sθ̃

i , ht

]
=

δ
(θ̃,sθ̃

−i)
where δx denotes the probability measure that puts probability 1 on {x}.

Definition of σ:

Σ1. For any player i and any ht ∈ H∗ or ht /∈ H∗
−i : σi(ht, s

θ′
i ) = m∗

i,θ(ht);
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Σ2. For any player i and any ht ∈ H∗
−i\H∗, σi(ht, s

θ′
i ) = σ∗i (ht, s

θ′
i ) where σ∗i =

σ∗i [i,H∗
−i\H∗, θ′,m∗

i,θ,m
∗
−i,θ, ν

ε[· | sθ′
i ]] as defined in Assumption 3 and so satisfies:

h ∈ H∗ or h /∈ H∗
−i ⇒ σ∗i (h, s

θ′
i ) = m∗

i,θ(h);

h ∈ H∗
−i\H∗ ⇒ g((σ∗i , σ̂−i);h) �νε(·|sθ

′
i )

i g((σ′i, σ̂−i);h)

for any σ
′
i that differs from σ∗i only at h (one-shot deviation) and any σ̂−i satisfying

σ̂−i(s−i) = m∗
−i,θ for any s−i with νε(s−i|sθ

′
i ) > 0. This is well-defined by Assump-

tion 3 because ε is small enough so that νε(θ
′
, sθ

′
−i|sθ

′
i ) ≥ 1−ξ̄(i,H∗

−i\H∗, θ′,m∗
i,θ,m

∗
−i,θ, ν

ε[· |
sθ′
i ]);

Σ3. For any player i and any ht ∈ H : σi(ht, s
θ
i ) = m∗

i,θ(ht);

Σ4. And for any ht ∈ H, σi(ht, s
θ̃
i ) = m∗

θ̃,i
(ht) for θ̃ �= θ, θ′ where m∗

θ̃
is an arbitrary

subgame perfect equilibrium of Γ(θ̃). This is well-defined since F is implementable

in subgame perfect equilibrium under complete information.

Note that hT [σ(sθ′), ∅] = hT [m∗
θ, ∅] and so, σ generates an act αΓ

σ (that does not depend

on ε) for which αΓ
σ(θ′, sθ′) = g(σ(sθ′); ∅) = g(m∗

θ; ∅) = a. Hence, it only remains to show

that (φ, σ) constitutes a sequential equilibrium for some φ ∈ Φ. In Section A.1, we will

show that (φ, σ) satisfies sequential rationality for any φ ∈ Φ; and we will also establish

that (φ, σ) satisfies consistency for some φ ∈ Φ in Section A.2.

A.1 Sequential rationality

Fix any φ ∈ Φ. Sequential rationality of (φ, σ) will be proved by Claims 1 and 2 below.

Claim 1 For any i ∈ N, si �= sθ′
i , ht ∈ H :

g(σ;ht) �φi[·|si,ht]
i g((σ′i, σ−i);ht)

for each σ′i.

Proof of Claim 1: Fix any player i. It is obvious for sθ̃
i �= sθ

i because by Φ3,

φi

[
· | sθ̃

i , ht

]
= δ

(θ̃,sθ̃
−i)

and so state θ̃ is common knowledge. By Σ4, we can further

conclude that σ(sθ̃) = m∗
θ̃

is a subgame perfect equilibrium in the complete information

game Γ(θ̃). Hence, we focus on the case where si = sθ
i . By construction, νε(θ | sθ

i ) = 1
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and so this player knows that his preference is given by �θ
i . The uncertainty he faces is

rather on the signals of his opponents, i.e. whether the profile of signals is sθ or τk for

some k �= i.

Let ht /∈ H∗
−i. By Σ3 we know that σ(sθ) = m∗

θ. Hence, hT [σ(sθ), ht] = hT [m∗
θ, ht] and

so

g(σ(sθ);ht) = g(m∗
θ;ht).

In addition, for each l �= i with ht /∈ H∗
−l, by Σ1 and Σ3 we know that σ−i(ht, τl) =

m∗
−i,θ(ht). 23 For any history ht′ that follows ht, we must have ht′ /∈ H∗

−l. By applying

again Σ1 and Σ3 we get that σ−i(τl) |ht= m∗
−i,θ |ht . Hence, we obtain hT [σ(τl), ht] =

hT [m∗
θ, ht] and so for each l �= i with ht /∈ H∗

−l, we have

g(σ(τl);ht) = g(m∗
θ;ht).

In case player i deviates to σ′i, he can induce the following terminal histories: hT [σ′i(s
θ
i ), σ−i(sθ

−i), ht] =

hT [m′
i,m

∗
−i,θ, ht] for some strategy m′

i and so

g(σ′i(s
θ
i ), σ−i(sθ

−i);ht) = g(m′
i,m

∗
−i,θ;ht).

In addition, for each l �= i with ht /∈ H∗
−l, we know that σ−i(τl) |ht= m∗

−i,θ |ht . Hence,

hT [σ′i(s
θ
i ), σ−i(τl), ht] = hT [m′

i,m
∗
−i,θ, ht] and so for each l �= i with ht /∈ H∗

−l, we have

g(σ′i(s
θ
i ), σ−i(τl);ht) = g(m′

i,m
∗
−i,θ;ht).

Since m∗
θ is a subgame perfect equilibrium in the complete information game Γ(θ), we

have g(m∗
θ;ht) �θ

i g(m
′
i,m

∗
−i,θ;ht). Thus, we get g(σ(sθ);ht) �θ

i g(σ
′
i(s

θ
i ), σ−i(sθ

−i);ht) and

for each l �= i such that ht /∈ H∗
−l : g(σ(τl);ht) �θ

i g(σ
′
i(s

θ
i ), σ−i(τl);ht). Because by Φ1,

φi[· | sθ
i , ht] may assign strictly positive weight only to (θ, sθ

−i) and (θ, τl) for each l �= i

such that ht /∈ H∗
−l, we can conclude with Assumption 2

g(σ;ht) �φi[·|sθ
i ,ht]

i g((σ′i, σ−i);ht).

