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ABSTRACT 
In this paper, we propose Sinabro, an opportunistic and 
unobtrusive mobile electrocardiogram (ECG) monitoring system 
that monitors the user’s ECG opportunistically during daily 
smartphone use. Daily ECG monitoring will open up an 
unprecedented opportunity for pervasive healthcare applications. 
It will enable the daily detection and prevention of heart problems 
and also allow inferences about stress, emotion, and even sleep 
quality. Despite its huge potential, daily ECG monitoring still has 
not become reality due to its obtrusiveness. In this paper, we first 
study the potential opportunity to capture ECGs from daily use of 
smartphones, without requiring the user’s explicit attention. Based 
on such an opportunity, we present a prototype ECG sensor that 
allows neat integration with a smartphone and the Sinabro system 
to provide ECG-related physiological status. We show the basic 
feasibility of our approach, based on daily smartphone usage 
through phone usage analysis and prototype-based experiments.  

Categories and Subject Descriptors 
K.8 [Personal Computing]: General; C.3 [Special-Purpose and 
Application-based Systems]: Real-time and embedded systems. 

General Terms 
Measurement, Design, Human Factors. 

Keywords 
Opportunistic sensing, Unobtrusive sensing, ECG, Sensor. 

1. INTRODUCTION 
Daily ECG monitoring will open up an unprecedented 
opportunity for pervasive healthcare applications. Primarily, it 
will enable the daily detection and prevention of heart problems 
such as arrhythmia and heart attack [9][12]. Also, an ECG can 
serve as an indicator to infer stress, affective state, and even sleep 

quality for a person [6][8][9][10]; heart movement is controlled 
by an electric signal generated by the autonomous nervous system, 
which also influences such physiological factors. The core on 
which to build the applications is to monitor ECGs in everyday 
situations. Despite active efforts, such daily monitoring of ECGs 
still does not come into our reality. 

A key barrier to daily ECG monitoring lies in its obtrusiveness. 
Fundamentally, ECG monitoring requires the stable contact of 
two body parts that show a certain level of bio electric potential 
difference for a certain time duration, e.g., up to several seconds 
to minutes depending on the purpose. This hard requirement has 
inevitably caused obtrusiveness in previous ECG or heart 
monitoring systems. A popular approach is to employ a wearable 
device, which requires low user attention while measuring 
physiological signals [3][6][12]. However, the monitoring is only 
possible when users wear the device, which is not yet widely 
accepted among most common users. Thus, the approach is often 
limited to specific situations, such as monitoring for clinical and 
fitness purposes. For example, people wear commercial heart rate 
monitors such as chest strap-type devices [3], during exercise. 
Another approach is to integrate such functionality into prevailing 
smartphones [1][2]. However, this requires the users’ explicit 
initiation and attention for a while. For example, a smartphone 
application to monitor heart rate based on a phone camera 
requires users to start the application, gently place their finger on 
lens, and hold still for 10 seconds or more [2]. Requiring 
conscious effort makes consistent and long-term monitoring 
challenging. Users are likely to forget and have other priorities. 

Our primary approach is to address such obtrusiveness by 
overlaying the sensing of physiological signals onto daily 
smartphone usage, e.g., phone calls, texting, and gaming; sensing 
is performed opportunistically while users do such activities with 
their smartphone. Such opportunistic monitoring will lower the 
barriers to daily ECG monitoring for ordinary users who are 
interested in their heart-related status but reluctant to use the 
aforementioned obtrusive approaches. Moreover, it will enable 
many new, useful applications without user intervention. For 
example, an application can notify users of the stress levels of 
conversation partners via phone vibrations when talking over the 
phone and allow them to respond appropriately, as they do 
naturally during face-to-face conversation; our system can capture 
ECG signals without attracting the user’s attention while the user 
is on the phone and extract stress levels from the signal. 

While previous works have studied ECG monitoring based on 
wearable sensors and smartphones [3][6][12], the opportunistic 
sensing approach based on daily smartphone use has hardly been 
considered before. To make such an opportunistic approach 
feasible in daily situations, we need to address several new 
research challenges. First, due to the nature of the opportunistic 
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approach, it is unknown whether we will have enough ECG 
monitoring opportunities to capture one’s heart status, e.g., heart 
rate. Even if ECG sensing is possible, whether such intermittent 
information could be utilized meaningfully by applications and 
how we could abstract such information into a meaningful set of 
APIs have not been studied. Second, under such an opportunistic 
approach, it is difficult to capture the signal reliably, even when 
the users touch the phones with two body parts, such as when 
gaming or during a phone call. They may use the phone with 
active gestures when playing a game, and this could increase the 
noise during heart rate detection or even make it impossible. 

