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Abstract

In this paper we propose a jackknife method to determine individual and time effects
in linear panel data models. We first show that when both the serial and cross-sectional
correlation among the idiosyncratic error terms are weak, our jackknife method can pick up
the correct model with probability approaching one (w.p.a.1). In the presence of moderate or
strong degree of serial correlation, we modify our jackknife criterion function and show that
the modified jackknife method can also select the correct model w.p.a.l. We conduct Monte
Carlo simulations to show that our new methods perform remarkably well in finite samples.
We apply our methods to study (¢) the crime rates in North Carolina, (i¢) the determinants
of saving rates across countries, and (i) the relationship between guns and crime rates in the
U.S.
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1 Introduction

Individual effects and time effects are often used in panel data models to model unobserved
individual or time heterogeneity (see, e.g., Arellano (2003), Baltagi (2013), Hsiao (2014), and
Wooldridge (2010) for a review on panel data models). The goal of this paper is to provide
practical methods to determine whether to include individual effects, or time effects, or both in

linear panel data models. Specifically, we consider the following four models:

Model 1: vit = B it + ug,

Model 2: vit = B'xir + oy + uis,
Model 3: yit = B'zi + A + i,
Model 4: yit = BT + o + N + wig,

wherei =1,.... N, t =1,...,T, x; is a k x 1 vector of regressors that may include lagged dependent
variables, «; is an individual effect, A; is a time effect, and u;; is an idiosyncratic error term. We
will treat a;’s and \,’s as fixed parameters to be estimated. For clarity, we assume that x;; contains
the constant term in all models and impose restrictions on «; or/and A; in Models 2-4 to achieve

identification for the fixed effects. Specifically, we assume that

N
Y a; = 0inModel 2, (1.1)
i=1

T

Z At = 0in Model 3, and (1.2)
t=1

N T
Zai = 0and Z)\t = 0 in Model 4. (1.3)
i=1 t=1

The above identification restrictions greatly facilitate the asymptotic analysis in this paper and
make it straightforward to extend the methodology developed here to multi-dimensional panel
data models.!

We propose a jackknife or leave-one-out cross-validation (CV) method to select the correct
model.? There are several advantages of our jackknife method in the context of determining
fixed effects. First, the new method is general and easy to implement. It does not require the
choice of any tuning parameter that is implicitly used in all information-criterion-based methods
(e.g., a Bayesian information criterion (BIC) specifies the penalty term to be proportional to

In (NT) /(NT), which works as a tuning parameter). Second, we assume that the cross-section

'For our method discussed below, different identification restrictions, e.g., assuming ay = 0 in Model 2 and
Ar = 0 in Model 3, produce identical results.

2Throughout the paper, we use Jackknife and CV interchangeably. Jackknife is widely used in model selection
and model averaging (see, e.g., Allen (1974), Stone (1974), Geisser (1974), Wahba and Wold (1975), Li (1987),
Andrews (1991), Hansen and Racine (2012), and Lu and Su (2015)).



dimension (N) and time dimension (7') pass to infinity simultaneously. But the relative rate
between N and 7" can be arbitrary. For example, 7' can be much slower than N such as 7' < In (N) .
This implies that our method can be applied to the typical case in micro-econometrics where T
is much smaller than N. Third, our CV method can be applied to both static and dynamic panel
models. We show that when serial correlation and cross-sectional dependence in the error term are
absent or weak, our CV method can choose the correct model with probability approaching one
(w.p.a.1).> Fourth, we propose a modified CV method that is robust to strong serial correlation
in the static panel models. We show that the modified CV can select the correct model w.p.a.l.
in the presence of strong serial correlation. Fifth, our jackknife method can be easily extended to
nonlinear panels and to multi-level panels where the determination of different fixed effects is also
imperative.

In the literature, there exist several tests for testing for the presence of fixed effects in two
dimensional panel data models. Most of the tests focus on short static panel models. Let o2
and O'%\ be the variances of a; and A, respectively. Under the normality assumption, Breusch
and Pagan (1980, BP hereafter) propose a Lagrange multiplier (LM) test for testing the null
hypothesis: Ho; : 02 = 0 and a?\ = 0. The BP test can also be applied to test the null hypotheses
that Hog : 02 = 0 (assuming o3 = 0) and that Hos : 03 = 0 (assuming o2 = 0) (see, e.g., Baltagi,
2013 for a discussion). Honda (1985) shows that BP test is actually robust to the non-normality
and also modifies the test to a one-sided test. Baltagi, Chang, and Li (1992, BCL hereafter)
modify the one-side test based on the results of Gourieroux, Holly, and Monfort (1982). BCL
also propose conditional LM tests for testing Hoy : 02 = 0 (allowing U%\ > 0) and Hps : O‘%\ =0

a

(allowing 02 > 0). Moulton and Randolph (1989) consider the ANOVA F-test. All the tests
discussed above assume that the error terms {u;;,t = 1,...,T} are not serially correlated. Bera,
Sosa-Escudero, and Yoon (2001) propose an LM test that allows serial correlation in the error
term. Recently, Wu and Li (2014) propose Hausman-type tests for testing Hyi, Hos and Hgps by
comparing the variances of the error terms at different robust levels. Wu and Zhu (2012) extend
the Hausman-type tests to short dynamic panel models.

Potentially, these tests can be used to determine the correct model. For example, we can test
Ho1, Hoq, and Hps sequentially. However, there are several limitations of the approach based on
the hypothesis testing. First, to determine the correct model, three separate tests need to be
implemented sequentially. This involves the multiple testing issue and it is unclear how to choose
an appropriate nominal level. In addition, in finite samples, it could occur that Hy; is rejected,

while neither Hgs nor Hys is rejected, in which case it is difficult to decide the correct model.

$We only allow serial correlation in static panel models. For dynamic panel data models (e.g., panel AR(1)
model), the serial correlation in the error terms (e.g., AR(1) errors) will cause the error terms to be correlated with

the lagged dependent variables. We do not address the endogeneity issue in this paper.
Y There is a large literature on the multiple testing issue for controlling the family-wise error rate (FWER). See,

e.g., Romano, Shaikh and Wolf (2010) for a review. However, to the best of our knowledge, there is no discussion

on how to address this issue in the context of determining fixed effects.



Second, the existing tests are designed for short panels (i.e., T is fixed), and it is unclear how the
tests behave when 1" also goes to infinity. We consider large panels where N and T' go to infinity
simultaneously and we allow the relative rates of N and T to be arbitrary. Third, except Wu and
Zhu (2012), most existing tests do not apply to dynamic panel models, i.e., the regressors cannot
contain any lagged dependent variables.

Alternatively, we can consider certain information criteria (IC) such as AIC and BIC. However,
to the best of our knowledge, there is no theoretical analysis of AIC or BIC in the context of
determining fixed effects in panel data. When all four models are allowed, a careful analysis
indicates that AIC is always inconsistent and BIC is consistent in the special case where N and
T pass to infinity at the same rate. In Monte Carlo simulations we compare our jackknife method
with AIC and BIC, and find that our jackknife method generally outperforms this IC-based
approach.

The rest of the paper is structured as follows. In Section 2, we propose the jackknife and the
modified jackknife method and study their asymptotic properties. Section 3 reports Monte Carlo
simulation results and compares our new methods with IC-based methods for both static and
dynamic panel data generating processes. In Section 4, we provide three empirical applications.
In the first application, we study the crime rates in North Carolina and find that Model 4 is the
correct model. The second application is about the determinants of saving rates across countries
and our methods select Model 2. In the third application, we investigate the relationship between
guns and crime rates in the U.S. and we determine that Model 4 is the correct model.

Notation. For an m x n real matrix A, we denote its transpose as A’ and its Frobenius norm as
|A|| (= [tr(AA")]Y/?) where = means “is defined as”. Let Py = A(A’A)"' A’ and My = I,,, — Py,
where I,,, denotes an m x m identity matrix. When A = {a;;} is symmetric, we use Amax (A4)
and Apin (A) to denote its maximum and minimum eigenvalues, respectively. The operator £,
denotes convergence in probability. We use (N,T) — oo to denote that N and T pass to infinity

simultaneously.

2 Methodology and Asymptotic Theory

In this section, we first introduce the jackknife method to determine individual or time effects in
panel data models and then study the consistency of our jackknife estimator. To allow for strong
degree of serial correlation we also propose a modified jackknife criterion function and justify its

asymptotic validity.



2.1 Methodology

Let #; = (zi1,...,77) and X = (2}, ...,2%\) . Define y;, u;, Y, and U analogously. To facilitate
the presentation, we define the following dummy matrices:
In_ Ir_
Da—< N )@qurﬂN®< o ),mdDM—meDg,
—IN—1 i1
where ¢, is an a x 1 vector of ones for any integer a > 1. To unify the notation, we write
xW=x x®=(x D,), X® =(X,D,), and XW = (X, D,, D))
We use 531(‘;%), to denote a typical row of X("™) such that X(™) = (mgrln), ...,m%), ...,mg\rﬁ), ,:U%nT))

for m = 1,2, 3, 4. Similarly, we use de,it, d) 4, and d., ., to denote a typical row of D, Dy, and

D, respectively. Then we can rewrite Models 1-4 as follows:

Model 1: gy = Bz + uig = BVall) + g,

Model 2: yit = 8wy + Q/da,it + Ui = 5(2)/961(,52) + Uit

Model 3: Yit = B'wi + Ny + uig = 6(3”335’) + Ui,

Model 4: Yit = B'wit + & dait + Nyt + uip = ﬁ(4)/$§f) + Uit
where a = (a1, ..,an-1)', A = (A, Ae)s B = 8, B2 = (8,d), B® = (8, X)
BW = (8,&/,N). Note that we have imposed the identification conditions in (1.1)-(1.3) for

Models 2-4 in the above representation. In matrix notation, we can write these models simply as

/
, and

Model 1: Y =X8+U=xWsM 17,
Model 21 YV =X+ Doa+U=X?8® 11,
Model 3: Y =XB8+DA+U =X®30 4y,
Model 4: Y = XB+ Daa+ DA+ U = XWpW L.
Note that Model 1 is nested in Models 2-4, both Models 2 and 3 are nested in Model 4, and
D! Dy = 0. These observations greatly simplify the asymptotic analysis in this paper.
The OLS estimator of 8™ based on all observations {(y, $,(;n)) 1 <i< N, 1<t<T}is
given by
B = (XX O0) T XOVY form = 1,2,3,4. (2.1)
We also consider the leave-one-out estimator of 3™ with the (i,t)th observation deleted:

»(m)

-1
Bir = (Xm’X(m) — Q:Z(ln)mgn)/) <X(m)’Y — xz(;n)yit> for m=1,2,3,4, (2.2)
wheret =1,..., N, t =1,...,T. Define the out-of-sample predicted value of y;; as z)l(gn) = Bg”)':cg”)

Our jackknife method is based on the following leave-one-out CV function

T N
cvum:3ﬁf§:§:(%r—ﬁfﬁ2ﬁmnF:LzsA. (2.3)
t=1 1=1



Let

m = argmin C'V (m). (2.4)
1<m<4

Under some regularity conditions, we will show that w.p.a.1, m is given by m when Model m is

the true model.

2.2 Asymptotic theory under weak serial and cross-sectional correlations

Let @;. = T ! Zthl Wity Ug = N1 Zf\il uit, and @.. = (NT)~* Zf\il Z;le u;. Let ., Ty, and ..
be defined analogously. Define
1

/ A _
XXandQDf_NT

A 1
Q= NT X'MpéX for D¢ = Dy, Dy,and Dgy.
Let C denote a generic large positive constant whose value may vary across lines.

To proceed, we make the following set of assumptions.

ASSllmptiOIl A.l. (1) E (Uzt) = 0, maxlSiSN’lgtSTE (uft) < C, and ﬁ Zi\il Zle u?t £> 5’% >
0.

(11) maX1§i§N71§tST Ha)th = OP(CNT) where CNT = min(N3/4T1/4, N1/4T3/4).

(i) g S0 XE0 B (Jleall® w2 ) = 01).

(iv) @.. = Op (NT)~Y2), 2. = Op (1), and 35 X'U = Op ((NT)/2).

(

v) There exist positive constants ¢ and ¢g such that

P (QQ < Amin (QDE) < Amax (Q) < EQ) — 1

for D¢ = Dg, Dy, and Dg.

(vi) ﬁ ZZ'N:1 Zthl uiey; = op (1) and ﬁ Zf\il Zthl uiths = op (1) when Model 2, 3, or 4 is
true and applicable.
Assumption A.2. (i) & Efil (4;.)* ER 52, > 0.

(i) X7 (ae)® £ 52, > 0.

(iii) & SN, 0. = Op (T~ + (NT)~1/?).

(iv) 4 S 2ty = Op (N7 4 (NT)7H2).
Assumption A.3. (i) If Model 2 is the true model, there exist positive constants ¢, x and ¢4 x,
such that

N T
% Z Z [O‘i — @ (X/X)_l X'Dagr L Ca,x > 0, and (2.5)
=1 t=1
| N7 B )
WZZ a; — <X(3)/X(3)) X(S)/Daa] Loax, > 0. (2.6)
i=1 t=1



(ii) If Model 3 is the true model, there exist positive constants ¢y x and ¢y x,, such that

N T
% ZZ P‘t — (X/X)_l X/DAAT L cax > 0, and (2.7)
=1 t=1
2
NT ZZ |:>\t — 2l (X(z)lx(2)> X(Q)’D)\/\} Loex, > 0. (2.8)
i=1 t=1

(iii) If Model 4 is the true model, there exist positive constants cqz x, ca,x,, and ¢y x,, such
that
N T 2 5
Z > [oi+ A = 2l (X'X) 7 X (Daa+ DaY)] L canx >0 (2.9)
i=1 t=1
and both (2.6) and (2.8) hold.

.

Assumptions A.1(i)-(iii) impose weak conditions on {u;} and {z;}, which can be verified
under various primitive conditions (see, e.g., Baltagi (2013), Hsiao (2014), and Wooldridge (2010)).
For example, if F ||$it\|4 is uniformly bounded, then by the Markov inequality and dominated
convergence theorem (DCT) we can readily show that maxi<i<ni<t<7 ||Tit| = oP((NT)1/4),
which is sufficient for A.1(ii). Similarly, a sufficient condition for Assumption A.1(iii) to hold
is that both E ||z;||* and E (uf,) are uniformly bounded. Assumption A.1(iv) is also weak and
commonly assumed in panel data models in the absence of endogeneity. In particular, we permit x;;
to contain lagged dependent variables so that dynamic panel data models are allowed. Assumption
A.1(v) specifies the usual identification conditions for the OLS or fixed effects (FE) estimation of
Models 1-4. For example, the condition that /\min(Q D,,) is bounded below from 0 requires that z;
should not contain any time-invariant regressor beyond a constant term; it is allowed to contain a
constant term because we have imposed the identification constraint that Zf\i 1 o = 0. Similarly,
the condition that )\min(Q p,) is bounded below from 0 requires that x;; should not contain any
individual-invariant regressor beyond a constant term; it is allowed to contain a constant term
because we have imposed the identification constraint that Zthl A+ = 0. On the surface, this
condition rules out the inclusion of any time-invariant regressor in Model 2, individual-invariant
regressor in Model 3, and both types of regressors in Model 4. If x; contains such regressors,
they should be removed from Models 2-4 and then we can redefine xgn ) for m = 2,3, 4 with such
regressors removed. Then the asymptotic analysis below will continue to hold. Assumption A.1(vi)
essentially imposes conditions on the interactions between the idiosyncratic error terms and the
individual and time effects, whenever applicable, in Models 2-4. A sufficient condition for it to
hold is that both {u;;;} and {uiA:} have zero mean and follow some version of weak law of large
numbers. The zero mean condition is commonly assumed in the panel data literature. Note that
we allow the individual effects «; and time effects A\; to be random in the true model (if present)
even if we treat them as fixed parameters in the estimation procedure.

