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Takashi Kunimoto† and Roberto Serrano‡
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This Version: August 2010

Abstract

We assess the strength of the different conditions identified in the literature of robust
mechanism design. We focus on three conditions: ex post incentive compatibility,
robust monotonicity, and robust measurability. Ex post incentive compatibility has
been shown to be necessary for any concept of robust implementation, while robust
monotonicity and robust measurability have been shown to be necessary for robust
(full) exact and virtual implementation, respectively. This paper shows that while
violations of ex post incentive compatibility and robust monotonicity do not easily go
away, we identify a mild condition on environments in which robust measurability is
satisfied by all social choice functions over a residual set (i.e., a countable intersection
of open and dense sets) of first-order types. We conclude that, to the extent that
ex post incentive compatibility is permissive, robust virtual implementation can be
significantly more permissive than robust exact implementation.
JEL Classification: C72, D78, D82.
Keywords: robust mechanism design, ex post incentive compatibility, robust mono-
tonicity, robust measurability.

1 Introduction

Our attempt in this paper is to assess the strength of the different conditions identified in
the literature of robust mechanism design. These include conditions relevant for partial
implementation, as well as full implementation. Such an assessment is important in the
understanding of the possibilities and limitations in the design of decentralized institutions.
By robustness, what is meant is that the assumption of common knowledge of the entire
type space is not made, and hence the goal is that implementation results survive when
applied to all type spaces whose higher-order beliefs are compatible with an original simpler
common knowledge structure. Consistent with the robustness desideratum, the solution
concept in which implementation is sought is the iterative elimination of strictly dominated
strategies.

Three conditions are the crucial ones: ex post incentive compatibility, robust mono-
tonicity and robust measurability. Ex post incentive compatibility has been shown to be
necessary for robust partial implementation (Bergemann and Morris (2005)) and also for ro-
bust full implementation, both exactly and virtually (Bergemann and Morris (2009a,2010),
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Artemov, Kunimoto and Serrano (2010)).1 When one requires full implementation and this
is sought to be exact, the condition of robust monotonicity, along with ex post incentive
compatibility, crops up as necessary and almost sufficient (BM (2010)). And finally, if full
implementation is still required, but exact implementation is relaxed to allow approxima-
tions of the social choice function (SCF), the so-called virtual implementation paradigm,
robust measurability is the condition that emerges in the characterization (BM (2009a),
AKS (2010)).

Ex post incentive compatibility is extremely demanding if one wishes to apply it over
an unrestricted domain of environments (Jehiel, Meyer-ter-Vehn, Moldovanu and Zame
(2006)). One way out from this negative result is the consideration of interesting subdo-
mains in which the condition is still permissive (see BM (2009b) and the references therein).
Another way out that one can conceivably consider is to study the case of robustness with
respect to intermediate relaxations of the common knowledge assumption. For example,
AKS (2010) consider finite sets of first-order types, each of which comprises a pair of payoff
type and the first-order belief over the payoff type space. In that analysis, the relevant
incentive compatibility condition applies to the first-order types that are present in the
model. This notion is termed first-order incentive compatibility in AKS (2010). However,
when one considers approximations of the unrestricted set of first-order beliefs, this notion
does not make a difference. Indeed, we shall show in Theorem 1 that ex post incentive
compatibility is equivalent to first-order incentive compatibility when imposed over any
open and dense set of first-order beliefs. The equivalence is also extended to a locally
uniform version of the condition.

Next, we take on robust monotonicity. Robust monotonicity is the requirement of
Bayesian monotonicity in every type space. In Theorem 2 we show an equivalence between
robust monotonicity when imposed over first-order beliefs in the interior of the probability
simplex and a locally robust version of the condition. The result shows that a violation
of robust monotonicity in one specific type space can be extended to an open ball of
environments around it.

We learn from the first two results that violations of ex post incentive compatibility
and robust monotonicity do not easily go away. When such violations are found, they will
still remain in approximations of the environment. In contrast, Theorem 3 asserts that the
same is not true about robust measurability in general environments.2 That final result
shows that, over weakly non-separable environments, robust measurability is satisfied by
all SCFs over a residual subset (i.e., a countable intersection of open and dense sets) of
first-order type spaces. The proof relies on the set of first-order beliefs satisfying first-
order type diversity, initially proposed in Serrano and Vohra (2005) and also used in AKS
(2010).3

The rest of the paper proceeds as follows. Section 2 introduces preliminaries. Sections 3,
4 and 5 deal in turn with the incentive compatibility, monotonicity and measurability
results. Section 6 closes the paper with two illustrative examples.

1In the sequel, we shall refer to these sets of authors as BM and AKS, respectively.
2BM (2009a,b, 2010) provide a set of results in which the gap between (robust) exact and virtual

implementation vanishes. Our different conclusion stems from the fact that we shall work with weakly
non-separable environments, arguably a mild condition when arbitrary utility functions are allowed.

3In those papers, the first-order type spaces are finite, something not assumed here.
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2 Preliminaries

Let N = {1, . . . , n} denote the set of agents and Θi be the set of finite payoff types of
agent i. Assume that |Θi| ≥ 2 for each i ∈ N to avoid the case of degenerate beliefs.
Denote Θ ≡ Θ1 × · · · × Θn, and Θ−i ≡ Θ1 × · · · × Θi−1 × Θi+1 × · · · × Θn.4 Let qi(θ−i)
denote agent i’s first-order belief that other agents receive the profile of types θ−i.5 Let
Qi be the (nonempty) set of such all probabilistic first-order beliefs of agent i. Note that
Qi is any (nonempty) subset of Δ(Θ−i) for each agent i, where Δ(Θ−i) denotes the set
of probability distributions over Θ−i. We call Ti ≡ Θi × Qi the set of first-order types of
agent i. Agent i’s first-order type ti contains information about his payoff type θi and the
first-order belief over Θ−i.

Let A denote the set of pure outcomes, which are assumed to be independent of the in-
formation state. Suppose A = {a1, . . . , aK} is finite. Let Δ(A) denote the set of probability
distributions on A.6

Agent i’s state dependent von Neumann-Morgenstern utility function is denoted ui :
Δ(A) × Θ → R.

We can now define an environment as E = (A, {ui,Θi, Qi}i∈N ), which is implicitly
understood to be common knowledge among the agents. In particular, if Qi is unre-
stricted for each i, that is, Qi = Δ(Θ−i), we call it a payoff environment denoted as
EΔ = (A, {ui,Θi}i∈N ).

We denote a type of agent i by τi and the agent i’s set of types by Ti. A type τi of
agent i must include a description of his first-order type, which in turn includes a payoff
type. Thus, there is a function t̂i : Ti → Ti, with t̂i(τi) being agent i’s first-order type
when his type is τi. We shall write t̂(τ) to refer to the profile of first-order types when
the type profile is τ . There is also a function θ̂i : Ti → Θi, with θ̂i(τi) being agent i’s
payoff type when his type is τi. We shall write θ̂(τ) to denote the payoff type profile when
the profile of types is τ . With some abuse of notation, let θ̂i(ti) be agent i ’s payoff type
when his first-order type is ti. A type τi of agent i must also include a description of his
beliefs about the types of the other agents; thus, for any τ−i ∈ T−i, πi(τ−i|τi) denotes the
probability that agent i of type τi assigns to other agents having types τ−i.

We require that types, first-order types and payoff types are coherent with each other.
We express the coherence requirement in the following definition. A type space T is a
collection:

T = (Ti, θ̂i, t̂i, πi)i∈N .