We propose an unobtrusive mobile ECG monitoring system, 
Sinabro, which monitors a user’s ECG discretely during daily 
smartphone use. First, we investigate the potential opportunity to 
capture ECGs from only daily usage of smartphones. Based on 
this opportunity, we design an ECG sensor in the form of a phone 
case that can be integrated with a smartphone for unobtrusive 
sensing. Specifically, we attached multiple electrodes at the 
corners, front, and back of the smartphone (see Figure 3), which 
could allow maximal opportunities for ECG measurement when a 
user touches the phone with two body limbs during daily use, 
such as two hands when sending a text message or an ear and a 
hand when making a phone call. Also, we present the Sinabro 
system, which handles unstable daily ECG signals and extracts 
diverse heart-related information, such as heart rate (HR) and 
stress, to expose a set of APIs upon which useful, everyday 
healthcare applications can be developed and executed. 

While there are a number of research challenges in building 
Sinabro into a fully-functioning daily ECG monitoring system, we 
make the initial step towards this direction in this paper. The 
contributions of this paper are summarized as follows. First, we 
have built an unobtrusive, smartphone-based ECG monitoring 
system that captures the user’s ECG opportunistically during 
daily smartphone use. Second, through smartphone usage analysis 
and prototype-based experiments, we show that 1) such potential 
opportunities do exist, in terms of app usage time, which may 
involve simultaneous contact by two body limbs (e.g., more than 
an average of 20 opportunities for tens of seconds); 2) given the 
opportunity, our prototype system can capture the ECG signal and 
derive HR (up to 99.2% of peak detection accuracy and more than 
99.7% of HR estimation accuracy for typing and calling cases); 
and 3) from 32% up to 92% of the time duration for potential 
opportunities lead to actual reliable sensing opportunities. 

2. OPPORTUNISTIC ECG SENSING 

2.1 Opportunities in Practice 
We investigate the potential opportunities for ECG monitoring 
during daily smartphone use. Our study is intended to answer the 
following questions. 
 How many potential opportunities exist per day? 
 How long does each opportunity last? 
 How reliably can we capture ECG signals, given the 

opportunity? 

For this study, we recruited 14 smartphone users (male/female: 
10/4, age: 23–34) on the KAIST and SNU campus and collected 
their smartphone usage logs for 6 days, on average (4–12 days). 
We analyzed the collected logs to calculate the number of ECG 
sensing opportunities and their time durations. We focused on 
opportunities from three major smartphone use activities: (1) 
calling without using earphones or a speakerphone; (2) keyboard 

typing; and (3) gaming and taking a picture in landscape mode. 
ECG signals can be captured with two electrodes during these 
activities, i.e., with two hands or one hand and an ear. Users often 
hold their smartphone with two hands while using instant 
messaging and typing messages, playing mobile games, and 
taking pictures. While talking over the phone, they usually hold it 
with one hand and touch it to their ear. Note that this analysis 
does not present the actual opportunities where ECG signals could 
be measured. Instead, we intended to investigate the potential 
feasibility for this study.  

To collect the logs of smartphone use, we developed a tool to log 
a range of user interaction data, i.e., start/end times of call events, 
touch events for typing, landscape view events, and app use 
events. To analyze typing duration, we considered consecutive 
typing events within 5 seconds as typing sessions and measured 
their time duration; there are some time intervals between typing 
events, e.g., when chatting with a messenger, users often wait for 
a response from their friends before responding again. 

We classified these events into five groups by time durations, 
considering different conditions for features to compute and the 
purpose of analyses based on previous literature. The time 
durations include 10–30 seconds for HR, 30–60 seconds for ultra-
short term heart rate variability (HRV) analysis [10], 1–2 minutes 
for the high-frequency HRV components [9], 2–5 minutes for the 
low-frequency HRV components [9], and 5 or more minutes that 
is typically recommended duration for HRV analysis [8][9].  