Assumption A.2(i) requires that {u;, t > 1} be weakly serially dependent such that = DA Sri
ZST:1 E (ujtuis) has a finite limit. For example, the latter condition is satisfied by the Davydov



inequality if {wu;;,t > 1} is strong mixing with finite (2 4+ ) —th moment and mixing coefficients
a; () such that a; (1) = 777 for some v, > (24 6) /0; see, e.g., Bosq (1998, pp.19-20) or the
online supplement of Su, Shi, and Phillips (2016). Similarly, Assumption A.2(ii) requires that
{uit,i > 1} be weakly cross-sectionally dependent such that 1= SN Zjvzl ST | E (ugru ;) has a
finite limit. Assumption A.2(iii)-(iv) can be verified under both weak serial and cross-sectional
correlations by the Chebyshev inequality and it is easily met in the absence of both serial and
cross-sectional correlations. If there is no serial correlation among {u;;,t > 1}, then 62, = &2; if

there is no cross-sectional correlation among {u;,i > 1}, then 52, = 2. When serial correlation
2.

2. when cross-sectional correlation is present, 52, is

is present, 62, is generally different from &
2

generally different from &7.

Assumption A.3 specifies conditions to ensure that the underfitted models will never be chosen
asymptotically. The interpretations of the conditions in (2.5)-(2.9) are easy. For example, when
Model 2 is the true model, both Models 1 and 3 are underfitted. In this case, (2.5) and (2.6)
require that the individual effects «;, when stacked into an NT' x 1 vector, should not lie in the
column space spanned by the regressor matrix X in Model 1 and X®) in Model 3, respectively.
Similarly, when Model 4 is the true model, Models 1, 2, and 3 are all underfitted. In this case,
(2.9) requires that a; + A, when stacked into an N7 x 1 vector, should not lie in the column space
spanned by the regressor matrix X in Model 1, (2.8) requires that the time effects A; should not
lie in the column space spanned by X in Model 2, and (2.6) requires that the individual effects
«; should not lie in the column space spanned by X®) in Model 3.

It is worth mentioning that we allow for both cross-sectional and serial dependence of unknown
form in {(x,u;)} despite the fact that some of the results derived below need further constraints.
We do not need identical distributions or homoskedasticity along either the cross-section dimension
or the time dimension, neither do we need to assume mean or covariance stationarity along either
dimension. In this sense, we say our results below are applicable to a variety of linear panel data

models in practice.

Given Assumptions A.1-A.3, we are ready to state our first main result.

Theorem 2.1 Suppose that Assumptions A.1-A.3 hold. Suppose that max (531,632) < 252,

where 62,,5%,, and 52 are defined in Assumptions 2(i), 2(ii), and 1(i), respectively. Then
P (m =m | Model m is the true model) — 1 as (N,T) — oo form =1,...,4.

Remark 1. The proof of Theorem 2.1 is given in the supplementary appendix. To appreciate
the above result, we outline the main idea that underlines our proof. When Model 1 is true, all
the other models are overfitted, and we can show that P (CV (1) < CV (m)) — 1 for m = 2,3,4



by showing that

TV (2)—CV(1)] 525252, > 0,
N[CV @) —cVv ()] L2252, > o0,
(NAT)[CV (4) —CV ()] L 2(14¢) 52 — (62, + c02) 1 {c1 > 1} — (02, +62) 1{ec1 <1} > 0,

where ¢ = lim(y 7)o (% A %) ;and ¢ = lim(y 1) o0 %, and a Ab = min (a,b) . When Model 2 is

true, Models 1 and 3 are underfitted, Model 4 is overfitted, and we can show that P (CV (2) < CV (m))

— 1 for m = 1, 3,4 by showing that

cv)—cv@) Lex > 0,
CV3)—CV(2) Leax, > 0,
N[CV () -CV (2)] 5252 -52, > 0.

When Model 3 is true, Models 1 and 2 are underfitted, Model 4 is overfitted, and we can show
that P (CV (3) < CV (m)) — 1 for m = 1,2,4 by showing that

cvi)-cvE)Lax > 0
cve)-cvi)Deax, > 0
TCV (4)—CV (3)] 5252 —52, > 0.

ul

When Model 4 is true, all other models are underfitted, and we can show that P (CV (4) < CV (m)) —

1 for m = 1,2,3 by showing that
CV(1)-CV (4)

OV (2) — CV (4)
OV (3) — CV (4)

Cal, X > 07

C\, Xo > 0,

v v =

Ca, X, > 0.

As a result, CV (m) has the minimal value among {CV (),l = 1,...,4} asymptotically only when

Model m is the true model.

Remark 2. Theorem 2.1 indicates that we can choose the correct model w.p.a.1 as (N,T) —
00. In other words, our jackknife method can choose the correct model consistently as long as
the serial or cross-sectional correlation among the error terms is not strong enough to over-
take the average noise level as represented by 2. As remarked above, the additional condition
max (&31, &32) < 262 would be automatically satisfied in the absence of both serial and cross-
sectional correlation among the idiosyncratic error terms. Note that the above result does not
have any restriction on the degree of serial or cross-sectional correlation among {x;;} as long as
Assumptions A.1(ii)-(v) are satisfied. More importantly, we do not need any relative rate con-
dition on how N and T pass to infinity. In fact, our theory allows 7' = O (In N') such that our

method may be applied to micro panels when T is typically small in comparison with N.



Remark 3. To see when the above additional condition can be met in Theorem 2.1, we focus
on the case where {u;,t > 1} follows a covariance-stationary AR(1) process with mean zero and
variance o2 for each i. Let p € (—1,1) denote the AR(1) coefficient. Then by straightforward

calculations,
AR 1 X g T-1 T
2
N Z E(u;.)" = T ZE (uft) + T Z E (uiruis)
i=1 t=1 t=1 s=t+1
952 T=1 T
= o2+ % Z P>t
t=1 s=t+1
O = s
- T = I=p
2
2

In this case, 62 = 02 and 62, < 262 provided p < %. Similarly, if {u;,i > 1} has mean zero and

variance o2 for each i,¢ such that Corr(u, ujt) = pli=3l for all 4,7, t for some p € (—1,1), then

N« — \2 2 2p ~2
?ZE(ut) — o (1—|— 1—p) =059
i=1
and 62, < 262 provided p < %

The above calculations indicate that the serial or cross-sectional correlation among the error
terms cannot be moderately large in order for our jackknife method to work. In the next subsec-
tion, we consider the relaxation of such conditions. Since there is typically no natural ordering
among the individual units, we focus on the relaxation on the serial dependence along the time
dimension and propose a modified jackknife criterion function to handle strong or moderately

large degree of serial correlation.

2.3 A modified jackknife criterion function

In this subsection, we consider the panel data model with serially correlated errors and propose a
modified version of the jackknife criterion function. We assume that the error process {u;,t > 1}

can be approximated by an AR(p) process:
Uip = prip—1 + Pollip—2 + - Ppllip—p + Vit = P'U; 1 + Vit (2.10)

where i = 1,...,. N, t=p+1,..,T, p= (pl,...,pp), is a vector of unknown parameters, wu;; ; =
(Wit—1y ey ui,t_p)', and v;; 1S an innovation term.
Let ﬁgzn) = Yit — B(m)/:cgn) for m = 1,2,3,4. We propose to estimate the AR(p) coefficients

based on the residuals from Model 4 (the largest model), i.e., we run the following regression

(4 (4 (4 (4 _ (4 _
uz(‘t) = pluz(',t)—l + p2“z(,t)—2 +ot ppuz(,t)—p + Vi = plﬂz(}t)—l T Vit (2.11)

10



where i =1,...N,t=p+1,...,T, Qgi)_l = (ﬁgi)_l, ...,ﬁl(-jlt)_p)’, and 0 = (ﬁgf) —uit) + P (w1 —
~(4)
a

7i7t_1) + vie. Let p = ([)1,/32, ...,?)p)/ denote the OLS estimator of p in the above regression. Let

Yoo = (Yit—1, - Yit—p) and QZ(T_)l = (QET_)I, ceey g)g;n_)p)’. We modify the CV criterion function as

Za,t—

OV* (m) = — kS " ) spem) )12
=g & () -G

t=p+1 =1
Let
m = argmin CV* (m). (2.13)
1<m<4

Ideally, when Model m is correctly specified, (y; — ﬁ'yijtil) - (gjl(zn) - A'QEZZ)I

the true innovation term v;;. As long as there is no serial correlation among {v;;} or the serial

) will approximate

correlation is weak, m is given by m w.p.a.1l. when Model m is the true model.
Let
¢(L) = 17p1L7p2L27”'7ppra

where L is the lag operator. Similarly, ® (1) =1~ p; — py —---p,. Let a“cgln) =d (L) J:l(tm) for
t=p+1,..T and m = 1,2,3,4. Note that &) = ® (L) 2 = & Let ;. = T, ' Yor vyt for
i=1,..N,and v; = N~} Ef\il vy fort =p+1,...,N, where T, =T — p.
To state the next result, we add the following set of assumptions.
Assumption A.4. (i) All the roots of ® (z) lie outside the unit circle.
. P _
(11) FE (Uit) = O, maXlSiSN,p-‘rlStSTE (szt) S C, and ﬁ 2?[:1 Z?:erl ’1}1-215 — 03 > 0.
N T 2
(i) §p 0 X0 B (el 22) = 0(1).
(iv) ﬁZil ZtT:p+1 Civir = Op ((NT)™Y2) for ¢;y = 1, it, ip—j, and u;4—; where j =
1,....p.
N T N T .
(v) ﬁ Zi:l Et:p+1 vire; = op (1) and ﬁ Zi:l Zt=p+l VitAt—j = op (1) for 5 =0,1,....p
when Model 2, 3, or 4 is true and applicable.
Assumption A.5. (i) % SN (@:)? il a2, > 0.
. T _\2 P _
(i) Tﬂp Dteptr (04)° — oy > 0.
(iii) & SN, 7.0 = Op (T~1 + (NT)~1/2).
. T — — — —
(iv) Ti,, Y impr1 404 = Op (N7 4+ (NT)~1/2)
Assumption A.6. (i) If Model 2 is the true model, there exist positive constants Cpx and ¢, y
such that

A

N T
1 i / -1 *
NT, Z Z [(I) (1) a; — a5 (X X) X Dag} —Cox > 0, and (2.14)
=1 t=p+1
1 N T @) 1 2 P
o (3) .
NT, Z Z [@ (1) oy — I, (X(S)/X(3)> X(3)/Daa] —dx, > 0. (2.15)
i=1 t=p+1
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(ii) If Model 3 is the true model, there exist positive constants ¢ y and ¢} x_ such that

N T
1 _ 2
NT. Z Z [(I)(L))‘t_”%;t (X'X) 1X/D,\A] £>C§,X > 0, and (2.16)
P =1 t=p+1
| N7 B 2
T >y [@(L)At_fz(tm/ (X@)/X(z)) X(2>,DA)\] L >0 (2.17)
P =1 t=p+1

(iii) If Model 4 is the true model, there exist positive constants Con X7 Covxy» and €5 x_ such
that

N T

1 . 1 2 p

NT O 2 (@ (1) ai + @ (L) A) = )y (X'X) ' X' (Daa+ D) Dty >0 (218)
i=1 t=p+1

and both (2.15) and (2.17) hold.

Assumption A.4(i) rules out unit root or explosive processes for {u;,t > 1}. Assumption
A.4(ii)-(v) parallels Assumption A.1(i), (iii)-(iv) and (v). Assumption A.5(i)-(iv) parallels As-
sumption A.2(i)-(iv). Assumption A.6(i)-(iii) is analogous to Assumption A.3(i)-(iii).

Theorem 2.2 Suppose that Assumptions A.1-A.2 and A.4-A.6 hold. Suppose that max(52,,52,) <
262. Then

P (m =m | Model m is the true model) — 1 as (N,T) — oo form =1,...,4.

Remark 4. Theorem 2.2 indicates that the modified jackknife criterion function helps us to
select the correct model w.p.a.1 as (N,T) — oo under the weak side condition max(52,,52,) <
262.  Where there is no serial correlation among {u;,t > 1} such that ® (1) = ® (L) = 1 and
uit = vit, then 62, = 62, = 62 = &2 and G2, = 62,. This implies that the result in Theorem 2.2
coincides with that in Theorem 2.1 in this case. If there is no serial or cross-sectional correlation
among {v;t}, then 62, = 2, = 52 and max(52,,52,) < 252 is automatically satisfied.

Remark 5. In the above analysis, we run the pooled AR(p) regression for ﬂg? ). A close

examination of the proof of Theorem 2.2 indicates that only the consistency of the pooled OLS
estimator p is used. Alternatively, one can allow heterogeneity in both the order of autoregression
and its coefficients. In this case, we use p; and p;, i =1, ..., N, to denote the order and individual
coefficients in the autoregressive models and run the AR(p;) regression for {@Eg ) ,t > 1} to estimate

p; by p; for i =1,..., N. Then we can modify the jackknife criterion function to be

) 1o 1 v ) ram) ]
v = LS S [l ) ()

t:pl‘-‘rl
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Accordingly, we can modify Assumptions A.4-A.6 and establish a result similar to that in Theorem
2.2.

Remark 6. Alternatively, we can rewrite the original model by including p lagged y;; and
p lagged x;; (excluding the constant) as additional (pk) regressors via the standard Cochrane—
Orcutt procedure. Take Model 4 as an example. Let x;; be the z;; excluding the constant term,
ie., zy4 = (1,2},)". Correspondingly, let 8 = (51,3/)’. Then, Model 4

o/ 5
Yit = B'wi + o + M +uig = (B, 8) (1, &) + o + A + uig

can be rewritten as

of . ol ol
yie = (L=p1—o—pp) Br+ B &it + pryi—1+ o+ Ppli—p — (mﬁ Tig—1+ ..+ ppf iUz',tfp)
+ (1 — P — e — ,op) o; + ()\t — P1 A =1 — .. — pp)\t,p) + vy
= B'Ey+ 6+ M+ vits
/ ~
where T;; = (1,5:;“ Yit—1s - Yit—p j’:;’t_l, e igt_p) , B is the new vector of regression coef-
ficients, &; = (1 —p1 = e — pp) «; and 5\,5 = (/\t — P1 =1 — . — pp)\t_p) . With the new regressor

Z;; replacing x;;, we can continue to apply the jackknife criterion function C'V (m) as in Section
2.1.

Remark 7. Here we impose an AR(p) structure on the error term. In practice, {u;,t > 1} do
not need to follow the AR(p) process exactly. Note that our original jackknife method in Section
2.1 works in the presence of weak serial correlation. Hence, here it is sufficient to reduce and

control the serial correlation among {u;,t > 1}.

3 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to examine the finite sample performance
of our jackknife method and compare it with various information criteria (IC). We consider the
following three different cases: (i) static panel models with possibly serially correlated errors,
(7i) dynamic panel models without exogenous regressors and (#i7) dynamic panel models with

€xogenous regressors.

3.1 Implementation

As a comparison, we consider the commonly used information criterion (IC): AIC and BIC, though
to the best of our knowledge, there is no theoretical analysis of AIC and BIC in the context of
determining fixed effects. Here the number of parameters involved depends on N and T and goes
to infinity, thus the standard theory of AIC and BIC is not directly applicable here.

13



»(m)

For Model m, m = 1,2, 3,4, define the in-sample residual as {Lgn) =y — 0 ,xgn). Then AIC

and BIC for Model m are defined respectively as

2 (m)
AIC(m) = In <(&<m>) > +2]];—T,

2 (m)
BIC(m) = In <(&<m>) ) +bg(]\];TT)k,

2 2
where (&(m)> = %7 SN, (ﬁg’”) and k(™) is the dimension of xgn) in the mth model.
Specifically, kW) =k, k@ = k+N—1, k®) = k+T—1 and k¥ = k+ N +T — 2. We also consider
the modified BIC as

b1y =1a((30)7) + EELETIE

We choose the model by minimizing the above three ICs.?