Definition 1 A type space T ≡ (Ti, θ̂i, t̂i, πi)i∈N is said to be coherent with an environ-
ment E = (A, {ui,Θi, Qi}i∈N ) if, for every i ∈ N and every type τi ∈ Ti, the following two
conditions must hold:

1. for all (θi, qi) ∈ Θi ×Qi, θ̂i(τi) = θi whenever t̂i(τi) = (θi, qi);
4Similar notation will be used for products of other sets.
5We do not use the assumption of independent beliefs. Since the analysis will proceed on each payoff

type θi separately, for notational simplicity, we employ this rather than the more accurate qi(θ−i|θi).
6The finiteness of A is made only for simplicity. All the arguments in the paper go through as long as

Δ(A) is the set of probability distributions with “countable” supports. Indeed, this will be the case if A is
a complete separable space.
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2. for any θ−i ∈ Θ−i, whenever t̂i(τi) = (θi, qi),∫
τ−i:θ̂−i(τ−i)=θ−i

πi(τ−i|τi)dτ−i = qi(θ−i)

The first part requires that payoff type and first-order type be coherent with each
other. The second part of coherence requires that each agent’s beliefs coincide with his
first-order beliefs in whatever concerns other agents’ “payoff” types.7 Note also that when
Qi is unrestricted, i.e., Qi = Δ(Θ−i), this second requirement is a vacuous condition. The
reader is referred to AKS (2010) for the discussion of our coherence assumption.

A social choice function (SCF) is a function f : Θ → Δ(A). Note that the domain
of the SCFs is not the true type space, but the payoff type space. Fix any coherent type
space T throughout. The interim expected utility of agent i of type τi that pretends to be
of type τ ′i corresponding to an SCF f is defined as:

Ui(f ; τ ′i |τi) ≡
∫
T−i

πi(τ−i|τi)ui(f(θ̂(τ ′i , τ−i)); θ̂(τi, τ−i))dτ−i

Denote Ui(f |τi) = Ui(f ; τi|τi).
Define Vi(f ; θ′i|θi, q

′
i) to be the interim expected utility of agent i of first-order type

(θi, qi) that pretends to be of first-order type (θ′i, q
′
i) corresponding to an SCF f as follows:

Vi(f ; θ′i|θi, qi) =
∑

θ−i∈Θ−i

qi(θ−i|θi)ui(f(θ′i, θ−i); θi, θ−i)

where (θi, qi) ∈ Ti = Θi×Qi and (θ′i, q
′
i) ∈ Ti = Θi×Qi. Denote Vi(f |θi, qi) = Vi(f ; θi|θi, qi).

We often use the following relationship between interim utility and first-order interim
utility of agent i:

Lemma 1 (AKS (2010)) For a given SCF f : Θ → Δ(A), Ui(f ; τ ′i |τi) = Vi(f ; t̂i(τ ′i)|t̂i(τi))
for any coherent type space T .

A mechanism Γ = ((Mi)i∈N , g) describes a (nonempty) message space Mi for agent i
and an outcome function g : M → Δ(A), where M = ×i∈NMi. Let σi : Ti → Mi denote a
(pure) strategy for agent i and Σi his set of pure strategies.8 9 Let

Ui(g ◦ σ|τi) ≡
∫
T−i

πi(τ−i|τi)ui(g(σ(τ−i, τi)); θ̂(τ−i, τi))dτ−i.

7The second part of the coherence requirement implicitly assumes that a type space T is countable.
However, we can also handle the case of uncountable T by imposing some suitable measurability condition
on T so that the corresponding interim preferences Ui(f |τi) are well-defined. See Duggan (1997) or Serrano
and Vohra (2010) for this treatment.

8To be exact, we must use the notation Σi(Ti) to make the underlying type space explicit. We, however,
omit this dependence, since it is always clear from the context.

9Our notation seems to assume that a message space M can be either finite or countable. However,
we can also handle the case of uncountable M . In doing so, we must impose some suitable measurability
condition on M so that the corresponding strategy spaces Σi and interim preferences Ui(g ◦ σ|τi) are
well-defined. See again Duggan (1997) or Serrano and Vohra (2010) for this treatment.
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Given a mechanism Γ = (M,g), let Hi be a subset of Σi. A strategy σi ∈ Hi is strictly
dominated for player i with respect to H = ×j∈NHj if there exist τi ∈ Ti and σ′i ∈ Σi such
that for every σ−i ∈ ×j �=iHj,

Ui(g ◦ (σ′i, σ−i)|τi) > Ui(g ◦ (σi, σ−i)|τi).

For any subsets H,H ′ ⊆ Σ, where H ′ ⊆ H, we use the notation H → H ′ (read: H is
reduced to H ′) to signify that for any σ ∈ H\H ′, some σi is strictly dominated with
respect to H. Let λ0 denote the first element in an ordinal Λ, and let λ + 1 denote the
successor to λ in Λ.10 Let {Kλ}λ∈Λ be a finite, countably infinite, or uncountably infinite
family of subsets of the strategy space Σ satisfying the following properties: (1) Kλ0 = Σ;
(2) Kλ → Kλ+1 where Kλ =

⋂
λ′<λ Kλ′

for a limit ordinal λ; and (3) K∗ ≡
⋂

λ∈Λ Kλ → K
only for K = K∗.

Definition 2 A strategy profile σ ∈ Σ is iteratively undominated if σ ∈ K∗.

Remark: The standard definition of iteratively undominated strategies only uses a count-
ably infinite number of rounds of elimination of strategies. The above definition includes
this as a special case. Indeed, Lipman (1994) argues that we need transfinite inductions in
some games with countably infinite actions in order to guarantee the equivalence between
the common certainty of rationality and the iterative elimination of never best responses.
This is particularly relevant in mechanism design because the literature often uses count-
ably infinite message spaces in the canonical mechanisms. However, even allowing an
uncountable number of rounds of elimination, Chen, Long, and Luo (2007) show in their
Theorem 1 that K∗ always exists and is unique. Hence, K∗ is well-defined.

An SCF f is said to be exactly implementable in iteratively undominated strategies for
a coherent type space T if there exists a mechanism Γ = (M,g) such that there exists a
unique K∗ = {σ} for which g(σ(τ)) = f(θ̂(τ)) for all τ ∈ T . We add the requirement
that this definition should hold for every coherent type space T to obtain the definition of
robust implementation:

Definition 3 An SCF f is robustly implementable in iteratively undominated strategies
if there exists a mechanism Γ = (M,g) such that for any coherent type space T , there exists
a unique K∗ = {σ} for which g(σ(τ)) = f(θ̂(τ)) for every τ ∈ T .

Remark: Given the definition of robust implementation, we lose nothing by restricting
attention to pure strategies. Furthermore, robust implementation requires that there al-
ways exist a pure Bayesian Nash equilibrium in every coherent type space. Chen, Long,
and Luo (2007) show that this guarantees that K∗ is always nonempty without imposing
any structure on the mechanisms.

Consider the following uniform metric on SCFs:

df (f, h) = max
θ∈Θ

max
a∈A

|f(a|θ) − h(a|θ)|,

10An ordinal Λ is a well-ordered set in the order-isomorphic sense. In particular, the well-ordered set of
natural numbers is called the first infinite ordinal. A limit ordinal is an element in Λ that is not a successor.
By λ′ < λ, we mean that “λ′ precedes λ.”
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where the notation f(a|θ) refers to the probability with which f implements a ∈ A in the
payoff state θ.