Sensing Opportunity: A number of potential opportunities for 
unobtrusive ECG monitoring exist throughout the day, as shown 
in Figure 1. The average number of potential opportunities varied 
from about 1.7 to 23, depending on the time durations (Figure 1 
(a)). The number of opportunities to obtain HRs was more than 20 
per day. Also, there were about 6 potential opportunities for ultra-
short term HRV analyses (30–60 sec.) per day. The number of 
opportunities varied largely, depending on the users. However, 
there were avg. 8.5 events for the user who had the fewest number 
of opportunities. For the users who used their phones frequently, 
three of them showed more than 80 opportunities on average. 11 
users had more than 20.  

The average number of potential opportunities varied depending 
on the type of use cases (see Figure 1 (b)). The typing case had 
the largest number of opportunities. The call case had the second 
most, but there was no remarkable difference, compared to the 
landscape case. In the typing case, the number of short time 
durations was relatively larger, compared to other two cases. 
There might be a number of opportunities for HR and ultra-short 
term HRV analysis. In the call and landscape cases, the number of 
opportunities for larger time durations increased since it is more 
likely that phone calls and gaming last for minutes. They might be 
opportunities for analysis with more than 2 minute-ECG recordings. 
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Sensing Reliability: We checked if we could detect the ECG 
signal reliably, in comparison with a signal measured with a 
medical reference device. We collected ECG signals from our 
prototype sensor device attached to the test smartphone and from 
the reference device (see Section 4 for details), while assuming 
the phone call case. As shown in Figure 2, it was possible to 
capture ECG signals that were quite close to the reference signal 
(Figure 2 (c)) after post-processing (Figure 2 (b)). 

2.2 Application Scenarios 
Daily opportunistic ECG monitoring will open up a new 
opportunity for ECG-enabled applications based solely on daily 
phone use. We discuss example scenarios of such applications.  

Personal Anti-stress Advisor: Stress is a key factor that affects 
physical and mental health [5][6], and often causes depression and 
even heart attacks. Although one can easily find generic advice to 
mitigate stress, such as regularly doing meditation, it is not 
straightforward to find and apply a personal anti-stress strategy 
that works and is well-integrated into one’s own lifestyle. A 
personal anti-stress advisor (PAA) attempts to find personalized 
anti-stress strategies that are readily available in the user's daily 
routines. The PAA can be personalized with the opportunistic 
ECG sensing results from the user that have been collected for 
weeks or months, as well as the accompanying context monitoring 
data. The PAA spots the records in which the user’s stress level 
becomes lower than average and empirically finds the frequent 
contextual factors that contribute to such mitigation. For example, 
PAA may advise the user that “I recommend listening to 
Beethoven Violin Sonata No. 5 as one of your personal stress 
relievers.” Such advice would be much easier for users to accept 
and apply to their daily lives because the causes and effects are 
observed and derived from each user's own lifestyle. 

Beat-aware Chat: This application allows users to be aware of the 
status (e.g., emotion or stress) of conversation partners such as 
close friends or a spouse, when talking over the phone or texting 
and to respond appropriately. Considering user’s concern on 
exposing personal status, it provides users with an option with 
which they can control the status sharing, e.g., when and to whom. 

Hearty Tamagotchi: Inspired by Tamagotchi, a world-famous 
digital pet game, Hearty Tamagotchi is a game in which the user 
nurtures a virtual pet that lives in the user’s smartphone. The 
user’s heart status is used as inputs to raise the pet. The pet also 
sympathizes with the user; for example, when the user is stressed, 
the pet feels sympathy for it and cheers up the user. Moreover, 
Hearty Tamagotchi attempts to complement opportunistic ECG 
sensing, i.e., to allow sensing in a more regular and predictable 
basis. While living in the background most of the time, the pet 
occasionally signals hunger several times a day or more through 
notification interfaces, and the user has to feed the pet as soon as 
possible in such events to get more scores. The user interface to 

feed the pet is carefully designed so that the user naturally holds 
the phone with two hands in landscape mode. By pre-scheduling 
the feeding cycles carefully, reliable ECG-sensing opportunities 
at desired times are yielded throughout the day, while keeping the 
user experience natural, enjoyable, and unobtrusive.   

Besides the scenarios above, the users’ physiological or emotional 
statuses can be used as the inputs for the mobile system. Such 
information could be a knob to prioritize applications or schedule 
resources suitably for a user’s status at the OS level, as discussed 
in [13]. For instance, the system can delay notifications for work-
related emails or messages when a user is stressed at home. Also, 
it would be possible to change the look and feel of the smartphone, 
such as the wallpaper and theme of the Android launcher. 