Let ht ∈ H∗
−i. Let us distinguish two cases. First, assume that ht ∈ H∗

−i\H∗. Since

ht ∈ H∗
−i and ht /∈ H∗, there must exist t′ < t such that σi(ht′ , s

θ
i ) �= m∗

i,θ(ht′) where ht′

23We abuse the notation because we should use σ−i(τl\sθ
i , ht) instead of σ−i(τl, ht). This abuse will be

used at several places in the paper.
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is a truncation of history ht. Then, for any history ht′′ following ht′ (and so in particular,

following ht), we have ht′′ /∈ H∗
−k for each k �= i. By Σ1 and Σ3, we thus obtain σ(ht′′ , s

θ) =

σ(ht′′ , τk) = m∗
θ(ht′′) for each k �= i. Hence, for each k �= i we have hT [σ(sθ), ht] =

hT [σ(τk), ht] = hT [m∗
θ, ht], which further implies

g(σ(sθ);ht) = g(σ(τk);ht) = g(m∗
θ;ht).

Consider the case where player i deviates to σ′i. Here, Σ1 and Σ3 allow us to conclude that

for each k �= i, player i can induce the following terminal histories: hT [σ′i(s
θ
i ), σ−i(sθ

−i), ht] =

hT [σ′i(s
θ
i ), σ−i(τk), ht] = hT [m′

i,m
∗
−i,θ, ht] for some strategy m′

i, which implies

g(σ′i(s
θ
i ), σ−i(sθ

−i);ht) = g(σ′i(s
θ
i ), σ−i(τk);ht) = g(m′

i,m
∗
−i,θ;ht).

Since m∗
θ is a subgame perfect equilibrium in the complete information game Γ(θ), we al-

ready have g(m∗
θ ;ht) �θ

i g(m
′
i,m

∗
−i,θ;ht). Thus, we also get g(σ(sθ);ht) �θ

i g(σ
′
i(s

θ
i ), σ−i(sθ

−i);ht)

and g(σ(τk);ht) �θ
i g(σ

′
i(s

θ
i ), σ−i(τk);ht) for each k �= i. Now, since by Φ2 we know that

φi[· | sθ
i , ht] assigns a strictly positive weight only to (θ, sθ

−i) and (θ, τk) for each k �= i, we

can conclude with Assumption 2

g(σ, ht) �φi[·|sθ
i ;ht]

i g((σ′i, σ−i);ht).

Consider now the second case where ht ∈ H∗. Note that ht+1 = (ht, σ(ht, s
θ)) =

(ht, σ(ht, τk)) = (ht,m
∗
θ(ht)) = h∗t+1 ∈ H∗ where the second and third equalities are

assured by Σ1 and Σ3 and we use the fact that ht ∈ H∗. Similar argument can be

made inductively so that any subsequent history also falls into H∗. Thus, hT [σ(sθ), ht] =

hT [σ(τk), ht] = hT [m∗
θ, ht], and so we obtain

g(σ(sθ);ht) = g(σ(τk);ht) = g(m∗
θ;ht).

Now consider that player i deviates to σ′i. Let t̂ ≥ t be the first date at which σ′i(ht̂, s
θ
i ) �=

σi(ht̂, s
θ
i ); or equivalently, σ′i(ht̂, s

θ
i ) �= m∗

i,θ(ht̂). As above, one can inductively show that as

long as t′ < t̂, we obtain ht′+1 = (ht′ , σ
′
i(ht′ , s

θ
i ), σ−i(ht′ , s

θ
−i)) = (ht′ , σ

′
i(ht′ , s

θ
i ), σ−i(ht′ , τk)) =

(ht′ ,m
∗
i,θ(ht′),m∗

−i,θ(ht′)) ∈ H∗ for each k �= i where the second and third equalities are

assured by Σ1 and Σ3 and we use the fact that ht′ ∈ H∗. In addition, ht′+1 /∈ H∗
−k

for each k �= i and t′ ≥ t̂. Hence, for t′ ≥ t̂, ht′+1 = (ht′ , σ
′
i(ht′ , s

θ
i ), σ−i(ht′ , s

θ
−i)) =

(ht′ , σ
′
i(ht′ , s

θ
i ), σ−i(ht′ , τk)) = (ht′ , σ

′
i(ht′ , s

θ
i ),m

∗
−i,θ(ht′)) for each k �= i where the second

and third equalities are assured by Σ1 and Σ3 and we use the fact that ht′ /∈ H∗
−k for
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each k �= i. So we get hT [σ′i(s
θ
i ), σ−i(sθ

−i), ht] = hT [σ′i(s
θ
i ), σ−i(τk), ht] = hT [m′

i,m
∗
−i,θ, ht]

for some strategy m′
i, which implies

g(σ′i(s
θ
i ), σ−i(sθ

−i);ht) = g(σ′i(s
θ
i ), σ−i(τk);ht) = g(m′

i,m
∗
−i,θ;ht).