An SCF f is said to be virtually implementable in iteratively undominated strategies
for a coherent type space T if, there exists ε̄ > 0 such that for any ε ∈ (0, ε̄], there exists an
SCF f ε for which df (f, f ε) < ε and f ε is exactly implementable in iteratively undominated
strategies for the type space T . The definition of robust virtual implementability now
follows.

Definition 4 An SCF f is robustly virtually implementable in iteratively undomi-
nated strategies if there exists ε̄ > 0 such that, for any ε ∈ (0, ε̄], there exists an SCF f ε for
which df (f, f ε) < ε and f ε is robustly implementable in iteratively undominated strategies.

3 Incentive Compatibility

In a setting that is robust to higher-order beliefs, the standard requirement of Bayesian
incentive compatibility is given by the following definition:

Definition 5 An SCF f : Θ → Δ(A) is said to satisfy incentive compatibility for a
coherent type space T if for every i ∈ N, τi, τ

′
i ∈ Ti,

Ui(f |τi) ≥ Ui(f ; τ ′i |τi).

The notion of first-order type suggests the following definition, which turns out to be
operationally useful:

Definition 6 An SCF f satisfies first-order incentive compatibility if, for any i ∈ N ,
and any ti = (θi, qi), t

′
i = (θ

′
i, q

′
i) ∈ Qi,

Vi(f |θi, qi) ≥ Vi(f ; θ
′
i|θi, qi).

The next lemma provides a useful link between these concepts and follows directly from
Lemma 1:

Lemma 2 (AKS (2010)) An SCF f : Θ → Δ(A) satisfies incentive compatibility for
any coherent type space T if and only if it satisfies first-order incentive compatibility.

The robust mechanism design literature has often justified the use of ex post incentive
compatibility for attaining robust implementation (both for partial and full implementa-
tion). We provide this definition next:

Definition 7 An SCF f satisfies ex post incentive compatibility if, for any i ∈ N, θ ∈
Θ, and θ

′
i ∈ Θi,

ui(f(θ); θ) ≥ ui(f(θ
′
i, θ−i); θ).
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It is easy to see that when Qi = Δ(Θ−i) for every agent i ∈ N , an SCF f is first-
order incentive compatible if and only if it is ex post incentive compatible. The next result
extends this observation slightly but in an important direction. The following result asserts
that we cannot relax ex post incentive compatibility by restricting attention to an open
dense subset of Δ(Θ−i). Define Δ0(Θ−i) = {qi ∈ Δ(Θ−i)|qi(θ−i) > 0 ∀θ−i ∈ Θ−i} be the
interior of Δ(Θ−i).

Theorem 1 Suppose that an environment E = (A, {ui,Θi, Qi}i∈N ) satisfies the property
that Qi ≡ Δ∗(Θ−i) for each i ∈ N and Δ∗(Θ−i) is an arbitrary open and dense subset
of Δ0(Θ−i). Then, an SCF f satisfies first-order incentive compatibility if and only if it
satisfies ex post incentive compatibility.

Proof : It is straightforward to show that if an SCF is ex post incentive compatible, it
is also first-order incentive compatible, for any first-order type space.

Hence, we focus on the other direction. Let f be a first-order incentive compatible SCF
over an open and dense set Δ∗(Θ−i). Suppose, by way of contradiction, that f is not ex
post incentive compatible. This implies that there exist i ∈ N, θ ∈ Θ, and θ

′
i 
= θi such

that

ui(f(θ); θ) < ui(f(θ
′
i, θ−i); θ).

By the continuity of expected utility, we can construct qi ∈ Δ0(Θ−i) such that qi(θ−i) =
1 − ε for ε > 0 small enough and

Vi(f |θi, qi) < Vi(f ; θ
′
i|θi, qi).

Once again, by the continuity of expected utility, there exist an open neighborhoodOδ(qi) ⊂
Δ0(Θ−i), i.e., a δ > 0 small enough such that for any dqi ∈ R

H with the property that
‖dqi‖ < δ,

Vi(f |θi, qi + dqi) < Vi(f ; θ
′
i|θi, qi + dqi)

where H = |Θ−i|. Note that the norm ‖ · ‖ is induced by the uniform metric dq with the
property that dq(qi, q

′
i) = maxθ−i∈Θ−i

|qi(θ−i) − q
′
i(θ−i)| for any qi, q

′
i ∈ Δ(Θ−i). Thus, we

have shown that any nearby first-order belief qi+dqi ∈ Oδ(qi) satisfies the above inequality,
and Oδ(qi) ∩ Δ∗(Θ−i) 
= ∅, which is a contradiction. �

Jehiel et al (2006) and Hashimoto (2008) show that ex post incentive compatible SCFs
are generically constant.11 Therefore, ex post incentive compatibility is quite demanding
if one allows an unrestricted domain of environments. While these results provide a limit
for the success of robust implementation, there are some interesting subdomains of envi-
ronments in which ex post incentive compatibility is still permissive. The reader is referred
to BM (2009b) for such a class of environments where some positive results are obtained.
Moreover, in auction environments, Dasgupta and Maskin (2000) and Bikhchandani (2006)

11There is one difference with our setup because those papers focus on the case of a continuum of payoff
types. However, this difference is immaterial because our Theorem 1 and Proposition 1 extend unchanged
to a compact payoff type space. See also the remark after the proof of Lemma 5.
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also propose some subdomains of environments where ex post incentive compatibility is
not restrictive.

If one imposes the first-order incentive compatibility condition when all agents’ first-
order beliefs are restricted to lie in Δ0(Θ−i) we shall refer to such a conditions as first-
order incentive compatibility over Δ0. By Theorem 1, an SCF satisfies ex post incentive
compatibility if and only if it satisfies first-order incentive compatibility over Δ0. Therefore,
we can now consider the following local version of ex post incentive compatibility:

Definition 8 An SCF f satisfies locally uniform incentive compatibility if for any
agent i ∈ N , any open set Q0

i ⊂ Δ0(Θ−i), and any θi, θ
′
i ∈ Θi, we have that:

Vi(f |θi, qi) ≥ Vi(f ; θ
′
i|θi, qi) ∀ qi ∈ Q0

i .

And this leads easily to the next result:

Proposition 1 An SCF f satisfies ex post incentive compatibility if and only if it satisfies
locally uniform incentive compatibility.

Proof : We can use Theorem 1 to know that ex post incentive compatibility is equivalent
to first-order incentive compatibility over Δ0. Now, clearly if f satisfies first-order incentive
compatibility over Δ0, it also satisfies locally uniform incentive compatibility.

To prove the other implication, assume that f violates first-order incentive compatibility
over Δ0. That is, there exist i ∈ N, θi, θ

′
i ∈ Θi, and qi ∈ Δ0(Θ−i) such that

Vi(f |θi, qi) < Vi(f ; θ
′
i|θi, qi).

Since qi ∈ Δ0, by the continuity of expected utility, there exists δ > 0 small enough such
that for any qi + dqi ∈ Oδ(qi),

Vi(f |θi, qi + dqi) < Vi(f ; θ
′
i|θi, qi + dqi).

Setting Q0
i = Oδ(qi), which is an open set in Δ0(Θ−i), we can conclude that f also violates

locally uniform incentive compatibility. �
Remark: The above result shows that there is no difference between ex post incentive
compatibility and locally uniform incentive compatibility. Therefore, if ex post incentive
compatibility is very restrictive, it continues to be so for its local version. In other words,
failures to satisfy ex post incentive compatibility will not easily go away.