3. SINABRO DESIGN AND PROTOTYPE 
We design Sinabro to fully leverage opportunities for unobtrusive 
ECG sensing during natural smartphone use. Sinabro is a 
collaborative system that includes the phone-case sensor and the 
smartphone middleware. The sensor reliably measures ECG data 
and transfers it to the middleware. The middleware delivers 
diverse ECG-derived contexts to multiple apps with Sinabro APIs. 

We first custom-designed a reliable and durable smartphone-
cover sensor to sense ECGs during daily smartphone use. Figure 3 
shows a prototype. As shown in the figure, we placed multiple 
metal electrodes to capture bio electric signals naturally when the 
user touches the phone with two different body limbs, e.g., the 
right and left hands. An electrode is bent smoothly to adhere to 
the skin naturally. Also, we used thick stainless steel as the 
electrode material for reliable sensing; it has high conductivity for 
measuring tiny bio electric signals and small artifacts against 
external force. Also, the material is highly durable against sweat 
and humidity. A key consideration of the prototype sensor design 
is to make the sensors in the form of a smartphone case, so that 
users can easily adopt it onto their smartphone, if needed. Making 
the sensor design feasible for commercial products would require 
further in-depth studies on usability, aesthetic aspects, and other 
engineering issues, which is beyond the scope of this work. 

The current sensor design targets three main modes of daily 
smartphone usage: phone calls, landscape mode-holding (e.g., 
gaming, picture taking), and portrait mode-holding (e.g., typing, 
gaming). To capture such moments, we carefully placed three 
electrodes in the back and one in the front. During phone calls, a 
signal is captured by the electrode (a)-front that touches the ear 
and the electrode (b) that touches the hand. For the portrait mode-
holding, the signal is captured by the electrode (b) and (c). Also, 
landscape-holding is covered by the electrode (a)-rear and (b), or 
(a)-rear and (c).  

Electrodes: 
(a)-front, (a)-rear, (b), (c)

(1): Bio-signal SoC
(BMD-101)

(2): Bluetooth Module 
(ESD-200)

(3): MCU 
(ATMEGA2560)

(4): Battery 
(3.7V, 900mAh)

(a)-front
(a)-rear

(b) (c)

(3)

(2)

(4)

(1) (1) (1)

 
Figure 3. Sinabro sensor 
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The sensed signal is preprocessed by a sensor-side processing 
module, and delivered to the smartphone through a Bluetooth 
interface (2). The major sensor-side processing is performed by a 
BMD-101 SoC (system on chip) (1). It filters out low-frequency 
fluctuation over the sensed analog signal, and the signal is 
converted into digital data. The digitalized data is further clarified 
with the power noise filter and the 100Hz low-pass filter. We 
integrated three BMD-101s to handle three combinations of 
electrodes ((a)-(b), (a)-(c), and (b)-(c)). The processed data are 
delivered to an Atmega2560 MCU (3) via USART interfaces and 
then wirelessly forwarded to the smartphone. The processing and 
communication modules are turned on when an ECG is likely to 
be available to save energy. The sensor consumes 124.52mW for 
sensing and transmission and only 25.52mW in standby mode. 

The smartphone middleware detects a potential opportunity to get 
a reliable signal given the user’s smartphone usage, and sends the 
sensor a command to trigger sensing, along with a proper channel 
(a combinatinon of electrodes) to get data from. During the 
opportunity, it receives raw ECG signals, extracts useful features 
and contexts, and delivers them in real-time to multiple 
applications using Sinabro APIs. To make reliable context 
inferences, raw ECGs are processed through a series of processing 
modules. First, the preprocessor applies a digital band-pass filter 
(5Hz–35Hz) to further clarify the QRS peaks in the ECG signals 
and to remove power noises and EMG noises once again. Second, 
QRS peaks are detected from the filtered signals. For reliable 
peak detection, we employ an efficient algorithm, which has been 
developed by the SNU research group. Third, the QRS peak 
corrector further removes false-positive peaks that the detector 
may have mistakenly added; false positives are filtered out when 
their power value is less than a certain threshold and their interval 
to the previous/next peak is too small. Then, the missing peaks are 
interpolated using a Piecewise-Cubic-Hermite interpolation 
method. Finally, HR and HRV are calculated from the peaks 
obtained [9], and other data, such as stress and affective state, are 
further derived based on HR and HRV [8][10].  