Here again, since m∗
θ is a subgame perfect equilibrium in the complete information game

Γ(θ), we have g(m∗
θ;ht) �θ

i g(m
′
i,m

∗
−i,θ;ht). Thus, we get g(σ(sθ);ht) �θ

i g(σ
′
i(s

θ
i ), σ−i(sθ

−i);ht)

and g(σ(τk);ht) �θ
i g(σ

′
i(s

θ
i ), σ−i(τk);ht) for each k �= i. Now since by Φ2, φi[· | sθ

i , ht] may

assign strictly positive weight only to (θ, sθ
−i) and (θ, τk) for each k �= i, we can conclude

with Assumption 2

g(σ;ht) �φi[·|sθ
i ,ht]

i g((σ′i, σ−i);ht).

This completes the proof. �

Claim 2 For any i ∈ N, si = sθ′
i , and ht ∈ H :

g(σ, ht) �φi[·|si,ht]
i g((σ′i, σ−i), ht)

for each σ′i.

Proof of Claim 2: This claim will be proved by studying three different cases depend-

ing on the type of history we consider: (1) ht /∈ H∗
−i; (2) ht ∈ H∗; and (3) ht ∈ H∗

−i\H∗.

Let us first consider the case (1) ht /∈ H∗
−i. By Σ3 we know that σ−i(sθ

−i) = m∗
−i,θ.

In addition, for any history ht′ following ht, we have ht′ /∈ H∗
−i. Thus, by Σ1, we ob-

tain σi(ht′ , s
θ′
i ) = m∗

i,θ(ht′) for any subsequent history ht′ . This further implies that

hT [σ(sθ′
i , s

θ
−i), ht] = hT [m∗

θ, ht] and so we obtain

g(σ(sθ′
i , s

θ
−i);ht) = g(m∗

θ;ht).

Consider that player i deviates to σ′i. Then, we have hT [σ′i(s
θ′
i ), σ−i(sθ

−i), ht] = hT [m′
i,m

∗
−i,θ, ht]

for some strategy m′
i. Hence, we obtain

g(σ′i(s
θ′
i ), σ−i(sθ

−i);ht) = g(m′
i,m

∗
−i,θ;ht).

Since m∗
θ is a subgame perfect equilibrium in the complete information game Γ(θ), we have

g(m∗
θ;ht) �θ

i g(m
′
i,m

∗
−i,θ;ht). Thus, we also get g(σ(sθ′

i , s
θ
−i);ht) �θ

i g(σ
′
i(s

θ′
i ), σ−i(sθ

−i);ht).

Because by Φ1, φi[(θ, sθ
−i) | sθ′

i , ht] = 1, we can conclude with Assumption 2

g(σ;ht) �φi[·|sθ′
i ,ht]

i g((σ′i, σ−i);ht).
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Consider now the case (2) ht ∈ H∗. Note that ht+1 = (ht, σ(ht, s
θ′
i , s

θ′
−i)) = (ht, σ(ht, s

θ′
i , s

θ
−i)) =

(ht,m
∗
θ(ht)) = h∗t+1 ∈ H∗ where the second and third equalities are assured by Σ1

and Σ3 and we use the fact that ht ∈ H∗. Similar argument can be made inductively

so that any subsequent history also falls into H∗. Hence we have hT [σ(sθ′
i , s

θ′
−i), ht] =

hT [σ(sθ′
i , s

θ
−i), ht] = hT [m∗

θ, ht], which implies

g(σ(sθ′
i , s

θ′
−i);ht) = g(σ(sθ′

i , s
θ
−i);ht) = g(m∗

θ;ht).

Now consider that player i deviates to σ′i. Let t̂ ≥ t be the first date at which σ′i(ht̂, s
θ′
i ) �=

σi(ht̂, s
θ′
i ); or equivalently, σ′i(ht̂, s

θ′
i ) �= m∗

i,θ(ht̂). As above, similar argument would show

that as long as t′ < t̂, we have ht′+1 = (ht′ , σ
′
i(ht′ , s

θ′
i ), σ−i(ht′ , s

θ′
−i)) = (ht′ , σ

′
i(ht′ , s

θ′
i ), σ−i(ht′ , s

θ
−i)) =

(ht′ ,m
∗
i,θ(ht′),m∗

−i,θ(ht′)) ∈ H∗ where the second and third equalities are assured by Σ1

and Σ3 and we use the fact that ht′ ∈ H∗. In addition, ht̂+1 = (ht̂, σ
′
i(ht̂, s

θ′
i ), σ−i(ht̂, s

θ′
−i)) =

(ht̂, σ
′
i(ht̂, s

θ′
i ), σ−i(ht̂, s

θ
−i)) = (ht̂, σ

′
i(ht̂, s

θ′
i ),m∗

−i,θ(ht̂)) where the second and third equal-

ities are assured by Σ1 and Σ3 and we use the fact that ht̂ ∈ H∗. Note that ht′ /∈
H∗

−k for each k �= i and for t′ ≥ t̂ + 1. Therefore, using an inductive argument, one

can show that ht′+1 = (ht′ , σ
′
i(ht′ , s

θ′
i ), σ−i(ht′ , s

θ′
−i)) = (ht′ , σ

′
i(ht′ , s

θ′
i ), σ−i(ht′ , s

θ
−i)) =

(ht′ , σ
′
i(ht′ , s

θ′
i ),m∗

−i,θ(ht′)) where the second and third equalities are assured by Σ1 and

Σ3 and we use the fact that ht′ /∈ H∗
−k for each k �= i. So we get hT [σ′i(s

θ′
i ), σ−i(sθ

−i), ht] =

hT (σ′i(s
θ′
i ), σ−i(sθ′

−i), ht] = hT [m′
i,m

∗
−i,θ, ht] for some strategy m′

i, which implies

g(σ′i(s
θ′
i ), σ−i(sθ

−i);ht) = g(σ′i(s
θ′
i ), σ−i(sθ′

−i);ht) = g(m′
i,m

∗
−i,θ;ht). (1)

Here again, since m∗
θ is a subgame perfect equilibrium in the complete information game

Γ(θ), we have g(m∗
θ ;ht) �θ

i g(m
′
i,m

∗
−i,θ;ht). Thus, we also get

g(σ(sθ′
i , s

θ
−i);ht) �θ

i g(σ
′
i(s

θ′
i ), σ−i(sθ

−i);ht). (2)

The above preference relation together with (1) also implies

g(σ(sθ′
i , s

θ′
−i);ht) �θ

i g(σ
′
i(s

θ′
i ), σ−i(sθ′

−i);ht).