4 Monotonicity

A number of monotonicity conditions have been suggested in order to answer the question
of (full) exact implementation. We begin this section with several standard definitions in
the Bayesian implementation literature, suitably adapted to the robust setting.

For agent i, consider a mapping αi = (αi(θi))θi∈Θi
: Θi → Θi. A deception α = (αi)i∈N

is a collection of such mappings where at least one differs from the identity mapping.
Given an SCF f and a deception α, let [f ◦ α] denote the following SCF: [f ◦ α](θ) =

f(α(θ)) for every θ ∈ Θ. That is, [f ◦ α] is the SCF that would be implemented if the

8



planner wanted to implement f but the agents were to use the deception α : then, in each
payoff state θ, instead of realizing f(θ), the outcome f(α(θ)) would result.

For a payoff type θi ∈ Θi, an SCF f , and a deception α, let fαi(θi)(θ
′
) = f(θ

′
−i, αi(θi))

for all θ
′ ∈ Θ. That is, the SCF fαi(θi) is what would be implemented if the planner wished

to implement f , all agents other than i were to be truthful, and agent i would report
that his payoff type is αi(θi). We write f 
= f ◦ α when there exists θ ∈ Θ such that
f(θ) 
= f(α(θ)).

The following definition is borrowed from BM (2010):

Definition 9 An SCF f satisfies robust monotonicity if for any deception α, whenever
f 
= f ◦ α, there exist i ∈ N, θi ∈ Θi, and an SCF y such that:

Vi(y ◦ α|θi, qi) > Vi(f ◦ α|θi, qi) ∀qi ∈ Δ(Θ−i)

while

Vi(f |θ
′
i, q

′
i) ≥ Vi(yαi(θi)|θ

′
i, q

′
i) ∀θ′

i ∈ Θi, ∀q′i ∈ Δ(Θ−i).

Note that the above definition for robust monotonicity, as written, does not exactly
coincide with the one presented by BM (2010). 12 Nevertheless, it can be shown that both
are equivalent. Assume that Qi = Δ(Θ−i) for every i ∈ N . Then, robust monotonicity is
equivalent to Bayesian monotonicity for every type space. By our Lemma 1, it is easy to
see that the above definition is indeed the one for robust monotonicity.

Proposition 2 (BM (2010)) Consider an environment E where Qi = Δ(Θ−i) for every
i ∈ N . If an SCF f is robustly implementable in iteratively undominated strategies, it
satisfies robust monotonicity.

Remark: BM (2010) use the iterative deletion of never best responses as their solution
concept. This solution concept is equivalent to iteratively undominated strategies in finite
mechanisms. For the case of infinite mechanisms, iteratively undominated strategies is
more stringent than iterative removal of never best responses. Thus, a fortiori, robust
monotonicity is a necessary condition for robust implementation in iteratively undominated
strategies.

We shall say that an SCF f satisfies robust monotonicity over Δ0 if it satisfies robust
monotonicity subject to all agents’ first-order beliefs used in the condition being restricted
to lie in Δ0(Θ−i). We note the following simple observation:
Remark: If an SCF f satisfies robust monotonicity, it satisfies robust monotonicity over
Δ0.

In particular, this implies that robust monotonicity over Δ0 is also a necessary condition
for robust exact implementation in iteratively undominated strategies.

Consider now the following local version of robust monotonicity:

Definition 10 An SCF f satisfies local robust monotonicity if for any deception α,
whenever f 
= f ◦α, there exist i ∈ N, θi ∈ Θi, and an SCF y such that for every open set

12When we fix a single qi, this formulation is equivalent to the definition of Bayesian monotonicity in
Jackson (1991). See also Postlewaite and Schmeidler (1986) and Palfrey and Srivastava (1987).
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Q0
i ⊂ Δ(Θ−i), we have that:

Vi(y ◦ α|θi, qi) > Vi(f ◦ α|θi, qi) ∀qi ∈ Q0
i

while

Vi(f |θ
′
i, q

′
i) ≥ Vi(yαi(θi)|θ

′
i, q

′
i) ∀θ′

i ∈ Θi ∀q′i ∈ Q0
i .

Remark: Maintaining the former (“reversal”) clause for the definition of local robust
monotonicity, we can strengthen the latter (“truth-telling”) clause to Vi(f |θ

′
i, q

′
i) ≥ Vi(yαi(θi)|θ

′
i, q

′
i) ∀θ′

i ∈
Θi ∀q′i ∈ Δ0(Θ−i). In other words, we replace Q0

i with Δ0(Θ−i) for the range of possible
q
′
is. In particular, the proof of Theorem 2 below will not be affected by this change. Fur-

thermore, we can also accommodate this change in the discussion of Example 2 in Section
6.

Using this definition, we state and prove our next result:

Theorem 2 An SCF f satisfies robust monotonicity over Δ0 if and only if it satisfies local
robust monotonicity.

Proof: Clearly, if f satisfies robust monotonicity over Δ0, it also satisfies local robust
monotonicity.

To prove the other implication, assume that f violates robust monotonicity over Δ0.
This means that there exists an environment with a specific first-order type space (with
beliefs for each i in Δ0(Θ−i)) over which f violates Bayesian monotonicity. That is, there
exists a deception α with f 
= f ◦ α such that for all i ∈ N and for all θi ∈ Θi, there exists
qi ∈ Δ0(Θ−i) such that whenever one has that

Vi(f |θ
′
i, q

′
i) ≥ Vi(yαi(θi)|θ

′
i, q

′
i) ∀θ′

i ∈ Θi ∀q′i ∈ Δ0(Θ−i),

one also has that

Vi(y ◦ α|θi, qi) ≤ Vi(f ◦ α|θi, qi).

Since expected utility preferences are continuous and qi is in the interior of the probability
simplex, the strictly upper contour sets are open and non-empty, and thus one can rewrite
the last two inequalities as follows: whenever one has that

Vi(f |θ
′
i, q

′
i) > Vi(yαi(θi)|θ

′
i, q

′
i) ∀θ′

i ∈ Θi ∀q′i ∈ Δ0(Θ−i)

one also has that

Vi(y ◦ α|θi, qi) < Vi(f ◦ α|θi, qi).

Since these inequalities are strict, one can find an open neighborhood of qi in which the
same inequalities obtain. It follows that f violates local robust monotonicity. �
Remark: The message of the above result is that, whenever one can find a violation of
robust monotonicity, i.e., a violation of Bayesian monotonicity in some fixed first-order
type space, such a violation can be extended to an open set of priors around the original
one. Of course, if one found a violation of robust monotonicity on the boundary of Δ(Θ−i),
it may not be possible to extend it to an open set of priors around the original one; see
however Example 2 in Section 6.
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5 Measurability

This section deals with measurability, a condition that is key for virtual implementation in
iteratively undominated strategies. Roughly speaking, it requires that an SCF cannot vary
in two payoff states whenever the types compatible with them have identical preferences.
It was proposed by Abreu and Matsushima (1992), and hence, we shall refer to it as A-M
measurability. Its robust version has been used in BM (2009a); see also AKS (2010).

Denote by Ψi a partition of the set of first-order types Ti, where ψi is a generic element
of Ψi and Πi(ti) is the element of Ψi that includes first-order type ti.13 Let Ψ = ×i∈NΨi

and ψ = ×i∈Nψi. An SCF f is measurable with respect to Ψ if, for every i ∈ N and every
ti, t

′
i ∈ Ti, whenever Πi(ti) = Πi(t′i),

f(θ̂(ti, t−i)) = f(θ̂(t′i, t−i)) ∀t−i ∈ T−i.