Table 1 shows the key APIs that Sinabro provides to support 
diverse daily healthcare and wellbeing applications. First, the two 
primitives are registerHRListener() and registerHRVListener(), 
with which applications can trace HR and HRV on-the-fly. Once 
the former is registered, Sinabro can notify applications of the 
user’s HR if available. Applications may designate specific use 
cases with a condition argument, e.g., a messenger may want to 
leverage heart rate when the user communicates with a friend. 
Second, applications can retrieve physiological contexts derived 
from HR and HRV using registerContextListener(), which 
currently provides stress and affective state. We adopted existing 
methods to derive such contexts [8][10], and we can easily 
incorporate additional processing logics. Besides real-time 
monitoring, Sinabro supports applications to query historical data 
with getHistory(), e.g., “Let me know the HR and stress value 

when I was in a subway train to the office” It provides a SQL 
interface to support the easy querying of stored information.  

4. PRELIMINARY EVALUATION 
Here, we present the preliminary evaluation of the Sinabro 
prototype. We perform the evaluation in two steps. First, we 
investigate how accurately Sinabro can monitor ECG signals and 
derive related features, given actual sensing opportunities. For the 
potential opportunities we consider in Section 2, we assume that 
users touch the electrodes with two body parts, and ECG sensing 
can thus be done during such usage. In this study, we assess 
which opportunities are useful for the valid operation of Sinabro. 
Second, we investigate how many potential opportunities can lead 
to actual sensing opportunities. For this, we analyze sensing data 
from four users during free smartphone use for one hour.  

4.1 Evaluation in Actual Sensing Opportunity 
Setting: We recruited 13 participants from Seoul National 
University (male/female: 9/4, avg. age: 25.1, SD: 3.1). We asked 
them to use our prototype phone under predetermined use cases, 
i.e., while texting, gaming, and calling. Also, we collected data 
when the participants held the phone still with two hands for 10 
seconds, both in portrait and landscape mode, which can be 
considered to be an upper-bound scenario. We used Galaxy S3 for 
the prototype. The raw ECG and detected QRS peak data were 
acquired during smartphone use. The HRV parameters calculated 
by the Sinabro middleware were also acquired. For evaluation, we 
collected the ground-truth data from the bio-signal acquisition 
system, the BIOPAC MP150 ECG module, with Ag/AgCl 
electrodes, which were attached to the left and right forearms.  

The detailed settings for the different use cases were as follows. 
In the texting case, the participants were asked to hold the phone 
naturally in portrait mode with their two hands, so that they 
touched the electrodes and there was a valid sensing channel. 
They were asked to type text messages naturally using a mobile 
messenger for 5, 10, and 15 seconds, respectively. In the gaming 
case, they were asked to play two different games for 1 and 5 
minute(s), respectively. We selected the games because both are 
played with two hands in landscape mode. One was the highly 
interactive action game, Touch fighter for Kakao, which incurs 
frequent and strong inputs (at least 1–2 inputs per second, up to 5). 
The other was the low interaction baseball game, Perfect Inning 
2013, which involves relatively less frequent, gentler inputs (avg. 
0.5 per second). For calling, they had a conversation with the 
experimenter for 1 and 5 minute(s), respectively. They were asked 
to hold the phone with their left hand and touch it to their left ear.  

As evaluation metrics, we used the QRS peak detection ratio 
(PDR) and the error rate of the HRV parameter. The PDR is the 
number of correctly detected QRS peaks from Sinabro divided by 
the number of QRS peaks detected manually by the experienced 
expert from the ground-truth ECG signals. The interpolated peaks 
were excluded from the calculation of the PDR. The error rate of 
the HRV parameter was calculated by comparing the HRV 
parameter obtained from the QRS peak intervals after the 
interpolation process with that from the intervals that were 
manually detected by the experienced expert from the ground-
truth data. The HRV parameters that we used include time-
domain HRV parameters, mean HR, SDNN, and RMSSD, and 
frequency-domain parameters, LF, HF, nHF, nLF, and LF/HF [9]. 

Table 1. Key APIs  

Monitoring HR 
and HRV 

registerHRListener (callback(HR), condition) 
registerHRVListener (callback(HRV), condition) 
* condition = TARGET_APP | TARGET_MODE 
class HR { long timestamp; int HR; } 
class HRV{ long timestamp; float LF; float HF; float 
LF/HF; float RMSSD; float SDNN; …}; 

Monitoring HR-
/HRV-derived 
contexts 

registerContextListener(callback(Context), condition, 
type) 
* type = STRESS | AFFECTIVE_STATE | … 



We calculated the errors in the mean HR for all measurements, 
while we measured those in the other HRV parameters for the 
gaming and calling cases with 5-minute measurements.  