Since g(σ(sθ′
i , s

θ′
−i);ht) = g(m∗

θ;h
∗
t ) = a and we have assumed that θ and θ′ are two states

satisfying (∗), we get that

g(σ(sθ′
i , s

θ′
−i);ht) �θ′

i g(σ′i(s
θ′
i ), σ−i(sθ′

−i);ht). (3)
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Now since by Φ2, φi[· | sθ′
i , ht] assigns a strictly positive weight only to (θ, sθ

−i) and (θ′, sθ′
−i),

Assumption 2 together with (2) and (3) yields:

g(σ;ht) �φi[·|sθ′
i ,ht]

i g((σ′i, σ−i);ht).

Finally consider the case (3) ht ∈ H∗
−i\H∗. Since ht ∈ H∗

−i and ht /∈ H∗ (only i

has deviated up to t), there must exist t′ < t such that σi(ht′ , s
θ′
i ) �= m∗

i,θ(ht′) where

ht′ is a truncation of history ht. Then, for any history ht′′ following ht′ (and so, in

particular, following ht), we have ht′′ /∈ H∗
−k for each k �= i. Moreover, by Σ1 and Σ3 we

have σ−i(ht′′, s
θ
−i) = σ−i(ht′′, s

θ′
−i) = m∗

−i,θ(ht′′). Otherwise stated, we have σ−i(sθ
−i) |ht=

σ−i(sθ′
−i) |ht= m∗

−i,θ |ht . By Φ2 we know that φi[· | sθ′
i , ht] = νε(· | sθ

′
i ) assigns a strictly

positive weight only to (θ, sθ
−i) and (θ′, sθ′

−i). In addition, we have that for any h ∈ H∗ or

h /∈ H∗
−i : σi(h, sθ′

i ) = m∗
i,θ(h, s

θ′
i ). Since ht ∈ H∗

−i\H∗, we conclude with Σ2

g((σi, σ−i);ht) �νε(·|sθ
′

i )
i g((σ′i, σ−i);ht)

for any σ
′
i that differs from σi only at ht. By Assumption 4, we can apply the one-shot

deviation principle, and so the above is equivalent to

g((σi, σ−i);ht) �νε(·|sθ
′

i )
i g((σ′i, σ−i);ht)

for any σ
′
i. This completes the proof. �

A.2 Consistency

In this section, we show that for some φ ∈ Φ, (φ, σ) satisfies consistency.

To show this part, we first fix σ as defined above and consider the following sequence

{(φk, σk)}∞k=0 of assessments. Let ηk > 0 for each k and ηk → 0 as k → ∞. For each player

i, ht ∈ H, and signal si, let ξi(ht, si, ·) be any strictly positive prior overMi(ht)\{σi(si, ht)}
and define σk

i as

σk
i (mt

i | ht, s
θ′
i ) =

{
1 − ηT×n

k if mt
i = σi(ht, s

θ′
i );

ηT×n
k × ξi(ht, s

θ′
i ,m

t
i) otherwise

where T is the (finite) length of the longest final history; and for any signal si �= sθ′
i :

σk
i (mt

i | ht, si) =

{
1 − ηk if mt

i = σi(ht, si);

ηk × ξi(ht, si,m
t
i) otherwise

.
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Let φk be the unique Bayes consistent belief associated with each σk. It is easy to check

that σk converges to σ and we also have that φk converges24. Let φ ≡ limk→∞ φk. In

the sequel, we show that φ satisfies Φ1, Φ2 and Φ3. This will show that (φ, σ) satisfies

consistency, and φ ∈ Φ as claimed.

To do so, we explicitly compute each φk and study its limit as k tends to infinity. In

general for each (θ̃, s̃−i) ∈ Θ × S−i, each ht = (m1, ...,mt−1) ∈ H, and each s̃i ∈ Si, we

have

φk
i [(θ̃, s̃−i) | s̃i, ht] =

νε(θ̃, s̃−i, s̃i) ×
∏t−1

t′=1

[
σk(mt′ | ht′ , s̃)

]
∑

(θ′,s′−i)

νε(θ′, s′−i, s̃i) ×
∏t−1

t′=1

[
σk(mt′ | ht′ , s

′
−i, s̃i)

] .

In the above formula for each t′ ≤ t, ht′ stands for the truncation of ht to the first t′

elements i.e., ht′ = (m1, ...,mt′−1).

Claim 3 φ satisfies Φ1.

Proof of Claim 3: Consider player i, ht /∈ H∗
−i. First, we will establish the following

lemma.

Lemma 2 Fix player i and assume that for all j �= i, let sj ∈ {sθ
j , s

θ′
j }. Let ht =

(∅,m1, ...,mt−1) /∈ H∗
−i.

(1) There exists ĵ �= i and t̂ ≤ t− 1 such that σĵ(ht̂, sĵ) �= mt̂
ĵ;

(2) If ht ∈ H∗
−l for some l �= i, then there exists t̂ ≤ t− 1 such that σl(ht̂, sl) �= mt̂

l .