Measurability of f with respect to Ψ implies that for any player i, f does not distinguish
between any pair of first-order types in the same cell of the partition Ψi.

For every i ∈ N, ti, t
′
i ∈ Ti, and (n − 1) tuple of partitions Ψ−i, we say that ti is

equivalent to t′i with respect to Ψ−i if, for every f and every f̃ that are measurable with
respect to Ti × Ψ−i,

Vi(f |ti) ≥ Vi(f̃ |ti) ⇐⇒ Vi(f |t′i) ≥ Vi(f̃ |t′i).

Let ρi(ti,Ψ−i) be the set of all elements of Ti that are equivalent to ti with respect to
Ψ−i, and let

Ri(Ψ−i) = {ρi(ti,Ψ−i) ⊂ Ti| ti ∈ Ti} .

Note that Ri(Ψ−i) forms an equivalence class on Ti, that is, constitutes a partition
of Ti. We define a finite, countably infinite, or uncountably infinite family of n-tuples of
partitions, {Ψλ}λ∈Λ, where Λ is an ordinal and for each λ ∈ Λ, Ψλ = ×i∈NΨλ

i in the
following way. For every i ∈ N ,

Ψλ0
i = {Ti},

and with a (possibly transfinite) recursion, for every i ∈ N and every λ ∈ Λ,

Ψλ+1
i = Ri(Ψλ

−i).

Note that for every λ, Ψλ+1
i is the same as, or finer than, Ψλ

i . Define Ψ∗ as follows:

Ψ∗ ≡
⋂
λ∈Λ

Ψλ,

where Ψλ =
⋂

λ′<λ Ψλ′
for a limit ordinal λ.

Definition 11 An SCF f satisfies A-M measurability if it is measurable with respect
to Ψ∗.

13With respect to Abreu and Matsushima (1992), recall that Ti is not necessarily finite in our current
treatment.
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Proposition 3 (AKS (2010)) If an SCF f is robustly virtually implementable in itera-
tively undominated strategies, then it satisfies A-M measurability.

Remark: Although the original proof of AKS (2010) uses at most a countably infinite
number of iterations in the A-M measurability algorithm, its proof can also be extended
to the case where an uncountable number of iterations is used in the procedure.

When Qi = Δ(Θ−i) for each agent i ∈ N , adapting the above algorithm to the separa-
tion of types (instead of first-order types), BM (2009a) define the following property.

Definition 12 An SCF f satisfies robust measurability whenever it satisfies A-M measur-
ability for all type spaces coherent with the underlying payoff environment EΔ.

Lemma 3 Suppose Qi = Δ(Θ−i) for every i ∈ N in an environment E = (A, {ui,Θi, Qi}i∈N ).
Then, an SCF f satisfies A-M measurability if and only if it satisfies robust measurability.

Proof : Since Qi is unrestricted, robust measurability is equivalent to A-M measura-
bility for all coherent type spaces. (Lemma 1 takes care of the details of the argument.)
�

We next formalize the idea that robust measurability is almost always satisfied by all
SCFs.14 We consider here unrestricted first-order type spaces.

Recall that the set of alternatives is A = {a1, . . . , aK}. Henceforth, we will find it
convenient to identify a lottery x ∈ Δ(A) as a point in the (K − 1) dimensional simplex
ΔK−1 = {(x1, . . . , xK) ∈ R

K
+ |

∑K
k=1 xk = 1}. Define V k

i (θi, qi) to be the interim expected
utility of agent i of first-order type (θi, qi) for the constant SCF that assigns ak in each
payoff state Θ, i.e.,

V k
i (θi, qi) =

∑
θ−i∈Θ−i

qi(θ−i)ui(ak; θi, θ−i).

Let Vi(θi, qi) = (V 1
i (θi, qi), . . . , V K

i (θi, qi)). In the rest of the paper, we maintain the
following regularity assumption imposed on the environments. An environment E =
(A, {ui,Θi, Qi}i∈N ) is said to satisfy first-order no-total-indifference (first-order NTI) if for
each i ∈ N and each first-order type ti = (θi, qi), there exist two outcomes ak, ak′ ∈ A such
that V k

i (θi, qi) 
= V k′
i (θi, qi). Hence, in environments satisfying first-order NTI, without

loss of generality, for each first-order type (θi, qi), normalize expected utility by subtract-
ing the constant mink V

k
i (θi, qi) and dividing by the positive constant maxk V

k
i (θi, qi) −

mink V
k
i (θi, qi).

Consider now the following definition:

Definition 13 A payoff environment EΔ = (A,Θi, ui)i∈N is weakly non-separable if,
for any i ∈ N , any θi and θ

′
i ∈ Θi with θi 
= θ

′
i, there exist a ∈ A and θ−i, θ

′
−i ∈ Θ−i with

θ−i 
= θ
′
−i such that:

ui(a; θi, θ−i) − ui(a; θi, θ
′
−i) 
= ui(a; θ

′
i, θ−i) − ui(a; θ

′
i, θ

′
−i) (∗).

14For finite environments, the argument can be found in AKS (2010).
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It is easy to check that weak non-separability excludes private values environments.
Outside of private values, when a payoff environment violates it, preferences are strongly
separable, in that for at least two payoff types of an agent, the relative impact of interde-
pendence on the change in ex-post utilities is the same and equals 1 for each alternative,
and it is independent of –can be separated from– the payoff types of other agents. This
justifies the term “weakly non-separable” environments.

The next definition is borrowed from AKS (2010):

Definition 14 An environment E = (A, {ui,Θi, Qi}i∈N ) satisfies first-order type di-
versity (FOTD) if there do not exist i ∈ N, ti = (θi, qi), t

′
i = (θ

′
i, q

′
i) ∈ Ti with θi 
= θ

′
i

such that

Vi(θi, qi) = Vi(θ
′
i, q

′
i).

Without loss of generality, we focus only on agent i throughout. Since the payoff type
space Θ is finite, we can denote Θ−i = {θh

−i}H
h=1.

Lemma 4 (The set of first-order beliefs in Δ0(Θ−i) under which FOTD holds is open)
Let Δ∗ be the set of first-order beliefs in Δ0(Θ−i) under which FOTD holds. Then, Δ∗ is
open, i.e., for every qi ∈ Δ∗ there exists δ > 0 such that for any dqi ∈ R

H with ‖dqi‖ < δ,
we have that for any θi, θ

′
i ∈ Θi with θi 
= θ

′
i, and any q

′
i ∈ Δ∗,

Vi(θi, qi + dqi) 
= Vi(θ
′
i, q

′
i)

where qi + dqi ∈ Δ0(Θ−i).

Proof : Pick qi ∈ Δ∗, the set of first-order beliefs in Δ0(Θ−i) over which FOTD holds.
Recall that Δ(Θ−i) is compact. Take an open cover of Δ(Θ−i) as follows. The ε-open set
Oε in the open cover consists of all q

′
i’s such that

|Vi(qi) − Vi(q
′
i)| =

∑
θi

∑
θ
′
i �=θi

∑
k

|V k
i (θi, qi) − V k

i (θ
′
i, q

′
i)| < ε.

Thus, Δ(Θ−i) ⊆
⋃

εOε. By compactness, take a finite subcover {O1, O2, . . . , Or} such that
Δ(Θ−i) ⊆ O1 ∪ · · · ∪Or, which means that there exist a finite collection of increasing εi’s
with ε1 < · · · < εr whose associated open sets also cover Δ(Θ−i), and a fortiori, also cover
Δ∗, a subset of Δ0(Θ−i), itself a subset of Δ(Θ−i).