We did not include a case of texting in landscape mode as a 
sensing opportunity. All participants only used their thumbs when 
typing while holding the phone with two hands. They hardly held 
it in landscape mode for typing, since it was not comfortable.  

PDR: We could see that the QRS peaks were almost all correctly 
detected while typing in portrait mode and calling, whereas there 
were relatively more missed peaks in the other cases. As shown in 
Figure 4, the PDRs for the 10-second holding cases were quite 
close to 100%; only one peak was missed for several participants. 
The PDRs for calling and portrait typing were also nearly 100%; 
avg. 99.2% and 98.7% for 1-minute and 5-minute calling, 
respectively, and avg. 99% for typing. For the gaming cases, the 
average PDRs varied from 84.5% (high, 1 minute) to 89.5% (low, 
1 minute), and their SDs were quite large (14–21%). We observed 
that 4–5 of the participants showed quite low PDRs (e.g., 31, 47, 
66%) while the rest of them showed PDRs larger than 92%. 
During gaming, the participants moved their thumbs frequently to 
press buttons. Such movements can result in rubbing or weak 
contact between the electrodes and the hands, thereby causing 
noise in the ECG signal. From these results, we could see that the 
gaming cases should be utilized selectively for meaningful 
sensing opportunities depending on the user. Also, it will be 
necessary to spot the valid sensing segments among the whole 
measurement for an opportunity, in order to exploit the 
opportunity effectively. 

Error Rates of the HRV Parameters: There were negligible 
errors or small errors in the mean HR, depending on the use cases. 
As shown in Table 2, the mean HRs were almost correct for the 
typing and calling cases. The gaming cases show relatively larger 
average errors due to some of the participants’ results, similar to 
the previous PDR result. However, more than half of the 
participants showed less than 1% error, which is almost 
completely accurate heart rate estimation. The other HRV 
parameters showed somewhat noticeable errors, depending on the 
use cases, e.g., LF: 1–5.1%, RMSSD: 7.8–102.9%. They were 
sensitive to errors in the QRS peak intervals due to missed and 
incorrectly interpolated peaks. A more detailed investigation into 
the causes of the errors and an elaboration of the peak detection 
and correction algorithms are ongoing to improve performance. 

4.2 Potential to Actual Chance 
Setting: In this small-scale study, we analyzed whether potential 
opportunities resulted in actual sensing opportunities that allowed 
QRS peaks to be detected reliably. For this purpose, we recruited 
5 participants (4 students and a researcher), at the KAIST campus 
(all male, avg. age: 26.4). They were all Android users, including 
3 Galaxy S3 users, 1 Galaxy S4 user, and 1 Nexus 5 user. We 
attached the prototype sensor case onto the users’ phones and 
asked all but the Nexus 5 user to use it. The Nexus 5 user used 
our prototype. Before the study, we conducted a test to check if 
their phones, which were equipped with the sensor, worked well. 
During the test, we observed that one of participants held his 
phone in such a way that he hardly touched the electrodes with his 
hands, so that the sensing signals could not be captured reliably. 
Thus, we conducted the study with the 4 participants other than 
him. They were asked to sit down on a chair and freely use the 
apps they use frequently in their free time for an hour. We 
allowed the Nexus 5 user who used our prototype to install his 

favorite apps and keyboard before the study. We recorded them 
on video to check their phone holding posture, as well as when 
and how long they held their phones with two hands and how 
their hands contacted the electrodes.  