Proof of Lemma 2: (1) Assume, on the contrary, that σ−i(ht′ , s−i) = mt′
−i for all

t′ ≤ t − 1. We then show by induction that for all t′ ≤ t, ht′ ∈ H∗
−i, which yields a

contradiction. Let t′ = 1; in this case, h1 = ∅ ∈ H∗ ⊆ H∗
−i. Now, toward an induction,

assume that ht′−1 ∈ H∗
−i and let us show that ht′ ∈ H∗

−i. It is easy to show that ht′−1 ∈ H∗
−i

implies that either ht′−1 ∈ H∗ (i.e., no player has deviated) or ht′−1 /∈ H∗
−j for all j �= i

(i.e., only i has deviated). However, in either case, σ−i(ht′−1, s−i) = m∗
−i,θ(ht′−1) is

obtained by Σ1 and Σ3. Since we have assumed that σ−i(ht′−1, s−i) = mt′−1
−i , we get

mt′−1
−i = m∗

−i,θ(ht′−1), which proves that ht′ = (ht′−1, (m̃i(ht′−1),m∗
−i,θ(ht′−1)) for some

strategy m̃i and so ht′ ∈ H∗
−i. This is a contradiction as desired. (2) Since ht ∈ H∗

−l, we

24As will become clear from the proof, the sequence {φk}k does converge.
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have that, for all j �= l and all t′ ≤ t− 1, mt′
j = m∗

j,θ(ht′). Since ht /∈ H∗
−i, we must have

that ht ∈ H∗
−l\H∗. Let t̃ ≤ t−1 be the first date at which mt̃

l �= m∗
l,θ(ht̃). By construction,

we have that for all t′ ≤ t̃, ht′ ∈ H∗ while for all t′ > t̃, ht′ /∈ H∗
−j for all j �= l. This

implies that for all j �= l and t′ ≤ t−1, we have σj(ht′ , sj) = m∗
j,θ(ht′) by Σ1 and Σ3. This

further implies that for all j �= l and t′ ≤ t− 1, σj(ht′ , sj) = mt′
j . As we already proved in

(1), we must have the existence of t̂ ≤ t− 1 such that σl(ht̂, sl) �= mt̂
l , as claimed. �

The rest of the proof is reduced to checking the following two cases:

Case 1: si = sθ′
i . Recall that νε(·, sθ′

i ) assigns a weight strictly positive only to

(θ′, sθ′
−i) and (θ, sθ

−i). Hence,

φk
i [(θ, s

θ
−i) | sθ′

i , ht]

=

νε(θ, sθ
−i, s

θ′
i ) ×

∏
j �=i

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ
j)

]

νε(θ, sθ
−i, s

θ′
i ) ×

∏
j �=i

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ
j)

]
+ νε(θ′, sθ′

−i, s
θ′
i ) ×

∏
j �=i

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ′
j )

]

=
νε(θ, sθ

−i, s
θ′
i )

νε(θ, sθ
−i, s

θ′
i ) + νε(θ′, sθ′

−i, s
θ′
i ) ×

∏
j �=i

[
�t−1

t′=1
σk

j (mt′
j |ht′ ,sθ′

j )]

∏
j �=i

[
�t−1

t′=1
σk

j (mt′
j |ht′ ,sθ

j )]

We now show that the ratio
∏
j �=i

[
∏t−1

t′=1 σ
k
j (mt′

j | ht′ , s
θ′
j )]
/ ∏

j �=i

[
∏t−1

t′=1 σ
k
j (mt′

j | ht′ , s
θ
j)] tends

to 0 as k tends to infinity. This will show that φk
i [(θ, s

θ
−i) | sθ′

i , ht] → 1 and φk
i [(θ

′, sθ′
−i) |

sθ′
i , ht] → 0.

By construction of σk, Lemma 2 (1) implies that for some ĵ �= i and t̂ ≤ t− 1 :

σk
ĵ (mt̂

ĵ | ht̂, s
θ′
ĵ ) = ηT×n

k ξĵ(ht̂, s
θ′
ĵ ,m

t̂
ĵ). (4)

Now, we have:

∏
j �=i

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ′
j )

]
∏
j �=i

[∏t−1
t′=1 σ

k
j (mt′

j | ht′ , s
θ
j)
] ≤ ηT×n

k × ξĵ(ht̂, s
θ′
ĵ ,m

t̂
ĵ) × 1∏

j �=i

[∏t−1
t′=1 ηkξj(ht′ , s

θ
j ,m

t′
j )
]

=
ηT×n

k

η
(t−1)(n−1)
k

× ξĵ(ht̂, s
θ′
ĵ ,m

t̂
ĵ)∏

j �=i

[∏t−1
t′=1 ξj(ht′ , s

θ
j ,m

t′
j )
] → 0 (as k → ∞).
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Where the first inequality is assured by (4) and (assuming wlog that ηk is small) we use

the very construction that, for all j and t′ ≤ t− 1, σk
j (mt′

j | ht′ , s
θ
j) ≥ ηk × ξj(ht′ , s

θ
j ,m

t′
j ).