It follows that Δ∗ = (Q1 ∩ Δ∗) ∪ · · · ∪ (Qr ∩ Δ∗), where

Q1 = {q′i : |Vi(qi) − Vi(q
′
i)| < ε1};

Q2 = {q′i : ε1/2 < |Vi(qi) − Vi(q
′
i)| < ε2};

Q3 = {q′i : ε2/2 < |Vi(qi) − Vi(q
′
i)| < ε3};

...
...

...
Qr = {q′i : εr−1/2 < |Vi(qi) − Vi(q

′
i)| < εr}.

Without loss of generality, assume that Q2 ∩ Δ∗ 
= ∅. (If not, then we would have
Δ∗ = Q1 ∩ Δ∗. By choosing ε1 small enough, thanks to FOTD, we can always make sure
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that Q2 ∩ Δ∗ 
= ∅.) For any δ > 0, let Oδ(qi) ≡ {qi + dqi ∈ Δ0(Θ−i) : ‖dqi‖ < δ} be
a δ-neighborhood of qi. Choose arbitrarily q

′
i in the set Q2 ∩ Δ∗ to satisfy that ε1/2 <

|Vi(qi)− Vi(q
′
i)| < ε2, and also by FOTD, |Vi(θi, qi)− Vi(θ

′
i, q

′
i)| > 0 for any θi, θ

′
i ∈ Θi with

θi 
= θ
′
i. Due to the continuity of expected utility, we can choose δ(q

′
i) > 0 sufficiently small

so that for any qi + dqi ∈ Oδ(q
′
i)

(qi), one has that ε1/2 < |Vi(qi + dqi) − Vi(q
′
i)| < ε2 and

|Vi(θi, qi + dqi) − Vi(θ
′
i, q

′
i)| > 0 for any θi, θ

′
i ∈ Θi with θi 
= θ

′
i. Define

δ ≡ inf
q
′
i∈Q2∩Δ∗

δ(q
′
i).

Note that δ > 0 is well defined because |Vi(qi) − Vi(q
′
i)| > ε1/2 for any q

′
i ∈ Q2 ∩ Δ∗ and

because of FOTD. This implies that for any qi+dqi ∈ Oδ(qi), ε1/2 < |Vi(qi+dqi)−Vi(q
′
i)| <

ε2 and |Vi(θi, qi +dqi)−Vi(θ
′
i, q

′
i)| > 0 for any θi, θ

′
i ∈ Θi with θi 
= θ

′
i and any q

′
i ∈ Q2∩Δ∗.

Thus, we conclude that Oδ(qi) ⊆ Q2 ∩Δ∗ ⊆ Δ∗ and therefore, the set of first-order beliefs
in Δ0(Θ−i) under which FOTD holds is open. �

Lemma 5 Suppose that a payoff environment EΔ = (A,Θi, ui)i∈N is weakly non-separable.
Then, for any pair qi, q

′
i ∈ Δ0(Θ−i) for which FOTD is violated, there exists δ̄ > 0 for which

for any δ ∈ (0, δ̄], there exists dqi ∈ R
H with ‖dqi‖ < δ such that for any θi, θ

′
i ∈ Θi with

θi 
= θ
′
i,

Vi(θi, qi + dqi) 
= Vi(θ
′
i, q

′
i + dqi),

where qi + dqi, q
′
i + dqi ∈ Δ0(Θ−i).

Proof : Fix arbitrarily a pair of first-order beliefs qi, q
′
i for which FOTD is violated.

That is, for such a pair of first-order beliefs, we consider payoff types θi, θ
′
i ∈ Θi with

θi 
= θ
′
i such that:

Vi(θi, qi) = Vi(θ
′
i, q

′
i).

Since Θ is finite, we can denote by Λ a finite index set such that for each λ = (�,m), there
exists the corresponding pair of payoff types (θ�

i , θ
m
i ) for which Vi(θ�

i , qi) = Vi(θm
i , q

′
i).

Since the payoff environment is weakly non-separable, for each such pair of relevant
payoff types θ�

i , θ
m
i ∈ Θi with θ�

i 
= θm
i , there exist θ−i, θ

′
−i ∈ Θ−i with θ−i 
= θ

′
−i and

ak ∈ A such that

ui(ak; θ�
i , θ−i) − ui(ak; θ�

i , θ
′
−i) 
= ui(ak; θm

i , θ−i) − ui(ak; θm
i , θ

′
−i).

We define θλ1
−i ≡ θ−i and θλ2

−i ≡ θ
′
−i and for each pair (θ�

i , θ
m
i ) associated with each λ, fix

such θλ1
−i and θλ2

−i.
Define dqi ∈ R

H as follows:

• dqi =
∑

(�,m)∈Λ:(θ�
i ,θm

i ) dqi[�,m];

• dqi[�,m](θλ1
−i) = ελ where ε > 0;

• dqi[�,m](θλ2
−i) = −ελ;
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• dqi[�,m](θh̃
−i) = 0 for any h̃ 
= λ1, λ2

By construction, we note the following three facts: (1)
∑

θ−i
dqi[�,m](θ−i) = 0 for any

(�,m) ∈ Λ; (2)
∑

θ−i
dqi(θ−i) = 0; and (3) dqi 
= 0.

Fix δ > 0 small enough. Since Θ is finite, we can choose ε > 0 small enough so that
‖dqi‖ < δ. For a sufficiently small δ > 0, we guarantee that qi + dqi, q

′
i + dqi ∈ Δ0(Θ−i).

By weak non-separability of the payoff environment and by construction of the specific dqi,
we get that for every (�,m) ∈ Λ,

Vi(θ�
i , qi + dqi) 
= Vi(θm

i , q
′
i + dqi).

So we conclude that for any δ > 0 small enough there exists dqi ∈ R
H with ‖dqi‖ < δ

such that for any θi, θ
′
i ∈ Θi with θi 
= θ

′
i, involved in a violation of FOTD, there exists a

first-order belief in that δ-neighborhood for which such a violation ceases to exist.�
Remark: The finiteness of Θ seems to be essential for Lemma 5. As a consequence, the
same comment applies to Theorem 3, Corollary 1, and Lemma 6 below. On the other hand,
all the other results in the current paper, with minor modifications in their proofs, extend
if one assumes a compact set of Θi. It follows that our results with bearing on partial
or exact full implementation cover significantly more environments than those for virtual
implementation. Having said that, we do not have a counterexample to Lemma 5 for the
case of infinite compact payoff type spaces. Recall that Jehiel et al (2006) and Hashimoto
(2008) define Θi to be a compact convex subset of a finite dimensional Euclidean space,
and Bergemann and Morris (2009b) define it to be a compact interval in the real line.

The two lemmas together comprise the proof of the following result:

Theorem 3 Suppose that the payoff environment EΔ = (A,Θi, ui)i∈N is weakly non-
separable. Then, robust measurability is generically a trivial condition. Specifically, for
every i ∈ N , there exists a residual subset, i.e., a countable intersection of open and dense
subsets, Δ∗ ⊂ Δ0(Θ−i) for which the property of first-order type diversity holds.15

Proof : Fix arbitrarily a pair of first-order beliefs qi, q
′
i in Δ0(Θ−i) for which FOTD is

violated. First, we claim that the set of first-order beliefs violating FOTD in a neighborhood
around (qi, q

′
i) is nowhere dense in Δ0(Θ−i). Define O(qi, q

′
i) to be an arbitrary open set

in Δ0(Θ−i) containing qi and q
′
i. By Lemma 5, we can choose δ > 0 small enough such

that qi + dqi and q
′
i + dqi are contained in O(qi, q

′
i). By the continuity of expected utility,

if we choose δ > 0 small enough, there exists a nonempty open set of first-order beliefs
satisfying FOTD in O(qi, q

′
i). In other words, the set of first-order beliefs violating FOTD

in O(qi, q
′
i) is not dense in Δ0(Θ−i). Therefore, the set of first-order beliefs violating FOTD

in a neighborhood around (qi, q
′
i) is nowhere dense in Δ0(Θ−i).