Results: A reasonable number of potential opportunities led to 
actual sensing opportunities where the QRS peaks could be 
detected reliably; we considered sensing signals to be reliable 
when more than 95% of peaks could be detected. In terms of the 
number of opportunities, 41–87% of potential opportunities led to 
actual sensing opportunities (Figure 5(a)); we included use cases, 
such as typing, lasting for more than 10 seconds as potential 
opportunities. The distribution of potential opportunities was 
different, depending on the participants, since their app usages 
were different, e.g., P1 frequently played a game, and used a 
messenger and SNS apps, while P4 did not play a game and 
frequently used a messenger, a browser, and a news reader app. 
We observed that the different holding postures of the participants 
affected the results for actual opportunities. Also, they sometimes 
changed their holding posture, e.g., holding the phone with two 
hands or with one hand for their convenience. While all of the 
participants often used two thumbs to type on the keyboard, P1 
did not provide actual opportunities from any of the typing cases. 
P1 used one hand to hold up the phone and slightly touched the 
phone with his other hand when typing with his thumbs. Thus, the 
electrodes were not contacted stably. However, the other three 
participants could utilize the typing cases as actual opportunities, 
although their sensing reliability varied, depending on their 
holding posture. Intriguingly, P4 showed considerably reliable 
sensing results. In terms of time duration, 32–92% of the time for 
potential opportunities resulted in actual opportunities (Figure 
5(b)). We observed that the full duration of many of the typing 
cases became the actual sensing duration, while the time durations 
for gaming partially became the actual sensing duration.  

In addition, we observed that other use cases, such as browsers or 
SNS apps led to actual sensing opportunities as long as the users’ 
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Figure 4. Average PDRs for different use cases  

- the error bars represent standard deviations 

Table 2. Average error rate of mean HR 

Use cases
Typing Gaming Calling

5sec 10sec 15sec
Low,
1min

Low,
5min

High,
1min

High,
5min

1min 5min

Error rate of
mean HR
avg. (std.)

0.10%
(0.10%)

0.16%
(0.24%)

0.12%
(0.13%)

11.6%
(19.8%)

1.61%
(2.49%)

5.78%
(9.95%)

6.98%
(18.1%)

0.28%
(0.38%)

0.13%
(0.16%)

# of events
(gaming, typing)

Potential Actual

P1 12(5, 7) 5(5, 0)

P2 14(1, 13) 6(1, 5)

P3 17(1, 16) 7(1, 6)

P4 15(0, 15) 13(0, 13)  
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two hands contacted the electrodes stably when holding the phone. 
It would be helpful to develop a method to efficiently detect and 
exploit such moments for opportunities. We plan to conduct more 
extensive feasibility studies in real-life smartphone usage with a 
wider variety of participants, as well as over a longer period. 

5. RESEARCH ISSUES 
Among a number of research issues to build a fully-functioning 
daily ECG monitoring system, we discuss four of them here. 

Extending Sensing Modality. We will extend the current Sinabro 
prototype by applying the opportunistic health monitoring 
approach to other sensing modalities. We consider three potential 
cases. First, Sinabro can integrate a GSR sensor, which can be 
used to detect stress levels by analyzing skin conductance [5]. 
When users hold their phones with one hand, their skin 
conductance can be automatically measured and analyzed. Second, 
sound data from a microphone are a useful signal that can be 
obtained opportunistically to detect health-related statuses, e.g., 
stress detected from human voice [5] and coughs. Phone calls can 
be opportunities to get such sound signals. Third, a thermometer 
can be integrated into earphones. When a user uses earphones to 
listen to music, body temperature can be measured. 

Augmenting Contextual Information. Contextual information 
about the situation in which sensing data are obtained can provide 
important cues for analyzing the data from diverse daily situations, 
e.g., heart rate may be high right after running in a hurry, but low 
when a user sits down for an hour. To handle such cases, the 
interpretations of sensing data should incorporate appropriate 
contextual data. Utilizing contextual data also may enable users to 
understand the changing trends in their status under different 
conditions, e.g., comparing heart rate or stress level at home with 
that in the office. The user’s text data or voice can be analyzed to 
further investigate the cause of and response to stress.  

Handling Signal Noise. Since Sinabro collects ECG signals 
during smartphone usage, the contact between hands and the 
electrodes can be unstable, which can result in motion artifacts. 
Motions during touch inputs on a keyboard and on buttons can 
cause noise and corresponding errors when detecting QRS peaks. 
Moreover, different users may have different behaviors such as 
holding posture and touch intensity. Proper processing for noise 
detection and error compensation should be incorporated.  

Expanding Sensing Opportunities. Sinabro can be extended to 
incorporate other wearable sensors and sensors integrated with 
household equipment, such as a chair or a bed [11], to increase 
sensing opportunities. For example, Sinabro can incorporate a 
bed-embedded ECG sensor and exploit expanded opportunities. 
The sensor would allow not only heart rate and stress to be 
obtained but also sleep quality and stages while the user is asleep. 