For static panel models, we consider CV (defined in (2.3)) and CV* (defined in (2.12)). To take
into account the possible serial correlation, we also apply CV to the augmented regression with
additional p lagged y;; and p lagged x;; (excluding the constant), as discussed in Remark 6 above.
We denote it as CV**. For dynamic panel models, we only consider CV, as serial correlation can
cause the endogenous problem and in general is not allowed in dynamic panel models. For all the
simulations, we consider different combinations of N and T": (N,T) = (10,10), (10,50), (50, 10)
and (50,50) . The number of replications is 1000.

3.2 Static panel models

We consider the following static data generating processes (DGPs):

DGP 1.1: y;s = 1 4 x5 + uge DGP 1.2: y;s = 14 x5 + i + ugt
DGP 13: yyu =14z + M +uyy DGP 1.4: yyy =14+ x5 + 0 + A + uge ’

where x4 = 1+a;+ M+ §;; and o, Ay and §;; are mutually independent N (0, 1) random variables.
The error term w;; is generated as

Uit = PUt—1 + Vit,
where v is a N (0,1) random variable, and p takes different values: 0, %, %, %, and %. Here the
true models corresponding to DGPs 1.1-1.4 are Models 1-4, respectively.

Tables 1A, 1B, 1C, 1D and 1E present the simulation results for p = 0, %, %, %, and %,

respectively. When p = 0, i.e., there is no serial correlation in the error term, our CV performs

’Following the standard analysis on the consistency of IC, we can show the following results: (1) BIC and BIC,
are consistent in selecting the individual or time effects under the restrictive condition that N and T pass to infinity
at the same rate; (2) the AIC is never consistent; and (3) neither BIC nor BIC5 is consistent in general when N

and T pass to infinity at different rates.
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best. For example, even when N = 10 and T = 10, our CV can choose the correct model with a
probability close to 95%. The performance of AIC is also good and comparable to that of CV.
CV* and CV**, which are robust to possible serial correlation, perform slightly worse than CV in
the absence of serial correlation. The performance of BIC is poor. For example, when the true
model is Model 4 and (N, T') = (10,50), BIC can only choose the correct model with a probability
of 3.5%. BICy outperforms BIC, but still underperforms CV and AIC.

When p = %, i.e., there is weak serial correlation in the error term, our CV* and CV** perform
best overall, as suggested by our theory. Between CV* and CV**, it is not apparent which one
dominates. For example, when the true model is Model 1, CV** outperforms CV*, but when the
true model is Model 2, CV* outperforms CV**. CV also performs reasonably well, as our theory
suggests that CV can consistently select the correct model when the serial correlation is weak
(p < % for this DGP). The performance of AIC is slightly worse than that of CV. Both BIC (e.g.,
when the true model is Model 3 or 4) and BIC;y (e.g., when the true model is Model 3) perform
poorly.

p = % is an interesting case, as p = % is the cut-off point for CV to work. In the dis-

cussion following Theorem 2.1, we show that when p = %, 52, = 262, thus the key condition

_2 —

max (02,,02,) < 2075 is violated. In our proof, we show that in this case, when the true model is
Model 1, T [CV (2) — CV (1)] - 0 and when the true model is Model 3, T [C'V (4) — CV (3)] -
0. This suggests that CV cannot distinguish Model 1 and Model 2 when the true model is Model 1
and cannot distinguish Model 3 and Model 4 when the true model is Model 3. Our simulations con-
firm the theoretical analysis. For example, when the true model is Model 1 and (N, T') = (50, 50),
CV selects Model 1 and Model 2 with probabilities of 55.7% and 44.3%, respectively. In this
case, CV, AIC, BIC and BIC; all break down. However, both CV* and CV** which explicitly
take serial correlation into account, perform well, as suggested by our theory. For example, when
(N,T) = (50,50), both CV* and CV** can select the correct model with a probability close to
100%. For this DGP, CV* slightly outperforms CV** as a whole.

When the series correlation is high, such as p = % and %, the performances of CV, AIC, BIC
and BIC, are all poor. In general, CV* and CV** perform well, especially when the sample is
large. For this DGP, CV* outperforms CV** in general. For example, when (N,T') = (50, 50) and
p= % or %, CV* can choose the correct model with a probability close to 100%. However, when
the true model is Model 4 and (N, T) = (50,50), p = 3, CV** can only choose the correct model
with a probability of 49.1% . This seems to suggest that when serial correlation is high, a large
sample is required for CV** to work well.

To examine the effect of model misspecification, in Table 4A, we compare the mean squared
errors (MSEs) of the estimator of the slope coefficient (8 = 1) using different models when p = 0.5
It is clear that for this DGP, the correct model achieves the smallest MSE. For example, when
the true model is Model 1 and (N,T) = (10, 10), the MSE based on Model 4 is about 3.5 times

®The results for p = i, %, %, and % are avaiable upon request.
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as large as that based on Model 1.

In sum, for static panel models, when there is no serial correlation or serial correlation is
low, CV, CV*, CV** and AIC all work well. In the absence of serial correlation, CV is the
best performer. When serial correlation is high, only CV* and CV** work and CV* generally

outperforms CV**.

3.3 Dynamic panel models without exogenous regressors

We consider the following dynamic panel DGPs:

DGP 2.1: yi = 1+ By; -1 + uy DGP 2.2: y;t = 1+ By;p—1 + i + use
DGP 2.3: gy = 1+ Byir—1+ M +uig DGP 2.4: yyp = 1+ Byip1 + i + M\ +ug

where «;, A\; and u;; are mutually independent N (0,1) random variables and § takes different

values: %,% and %.
Tables 2A, 2B, and 2C report the simulations results for § = %, % and %, respectively. For

most cases, our CV can select the correct method with a high probability and dominates other
methods. Despite its inconsistency, AIC performs slightly worse than CV. For example, when the
true model is Model 1, 8 = %, (N,T) = (10,10), CV and AIC choose the correct model with
probabilities of 84.4% and 79.6%, respectively. The performance of BIC is poor in many cases.
For example, when the true model is Model 2, § = %, and (N,T) = (50,10), BIC selects the
correct model with zero probability. The performance of BIC, is better than that of BIC, but still
worse than those of CV and AIC in general.

Table 4B shows the MSEs of estimator of 5 based on the four models when 8 = %7 We consider
both the non-bias corrected estimator and bias corrected estimator. For the bias correction, we
adopt the half panel jackknife method as proposed in Dhaene and Jochmans (2015). For both
types of estimators, the estimator based on the true model has the smallest MSE. For example,
when true model is Model 1 and (N, T) = (10, 10) , the MSEs of the non-bias corrected estimator
based on Model 4 is about 10 times as large as that based on Model 1, and the MSE of the bias

corrected estimator based on Model 4 is about 5 times as large as that based on Model 1.

"The results for 8 = i and % are avaiable upon request.
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3.4 Dynamic panel models with exogenous regressors

We consider the following dynamic panel DGPs with 5 exogenous regressors:

5
DGP 3.1: gy = 1+ Byig—1 + Y 0.2z + i,
j=1

5
DGP 3.2: yit = 14 Byi—1 + Z 0.2241,; + o + wit,
=

5
DGP 3.3: yit = 1+ Byi—1 + Z 0.224¢,5 + At + wit,
=
5

DGP 3.4: yir = 14 Byiz—1+ Y 022 + o + Ay + uat,
j=1

where ;11 = 1+ o+ M+ &y, and X4t 2, Tit 3, Tit 4, Tit 5, Qs Aty Uir and §;; are mutually independent

N (0,1) random variables, and 3 takes different values: %, % and %. Here the number of regressors
is k = 7 (including the constant).

Table 3A, 3B and 3C represent the frequency of the model selected for § = i, % and %,
respectively. The simulation results are similar to those in the dynamic models without exogenous
regressors. In general, our CV performs best, followed by AIC. Both CV and AIC can select the
correct model with a high probability, especially when the sample size is large. For example, when
(N, T) = (50,50), the correct probabilities are all close to 100%. BIC performs poorly when the

true model is Model 2 or Model 4. BICs outperforms BIC, but still underperforms CV and AIC.

4 Empirical Applications

In this section we consider three empirical applications that illustrate the usefulness of our method

in selecting individual or time effects in panel data models.

4.1 Application I: Crime rates in North Carolina

Cornwell and Trumbull (1994) study the crime rates using the panel data on 90 counties in North
Carolina over the period 1981 — 1987. The vector of explanatory variables z;; includes: (1) the
probability of arrest, measured by the ratio of arrests to offences, (2) the probability of conviction
given arrest, measured by the ratio of convictions to arrests, (3) the probability of a prison sentence
given a conviction, measured by the proportion of total convictions resulting in prison sentences,
(4) the average prison sentence in days, (5) the number of police per capita, (6) the population
density, measured by the county population divided by the county land area, (7) the percentage
of young male, measured by the proportion of the county’s population that is male and between
the ages of 15 and 24, and (8 — 16) the average weekly wage in the county in the following nine

industries: (i) construction, (i¢) transportation, utilities and communication, (ii¢) wholesale and
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retail trade, (iv) finance, insurance and real estate, (v) services, (vi) manufacturing, (vii) federal
government, (viii) state government and (ix) local government. All the variables are in logarithm.
Hence we have a static panel with N =90, "= 7 and k = 17 (including the constant). The same
dataset is also used in Baltagi (2006) and Wu and Li (2014).

Table 5 presents the values of AIC, BIC, BIC,, CV, CV*, and CV**. All these methods
determine that Model 4 (i.e., including both individual and time fixed effects) is the correct

model.

4.2 Application II: Cross-country saving rates

Su, Shi, and Phillips (2016) use a dynamic panel data model to study the determinants of savings
rates. Following Edwards (1996), they let y;; be the ratio of savings to GDP for country i in year
t, and let z; include (¢) its CPI-based inflation rate, (i7) its real interest rate, (ii¢) its per capita
GDP growth rate and (iv) its lagged saving rate, i.e., y;+—1. Their dataset includes 56 countries
over the period of 1995 — 2010. Hence, we have a dynamic panel data model with N = 56, T' = 15,
and k =5 (including the constant).

Table 6 shows the values of AIC, BIC, BIC, and CV. AIC, BICs and CV all select Model
2, while BIC selects Model 1. Considering the poor performance of BIC in the simulations, we

conclude that Model 2 (i.e., including individual fixed effects only) is the correct model.

4.3 Application III: Guns and crime in the U.S.

In the paper “Shooting down the ‘More Guuns less Crime’ hypothesis”, Ayres and Donohue (2003)
consider how the “shall-issue” law affects the crime rates in the U.S., where the “shall-issue” law
refers to whether local authorities can issue a concealed weapon permit if the applicants meet
certain determinate criteria. So, here y;; is the crime rates for state ¢ in year t. Specifically, we
consider the logarithms of three measures of crime rates separately, namely, the violent crime
rate, the murder rate and the robbery rate, which are measured by incidents per 100,000 members
of the population. The key regressor in x; is the “shall-issue” variable, which is 1 if the state
has a shall-carry law in effect in that year and 0 otherwise. Other controls in z; include (7) the
incarceration rate in the state in the previous year, which is measured by sentenced prisoners per
100,000 residents, (i) the population density per square mile of land area, divided by 1000, (ii7)
the real per capita personal income in the state, in thousands of dollars, (iv) the state population,
in millions of people, (v) the percentage of state population that is male with an age between
10 and 29, (vi) the percentage of state population that is white with an age between 10 to 64
and (vii) the percentage of state population that is black with an age between 10 and 64. The
dataset contains 50 US states and the District of Columbia (N = 51) over the period of 1977 —
1999 (T = 23). The dataset is also discussed in the textbook by Stock and Watson (2012).

We first consider a static panel model, where the dimension of x;; is kK = 9 (including constant).
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Table 7 shows the results for three dependent variables separately. All the information criteria
and CV methods select Model 4 (i.e., including both individual and time fixed effects).

We then consider a dynamic panel model by including the lagged y;; as an additional regressor,
hence here k = 10 and (N, T) = (51,22). Table 7 presents the values of AIC, BIC, BIC; and CV
for the three dependent variables. AIC, BICs and CV all select Model 4 for the three cases. When
yit is the violent crime rate or the robbery rate, BIC chooses Model 3. When y;; is the murder
rate, BIC chooses Model 1. Given the poor performance of BIC in the simulations, we conclude

that for the dynamic panel model, the correct model is also Model 4.

5 Conclusion

In this paper, we propose a jackknife method to determine fixed effects in panel data models
based on the leave-one-out cross validation (CV) criterion function. We show that when the
serial correlation and cross-sectional dependence in the error terms are weak, our new method
can consistently select the correct model. We also modify the CV criterion function to take into
account the strong serial correlation in the error term. Our simulations suggest that our new
method outperforms the methods based on the information criteria such as AIC and BIC. We
provide three empirical applications on (7) the crime rates in North Carolina, (i7) the determinants
of saving rates across countries, and (7i7) the relationship between guns and crime rates in the
U.S.

Several extension are possible. First, our method can be extended to multidimensional panel
data models where there are many ways of incorporating fixed effects (see, e.g., Balazsi, Matyas,
and Wansbeek (2016) for a review). Therefore, it is even more imperative to select an appropriate
specification of fixed effects in multidimensional panels. Second, we may extend our method
to allow for strong form of cross-sectional dependence, say, via the multi-factor error structure
(e.g., Bai (2009) and Pesaran (2006)). When the regressors also share the factor structure, we
conjecture that we can augment Models 1-4 by the cross-sectional means of the dependent and
independent variables and then apply our jackknife method. We shall explore these topics in our

future research.
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Appendix

A Proofs of the main results
To prove Theorem 2.1, we first state and prove six lemmas.

Lemma A.1 Let Xp = (X, D) and Mp = In7—D (D’D)_1 D' If both D'D and X' MpX are nonsingular,
then

* * -1
(XL Xp) ' = X5 -X5X'D(D'D)
b —(D'D) ' D'XX3 (D'D)'+(D'D)'D'XX5X'D(D'D)
where X3 = (X' MpX) ™"
X'X X'D
Proof. Noting that X, Xp = ox DD | the lemma follows from the standard inversion

formula for a 2 x 2 partitioned matrix. See, e.g., Bernstein (2005, p.45). =

Lemma A.2 Let Xp = (X,D) and D = (D1, D3) where D{ Dy = 0. If D\ Dy, D}Ds, and X' MpX are all

nonsingular, then

X3 -X3 By —X3,B,
—1 _
(XpXp) =| —B|X}; (D\Dy) '+ B|X}B B! X3 B,
—By X}, By X1, Bi (DyD5) ™" + By X} By

where X3 = (X'MpX)~" and By = X'Dy (D;D;)~" for1=1,2.
Proof. By Lemma A.1,

* _Yx Y/ 1\~
(XX~ = < X3 X3 X'D(D'D) )

—(D'D) ' D'XX; (D'D) '+ (D'D) ' D'XX5X'D(D'D)”!
Noting that D} Dy = 0, we have

oyl (DyDy)~
(D'D) ( (DLDy) " ) , and

1

X'D(D'D)” !

X' (Dl (D\Dy)"", Dy (DgDz)‘l) — (B, Bs).