Since Δ0(Θ−i) is separable, it contains a countable dense subset. Thus, it will suffice
to base our arguments on a countable set of pairs qi, q

′
i for which there is a violation of

FOTD. That is, consider payoff types θi, θ
′
i ∈ Θi with θi 
= θ

′
i, such that:

Vi(θi, qi) = Vi(θ
′
i, q

′
i)

15By robust measurability being generically a trivial condition, we mean that A-M measurability is a
trivial condition over a residual set of first-order types.
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for some qi, q
′
i ∈ Δ0(Θ−i). Fix arbitrarily a countably infinite index set, Λ = {1, 2, . . . }.

Assume that each λ ∈ Λ corresponds to a pair of first-order types λ = ((θ�
i , q

�
i ), (θ

m
i , q

m
i ))

that exhibits violations of FOTD. Denote by Δλ the set of first-order beliefs violating
FOTD in a neighborhood O(q�

i , q
m
i ). Then,

⋃
λ∈Λ Δλ contains the entire set of first-order

beliefs violating FOTD in Δ0(Θ−i). By the previous argument, we know that
⋃

λ∈Λ Δλ is
a countable union of nowhere dense sets in Δ0(Θ−i). Since Δ∗ ⊇ Δ0(Θ−i)\

⋃
λ∈Λ Δλ, we

can conclude with Lemma 4 that Δ∗ is a countable intersection of open and dense subsets.
Recall that Δ∗ denotes the entire set of first-order beliefs satisfying FOTD in Δ0(Θ−i).
That is, Δ∗ forms a residual set in Δ0(Θ−i).

The rest of the proof will be completed after observing that if an environment satisfies
FOTD, all first-order types can be separated in the first iteration of the measurability
algorithm, implying that the final partition thereof, Ψ∗, is the finest partition, consisting
of all singletons. �

Let Vi : Θi×Δ(Θ−i) → R
K be an agent i’s vector of first-order expected utilities over all

constant SCFs. Recall our normalization of expected utility for each first-order type. Thus,
for each (θi, qi), Vi(θi, qi) ∈ [0, 1]K . Define Vi to be the set of agent i’s normalized first-order
expected utility functions. We endow Vi with the uniform metric.16 Let V ≡ V1 × · · ·×Vn.
Now, we can rephrase the above result in terms of payoffs as follows:

Corollary 1 Suppose that the payoff environment EΔ = (A,Θi, ui)i∈N is weakly non-
separable. Then, there exists a residual subset V∗ of V such that for all V ∈ V∗, the
property of first-order type diversity holds.

We close this section by extending our logic to higher-order beliefs. We make use of
our coherence assumption:

Lemma 6 Suppose that an environment E = (A, {ui,Θi, Qi}i∈N ) satisfies the property that
Qi ≡ Δ∗ for each i ∈ N where Δ∗ is a residual subset of Δ0(Θ−i) in which the property
of first-order type diversity holds. Then, for any coherent type space T , there do not exist
i ∈ N, τi, τ

′
i ∈ Ti with θ̂i(τi) 
= θ̂i(τ

′
i ), such that

(U1
i (τi), . . . , UK

i (τi)) = (U1
i (τ

′
i ), . . . , U

K
i (τ

′
i )).

Proof : Fix an arbitrary coherent type space T . As it will become clear, the argument
does not depend on any particular type space coherent with the original environment E .
Consider agent i of type τi. Let t̂i(τi) ≡ ti = (θi, qi). It follows from Lemma 1 that
Uk

i (τi) = V k
i (θi, qi) for each k = 1, . . . ,K.

Thus, we obtain Uk
i (τi) = V k

i (θi, qi) whenever t̂i(τi) = (θi, qi). Similarly, consider agent
i of type τ

′
i . Let t̂i(τ

′
i ) ≡ (θ

′
i, q

′
i). Then, we obtain Uk

i (τ
′
i ) = V k

i (θ
′
i, q

′
i) for each k = 1, . . . ,K

whenever t̂i(τi) = (θ
′
i, q

′
i). Having established this, first-order type diversity takes care of

the rest of the argument because we define Qi ≡ Δ∗. �
16In this case, the uniform metric dV is defined by

dV (Vi, Ṽi) = max
(θi,qi)∈Θi×Δ(Θ−i)

max
k=1,... ,K

|V k
i (θi, qi) − Ṽ k

i (θi, qi)|
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6 Examples

We shall close by revisiting briefly two examples, already contemplated in previous litera-
ture. The first one illustrates the assumption of weak non-separability, which we have used
in the previous section:

Example 1 (How to generate weak non-separability) Consider the example in BM
(2009a, Section 3), also featured in AKS (2010, Section 8). We show next that although
it violates weak non-separability, a variant thereof will satisfy it. (To be faithful to the
presentation of the example in the above papers, we do not normalize first-order expected
utilities.)

For each agent i ∈ N , let Θi be a finite subset of [0, 1]. If agent i receives the object,
his ex post valuation for it is hi(θ). Let hi : Θ → R to be

hi(θ) = θi + γ
∑
j �=i

θj .

Here γ ≥ 0 is the interdependence parameter. Let ai be the outcome that agent i obtains
the object. Let a0 denote the outcome that no agent obtains the object and the seller keeps
it. Define A∗ ≡ {a0, a1, . . . , an}. Let

A ≡ A∗ × Y

where Y ⊂ R
n is a finite set such that (y1, . . . , yn) denotes the monetary transfers across

agents. Then, we have

ui((a, y1, . . . , yn); θ) =
{
hi(θ) + yi if a = ai

yi if a 
= ai

For any i ∈ N , θi ∈ Θi, θ−i, θ
′
−i ∈ Θ−i with θ−i 
= θ

′
−i, y = (y1, . . . , yn) ∈ Y , and any

a ∈ A∗, we have ui((a, y); (θi, θ−i))− ui((a, y); (θi, θ
′
−i)) = γ

∑
j �=i(θj − θ

′
j) if a = ai or 0 if

a 
= ai. This does not depend on agent i’s payoff type. Thus, weak-non-separability is not
satisfied.

On the other hand, weak non-separability can be restored as follows. Note that the hi(·)
constructed is continuous and strictly increasing in θi. We slightly modify the previous
specification by making the ex post utilities non-linear.

ui((a, y1, . . . , yn); θ) ≡ vi((a, y1, . . . , yn), hi(θ)) =

{
[hi(θ) + yi]

λi(hi(θ)) if a = ai

y
λi(hi(θ))
i if a 
= ai

where λi : R → (0, 1) is an increasing function with typical term λi(hi(θ)) ∈ (0, 1).

ui((a, y); θi, θ−i) − ui((a, y); θi, θ
′
−i)

=

⎧⎪⎨
⎪⎩

[hi(θ) + yi]
λi(hi(θ)) −

[
hi(θi, θ

′
−i) + yi

]λi(hi(θi,θ
′
−i))

if a = ai

y
λi(hi(θ))
i − y

λi(hi(θi,θ
′
−i))

i if a 
= ai
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This is indeed a class of environments proposed in BM (2009b) in which both robust mono-
tonicity and robust measurability are equivalent to a condition called the contraction prop-
erty.17 Here, we can restore the weak non-separability condition by making ex post utilities
non-linear. We also observe that sufficiency results for robust virtual implementation –for
example, Theorems 1 and 2 of AKS (2010)– will not be affected by this modification.18

The next example shows that in some environments the difference between robust
measurability and robust monotonicity is substantial, leading to a significant gap between
the success of robust virtual implementation versus robust exact implementation.