Case 2: si = sθ
i . Recall that νε(·, sθ

i ) assigns a weight strictly positive only to

(θ, sθ
−i) and (θ, τl) for each l �= i. Hence,

φk
i [(θ, τl) | sθ

i , ht]

=

νε(θ, τl) ×
∏
j �=l,i

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ
j)

]
×
[

t−1∏
t′=1

σk
l (mt′

l | ht′ , s
θ′
l )

]
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
z �=i

νε(θ, τz) ×
∏

j �=z,i

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ
j)

]
×
[

t−1∏
t′=1

σk
z (mt′

z | ht′ , s
θ′
z )

]

+νε(θ, sθ
−i, s

θ
i ) ×

∏
j �=i

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ
j)

]
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=
νε(θ, τl)

∑
z �=i

νε(θ, τz) × cz(k) + νε(θ, sθ
−i, s

θ
i ) ×

t−1�

t′=1

σk
l (mt′

l |ht′ ,sθ
l )

t−1�

t′=1

σk
l (mt′

l |ht′ ,sθ′
l )

for some positive functions cz(k). We now show that if ht ∈ H∗
−l, then the ratio∏t−1

t′=1 σ
k
l (mt′

l , ht′ , s
θ
l )
/∏t−1

t′=1 σ
k
l (mt′

l | ht′ , s
θ′
l ) tends to ∞ as k tends to infinity. This will

show that φk
i [(θ, τl) | sθ

i , ht] → 0 for all l such that ht ∈ H∗
−l; and hence that φ satisfies

Φ1. Assume that ht ∈ H∗
−l for some l, by construction of σk, Lemma 2 (2) implies that

there exists t̂ ≤ t− 1 such that σl(ht̂, sl) �= mt̂
l and so:

σk
l (mt̂

l | ht̂, s
θ′
l ) = ηT×n

k ξl(ht̂, s
θ′
l ,m

t̂
l). (5)

Now, we have

t−1∏
t′=1

σk
l (mt′

l | ht′ , s
θ
l )

t−1∏
t′=1

σk
l (mt′

l | ht′ , s
θ′
l )

≥
ηt−1

k

t−1∏
t′=1

ξl(ht′ , s
θ
l ,m

t′
l )

ηT×n
k ξl(ht̂, s

θ′
l ,m

t̂
l) × 1

→ ∞ (as k → ∞).

Where the first inequality is assured by (5) and (assuming wlog that ηk is small) we use

the fact that by construction: for all t′ ≤ t− 1 : σk
l (mt′

j | ht′ , s
θ
l ) ≥ ηk × ξl(ht′ , s

θ
l ,m

t′
l ). �

Claim 4 φ satisfies Φ2.
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Proof of Claim 4: Consider player i, ht ∈ H∗
−i. The following lemma will be useful.

Lemma 3 Fix player i and assume that for all j �= i, sj ∈ {sθ
j , s

θ′
j }. Let ht = (∅,m1, ...,mt−1) ∈

H∗
−i. For all j �= i and t′ ≤ t− 1 : σj(ht′ , sj) = mt′

j .

Proof of Lemma 3: Pick any t′ ≤ t− 1 and note that ht′ ∈ H∗
−i. Hence, it must be

that either ht′ ∈ H∗ or ht′ /∈ H∗
−j for all j �= i. In each of these cases, by Σ1 and Σ3, we

have for all j �= i : σj(ht′ , sj) = m∗
j,θ(ht′). Since ht′ ∈ H∗

−i, we have that, for all j �= i,

mt′
j = m∗

j,θ(ht′), which completes the proof. �
Here again, the rest of the proof is reduced to checking the following two cases.

Case 1: si = sθ′
i . Recall that νε(·, sθ′

i ) assigns a weight strictly positive only to

(θ′, sθ′
−i) and (θ, sθ

−i). Hence,

φk
i [(θ

′, sθ′
−i) | sθ′

i , ht]

=

νε(θ′, sθ′
−i, s

θ′
i ) ×

∏
j �=i

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ′
j )
]

νε(θ′, sθ′) ×
∏
j �=i

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ′
j )
]

+ νε(θ, sθ
−i, s

θ′
i ) ×

∏
j �=i

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ
j)
]

=
νε(θ′, sθ′

−i, s
θ′
i )

νε(θ′, sθ′) + νε(θ, sθ
−i, s

θ′
i ) ×

∏
j �=i

[
�t−1

t′=1
σk

j (mt′
j |ht′ ,sθ

j )]

∏
j �=i

[
�t−1

t′=1
σk

j (mt′
j |ht′ ,sθ′

j )]

We now show that the ratio
∏
j �=i

∏t−1
t′=1 σ

k
j (mt′

j | ht′ , s
θ
j)
/ ∏

j �=i

∏t−1
t′=1 σ

k
j (mt′

j | ht′ , s
θ′
j ) tends to

1 as k tends to infinity. This will show that φk
i [(θ

′, sθ′
−i) | sθ′

i , ht] → νε((θ′, sθ′
−i) | sθ′

i ) and

φk
i [(θ, s

θ
−i) | sθ′

i , ht] → νε((θ, sθ
−i) | sθ′

i ).

By construction of σk, Lemma 3 implies that for all j �= i and t′ ≤ t− 1 :

σk
j (mt′

j | ht′ , s
θ
j) = 1 − ηk and σk

j (mt′
j | ht′ , s

θ′
j ) = 1 − ηT×n

k

Thus,

∏
j �=i

t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ
j)
/∏

j �=i

t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ′
j ) → 1 as k → ∞
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Case 2: si = sθ
i . Recall that νε(·, sθ

i ) assigns a weight strictly positive only to

(θ, sθ
−i) and (θ, τl) for l �= i. Hence,

φk
i [(θ, s

θ
−i) | sθ

i , ht]

=

νε(θ, sθ
−i, s

θ
i ) ×

∏
j �=i

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ
j)
]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

νε(θ, sθ
−i, s

θ
i ) ×

∏
j �=i

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ
j)
]

+
∑
l �=i

νε(θ, τl) ×
∏
j �=i,l

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ
j)
]
×
[

t−1∏
t′=1

σk
l (mt′

l | ht′ , s
θ′
l )
]
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=
νε(θ, sθ

−i, s
θ
i )

νε(θ, sθ
−i, s

θ
i ) +

∑
l �=i

νε(θ, τl) ×
�t−1

t′=1
σk

l (mt′
l |ht′ ,sθ′

l )
�t−1

t′=1
σk

l (mt′
l |ht′ ,sθ

l )

We now show that for each l �= i, the ratio
∏t−1

t′=1[σ
k
l (mt′

l | ht′ , s
θ′
l )]
/∏t−1

t′=1[σ
k
l (mt′

l | ht′ , s
θ
l )]

tends to 1 as k tends to infinity. This will show that φk
i [(θ, s

θ
−i) | sθ

i , ht] → νε((θ, sθ
−i) | sθ

i )

and similar reasoning shows that for each l �= i : φk
i [(θ, τl) | sθ

i , ht] → νε((θ, τl) | sθ
i ); and

hence, φ satisfies Φ2.