Combining the above results yields the desired result. =

Lemma A.3 Suppose that Assumption A. 1(1'11) holds. Then

(i) §7U Do (D Do)~ D'U— NZZ 1“ -l = NZZ 1“ *OP((NT)*),

(ii) 1v1TUD>\ (D/ D/\) = th U = TZf 1“1& ((NT)il),

(iti) N +U'D (Da)\Da)\) D;AU = NZi:l i T TZt 1“15_2“2 = %Zz HS TZt 1ut_
Op ((NT) )

Proof. (i) Noting that D/, D, =T (IN,l + LN,lb’N_l) , we have

1
(DaDa)” =T (In-1 = 5tN-1tn-1), (A.1)
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and

_ In- 1
D, (D.Dy)"'D, = T! (( Nt ) ®LT> (INl - NLN1L§V1> (( INc1 —in-1 )®L’T)

—Un_1
1 INno1— Fin—1ty_4 /
=T L, ®ur (( In—1 —in—a )®LT)
“NiN-1
In_1— vt —LN_
_ ( N-1 1]\]/N 16N 1 1}[\[1\{ 1 ®(LTL/T/T)
“NiN-1 N

By straightforward but tedious algebra we can show that

1 1 2 N-1
— e e | (v = poat ) @ )| sy = ot foxer @ Grd)uw + 2 ulyerdpun |

where we use the fact that @.. = ¢ Zfil Zle uy = Op ((NT)~'/2) by Assumption A.1(iv).
(ii) The proof is analogous to that of (i) and thus omitted. The main difference is that one now applies

p 1, , Ip_y — fur—ath_y  —%tr—1
D)\ (D)\D)\) D)\ = (LNLN/N)® 1 T_1 .
“N!T-1 T

(iii) Noting that Day (D', Dax) "' DLy = Do (D!, Do)~ " D+ Dy (D4Dy)~" D} by the fact D!, Dy = 0,

we have

1 _ 1 _ 1 _
—NTU’DaA (D! \Dox) " D\U = WU’Da (D!, D,) 1D;U+WU’DA (D\Dy) "' DU
1 Y 1 &
_ —2 —2 —2 2
- (w3 (3o
=1 t=1
1

where the second equality follows from the results in (i)-(ii) and the last equality follows by Assumption
Al(iv). m

Lemma A.4 Suppose that Assumptions A.1(w) and A.2(iii)-(iv) holds. Then
(i) 25 X' Do (DLD) ' DLU = £ SN #p0; — & = Op(T~" + (NT)~1/2),
(i) 3 X'Dy (DA\Dy) ' DAU = X 07 Zp.@ty. — 7.0 = Op(N~ + (NT)~1/2),
(iii) 25 X' Dax (Dl Dax) ' DINU = £ 5N Fpd; + L S &Gy — 254 = Op(N~ 4+ T71).
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Proof. (i) Following the proof of Lemma A.3(i), we have

1 —1
—X'D, (D' D DU

1 1 1
= N7 {$§v1 [(IN1 - NLNlblNl) ® (LTLIT):| Upn_q — Nx’N,l [tn_1 ® (erep)] un_y

——ay_q [tno1 @ (epidp)] un + 1x LT
NEN-1 N1 @ (erer)]un N INUTLTUN

— N—
- %Zflal N2 le Z ‘| NQxN Zu’b szuN + 1$NUN

N N
1 _ - _
= N Zmlul U Z - OP ) 1/2) = OP(T ! + (NT) 1/2)a
i=1 i=1
where we use the fact that —Z 1 Zi U = T2 ZZ 1Zt 12 _1 Tituis = Op (T 1 (NT)*1/2) and

.. = Op ((NT)~'/?) by Assumptions A.2(iii) and A.1(iv).

(i) The proof is analogous to that of (i) and thus omitted.

(iii) Noting that Doy (D, Dax) "' D%y = Do (D, Do) " D!+ Dy (D4 D)~ D}, the results follow from
(i)-(ii) and the fact that N~! + 771 > 2(NT)~'/2. m

Lemma A.5 Letn|) =z (XWX XOU and Jivr = 1 SN, S0 (00)2 = 20/ X O (x 0 x )~
xXW'U for 1 =1,2,3,4. Suppose that Assumptions A.1(iv)-(v) and A.2(ii)-(iv) hold. Then

(i) Jivt = Op((NT)™Y),

(ii) Jant = 5 Yy @ + Op(NT)™ + T72),

(iii) Janr = & S0 @% + Op((NT)~' + N—2),

(iv) Jant = % >, WA S @AH0p (T2 + N72), Junr—Jont = = S, @4+0p (N~2 + (NT)1),
and Jint — Jant = & Sn, @2+ Op (T2 + (NT) ™).

Proof. (i) Jiny < H 7 X'X) H | 77X’ UH = Op (77) by Assumption A.1(iv)-(v).
(ii) By Lemma A.1 with D = D,,, we have

_ L (2)( @ y@) " ey
Bnr = U XX) xX@ry

X —X% B, X'U
- L (U'X,U'D,) Da “\Pa
NT ~B,X}_  (DLDs)"' + B,X}B, DU

1 _ X'U
= N7 (foXga —U'DyB, X}, ,—U'XX}, By+U'D, (D, Dy) y U/D(XB&X};,@BQ ( DU )
1 _
== (U’XXBQX’U —2U'DaBL X} X'U 4 U' Dy (Dl Do) DLU + U' DB, X}, BQD;U)
= Jont1 — 2JonT2 + JonT 3 + JanT 4, SAY,

where B, = X'D, (D/,Dy)”". As in (i), we can show that Jant1 = Op((NT 7)™') by Assumption A.1(iv)-
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(v). By Lemma A.4(i) and Assumptions A.1(iv)-(v) and A.2(iii) and using X}, = (X'Mp, X))

)

L

Jonr1 = NTU/DaB;XBQX/U
1 1 1 -t
— U'D,(D.D) "D X —X'Mp X —X
NTU(“)O‘(NT D“)NTU

N 1
_ (]1[2@’&1 —.’Eﬂ) Op(1)Op ((NT)fl/z)

— Op (T—1 n (NT)_1/2> Op ((NT)—W) — Op (N‘l/QT‘3/2 n (NT)—l) :

and
_ 1 / ! oy /
Jonta = 57U DaBlXp, BaD,U
_ Yyp (D'.D,) ' DX L v, x - 1 vp (D!,D,)"' DU
NT & —To\Tela a* \NT Pa NT T e o

TN VA ) /s
= (le:xlul —xu) (NTX MDGX> (N;xzut —xu)
- Op (T-1 + (NT)—W) Op (1) Op (T—l + (NT)‘1/2) =O0p (T2 + (NT)™).

By Lemma AS(I),
J 3=—=UD (D/D ) lD’U = — E W -t = — NE w2 -0 ((NCZ) 1)
2NT,3 NT « ala « N . i . N e i P .

It follows that Jonr = & SN @2 + Op(NT) ™' +T72) as (NT) ™' + T2 > 2N~ 1/27-3/2,
(iii) The proof is analogous to that of (ii) and thus omitted.
(iv) By Lemma A.2

_ Lo <4>( (@) <4>)‘1 o
Jivr = =UXW (x0X Xy
]‘ ! ! !
- X,U'D,,U'D
X5 —X}, Ba —X;, B, X'U
x| —BLX}  (DLDs) '+ B.Xp. Ba B(’llXBMBA DU
-B\ X}, B\XDp,, Ba (DADy)~ + B\ X}, Ba D\U
1 « -1 «
= 7 {UXXp X'U+U'D. ((D4Da)" + BL X, Ba) DU

+U'D, ((D’AD,\)_l + B;XBMB,\) DA\U - 2U'D, B, X}, X'U
—2U'Dy\B\X},, X'U + 2U' D\B X}, BaDLU}

Jant + Jant2 + Jant3 — 2Janta — 2JanT 5 + 2JaNT 6, SAY,

where Doy = (Do, D)) and By = X' D, (D}Dg)_1 for ¢ = a, A. By Assumption A.1(iv)-(v),

1 2
‘ 7 XU|| = 0p((NT) ),

1 -1
—X'Mp,, X
<NT Do )
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By Lemmas A.3(i) and A.4(i) and Assumptions A.1(iv) and A.2(iii),

Jivts = ~=U'Dy (D Da)‘1D;U+ﬁUD B, X},  BaDLU

—1
_ / / =1 / / 1 ’
= —U'Dy(D.Dy) DQUJr—NTU DoB, <NTX Mp. X> 7 BaDLU

N
= <]1V Sa? - u2> +0p (T*1 + (NT)*1/2) Op (1) Op (T*1 + (NT)*l/Q)

By Lemmas A.3(ii) and A.4(ii) and Assumptions A.1(iv) and A.2(iv),

1 1 1 o
= —U'D,(D\D D) D, B, X'Mp_, X ——B\D
JinNT3 U'Dy (D\D,) ~D\U + NTU 2B <NT Dy, ) NT N U

(:; S - u2> +0p (N7 (NT)H2) 0p (1) Op (N7 + (NT)™2)

In addition, by Lemma A.4(i)-(ii) and Assumption A.1(iv), we have

JunTa = WUD o B, (NlTX Mp, X)_1 WX U

= Op(T '+ (NT)"Y%)Op (1) Op((NT)"V/?) = Op((NT) ™! + N~V/273/2),
Jants = %U/D,\B; (NlTX/MDMX>1 ﬁX U

= Op(N"'+(NT)"/%)0p (1) Op((NT)™"/?) = Op((NT) ™! + N732771/%),
JunTe = NTU D\Bj (J\;TX/MD‘“X>_1 WB DU

= Op(N '+ (NT)"Y2)0p (1) Op(T™* + (NT)"Y?) = Op((NT) ™t + N=3/2p=1/2 L N~1/2p=3/2),

It follows that Jyny7 = % Zfil u? + % Zle u% +Op (T*2 + N*Q) . In addition, we can show that Jyn7 —
JonT = % Zle ’17,_2t + OP(N_2 + (NT)_l) and Juyny1 — JsnT = % Zfil fb? + OP(T_2 + (NT)_I) |

Lemma A.6 Let h\) =z (X (l)’X(l))_1 D for1=1,2,3,4 and Be = X'D, (Dng)_1 for £ =a,\, and

> v__

(i) max,, hER = 0p<<NT> L2y,
(ii) b = TNy (25 — Badait) Xp, (@it — Badai) andmax; hY) = op(NT) ™ Cp)+0p(T ™),

(iii) hSy = NVIZL 4 (2 — Badai) X, (zis — Badase) and maxi, b = op((NT) ™' C%p) +
Op(N7Y),

(iv) hy) = TNy NVToly (2, — Bandanie) X, (@it — Bardan,i) and max; hly) = op(NT) ™' C%1)
+OP(N_1 + T_l).
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Proof. (i) max;, hftl) = max;; T}, (X'X)f1 Tip < [)\min ((NT)f1 X'X)} R (NT)f1 max; ¢ \|$th2 =
op((NT)™" C2,,) by Assumption A.1(ii) and (v).

(ii) Let d., ;; denote a typical row of D, such that D, = (dy11,-.-sda 17 s da,N15 --» da,nT)- Then

o,it

—1
WP = el (xrx®)

—1
() X'X X'D, iy
- Lits it / /
DaX DaDa da,it

= ( d/ ) XBa _XBa Ba it
lt’ o, it 7B;XEQ (D/OLDQ)il + BI XBQBOL da it

= s (DADA) " dai + 2 Xy, wir — diy 1 BL XD, @it — €5y X Badeit + dy i BaX 5. Badait
= dy it (DADo) " dait + (@it — Badait) X5, (it — Badair) - (A.2)

Fori < N—1, dq 4+ contains 1 in one place and zeros elsewhere, implying that da it (IN_1 — %LN_lLGV_l) doit
= —% = % forany i < N —1land t=1,..,7. When i = N, we have

1
fort=1,...,T.

1 1 N —
o, N <IN1 - NLN1LIN_1) do,Nt = U1 <IN1 - NLN1L§V_1> IN-1 =

These observations, in conjunction with (A.1), imply that

-1
d/a zt( Da)

1 N -1
da,it = 1d£x it (IN—l — N[’N—lLIN—l) da,it = Til for all i,t. (AS)

Next, notice that

A

1
max (zit — Badu.it)' Xp, (@it — Badait) < enT max (zit — Badw.it) (%it — Bada it)

IA

ENT MAX lzitl® = 0p(NT) ™' CRi),

1
NT
where eyt = [)\min (ﬁX"MDQX)]f1 = Op (1) by Assumption A.1(v) and we use the fact that x;; —
B,dq it denotes the residual from the OLS regression of z;; on d, . It follows that hgf) = T*1¥ +
(€3t — Bada,it) Xp, (@it — Bada) and maxi; by = op((NT) ™" C3p) + Op(T71).

(iii) Let d’M-t denote a typical row of Dy such that Dy = (dx11,-..,dx 17, -, dx,N1, --; da,N7) . Following
the analysis in (ii), we can show that

h(f =d) (DADy) ™! dit + (zit — Badnit) Xp, (@i — Badait) (A.4)
and ) o
d, it <IT1 — TLT1L’T1> dyit = ——— for all i, . (A.5)
Noting that
_ 1
DDy = N (Ir—1 + ip—1tp_y) and (DADy) ' =N~} <1T1 - TLTlL/T1> , (A.6)
we have d) ;, (DADN) " dyir = N~1IZL In addition,
max (zit — Bady,it) Xp, (zie — Badait) < enr max — ||$zt\| =op((NT)™" CRip).
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It follows that hg?) = N_l% + (x4 — B,\d>\7i,g)/X]*3A (it — Baday,it) and max; hgf) = OP((NT)_1 C%r)+
Op(Nfl).

(iv) Let dla,\,it denote a typical row of Dqy such that Dox = (dax 11 s @ar17s oy Qdar, N1, -5 dax,NT)'
Following the analysis in (ii), we can show that

W = dy i (DiaDax) ™ darit + (@it — Bandarit) Xp, . (@i — Bardari) - (A7)

Noting that Dy = (Dg, D)) and D!, Dy = 0, we have

—1
(D/ D )\)71 — (DIQDQ)
alHa (DS\DA)_I .
Then
Wit (D;ADaA)_l doxit = dp (D;Da)_l da,Nt +d) i (Di\D/\)_l it
N -1 T—-1
= T_lT + Nt for all 4,¢. (A.8)

. . —1
In addition, max;; (z; — BaAda)\@t)/XDM (xit — Baxdan,it) < [)\min (ﬁX’MDMX)] max; ¢ ﬁ ||33m5||2
= op((NT)"" C%,) by Assumptions A.1(ii) and (v). It follows that hgf) = 71 NI
(T4 — Ba)\da)\,it)/XB(M (it — Baxdax,it) and max; ¢ hl(f) = oP((NT)71 C3:)+O0p(N"1+T71). m

Proof of Theorem 2.1. Recall that B(l) = (X(l)’X(l))_1 X'y and BE? = (xWrx® —xg)xgi)')*l(X(l)’Y
—x,gi)yit). By the updated formula for OLS estimation (e.g., Greene (2008, p.964)), we have for [ = 1,2, 3,4,

NORY0 . )
B =57 = (XOXO ol HXOY — i) -
—1 1 —1 —1 A (1)
_ Wy x W x0) ! 007 (x W x W Oy o0,y
_ [(X x0) 50 (xOx®) 2 Pal) (x0rx ) ](X Y —aPyi) - B

= 2 (xorx0) 0, b (xrx@) T 0,00 (xarx®) T x Oy, (a.9)
0] it Yit 0) it Lit , (A
1- hit 1- hit

where hg) = xg?/ (X(l)’X(l))71 335? Below, we will use C'V, ,,, to denote the C'V (m) when the true model
is given by Model ! where [,m = 1,2, 3,4. Let ¢;; = (1 — hl(i))*land Cit,lm = Cit,iCit,m- By Lemma A.6, for

I,m=1,2 3,4 we have
max hl(»? =op (OnT), max lcity — 1| = op (6nr) and max Icit tm — 1| = op (ONnT) (A.10)

where §y7 = (NT)"'C%, and a A b= min (a,b) .