6. RELATED WORK 
There have been research efforts to monitor physical and mental 
health status and provide in-situ intervention based on mobile 
phones, such as for physical health (e.g., heart [1][12], sleep 
duration [4]), mental health (e.g., stress [5][6]), and wellbeing [7]. 
Some have used external sensors along with a mobile phone to 
monitor health status, e.g., ECG monitoring with a wearable 
device [12] and stress detection with a range of sensors such as 
ECG, GSR, and accelerometer sensors [6]. While using additional 
devices may be helpful to monitor diverse physiological 
parameters and investigate enriched statuses, it would also be 

intrusive to users. Thus, others have employed an approach that 
only uses a mobile phone for unobtrusive monitoring. StressSense 
[5] has developed a voice-based stress classifier by using phone-
embedded microphones. In [4], the authors propose a sleep 
duration estimation approach. While the proposed system also 
goes in the direction of unobtrusive daily health monitoring, it 
further enables physiological sensing, such as ECG that cannot be 
achieved with the currently available smartphone sensors by 
exploiting opportunities during daily smartphone use. 

7. CONCLUSION 
In this paper, we presented an unobtrusive mobile ECG 
monitoring system that monitors the user’s ECG opportunistically 
during daily smartphone use. We first studied the potential 
opportunity to monitor ECG from daily smartphone use alone. 
Based on this opportunity, we proposed a design for the system 
and built an early prototype. We plan to conduct further research 
to build a fully-functioning opportunistic monitoring system and 
evaluation including comprehensive experiments in the wild. 

8. ACKNOWLEDGEMENT 
We thank Inseok Hwang, Chulhong Min, the anonymous 
reviewers, and our shepherd, Cecilia Mascolo, for their valuable 
comments. This work was jointly supported by NRF grant funded 
by the Korea government (MSIP) (No. 2011-0018120), the IT 
R&D Program of MSIP/KEIT [10041313, UX-oriented Mobile 
SW Platform], CMTC of the Agency for Defense Development 
[1415125561], and the R&D program of MKE/KEIT (Grant No. 
10041854). 

9. REFERENCES 
[1] AliveCor. http://www.alivecor.com/ 
[2] Azumio Instant Heart Rate/Stress Check. http://www.azumio.com/ 
[3] Polar Heart Rate Sensor. http://www.polar.com/us-

en/products/accessories/H1_heart_rate_sensor 
[4] Chen, Z. et al. 2013. Unobtrusive Sleep Monitoring using 

Smartphones. In Proc. of Pervasive Health’13. 
[5] Lu, H. et al. 2012. StressSense: Detecting Stress in Unconstrained 

Acoustic Environments using Smartphones. In Proc. of UbiComp’12. 
[6] Ertin, E. et al. 2011. AutoSense Unobtrusively Wearable Sensor 

Suite for Inferring the Onset Causality and Consequences of Stress in 
the Field. In Proc. of SenSys’11. 

[7] Lane N. D. et al. 2011. BeWell: A Smartphone Application to 
Monitor, Model and Promote Wellbeing. In Proc. of Pervasive 
Health’11. 

[8] Riener, A., Ferscha, A., Aly, M. 2009. Heart on the road - HRV 
analysis for monitoring a driver’s affective state. In Proc. of 
AutomotiveUI’09. 

[9] Task Force of The European Society of Cardiology and The North 
American Society of Pacing and Electrophysiology. 1996. Heart rate 
variability Standards of measurement, physiological interpretation, 
and clinical use. European Heart Journal. 17, 354-381. 

[10] Salahuddin, L. et al. 2007. Ultra Short Term Analysis of Heart Rate 
Variability for Monitoring Mental Stress in Mobile Settings. In Proc. 
of EMBS’07. 

[11] Lim, Y. G. et al. 2011. Monitoring physiological signals using 
nonintrusive sensors installed in daily life equipment. Biomedical 
Engineering Letters. Volume 1, Issue 1, pp 11-20. 

[12] Oresko, J. J. et al. 2010. A Wearable Smartphone-Based Platform for 
Real-Time Cardiovascular Disease Detection Via Electrocardiogram 
Processing. IEEE Transactions on Information Technology in 
Biomedicine, vol. 14, no. 3, 734-740 

[13] Bao, X. et al. 2013. The Case for Psychological Computing. In Proc. 
of HotMobile’13. 

 


	Sinabro: Opportunistic and Unobtrusive Mobile ECG Monitoring System
	Citation
	Author

	Microsoft Word - hotmobile2014_final_camera-ready.doc