By construction of σk, Lemma 3 implies that for all l �= i and t′ ≤ t− 1 :

σk
l (mt′

l | ht′ , s
θ
l ) = 1 − ηk and σk

l (mt′
l | ht′ , s

θ′
l ) = 1 − ηT×n

k

Thus,

t−1∏
t′=1

σk
l (mt′

l | ht′ , s
θ′
l )

/
t−1∏
t′=1

σk
l (mt′

l | ht′ , s
θ
l ) → 1 as k → ∞

�
Finally, observing that for sθ̃

i /∈ {sθ
i , s

θ′
i }, νε(·, sθ̃

i ) assigns a weight one to (θ̃, sθ̃
−i), we

establish the claim below:

Claim 5 φ satisfies Φ3.
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B One-Shot Deviation Principle

As already mentioned, Hendon, Jacobsen and Sloth (1996) proved the one-shot deviation

principle for sequential equilibrium when players are expected utility decision makers. In

this section, we show that in our setting where agents need not be expected utility decision

makers, under two weak additional assumptions (obviously satisfied by expected utility

models), the one-shot deviation principle holds.

To state the assumptions, assume that one dimension – say Y – is added to the state

space. We will have to define order of preferences over this extended domain. We say that

αY is a Y -act if αY is a mapping from Θ × S × Y to A. We assume that for each belief

β ∈ Δ(Θ × S × Y ), each player i has a transitive preference relation �β
i over Y -acts.

We make two weak assumptions that hold in the expected utility case. The first

assumption is in the spirit of Assumption 2 in the paper and imposes a weak restriction

on preference orders when the domain of acts is extended from Θ × S to Θ × S × Y .

Assumption 5 Fix any countable set Y and take two Y -acts αY and α̂Y , and a belief

β ∈ Δ(Θ × S × Y ). We have(
α(·, ·, y) �β(·,·|y)

i α̂(·, ·, y) for all y s.t. β(y) > 0
)
⇒ α �β

i α̂.

The second assumption is also very weak. First, we say that a Y -act αY coincides with

an act α under β ∈ Δ(Θ × S × Y ) if for any θ, s, y : β(θ, s, y) > 0 ⇒ αY (θ, s, y) = α(θ, s).

The following assumption only assumes that if under β, αY and α̂Y respectively coincide

with acts α and α̂, then the uncertainty dimension Y can be ignored. More precisely:

Assumption 6 Fix any countable set Y and take two Y -acts αY and α̂Y , and a belief

β ∈ Δ(Θ×S×Y ). Assume that αY and α̂Y respectively coincide with acts α and α̂ under

β. We have

αY �β
i α̂Y ⇒ α �margΘ×S β

i α̂.

For simplicity, we assume without loss of generality that (1) for all player i and h /∈
HT : |Mi(h)| ≥ 1 and (2) any terminal histories h, h′ ∈ HT have the same length T . 25

25This is without loss of generality because assuming that player i does not play after history h (i.e.

assuming that Mi(h) = ∅), or assuming that player i has a unique available message after history h, (i.e.

|Mi(h)| = 1) is essentially the same: this does not affect the sequential equilibrium outcomes. Hence,

assuming that all terminal histories have the same length T is also without loss of generality.
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Proposition 1 (One-Shot Deviation Principle) Suppose Assumptions 5 and 6 hold.

Let (φ, σ) be an assessment that satisfies consistency. For each i, si, t and ht :

g(σ;ht) �φi[·|si,ht]
i g((σ′i, σ−i);ht)

for every σ′i if and only if for each i, si, t and ht :

g(σ;ht) �φi[·|si,ht]
i g((σ′i, σ−i);ht)

for every σ′i that differs from σi only at ht.

Proof of Proposition 1.

We will first need the following claim.

Claim 6 Let ht+1 = (ht,m
t) where mt ∈M(ht). We have for each i and si

φi(θ, s−i | si, ht)σ(mt | ht, si, s−i) =

⎛
⎝∑

s̃−i

φi[s̃−i | si, ht]σ(mt | ht, si, s̃−i)

⎞
⎠φi(θ, s−i | si, ht+1).

Proof. In case
∑
s̃−i

φi[s̃−i | si, ht]σ(mt | ht, si, s̃−i) = 0 then the right-hand side is zero

but obviously so is the left-hand side. Now assume
∑
s̃−i

φi[s̃−i | si, ht]σ(mt | ht, si, s̃−i) > 0.