Case 1: Model 1 is the true model. In this case, Models 2-4 are all overfitted and we will show that
P(CVi1 < CVi ) — 1 for m =2,3,4. When Model 1 is true, we have

. -1
yir = B+ wie = B0 + g and 50— g0 = (x0x0) T x0T,

where the true values correspond to the coefficients of the dummies d, ;+ and dj ;; for a; and A; in ﬂ(l),
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[ =2,3,4, are all zero. This, in conjunction with (A.9), implies that for [ = 1,2,3,4,

A (1)
2l (Bie —8Y)
~ (1 1 -1 —1 1
— ml(_i)/ (6() _ 5(1)) _ 0 (X(l)/X(l)) xz(',lg)uit + 0 (X(l)/X(l)) mgi)xg)/ (X(l),X(l)) X
1—h, 1—hy,
) . n0 0 .
= W (X(l)’X(l)) X0y - Z;Lﬂ) wip + — ) (X(”’X“)) X0y
1- it 1—- h’it
(1)
e wir + 1 2V’ (X(l)/X(l)) xO
1—nd 1- h(l)
and
(D) W (30 _ s WO (xr x®©\ " xr
Yit — Uiy = Wit — Ty (5 -8 )7011‘[ Ui — Ty ( X ) XWU ). (A.11)
It follows that
N N T 2
oV LZZ( _ )2 _ Lzzcz wr — 2O (x0 x0) " xrp
1,1 = NT Yit yn = NT it,l it it :
i=1 t=1 i=1 t=1
We first study C'V; 2 — CVi,1. We make the following decomposition:
CVLQ — CV171
N T 2 2
1 -1 -t
= N7 Z Z [sztﬁ <uit — asg)l (X(Q)’X@)) X(Q)U) —Ch1 <uit — a:g)' (X(l)’X(l)) X(l)’U>
i=1 t=1
| T
=~ NT ZZ (szt 2~ Gt 1) Uit
=1 t=1
N T 2
1 -1 -1
T 2l D lcfm (xg.?' (X(Q)’X(Q)) X<2>U> —cftl( (ay (X(”’X(l)) X<1>’U)
i=1 t=1

T 1 —1
3 [ 2 guga? (X@)’X( >) XOU = & uyall (XU)’X(U) X(l)’U}

i
=
+
l\') |
o
&
wn
£

1 K&
A = TZZ Cit2 — Ltl Uy
S
1 2 2 1
LSS oo 2) ()
i=1 t=1
1 L N
1 2 2 1 , X
- szc?t’l2(Q_hgt)_hz('t))hgt)u?t Nizz zt12( ) hEt))hEt)u?t
i=1 t=1 2oL

I
N
=
._.
|
N
=
W
g
<
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For A1 1, we make the following decomposition:

N T
1 1 2 2
Mr = g Y chae (2 - HD) HD
=1 t=1
9 N T
1 2
- NTZZ% it 722 Gz — 1) Bl - NTZZCMQ (h()+h )h’gt)th
i=1 t=1 i=1 t=1 =i

= A +A412—As.

By Lemma A.6(ii), we can readily show that

N T
2 § .
Ainn = ~NT ZZ [ o, a ( ! doit + (it — Bada,it)/XDa (xit — Bada,it) u?t
i=1 t=1
N T T
CN-1 2 N2 )
= T L v 0r (VD7) i R el
i=1 t=1 i=1 t=1
1 T
S 2 ( *1)

This result, in conjunction with (A.10) and the dominated convergence theorem (DCT), implies that
A1 12 =o0p (T‘l) and A; 13 =op (T‘l) . For A, 5, we have by (A.10)

N T
1 2, 1 1
Arp < H%%X szt,12(2 - hz('t) hgt)) § § x;t (X/X) xituzzt

— N T
1 1 _ @ 1 . 2 -
S NT H}%X% 12(2 =iy = hig”) | Amin WX'X NT ZZ zi||” uf; = Op (NT)™1).

It follows that A4; = 2T*1ﬁ Zf;l Zthl u?, +op (T’l) . For Ay we write

: -3 o Pt ’ 2 ! 3 (2)/ o2\ L 2y 2
Ay = NTZZ( (x@rxe)” X()/) N—ZZ Chra — <azit (xerx) X()U>
=1 t=1 L L
" NT chzt 1 ( Etl)/ ( ( )’X(l)) X(l)/ )
=1 t=1

= A2,1 + Ao — Agz, say.

By Lemma A.5(ii), Aoy = & SN @2 +Op((NT) "'+ T2+ N~1/2T-3/2) where the first term is Op(T1).
This result, in conjunction with (A.10) and the DCT, implies that A3 > = op(T!). By Lemmas A.5(i) and
A.6(i), A3 =Op ((NT)™1) . It follows that Ay = Zil u? 4+ op(T1). For A3, we have

1 L& (2) (2) x@ 1 d () () x(2) (2)
=4 i:lt:l

= A3,1 + Az o — Aszz + Asy, say.
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By Lemma A.5(i) and (ii), 43,1 = + Zf\il 2 +Op((NT) " 4+T7 24 N-Y27-3/2) and A3 3 = Op((NT)™1).
In addition,

-1 N T
1 1 1
2 2)1 v (2 2
|[Asq] < Hl;%x‘cim - 1‘ <NTX( 1 x( )) ﬁX( U Nigg‘wn Ut
= op(On7)Op (1) Op((NT)il/Q)Op (1) = Op(Til), and
1 -1 1 T 0
2 1 1 1 1
Asal < max|eh, —1] (NTX( )’ x ¢ >> Lxoy NT;;‘% i
= op(On7)Op (1) Op((NT)"H2)Op (1) = op(T1).
So Az = + Zf\il u? 4+ op(T~1). Combining the above results, we have
T p
T[CVip—CVig] = TZZ NZ@?—I—OP (1) = 262 — 52, (A.12)
i=1 t=1 i=1

where the convergence holds by Assumptions A.1(i) and A.2(i). Similarly, by using Lemma A.5(iii) and
Lemma A.6(i) and (iii), we can show that

T
N
N[CVis— CVi] —2—22 —?Za?ﬁopu)i%i—&?ﬂ, (A.13)
t=1

i=1 t=1
where the convergence holds by Assumptions A.1(i) and A.2(ii).
By using Lemma A.5(iv) and Lemma A.6(i) and (iv), we can show that

CVia—CVig

N T _ 2
= %ZZ [C?t,4 (Utt — ng)l< X )/X(4)> 1X(4)/U) - Cft,l (Uzt - a:( )y ( (1)/X(1)> X(l)/U>
1 N T
= ﬁ Z Z Cita — zt 1
2 _
% ZZ l 2, ( (X(4)’X(4)) X(4)’U> & (xgp' (X(U’X“)) 1X<1>’U)

N T
Ni Z Z [ & uald <X<4>/X<4>)’1 X~ 2 el (Xu)/X(l)) ! X(l)fU}

= A4 + A5 — 2A6, say.

2

2

As in the analysis of Ay, we can apply Lemma A.5(iv) and Lemma A.6(i) and (iv) to show that

N T
2
Ay = ﬁZZ(hgf)*hg))ui+OP (N"'+T7)
i=1 t=1
2 L [N-1 T-1 A 5 1, et
= WZZ NT + NgT +(xit_Ba)\da)\,it) XDQ/\ (xit—Ba/\da/\,it) uit+OP (N +T )
i=1 t=1
9 N T 9 N T
= (TN g X+ 0p (VD)) o 33 el w4+ op (NH 4+ 77)
=1 t=1 =1 t=1
9 N T
= (TN D D uitop (NTHHT7Y),
i=1 t=1
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N T 4
A5 = %Zzwg?' (X(2>’X<2>> XU 4 op (N"L+T7)
=1 t=1
1 & 1 &
= = i +=) uw+op(N'+T7
It follows that
N N T
2 1
(NAT)[CViy—CVia] = (NAT) (T‘l—&-N_l)ﬁZZuft NZ Zai +op(1
=1 t=1 =1 t:l

L2(14¢)52 — (62, 4 c02,) 1{c1 > 1} — (62, +52,) 1{c1 < 1}, (A.14)

where ¢ = lim(n 1) —00 (3 A %), €1 = lim(y,7)—c0 3, and the convergence holds by Assumptions A.1(i) and
A.2(i)-(ii). Combining (A.12)-(A.14) yields P (CVi 3 < CVj ) — 1 for m = 2,3, 4 provided max (62,,52,)
< 252.

Case 2: Model 2 is the true model. In this case, Models 1 and 2 are underfitted and Model 4
is overfitted and we will show that P (CVa2 < CVa,,) — 1 for m = 1,3,4. Let uq,it = o; + u; and
Ua = (Ua,11, -y Ua, 1T, -y Ua, N1, ---s Yo, NT) . Note that Uy = Do+ U where a = (a1, ...,an—1)’. Following
the steps to obtain (A.11), we can show that

Yit — gl(t) = Uq,it — mzt (/8(1) - ﬁ(l)) = Cit,1 (ua it — ;t (X,X)il X/Ua) . (A15)
Then
T
CVay = NT;; (1t — 2y (X'X) 7 X )2 4 NlTZU; = 1) (s — 7l (X’X)*IX/UQ)2
= A7 + Ag, say.

It is easy to show that by Assumptions A.1(i) and (iv)-(vi) and A.3(i)

N T
_ 1 / e / rov=1 v\
Ay = M;;(ai—xit(XX) X' Doa + ug — oy (X' X) XU)
1 N T
-1
— 3 (o X XD S Y or () 2

Il
-
o~
Il
_

7 zltl

This result, in conjunction with (A.10) and the DCT, implies that Ag = op (1) . In addition, we can follow
the analysis in Case 1 and readily show that C'Va 2 = <+ Zi\; 23;1 u?, +op (1) £l 2. Tt follows that

CVay — CVas 5 cax > 0. (A.16)
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To study CV3 3, we observe that

; 5(3) o
i =0 = o= o (B’ = 5V) = cina (“”” - ol (XOrx©) " x (3)’Ua> : (A17)
and
1 N £l (3) ( )71 2
CVay = F52.D <ua,it — ) (XBXG) X(?’)’Ua)
NT =1 t=1
;NI B ,
o o3 (e 1) (s = (xx)  x0, )
i=1 t=1
= A9+ Ay, say.

By Assumptions A.1(i), A.1(iv) and A.3(i), Lemmas A.4-A.5, and (A.10), we can readily show that

2
Ay = Z (al — (X<3>’X<3>) X' Doa+ g — 2 (X<3>’X<3>) X(3)’U)

N
>
N .
ZZ(%—SE 3 (X(‘S)’X( )> X®'p a> ZZuzt—FOp L caxy + 52,

i=1 t=1 7.1751

Z‘H Z‘H
S

and Ajp = op (1) . It follows that

OVas — CVaz 2 cax, > 0. (A.18)
To study CV3 4, noting that
R -1
Yit — yz(t) = Uit — xz(‘?)/ </3£f) - /3(4)> = Cit,4 <u¢t - xl(f)/ <X(4)/X(4)) X(4)'U> , (A.19)
we have
CVyy—CVos

2

N T B ,
= ZZ [c?t,z; (Uit - x%)’ (X(4)/X(4)> X(4)/U) — C?t,z <un _ x( ) (X(2)’X(2)) XQ)’U)

7 t=1

Il
s

(Cfm - C?t,Q) “?t

I

3~ 3~
M=
™=

«
Il
ol

t=1

N T 2 2
1 -1 -
+ﬁ ZZ [sztA (xl(f)/ (X(4)/X(4)> X(4)’U> _ Cz2t ) < (2)r (X(2)/X(2)) X(z)’U)
i=1 t=1
N T
ZZ [ 2 ua!] (4) (X(4)/X(4)) Xy - 2 Qunx( ) (X(2)/X(2)) X(Q)’U}
i=1 t=1

= Ay + Ajp — 2453, say.

Following the analysis of CV; 4 —CV ; in Case 1 and applying Lemmas A.5(ii) and (iv) and A.6 and (A.10),
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we can readily show that

N T
_ 2 @) 12 1
A = NTZ“_ZI(}% —h; )“ JFOP(N )
2 XL r-1
= N7 Z Z [NT + (23t — Baadax.it)' Xb.., (@it = Baxdax,it) — (@i — Bade.it) Xp,, (wit — Bada,it)

s
Il
-
~
I
i

BN
oy
[\v]
|
<
S
[]=
(]~
1
I/~
&
—
>
&
>
&
~—
=
d
N——
V)
TN
O
—
S
>
S
~
>
©
d
N———

T
- %Zﬁ?t+0p(N ), and
t=1
1 N T
Ay = NTZZ{MJ:S)( X@rx )) XU -y x(z)( <>X<2>) (Q)U}+0P (N1 4170

It follows that

%\2

T
Z %+ o 5252 - 52, (A.20)

t=1

5 N T
N [CVaq—CVasl = TZZ“
=1 1=1

where the convergence holds by Assumptions A.1(i) and A.2(ii).

By (A.16), (A.18), and (A.20), we have P (CV2 2 < CVa ) — 1 as (N,T) — oo for m = 1, 3,4 provided
=2 =2
Ong < 203,

Case 3: Model 3 is the true model. This case parallels Case 2 and we can analogously show that

CViy—CVaz Denx > 0,
CVzo—CV33 il enx, > 0,
T[CVss— CVis] 5252 — 52, > 0,

provided 52, < 262. Then P (CV33 < CV3,,) — 1 for m =1,2,4.

Case 4: Model 4 is the true model. In this case, Models 1-3 are underfitted and we will show that
P (OV474 < CV47m) — 1form =1,2,3. Let Uy, it = Attt Ua it = i+ itu, Uy = (U)\711, ey UN 1Ty ooy WA, N1,
uxnT)s and Ugy = (Uar, 11, s Uar 1T - UaA,N15 -, Uar,NT) . Note that Uyx = Doa+ DA + U, where
A= (A1,..., A\r_1)". Following the steps to obtain (A.11), now we can show that

. A1) -
i = 5 = warnie = 2l (B’ = ) = ia (anie — 2l (X'X) ™' X'V ). (A.21)
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As in Case 2, we can show that by Assumptions A.1(i) and (iv)-(vi) and A.3(iii),
A )
CVix = o2 20 D [tana — ol (X'X) ™ XU
1

N T
. 2 1
@i+ A — 2l (X'X) 1X’(Dag+DAA} +N—ZZ . +op (1

|

v =

N
M=
M=

—2
Cal X T 0.

N T 9
1 -1
CViz = F7 D2 o [UA it =y (X <2)’X<2>) X<2>’UA}
=1 t=1
1 N T @ B 4 @ 2 1 N T R
_ / 2y, 2 2)/ ) .
= ﬁ;; {)\txit (X X ) X DA)\} +N7T;;uit+op (1) = eax, +0u,
LSy B (yBr x®) " x @)y ?
CVis = NT Z Z Cit,3 |Vayit — Tyy (X X ) x®y,
=1 t=1
1 N T
= 7 » {a A (X(S)/X(S)) X(s)/Daa} u +op (1) 5 cax, + 72,
=1 t=1 i=1 t=1
and
1 LI A -1 2 1 NI B
OV = 577 303w [ =48 (XOXO) X O] 4SS i wop (1) £
=1 t=1 i1 =1

Then P (CVy44 < CVyyy) — las (N,T) — oo form=1,2,3. B

To prove Theorem 2.2, we introduce some notation and prove three lemmas. Let @; = (@i p+1, ..., Ui, 7,)’,

2 " . . . . 5 . R 4 (4
U= (t,..,ay), 2; = (@ s r sy )’y and Z = (24, oy 2hy)" where = g( t) = (u(t),. .7u§7t)_p+1)' for
t=p,...,T—1 Let u; = (Wi pt1,-,uir,), U= (ug, aoun), z = (b gy -y Uy 1), and Z = (27, ...,ZIN)/,

where Qi,t = (ﬂ'it: ...,’I'L'i7t_p+1)/ and ;s = Ujp — Uj. — U+ .. fort =p, ..., T —1. Let 4+ = yir — Yi. — Yt + 7.,

where ¥;., ¥+, and §.. are defined analogously to ., 4., and ...