Example 2 [Only constant SCFs satisfy local robust monotonicity] We begin by slightly
adapting the way the example is presented in Serrano (2004), an elaboration of the original
one in Palfrey and Srivastava (1987), and we proceed to its robust analysis later. Let
N = {1, 2, 3, 4}. There is a single commodity – money – and all consumers have one unit
of the commodity as endowment in each state. The set of payoff types is Θk = {θk, θ

′
k, θ

′′
k}

for k = 1, 2, while Θj = {θj, θ
′
j} for j = 3, 4. Let us define a subset of Θ: Θ∗ = {θ, θ′

, θ
′′},

where θ = (θ1, θ2, θ3, θ4), θ
′
= (θ

′
1, θ

′
2, θ

′
3, θ

′
4), and θ

′′
= (θ

′′
1 , θ

′′
2 , θ

′
3, θ

′
4).

Start by fixing a first-order belief for each agent. For each k = 1, 2,

q∗k(θ−k|θk) = q∗k(θ
′
−k|θ′k) = q∗k(θ

′′
−k|θ′′k) = 1

For j = 3, 4, q∗j (θ−j|θj) = 1, but

q∗3(θ
′
−3|θ′3) = 0.25 and q∗3(θ

′′
−3|θ′3) = 0.75,

q∗4(θ
′
−4|θ′4) = 0.75 and q∗4(θ

′′
−4|θ′4) = 0.25.

Each agent i’s state dependent ex post utility is as follows: for any x ∈ R+ and any
θ ∈ Θ,

ui(x; θ) = xλi(θ)

where λi(θ) ∈ (0, 1). For every i ∈ N , we assume that for every θ, θ′ ∈ Θ with θ 
= θ′,
λi(θ) 
= λi(θ′). This environment satisfies weak non-separability, which means that robust
measurability is almost always a vacuous constraint.

First, assume that the set of first-order beliefs is a singleton, i.e., Qi = {q∗i } for every
agent i ∈ N . Note that incentive compatibility is not a constraint in this environment.

Let f be an SCF such that for some θ, θ′ ∈ Θ∗ with θ′ 
= θ, f(θ) 
= f(θ′). We denote
f(θ) as (f1(θ), f2(θ), f3(θ), f4(θ)) where fi(θ) is the money that agent i is assigned by the
SCF f in payoff state θ. Consider a deception α such that αi(θ̃i) = θi for every θ̃i ∈ Θi

and every i ∈ N . For this deception, f 
= f ◦ α since f ◦ α is a constant SCF that assigns
f(θ) in every payoff state. For any agent i ∈ N , any θ̃i ∈ Θi and any SCF y, it follows
that

Vi(f |αi(θ̃i), q∗i ) ≥ Vi(y|αi(θ̃i), q∗i ) ⇒ fi(θ)λi(θ) ≥ yi(θ)λi(θ) ⇒ fi(θ) ≥ yi(θ).
17See BM (2009b) for the definition of the contraction property. In the case of linear ex post utilities of

this example, the contraction property is equivalent to the condition that γ < 1/(n − 1).
18Hashimoto (2008) succeeded in generalizing the genericity result of Jehiel et al (2006) to the environ-

ments that encompass similar non-linearities. Unlike these papers, note that our genericity argument does
not need consumption externalities.
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Since f ◦ α and y ◦ α specify f(θ) and y(θ) in every state, it follows that

Vi(f ◦ α|θ̃i, q
∗
i ) ≥ Vi(y ◦ α|θ̃i, q

∗
i )

for any θ̃i ∈ Θi.
Now, we perturb q∗ slightly. Agent k = 1, 2’s first-order beliefs over Θ are given by:

qε
k(θ̃−k|θk) =

{
1 − δ(θk) if θ̃−k = θ−k

ε otherwise

qε
k(θ̃−k|θ′k) =

{
1 − δ(θ′k) if θ̃−k = θ′−k

ε otherwise

qε
k(θ̃−k|θ′k) =

{
1 − δ(θ′′k) if θ̃−k = θ′′−k

ε otherwise

where δ(θk) = δ(θ′k) = δ(θ′′k) = 11ε. Agent j = 3, 4’s first-order beliefs over Θ are given by:

qε
j (θ̃−j|θj) =

{
1 − δ(θj) if θ̃−j = θ−j

ε otherwise

qε
3(θ̃−3|θ′3) =

⎧⎨
⎩

0.25 − δ(θ′3) if θ̃−3 = θ′−3

0.75 − δ(θ′3) if θ̃−3 = θ′′−3

ε otherwise

qε
4(θ̃−4|θ′4) =

⎧⎨
⎩

0.75 − δ(θ′4) if θ̃−4 = θ′−4

0.25 − δ(θ′4) if θ̃−4 = θ′′−4

ε otherwise

where δ(θj) = 17ε; and δ(θ′3) = δ(θ′4) = 16ε. For any agent i ∈ N, θ̃i ∈ Θi and any SCF y,
assume Vi(f |αi(θ̃i), qε

i ) ≥ Vi(y|αi(θ̃i), qε
i ). By the continuity of expected utility, there exists

ε̄i > 0 such that for any ε ∈ (0, ε̄i], the above inequality implies fi(θ) ≥ yi(θ).
Let ε̄ = min{ε1, ε2, ε3, ε4}. Define Q0

i = {qε
i }ε≤ε̄ for each i ∈ N . Since f ◦ α and y ◦ α

specify f(θ) and y(θ) in every state, we have that for any i ∈ N , any θ̃i ∈ Θi, and any
qi ∈ Q0

i ,

Vi(f ◦ α|θ̃i, qi) ≥ Vi(y ◦ α|θ̃i, qi).

In sum, for any i ∈ N and any θ̃i ∈ Θi, we conclude

Vi(f |θi, qi) ≥ Vi(yαi(θ̃i)
|θi, qi) ∀qi ∈ Q0

i ⇒ Vi(f ◦ α|θ̃i, qi) ≥ Vi(y ◦ α|θ̃i, qi) ∀qi ∈ Q0
i .

Hence, the SCF f violates local robust monotonicity. In particular, only constant SCFs
satisfy local robust monotonicity.

Finally, we discuss incentive compatibility. Assume that a free disposal technology is
available. Let f be an arbitrary non-constant SCF over Θ∗ = {θ, θ′, θ′′}. For every agent
i ∈ N and every θ̃ ∈ Θ, define

f̃i(θ̃) =

⎧⎪⎪⎨
⎪⎪⎩

fi(θ) if θ̃−i = θ−i

fi(θ′) if θ̃−i = θ
′
−i

fi(θ′′) if θ̃−i = θ
′′
−i

0 otherwise.
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Define an SCF f̃ to be such that f̃(θ) = (f̃1(θ), f̃2(θ), f̃3(θ), f̃4(θ)) for any θ ∈ Θ. By
construction, f̃ is well defined (thanks to the free disposal technology) and satisfies ex post
incentive compatibility. Besides, f̃ is equivalent to f over Θ∗.
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