By consistency, we can pick the sequence of totally mixed strategy profile σk → σ such

that (recall that for each t′ ≤ t, ht′ = (m1,m2, ...,mt′−1) stands for the truncation of ht

to the first t′ elements)

φi(θ, s−i | ht, si)σ(mt | ht, si, s−i)∑
s̃−i

φi[s̃−i | si, ht]σ(mt | ht, si, s̃−i)

= lim
k→∞

ν(θ, s−i, si) ×
t−1∏
t′=1

σk
−i(m

t′
−i | ht′ , s−i)

∑
θ,s′−i

ν(θ, s′−i, si) ×
t−1∏
t′=1

σk
−i(m

t′
−i | ht′ , s

′
−i)

× σ−i(mt
−i | ht, s−i)

/
lim

k→∞

∑
s̃−i

ν(s̃−i, si) ×
t−1∏
t′=1

σk
−i(m

t′
−i | ht′ , s̃−i)

∑
s′−i

ν(s′−i, si) ×
t−1∏
t′=1

σk
−i(m

t′
−i | ht′ , s

′
−i)

× σ−i(mt
−i | ht, s̃−i)

36



= lim
k→∞

ν(θ, s−i, si) ×
t−1∏
t′=1

σk
−i(m

t′
−i | ht′ , s−i) × σ−i(mt

−i | ht, s−i)

∑
s̃−i

ν(s̃−i, si) ×
t−1∏
t′=1

σk
−i(m

t′
−i | ht′ , s̃−i) × σ−i(mt

−i | ht, s̃−i)

= φi(θ, s−i | ht+1, si)

as claimed.

We are now in a position to prove our Proposition 1.

Assume (φ, σ) satisfies local sequential rationality, i.e. for each i, si, t and ht :

g(σ;ht) �φi[·|si,ht]
i g((σ′i, σ−i);ht)

for every σ′i that differs from σi only at ht.

Fix any i, si. Recall that T is the length of any terminal history. We want to show by

induction on k that for any k ≥ 1 and any t ≥ T − k, any ht satisfies:

g(σ;ht) �φi[·|si,ht]
i g((σ′i, σ−i);ht)

for any strategy σ′i. First, note that this is true for k = 1 because (φ, σ) satisfies local

sequential rationality. Now toward an induction, assume (IH) that for any t′ ≥ T − k, any

ht′ satisfies

g(σ;ht′ ) �φi[·|si,ht′ ]
i g((σ′i, σ−i);ht′)

for any strategy σ′i. Pick any ht such that t ≥ T − (k + 1) and fix any strategy σ′i. By

local sequential rationality, we know that

g(σ;ht) �φi[·|si,ht]
i g((σ̂i, σ−i);ht)

for σ̂i(h) =

{
σ′i(h) if h = ht

σi(h) otherwise
; hence, by transitivity of �φi[·|si,ht]

i , it is enough to show

that

g((σ̂i, σ−i);ht) �φi[·|si,ht]
i g((σ′i, σ−i);ht). (6)

For any profile of strategies σ, let the M(ht)-act g̃(σ;ht) : Θ × S ×M(ht) → A be such

that (θ, s,mt) �→ g(σi(si), σ−i(s−i);ht,m
t); and let φ̃i[· | si, ht] be the distribution over

Θ × S ×M(ht) such that

φ̃i[(θ, s,mt) | si, ht] = φi[(θ, s−i) | si, ht]σ′i(m
t
i | ht, si)σ−i(mt

−i | ht, s−i).
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Note that φ̃i[(θ, s,mt) | si, ht] > 0 implies that26 σ′i(si, ht) = mt
i and σ−i(s−i, ht) = mt

−i.

Hence, whenever φ̃i[(θ, s,mt) | si, ht] > 0 :

g̃((σ̂i, σ−i);ht)(θ, s,mt) = g(σ̂i(si), σ−i(s−i);ht, σ
′
i(ht, si), σ−i(ht, s−i))

= g(σ̂i(si), σ−i(s−i);ht)

where the first equality is by definition of g̃((σ̂i, σ−i);ht) while the second is by definition

of σ̂i. Thus, the M(ht)-act g̃((σ̂i, σ−i);ht) coincides with the act g((σ̂i, σ−i);ht) under

φ̃i[· | si, ht]. Similarly, one can easily check that the M(ht)-act g̃((σ′i, σ−i);ht) coincides

with the act g((σ′i, σ−i);ht) under φ̃i[· | si, ht]. Now, Assumption 6 together with the fact

that φ[· | si, ht] = margΘ×S−iφ̃[· | si, ht] implies that (6) holds if

g̃((σ̂i, σ−i);ht) �φ̃i[·|si,ht]
i g̃((σ′i, σ−i);ht).

By Claim 6, we know that for any mt :

φ̃i[(θ, s,mt) | si, ht] =

⎛
⎝∑

s̃−i

φi[s̃−i | si, ht]σ′i(m
t
i | ht, si)σ−i(mt

−i | ht, s̃−i)

⎞
⎠φi(θ, s−i | si, ht,m

t).

(7)

In addition, because ht has been chosen so that t + 1 ≥ T − k, the inductive hypothesis

(IH) applies to ht+1 = (ht,m
t) i.e.

g((σi, σ−i);ht,m
t) �φi[·|si,ht,mt]

i g((σ′i, σ−i);ht,m
t). (8)

Now, it is clear that g((σ′i, σ−i);ht,m
t) = g̃((σ′i, σ−i);ht)(·, ·,mt); in addition, by definition

of σ̂i, g̃((σ̂i, σ−i);ht)(·, ·,mt) = g((σi, σ−i);ht,m
t). Thus, by (8), we get that for any

mt ∈M(ht) :

g̃((σ̂i, σ−i);ht)(·, ·,mt) �φi[·|si,ht,mt]
i g̃((σ′i, σ−i);ht)(·, ·,mt) (9)

Therefore, by (7), it is easily checked that φ[· | si, ht] is equal to φ̃[· | si, ht] conditional on

mt. Hence, using (9) and Assumption 5, we get that

g̃((σ̂i, σ−i);ht) �φ̃i[·|si,ht]
i g̃((σ′i, σ−i);ht)

which completes the proof.
26Recall that we consider only pure strategies.
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