Lemma A.7 Suppose Assumptions A.1, A.2 and A.4 hold. Then
. A /
() NLTP (Z/Z —Z Z) = Op(nnT),
B A /
(ii) 5 (20 - 2'0) = Op(ixz),
(iii) (Z/Z)_l Z'U — p = Op(nn7),
where Ny = (NT)fl/2 +T- '+ N-L

Proof. (i) First, we reparametrize Model 4 as

Yit = mztﬁ + Ol + )\t + Uit

where z}, and §* correspond to z;; and § after one removes the constant term, and « incorporates the

*

: Sk ok = ok ok Tk 7% T
intercept term now. Let &}, = =}, — =} — z7, + 27, where =}, =¥, and =¥ are defined analogously to u;., 4.,
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and @... Let §; = (41, ..., ¥i7)’ and Y = (41, .-, iin)" . Define &, X, ii; and U analogously. After eliminating
the individual and time effects o and A; from the above regression through the within and time demeaned
transformation, we can obtain the two-way within estimator of 8* given by ﬁ* = (X 'X ) X'Y. Then u( )
can be equivalently represented as

ait = it — ffft/B*
Under Assumptions A.1(iv)-(v) and A.2(iii)- ( v), we can readily show that B —B*=0p (Mn7)- Let 9
denotes the (j,1)-th element of 57 (Z VA / Z) where 5,1 =1,...,p. Then

A
P i=1t=p+1
| X 1 T
= ~T Z Z (uz},tfj _ui,tfj) (ui,tfl _ﬂi,tfl> t 5T Z Z (ui,tfj —ilz‘,t—g) (A
P =1 t:p+1 P =1 t=p+1
T
Zuzt j(ultl uztl)
i=1 t=p+1
= Va1 + 19jz,2 +Yj.3.
Noting that
Uiy = Yt — 5 xzt = Ui — (5 B ) Tty (A-22)

it is easy to show that ¥, = Op(?ﬁVT) Noting that Z _1 Uy = 0 for each ¢, we can apply Assumptions
A.1(iii)-(iv) and A.2(iii)-(iv) and show that

NTZ Zx” g1 =

i=1 t=p+1

(x?,tfj - i‘z*) (uz’,tfl — Uy — Uy + G..)
1

= —
3

[[M]=
(]~

i

I
<
I
3

+

(m'zt—j —Z;) w1+ Op (Nnr)
1

Il
3-
M-

] =

«
Il
-
~~
I
i
+

I
=
3
M-
M=

«
I
—

xj 4 juit—1+Op (nyr) = Op(1).

t 1

—+

P

It follows that

o= (0"~ 5") 57 Z S &0 iect = Orlayr)Op(1) = Or(ig).

=1 t=p+1
Similarly, 91,3 = Op(nyr). Then (i) follows. When p = 1, j and [ can only take value 1. In this case,
N T - . N T "
NlTp > im1 Zt=p+1 Lit— gui t—1 = ﬁ Doim1 Dote2 x7; quie—1 + Op (n7) = Op (nT) s Vj12 = Op(n7),

V15 = Op (1), and i (22 — Z'Z) = Op(1,1).
(ii) The analysis is snmlar to that in (i) and thus omitted.

()

(iii) For notational simplicity, we assume that p = 1 hereafter. Then we can simply write p, p, 4;,’ and

Uy 4, as P, P, UE? and 1ii;, respectively. Let 0., = @.;, — pt.;—1. Noting that iy = u; — ;. — Uy + 4.. and

'U'i,t—l =Ujt—1 — Uj. — U.p—1 + U.., WE have

g — pllgp—1 =  (Wir — puip—1) — (1 = p) @y — (U — pti.y—1) + (1 — p) ..
= vy —(1—=p)a;. —vs+(1—p)a..
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Then

(Z'2)"'Z7U—p

I I
N N
™M= 1=
NgERANE
fgw f:w
I I
N——— ~—
| |
M= 1]
= Il
IS IS
T i
o <
-
S
S
|
g
_l’_
-
!
=
N

1INy T
Uip—1vg — (1 —p E E ii? -1 E E i p—1U;.
i—1 t=2 i—1 t=2 i—1 t=2

where the third equality follows from the fact that Zf\; il;; = 0 for each t. Noting that Zle i, = 0 for
each i, we have by Assumptions A.1(i), (iv) and A.2(iii)-(iv)

Il
Vo
] =
B
S
|
~
|
M=
[M]=

¥ (B s
— Ui p—1Uj. = s Uip — Ui | Use = — 5 Ui Uy
NT i=1 t=2 NT i=1 NT i=1
| X
= —— (wir — Uy — G +0.)a
NT; (2 1 (]
= Op (T_1)+Op (T 2)+OP (N )+Op( ) Op( )
Similarly,
LN L N L T A | N
— ii-7t_1v-t = — Ui t—1Vit — 7 ﬂ'.v't_i ’l_L,t_lllt—Fi ﬂvt
NT 2 2P = N 2 2 et T T 2 2 g 2 2 et g 2 Qe
= O0p ((NT)V?) 4 0p (T7) +0p (N71) + 0p (N'T7Y)
= op (D) N T

In sum, we have (Z'Z) "' Z'U—p = Op(nyy). ®

To simply the proof, we assume that p = 1 hereafter.

Lemma A.8 Let & V(l) = x(? pxglt) 1 and Ky = NT1 El 1Zt Qvltxt (X(l)’X(l)) ' xy forl =
1,2,3,4. Suppose that Assumptions A.1(iv)-(v), A.2(#i)-(iv), A.4(w), and A.5(iii)-(iv) hold. Then

(Z) KlNT = Op ((NT)il) s

(ii) Koyt = 372 SN S vt + Op(NT) ™ +T72),

(iii) Ksnt = 57 Zf\%& Z?:Tz vit[(1 = pL) 1] +NOP((TNT)_1 +N72),

() K4NT = N Yita Do Vit gy Yy Dopa itl (1= pL) ] + OP(N_ +T72), Kinr —
KQNT NT1 27, 1 Zt 2 U”[( pL) ﬂf]+0p((NT)_l+N72)7 a’nd K4NT7K3NT NT] Zt 1 Zt 2 'U7tu7
Op((NT)™" +T72).

Proof. (i) Noting that ic( ) = Tit — PTit—1 = T, we can readily apply Assumptions A.1(iv)-(v) and
A.4(v) to show that

N T
_ 1 ™ 1y~ Ly
Kint = NT El tEZvitxit (X'X) XU

<.

1 N 1 ! 1
2 : / /
— i it — i —X'X — X U
= N X 2 2Ut(.’17t /).’E ,tfl) <NT ) N—T

i=1

= Op ((NT) 1/2) Op (1) Op ((NT)*l/Q) = 0p (NT)™Y).
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(ii) Note that i“g) = xg) - ,r.mz:l(»?tl1 = ((xzt — pxi,t_l)' s (dait — pda,it—l)/)/ = ( mda Zt) . By Lemma
A.1 with D = D,,, we have

Koyt = ZZUWV(Z (X(2)/X(2))71X(2)/U

NT1
=1 t=2
X5 X5 B, X'U
- NT ZZU”( " ‘”>< B X: (DDl 4 BLXEB ><D’U>
L1 t=2 —B,X},, (DiDa) "+ B,X}Ba o
S H X XU i B X5 XU 8, LU i (P00 DL
i—1 t=2
+do¢1tBt,1XBaBO¢D<IJ¢U}

= Konti — Kont2 — Konts + Kont,a + KonT 5, say.

As in (i), we can show that Konr 1 = Op((NT)™") by Assumption A.1(iv)-(v). Noting that dpy iptn—1 =1
for i <N —1 and do Nt = —tn—1, we have by (A.1)

| XT
—1
NT. Z Ultdix it (D(/)(DO() DaX
NhH o

- 1

= NTT1Z.§::U”da" |:<IN 1= pIN-1N-1 T )@LT:|X
N1 T T

1 1 1, N-1 ,

- NTT, zgvlt[G{a,zt NN-1 N)®LT}X+NTT ; Nt(( NN-1 T >®LT>X

N T
1 -1
N szdd/a,it—l(D;Da) DX

1 , 1 ,
azt 1 IN—l—NLNALN,l,—NLNﬂ Qup| X

T T
1 1 1 1 N -1
tZ [( onyit—1 NLIN—1a—N> ®Lér} X+ mzvm <<_NL§V_1’N> ®’//T> X

S
5

NTT1 ; poet
, N1 Lz
— _ /
= O Zv” ) + NT, va (Zn. —Z.)
i=1 t=2 t=2
|
BN
Then ﬁ Zf\; ZtT:Q Uit(z:x,itB/a = NT1 Zl 1 Zt Uit (T —2.) = Op(T~1 + (NT)_l/Q) by Assumptions
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A.4(iv) and A.5(iii) and

T
3 !
E E :Uitda7itBa

i=1 t=2

Kont2

X'M
(o)

Similarly, we can show that

XU

Op(T~' + (NT)"*)0p (1) Op((NT)"/?) = Op (N 1/2T*3/2+(NT)*1).

-1
Kavrs < NT1 2; Vil < X' Mp, X) 'NlTBaD;U‘
= Or ((NT)*”) Op (1) Op(T™" + (NT) /%) = Op(N~V21=32 4 (NT) 1),
-1
ovrs < | S it | (. x) | [peoie]
= Op (T— +(NT)_1/2) Op (1) Op(T~L + (NT) V%) = Op(T~2 + N~1771).
and
. 1—p N T . .
KonTa = NT1 ;;vnda it D,) "DLU = NT ;;vit (@;. —@..)
1—p _ -1
= V7 ;;vtu +Op((NT)™).
It follows that Koyt = Jl\r;T[; Zfil Zf:z Vil + Op((NT)*1 +T72) as (NT)71 L T2 > ON-1/27-3/2 by

the Cauchy-Schwarz inequality.

(iii) The proof is analogous to that of (ii). The major difference is that we need to use the fact that

dl/\’itLT_1 =1fort S T —1 and da,iT = —l7-1, and that by (AG)

Z Z vied) iy (DADA) ™" DAX

NT1 i=1 t=2

1 N T ] 1

= N2T1 ;ngitdk it |:LN ® <IT 1 TLT 1LT 15 TLT1>:| X
N T-1 N

1 ’ L, 1 1 , 1, T-1
= N2T, ; ;Uzt |:LN ® (dA it — plr 1’_T>} X+ NTTIZWT |:LN ® Tplr-v T

] N1 | N
= 7NT Z Vit (ft J_“,,,)’—F 7NT ZULT (i‘T—Zf NT ZZU” ,

R i=1 L —
and
1 N T 1 N T 1
U ’ =1 . o / L , B
NT; ;;Uitd,\,itq (D\Dx) " DyX = NTTl ;;vztd)\,itfl |:LN ® <]T1 TLT—lefh
N T
1 1 1
= N2T1 szit |:L9V ® <dl)\7it_1 - TL'IT—I? —T):| X
i=1 t=2
;] T
= NT Vit (i’.t,1 — .’E..), .
1

[

i t=2
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The dominant term then becomes

NTl Z Z’Uﬁd}\ it D;Dk)il D;\U = NTI Z Z’l}it [(ﬂt — ﬂ) — p(’ZTL.t_l - ’l_l,)]

i=1 t=2 i=1 t=2

S - phya - 0n((T) )

=1 t=2

(iv) The proof is a combination of (ii)-(iii) as in that of Lemma A.5. m

2

Lemma A.9 Let & “(l) = 1:(? ngz 1 and Lyt = NTl ZZ 1Zt ) (“(l) (X(l)’X(l)) (l)’U> forl =
1,2,3,4. Suppose that Assumptions A.1(iv)-(v), A.2(iii)-(iv), A.4(iv), and A.5(iii)-(iv) hold. Then

(Z) Lint =0Op ((NT)_I) s

(ii) Lont = (1 — p)* £ SN @2 + Op (NT)~' +T72),

(iii) Lsnt = 3 31— [(1 — pL)ﬂt] +O0r((N T)"l+ N2,

(iv) Lant = (1 - p)? ~ Zl VUG Zt (1= pL) s> +0p (T2 + N72), Lanr — Lant = 7 25:1
(1= pL)a.(* +Op (NT)"' + N~2), and Lant — Lant = (1 —p)> £ SN @2 + 0p (NT)"* +T72),

Proof. (i) Noting that i‘gtl) = Ty — pTi—1 = L1, we can readily apply Assumption A.1(iv)-(v) to show
that

N T
-1 1 _
Liny = UX(X'X) 1ﬁzzg@ﬁc;t (X'X)"' x'U
i=1 t=2
-1 1 2 | N T
< |(Fe) | [zere] R g mes| -or@n
i=1 t=2
Padl  Fad
(ii) By Lemma A.1 with D = D,, and using m() (2)/ ftx”/ it @ |, we have
da,itmit da,itda,it
11 K& (2) £ (2)r !
Loyy = U'X® (X<2>/X<2>> TZZ 3 ( x@rx 2 )) x@y
i=1 t=2

T
X; ~X; B 1
_ /X /Da D, D, V('Q) (2)/
wx.u )< —B, X}, (D\Do)"'+BLXpB, | NT Z 2 H

(e}
y ( X5, ~X}p, Ba ) ( X'U )
~B\X}  (DiDa)' + BLX}B, D.U
A 1 iiu(z)u(z)/ G
= L 82) N Tit Tiy ¢
N T . 1 N T 5
= ClNT ZZthmzt 1+C2NT ZZ; altdgx,itCQ+2<1N722;i'td;,it<2

i=1 t=2
= Loyt + Lont2 +2LanT3, say,

where ¢, = X} X'U—~ X} BaDLU and ¢, = —BL X} X'U+ (D, Do) " DLU + B, X3, BoDU. It is casy
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to show that Loy = Op((NT)_1 + 1

LonT2 UXXp B

=1 t=2

-1 1

+U'D,, (D.,D,,)

s
ol

=
=

WE

+U'DoBL X, Borr

5l

~

~+
||
[\

—_

Mw

—2U' XX}, Ba~ore

=
e

- IM=1[M]=
il
[\

—_

Mﬂ

—2U'X X}, Ba o,

“NT,

'ﬂ
\T

+2U'D,, (D.,
=1 t=

Noting that da 4B =d., it (Dg, Do) ' DLX = (1—p) (% —.), we have
2 1 — — — — N/
szattdazt =0=-p)" 52 @ -2.) @ -2.)=0p01)
i=1t=2 i=1
This, in conjunction with Assumption A.1(iv)-(v) and Lemma A.5(i), implies that
-1? 1 2
L < ||B, dwd —X'Mp X —X'U|| =0p((NT)™Y),
< NTZZ H(NT b ) ‘NT P((NT) )
Lon < ZZd d, B LY 'Mp, X ——B,D\U Q:OP(T’2+(NT)_
2NT,23 > NT11t2 o, it %o it NT NT
Noting that da 4 (DLDY) ' DU = (1 —p) (@ — @..), we have

N T N
4 / -1 1 j / / 2 1
Lont2e = U'Do (DyDa) N;;da itdpy 1 (DiDa)” 'DLU = ;
LN
- 2 —2 -1
= (1-p) N;Ui.“rOP((NT) )
Analogously, we can show that Lont2; = Op(T_2 (NT)fl) for j = 4,5,6 and Loyrs = Op(T72 +
(NT)_l). It follows that Loyt = (1 — p)2 % ZZ L2 4+ 0p (( )"t + T_2) )

(iii) The proof is analogous to that of (ii) with the major difference as outlined in the proof of Lemma

A8(iii).

(iv) The proof is a combination of (ii) and (iii) as in that of Lemma A.5(iv) and thus omitted.

&<

ltd

2

e ztd

it

(e ltdoz it (

o ’Ltda it (D;Da)_l

%) by Assumptions A.1(iv)-(v) and Lemma A.4(i). For Lanr,2,

NT Z Z doivdl yBL XD X'U

D.D.) ' D.U

[e% sz;XB/aBQD;U

DU

B.X} Bo,DLU

- Nlededa #BLX} BaDLU

Lont21 + Lant22 + Lant 23 — 2LonT 24 — 2LoNT 25 + 2L2NT 26, S3Y.

Proof of Theorem 2.2. Again, we assume that p = 1. Noting that

pop = (22) 20—

b,



we have p—p = Op(nyr) by Lemma A.7 and the triangle inequality. Noting that (v — pysi—1) — (yl(t m) _

Z)lyz(t )1) (yit — pYit—1) — (yz(t o - 0731(@1) +(p— P)@Z(TL — ¥Yit—1), we have
1 ¢ (m) _ ro0m) ]2
CV*(m) = NT, Z [(yzt = PYie—1) = G — D' 1)}

<
l

I

L5 ]2, (P 0) e

- NTll;t:Q [(yit—pyi,m)—(yit — PYip - 1)} N, ;;(y” L= Yii1)
A ) N T
NT1 ZZ yzt 1~ Yit—1) {(yit — PYit—1) — (an) —pglﬁj;?l)}

=1 t=

2
= CV (m)+ CVy (m) + CV5 (m).

As in the proof of Theorem 2.1, we will use CV;*, and CV}%, (j) to denote CV* (m) and CV}* (m) when
the true model is Model I. Note that C'V}",, = 22:1 eV, (9) -

Case 1: Model 1 is the true model. In this case, Models 2-4 are all overfitted models and we will show
that P (CVy, < CVy,,) — 1 for m = 2,3,4. When Model 1 is the true model, we have by (A.11)

(Yir — 331(?) —p(Yit-1— @1(115)—1)
R S ()7 (Xa)/X(n)‘l X0yl —P Ny — 2O (quX(l))‘lX(z)/U
0N gl [ T e
it i,t—1
-1
. [Un 0 (X(l)’X(l)) X(z)/U] + peins [u” - (X(l)/X(l)) X(”’U] . (A.23)

where ig? = x(l) pasgz LGy =(1— h(l)) yand s = ¢y — cip—1y for [ =1,2,3,4. By Lemma A.6, we
have

Max x| = op (Onr) for1=1,2,3,4. (A.24)
Note that
1 N T . 2
OV (1) = o S0y [ — 2 (X0 X 0) 1 X O]
Li=1 t=2
R @y ?
2 _ W7 x (1)y=1 x (W) }
. XWrxy-tx
+NT1 ;;%ﬁ,l ['Uz t—1 — T; ( ) U
9, N T
e MIEH (v = & (XD XO) XD ugyg = L, (X0 X0 x O
—1t=2

= CVf 1 (L) +p CVf:z (1,2) - QPCVf:z (1,3), say

We first study CVy*y (1) — C'Vy*; (1) . Following the study of C'Vy 2 — CV1 1 in the proof of Theorem 2.1, we
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can readily apply Lemmas A.8(i)-(ii) and A.9(i)-(ii), Assumptions A.4(ii) and A.5(i) to show that

- )2 o 2(1-p) g~y
Ty [Ckag (1,1) = Cvyy (1, 1)] = NT1 Z Z — Za? TN Zvitﬂi. +op (1)
—2 i=1 i=1 t=2
N T N
2 N(1=p)P 0 20 (1—p) -
= ]\/’7‘11 ZZ 22t+ N ZU? - N Zvl Uj +0P(1)
=1 t=2 i=1 =1
= : ii“2—ﬁi52 +Ei[@ —(I=p)u.]" +op(1)
NT1 — 1t N — - N g 2 0

Lt 2512) -2
where we use the fact that ;. = T% Zthz vip = T% Zthz (uit — puig—1) = (1 —p) ;. + Op (T71) . Simi-

larly, using (A.24) and following the analysis of C'V; 2 — CVy 1, we can readily show that T1[CVy5 (1,2) —
OV (1,2)] = op (1) and Ty [C'Vyy (1,3) — CVy*y (1,3)] = op (1) . It follows that Ty [C'Vy*, (1) — CVy* (1)] il
262 — 52,.

By (A.11) and (A.23),
1

CVi@) = (p=plym 2

T z 5
Z (yz(t) 1 yi,t—l)
=2

N T 2
R 1 -1 N
= (p—p)? E E Gy [uit - mz(-?/ (X(l)’X(l)> X(l)’U} =(p—p)?D1, (1), and

=1 t=2
1 N T
* ~ . l R l R l
C‘/lxl (3) = NT1 (p - p) Z Z (yf,t) 1 yl t— 1) |:y7,'t - y,L(t) — P(yi,t—l — y’L(,t)fl):|
i=1 t=2
R . B
= (p—») { >k |:uit e (X(z)/X(z)) X(sz} {U = (X(l)’X(l)) X(l)’U}
NTl i=1 t=2 7

N T »

NLTl ZZ Cit,1 7it,l {un - x X(l)/X(l)) X(l)/U} [u - x(l)/ (X(”’X(l)) X(”’U] }
=1 t=2

= (p—p){D1,(2)+D1,(3)},

As in the analysis of CV; o — CV; 1, we cam readily show that D; 2 (1) — D1 (1) =Op (T’l) , D1y (0) =
Op ((NT)™') and Dq (€) = Op (T7!) for £ = 2,3. Then

Ty [CVi (3) = CVi (3)] = (p = p)” Op (1) = 0p (1) and T1 [OVy5 (3) = VY, (3)] = (p— p) Op (1) = 0p (1).

In sum, we have

5 N T 7 & N ,
T [CVi, = CVy] = NT, Z Zvizt N Z@z> Z u;.]" +op (1)
i=1 t=2 i=1 i=1
L o2 52, (A.25)

Similarly, by using Lemma A.8(i) and (iii), Lemma A.9(i) and (iii), Assumptions A.4(ii) and A.5(ii) we can
show that

N T T
TV —OVey] = [ - S 2 )+ XS [ — (1 - L) aaf? + 0 (1)
’ ’ N = o Y t=2 ! I =
L 252 — 52, (A.26)
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where we use the fact that o.; = & Zf\il Vit = Zf\il ® (L) uj = @ (L) .. By using Lemma A.8(iv) and
Lemma A.9(i) and (iv),

9 N T 1 N 1 T
(NATY)[CVi4—CVig] = (N/\Tl){(Tl +N7 ]\TZZW NZ T }+OP

i=1 t=2 i=1 t=2

e (L4¢)52 — (62, +co2y) L{cr > 1} — (e2, + G25) 1{e1 < 1}, (A.27)

where ¢ = lim(y7)—.oo (3 A %) and 1 = lim(y )00 2. Combining (A.25)-(A.27) yields P (CVyy < CVY,,)
— 1 for m = 2,3,4 provided max (52,52,) < 252.

Case 2: Model 2 is the true model. In this case, Models 1 and 2 are underfitted and Model 4 is
overfitted and we will show that P (C’Vz’fz < C’VQfm) — 1 for m =1,3,4. Let uy,;+ and U, be as defined in
the proof of Theorem 2.1. Following the steps to obtain (A.15), we can show that

(yir — yz(t)) P(yz’,t—1 - 371(115)71)
1 - _
= —5 [uaﬂ-t — 2 (X'X) IX/UQ} _ P(l) _ {Ua,itfl —z,  (X'X) 1X/Ua]
1- hit 1- hi,t—l 7

Cit1 [(1 —p)ai F o — &, (X'X) X’Ua} + prin [ua,it_l — (X x) X’Ua} . (A.28)

Then

* Qg P / =1 v/ 2
C‘/Q,l = NTl Z Z |: Oél =+ Vit — it (X X) X Ua:|
i=1 t=2

NT Zz%tl {ut“t 1= Ty (X/X)ilX/Uar

=1 t=2

20 Z Z ity | (1= p) i + v — 4y (X'X) 7 XU [t = ooy (X'X) 7 XU
i=1 t=2
= Doy (1)+p*Day (2) + 20D (3), say.

It is easy to show that by Assumptions A.1(i) and (iv)-(vi), A.4(ii), and A.6(i)

Y / —1 v/ 9
D21 Nle |: o7 zt(XX) XDaQ:| szlt+op _>C(1X+U

i=1 t=2 i=1 t=2
In addition, Da(2) = op (1) for £ =2,3. Thus CV5'y = ¢, ¢ + 2. Following the analysis in Case 1 and
noting that

(yit — 371(3)) - P(yi,tq - Z)Z(Qt)—l)

_ 1 WUip — (2) (X(2)/X(2)) x| _ P Uip_1 — m( )/ (X(z)/X(g))_lx(z)/U
1_1®@ _ 3@
1—hy 1 hi,tfl

Cit2 [vn — &y (X(Q)’X(Q)) X(Q)’U] + pit 2 |:Uzt -y (X(Q)’X(Z)) X(Z)’U} :

we can readily show that CV5', = ﬁ SN S v 4 op (1) Lt 2. Tt follows that

CVsy — CVsy Loct x> 0. (A.29)
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To study CV5'5, noting that

(yit — yz(t)) p(Yii—1 — yﬁ),l)
1 f ( f
= gl — 2 KO XO) KOV - P fug e — 2l (X X)X O]
1- hit 1- hi t—1

= cusl(l— p)ay +vit — gf(?’)’(X(3)’X(3))*1X(3)’U | + poit.s[tiait—1 — mz( t)ll( @) x 3 )) Lx®ry Ual,(A.30)

we can follow the analysis of CV5; and show that by Assumptions A.4(ii) and A.6(i)

N T
, 1 I (3 3) ]2
CVoy = NT; Z Z _(yit - y§t)) — p(Yit—1 — y,§7t)_1)}

. 2
(1—p)ai + vy — 22 (X<3>’X<3>) X<3)'Ua)} +op (1)

1 2 ;] MT
(1= p)a; -2 (X&' x®) X“)’Daa} o YUY v +op (1)

T
i=1t=2 "
T

=1 t=2 NT i=1 t=2
i ca,X)\ + Oy
It follows that
CVss—CViy Doct i >0, (A.31)

To study CV5',, noting that

(Wir — 95)) = plyia—r — 93-1)

1 -1 -1

T {uit ol (xrx@) X(4>/U} B {uit L, (X0 x®) X(4>/U}

1= hy L—=hii,

—1 —1
= cia {uitfif)’ (x@rx®) X<4>'U] + psita [um_l — ol (xrx @) X<4>’U}, (A.32)
we have

CV2*,4 - CV2*,2

N
1 2 2
= [ (- OO XY (- 2 ) x )
i=1 t=1
p2 N T ny 2 2
+ﬁ ZZ [%‘215,4 (ui,t—l _ a:g’t),l(X(4)’X(4))*1X(4)’U) _ %’%,2 (un L — x( ) (X(Q)’X(Q))”X@)’U) ]
i=1 t=1
9, N T
+ /} Z Z [Cit,4%it,4 (vlt _ :U(4)’(X(4)’X(4))*IX(‘*)’U) (u = m( t)/ 1(X(4)’X(4))*1X(4)’U>
i=1 t=1
it (%t _ x(?)/( (2 )/X(2))—1X(2)/U) (ui,t - x( ) (X(z)’X(Q))_lX(Q)’U”

D2’4 (1) + p2D2’4 (2) - 2pD274 (3) , Say.
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For Ds 4 (1), we further make the following decomposition:

| N7
Dy4(1) = NT Z Z (Chha = o) Vi

=1 t=1
1 N T 1 2 1 2
+W ZZ [Cfm (ai"gf)’ (X(4)/X(4)) X(4)’U> _ C?t,z (fgf)/ (X(z)/X(z)) X(Q)’U>
i=1 t=1

|
3l
-
(]
s

&, i (X<4>/X<4>)‘1 XOT - 2,52 (X@)/X(a))‘l X(2)/U}

= D24(1,1 +D24(1,2)—2D2’4 (1,3)7 say.

s )

Following the analysis of CV"y — CVy"; in Case 1 and that of C'V3 4 — CVa ;1 in the proof of Theorem 2.1,
and applying Lemmas A.8(ii) and (iv) and A.9, (A.10) and (A.24), we can readily show that

9 N T
Dy4(1,1) = ]\FlN—T1 vat—#oP(N’l),
i=1 t=2
1 T 4 2 1 2
Doy (1,2) = ]\;TZZKiﬁf)’(X(“)’X(‘*)) X(4>U> —(;fl(f)/(x(z)/)(@)) X(2)/U> +op (N7
=1 t=2
1 T
= —Z[(l—pL)ﬂt] +op (N7"), and
Liz
1 L& o (1) (4) v (4) -1 (4) < (2)/ (2) y(2) -t (2) -1
Da(1,3) = = vit[mit (X X ) X@y - z2 (X X ) X U]+0p(N )
=1 t=1
1 N T
— . _ - -1
= Nﬂ;;m(l pL) 4] +op (N71)

It follows that N - Dy (1) = 525 Yoiey Dima v — 2 Y003 + 2 Yy [ — (1= pL) @]’ + op (1).
Similarly, we can show that Dy 4 (¢) = op (N _1) for ¢ = 2,3. Consequently, we have by Assumptions
A 4(ii) and A.5(ii)

T T
N [CV5y — CV5y] = 2 SN k- g > vh+op(1) L o52 52, (A.33)
3 1

By (A.29), (A.31), and (A.33), we have P (CVy, < CVy,,) — 1 as (N,T) — oo for m = 1,3,4 provided
52, < 252.

Case 3: Model 3 is the true model. This case parallels Case 2 and we can follow the analysis in Case
2 and show that P (CVy'3 < CVy,,) — 1 for m = 1,2,4. The details are omitted for brevity.

Case 4: Model 4 is the true model. In this case, Models 1-3 are underfitted and we will show that
P (CV4’f4 < C’V4’jm) — 1form =1,2,3. Let uy i, Uax,it, Ux, and Uy be as defined in the proof of Theorem
2.1. Following the steps to obtain (A.23), now we can show that

(yit — @z(tl)) - P(yz‘,t—l - @1(115)—1)
1
= e~ (X)X U] -

it it—1

= cual(l=p)a;+ (1= pL) M+ vig — T (X' X)X Uan] + poein 1 [Uanic—1 — m;t_l(X’X)*lX’UaA](A.?A)

a1 = 2 (X)X U
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where L denotes the lag operator. As in Case 2, we can show that by Assumptions A.4(iv)-(v) and A.6(iii),

N T N T
1 y _ 2 q
OVir = 5 200 [ pas+ (1= pL) A = &, (X'X) ™ X' (Do + DaN)| 4 5 22D vl +0p (1)
i=1 t=2 i=1 t=2
E) Cax, X + 6121

N T 2 N T
1 L (2)7 2 N w2 1 2
cvy, = 1— pL) Ay — & (X( ) x( >) XDy A : 1
E)CKX +512;7

CVis

N 2 N T
1 y N 1
=3y [(1 e — 2 (X<3>'X<=”>) X(S)’Daa} T S50 4 op (1)
N i=1 t=2
P

and OV, = w SN S, 03 +op (1) 5 62. Then P (CVyy < CVy,,) — 1as (N,T) — oo for m =
1,2,3.
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Table 1A: Frequency of the model selected: static panels, p =0

True model Model 1 Model 2
Selected model M1 M2 M3 M4 M1 M2 M3 M4
N=10 T=10 0.897 0.059 0.038 0.006 0.006 0.913 0 0.081
AIC N=10 T=50 0.971 0.028 0.001 0 0 0.999 0 0.001
N=50 T=10 0.962 0 0.038 0 0 0.932 0 0.068
N=50 T=50 1 0 0 0 0 0.999 0 0.001
N=10 T=10 1 0 0 0 0.136 0.864 0 0
BIC N=10 T=50 1 0 0 0 0 1 0 0
N=50 T=10 1 0 0 0 0.411 0.392 0.197 0
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.649 0.134 0.157 0.060 0 0.739 0.001  0.260
BIC: N=10 T=50 0.939 0.060 0.001 0 0 0.999 0 0.001
N=50 T=10 0.934 0.001  0.065 0 0 0.895 0 0.105
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.931 0.039 0.030 0 0.007 0.961 0 0.032
CV N=10 T=50 0.974 0.026 0 0 0 1 0 0
N=50 T=10 0.963 0 0.037 0 0 0.965 0 0.035
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.808 0.143 0.041 0.008 0.005 0.944 0.001 0.050
CV* N=10 T=50 0.959 0.040 0.001 0 0 0.999 0 0.001
N=50 T=10 0.938 0.013  0.049 0 0 0.944 0 0.056
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.877 0.076  0.042  0.005 0.044 0.903 0.014 0.039
CV**  N=10 T=50 0.965 0.034 0.001 0 0 0.999 0 0.001
N=50 T=10 0.953 0 0.047 0 0 0.945 0.001  0.054
N=50 T=50 1 0 0.001 0 0 0.999 0 0.001
True model Model 3 Model 4
Selected model M1 M2 M3 M4 M1 M2 M3 M4
N=10 T=10 0.008 0.001 0.898 0.093 0.003 0.009 0.006 0.982
AIC N=10 T=50 0 0 0.946 0.054 0 0 0 1
N=50 T=10 0 0 0.999 0.001 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.200 0 0.800 0 0.740 0.029 0.011 0.220
BIC N=10 T=50 0.349 0.278 0.373 0 0.404 0.561 0 0.035
N=50 T=10 0 0 1 0 0.542 0 0.413 0.045
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.002 0 0.758 0.240 0 0.002  0.001 0.997
BIC, N=10 T=50 0 0 0.902 0.098 0 0 0 1
N=50 T=10 0 0 0.999 0.001 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.010 0.001 0.950 0.039 0.007 0.019 0.010 0.964
CV N=10 T=50 0 0 0.976 0.024 0 0 0 1
N=50 T=10 0 0 1 0 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.008 0.005 0.856 0.131 0.014 0.023 0.006 0.957
CV* N=10 T=50 0 0 0.959 0.041 0 0 0 1
N=50 T=10 0 0 0.989 0.011 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.020 0.003 0.904 0.073 0.021  0.026 0.122 0.831
CV*™ N=10 T=50 0 0 0.965 0.035 0 0 0 1
N=50 T=10 0 0 1 0 0 0 0.005 0.995
N=50 T=50 0 0 1 0 0 0 0 1
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Table 1B: Frequency of the model selected: static panels, p = 1/4

True model Model 1 Model 2
Selected model M1 M2 M3 M4 M1 M2 M3 M4
N=10 T=10 0.607 0.318 0.034 0.041 0.006 0.893 0 0.101
AIC N=10 T=50 0.718 0.282 0 0 0 1 0 0
N=50 T=10 0.760 0.194 0.028 0.018 0 0.915 0 0.085
N=50 T=50 0.855 0.145 0 0 0 1 0 0
N=10 T=10 0.997 0.003 0 0 0.106 0.894 0 0
BIC N=10 T=50 1 0 0 0 0 1 0 0
N=50 T=10 1 0 0 0 0.313 0.590 0.097 0
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.337 0.428 0.077 0.158 0 0.742 0.001  0.257
BIC:; N=10 T=50 0.646 0.35 0.004 0 0 0.995 0 0.005
N=50 T=10 0.585 0.334 0.039 0.042 0 0.889 0 0.111
N=50 T=50 0.883 0.117 0 0 0 1 0 0
N=10 T=10 0.694 0.268 0.027 0.011 0.007 0.949 0 0.044
CcvV N=10 T=50 0.731 0.269 0 0 0 1 0 0
N=50 T=10 0.840 0.125 0.028 0.007 0 0.954 0 0.046
N=50 T=50 0.870 0.130 0 0 0 1 0 0
N=10 T=10 0.738 0.210 0.036 0.016 0.013 0.935 0.002 0.050
CV* N=10 T=50 0.950 0.049 0.001 0 0 0.999 0 0.001
N=50 T=10 0.898 0.052 0.047 0.003 0 0.946 0 0.054
N=50 T=50 0.999 0.001 0 0 0 0.999 0 0.001
N=10 T=10 0.858 0.093 0.042 0.007 0.184 0.743 0.039 0.034
CV*™ N=10 T=50 0.960 0.039 0.001 0 0 0.999 0 0.001
N=50 T=10 0.952 0.001  0.047 0 0.027 0.867 0.061 0.045
N=50 T=50 0.999 0 0.001 0 0 0.999 0 0.001
True model Model 3 Model 4
Selected model M1 M2 M3 M4 M1 M2 M3 M4
N=10 T=10 0.006 0.001 0.575 0.418 0.002 0.011 0.005 0.982
AIC N=10 T=50 0 0 0.633 0.367 0 0 0 1
N=50 T=10 0 0 0.765 0.235 0 0 0 1
N=50 T=50 0 0 0.830 0.170 0 0 0 1
N=10 T=10 0.238 0.003 0.752 0.007 0.648 0.051 0.011 0.290
BIC N=10 T=50 0.367 0.39 0.243 0 0.379  0.599 0 0.022
N=50 T=10 0.002 0 0.998 0 0.505 0 0.333 0.162
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.001 0.001 0.372 0.626 0 0.002 0.001 0.997
BIC; N=10 T=50 0 0 0.542 0.458 0 0 0 1
N=50 T=10 0 0 0.593 0.407 0 0 0 1
N=50 T=50 0 0 0.870 0.130 0 0 0 1
N=10 T=10 0.012 0.005 0.714 0.269 0.003 0.021 0.008 0.968
CvV N=10 T=50 0 0 0.724 0.276 0 0 0 1
N=50 T=10 0 0 0.871 0.129 0 0 0 1
N=50 T=50 0 0 0.872 0.128 0 0 0 1
N=10 T=10 0.011  0.005 0.773 0.211 0.01 0.018 0.02 0.952
CV*  N=10 T=50 0 0 0.951 0.049 0 0 0 1
N=50 T=10 0 0 0.950 0.050 0 0 0 1
N=50 T=50 0 0 0.999 0.001 0 0 0 1
N=10 T=10 0.016 0.006 0.888 0.090 0.023 0.016 0.348 0.613
CV*™ N=10 T=50 0 0 0.964 0.036 0 0 0 1
N=50 T=10 0 0 1 0 0 0 0.184 0.816
N=50 T=50 0 0 1 0 0 0 0 1

48



Table 1C: Frequency of the model selected: static panels, p = 1/3

True model Model 1 Model 2
Selected model M1 M2 M3 M4 M1 M2 M3 M4
N=10 T=10 0.472 0.438 0.031 0.059 0.006 0.887 0 0.107
AIC N=10 T=50 0.566 0.433 0.001 0 0 0.999 0 0.001
N=50 T=10 0.446 0.491 0.019 0.044 0 0.914 0 0.086
N=50 T=50 0.534 0.466 0 0 0 1 0 0
N=10 T=10 0.987 0.013 0 0 0.104 0.896 0 0
BIC N=10 T=50 0.998 0.002 0 0 0 1 0 0
N=50 T=10 1 0 0 0 0.283 0.646 0.071 0
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.239 0.516 0.048 0.197 0.001 0.743 0.002 0.254
BIC:; N=10 T=50 0.474 0.519 0.005 0.002 0 0.993 0 0.007
N=50 T=10 0.277 0.619 0.019 0.085 0 0.885 0 0.115
N=50 T=50 0.601 0.399 0 0 0 1 0 0
N=10 T=10 0.541 0.415 0.022 0.022 0.007 0.940 0 0.053
CcvV N=10 T=50 0.578 0.422 0 0 0 1 0 0
N=50 T=10 0.548 0.412 0.021 0.019 0 0.951 0 0.049
N=50 T=50 0.557 0.443 0 0 0 1 0 0
N=10 T=10 0.694 0.251 0.037 0.018 0.02 0.925 0.003 0.052
CV* N=10 T=50 0.945 0.054 0.001 0 0 0.999 0 0.001
N=50 T=10 0.867 0.083 0.043 0.007 0 0.946 0 0.054
N=50 T=50 0.999 0.001 0 0 0 0.999 0 0.001
N=10 T=10 0.842 0.105 0.044 0.009 0.254 0.668 0.052 0.026
CV*™ N=10 T=50 0.960 0.039 0.001 0 0 0.999 0 0.001
N=50 T=10 0.951 0.002 0.047 0 0.091 0.751 0.125 0.033
N=50 T=50 0.999 0 0.001 0 0 0.999 0 0.001
True model Model 3 Model 4
Selected model M1 M2 M3 M4 M1 M2 M3 M4
N=10 T=10 0.009 0.003 0.441 0.547 0.002 0.011 0.005 0.982
AIC N=10 T=50 0 0 0.484 0.516 0 0 0 1
N=50 T=10 0 0 0.441 0.559 0 0 0 1
N=50 T=50 0 0 0.494 0.506 0 0 0 1
N=10 T=10 0.273 0.011 0.703 0.013 0.611 0.064 0.008 0.317
BIC N=10 T=50 0.382 0.450 0.168 0 0.373 0.611 0 0.016
N=50 T=10 0.002 0 0.998 0 0.49 0 0.287 0.223
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.001  0.001 0.245 0.753 0 0.002  0.002 0.996
BIC, N=10 T=50 0 0 0.409 0.591 0 0 0 1
N=50 T=10 0 0 0.276 0.724 0 0 0 1
N=50 T=50 0 0 0.560 0.440 0 0 0 1
N=10 T=10 0.011  0.009 0.568 0.412 0.003 0.022 0.009 0.966
CvV N=10 T=50 0 0 0.575 0.425 0 0 0 1
N=50 T=10 0 0 0.580 0.420 0 0 0 1
N=50 T=50 0 0 0.563 0.437 0 0 0 1
N=10 T=10 0.01 0.004 0.730 0.256 0.009 0.015 0.022 0.954
CV* N=10 T=50 0 0 0.942 0.058 0 0 0 1
N=50 T=10 0 0 0.913 0.087 0 0 0 1
N=50 T=50 0 0 0.999 0.001 0 0 0 1
N=10 T=10 0.014 0.005 0.880 0.101 0.016 0.014 0.449 0.521
CV*™ N=10 T=50 0 0 0.963 0.037 0 0 0 1
N=50 T=10 0 0 0.998 0.002 0 0 0.344 0.656
N=50 T=50 0 0 1 0 0 0 0 1
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Table 1D: Frequency of the model selected: static panels, p = 1/2

True model Model 1 Model 2
Selected model M1 M2 M3 M4 M1 M2 M3 M4
N=10 T=10 0.209 0.680 0.014 0.097 0.005 0.871 0 0.124
AIC N=10 T=50 0.273 0.723 0 0.004 0 0.996 0 0.004
N=50 T=10 0.037 0.873 0 0.090 0 0.909 0 0.091
N=50 T=50 0.039 0.960 0 0.001 0 0.999 0 0.001
N=10 T=10 0.888 0.112 0 0 0.093 0.905 0 0.002
BIC N=10 T=50 0.981 0.019 0 0 0.001  0.999 0 0
N=50 T=10 1 0 0 0 0.204 0.780 0.016 0
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.083 0.668 0.023 0.226 0.001 0.744 0.001 0.254
BIC:; N=10 T=50 0.217 0.771 0.002 0.010 0 0.988 0 0.012
N=50 T=10 0.008 0.867 0.001 0.124 0 0.875 0 0.125
N=50 T=50 0.055 0.944 0 0.001 0 0.999 0 0.001
N=10 T=10 0.248 0.692 0.012 0.048 0.006 0.932 0 0.062
Ccv N=10 T=50 0.282 0.715 0.001  0.002 0 0.997 0 0.003
N=50 T=10 0.057 0.883 0 0.06 0 0.938 0 0.062
N=50 T=50 0.044 0.955 0 0.001 0 0.999 0 0.001
N=10 T=10 0.579 0.362 0.032 0.027 0.028 0.914 0.003 0.055
CV* N=10 T=50 0.908 0.091 0.001 0 0 0.999 0 0.001
N=50 T=10 0.692 0.261 0.034 0.013 0 0.946 0 0.054
N=50 T=50 0.998 0.002 0 0 0 0.999 0 0.001
N=10 T=10 0.809 0.141 0.039 0.011 0.42 0.505 0.054 0.021
CV** N=10 T=50 0.950 0.049 0.001 0 0.002 0.997 0 0.001
N=50 T=10 0.945 0.009 0.046 0 0.312 0.444 0.229 0.015
N=50 T=50 0.998 0.001  0.001 0 0 0.999 0 0.001
True model Model 3 Model 4
Selected model M1 M2 M3 M4 M1 M2 M3 M4
N=10 T=10 0.003 0.013 0.176 0.808 0.001 0.015 0.004 0.980
AIC N=10 T=50 0 0 0.220 0.780 0 0 0 1
N=50 T=10 0 0 0.030 0.970 0 0 0 1
N=50 T=50 0 0 0.034 0.966 0 0 0 1
N=10 T=10 0.362 0.043 0.493 0.102 0.510 0.122 0.007 0.361
BIC N=10 T=50 0.390 0.578 0.031 0.001 0.371  0.624 0 0.005
N=50 T=10 0.005 0 0.995 0 0.425 0 0.159 0.416
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0 0.006 0.091 0.903 0 0.006 0.001 0.993
BIC, N=10 T=50 0 0 0.178 0.822 0 0 0 1
N=50 T=10 0 0 0.009 0.991 0 0 0 1
N=50 T=50 0 0 0.044 0.956 0 0 0 1
N=10 T=10 0.005 0.021 0.280 0.694 0.002 0.026 0.007 0.965
CvV N=10 T=50 0 0.001 0.286 0.713 0 0.001 0 0.999
N=50 T=10 0 0 0.058 0.942 0 0 0 1
N=50 T=50 0 0 0.046 0.954 0 0 0 1
N=10 T=10 0.01 0.005 0.612 0.373 0.007 0.014 0.034 0.945
CV* N=10 T=50 0 0 0.904 0.096 0 0 0 1
N=50 T=10 0 0 0.735 0.265 0 0 0 1
N=50 T=50 0 0 0.998 0.002 0 0 0 1
N=10 T=10 0.011  0.005 0.842 0.142 0.014 0.008 0.583 0.395
CV*™ N=10 T=50 0 0 0.957 0.043 0 0 0.024 0.976
N=50 T=10 0 0 0.993 0.007 0 0 0.694 0.306
N=50 T=50 0 0 0.999 0.001 0 0 0 1
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Table 1E: Frequency of the model selected: static panels, p = 3/4

True model Model 1 Model 2
Selected model M1 M2 M3 M4 M1 M2 M3 M4
N=10 T=10 0.014 0.842 0.003 0.141 0.001 0.853 0 0.146
AIC N=10 T=50 0.019 0.953 0 0.028 0 0.972 0 0.028
N=50 T=10 0 0.873 0 0.127 0 0.873 0 0.127
N=50 T=50 0 0.982 0 0.018 0 0.982 0 0.018
N=10 T=10 0.242 0.752 0 0.006 0.04 0.954 0 0.006
BIC N=10 T=50 0.466 0.534 0 0 0.002 0.998 0 0
N=50 T=10 0.467 0.533 0 0 0.007 0.993 0 0
N=50 T=50 0.770 0.230 0 0 0 1 0 0
N=10 T=10 0.003 0.739 0.002 0.256 0 0.742 0 0.258
BIC:; N=10 T=50 0.012 0.942 0 0.046 0 0.954 0 0.046
N=50 T=10 0 0.841 0 0.159 0 0.841 0 0.159
N=50 T=50 0 0.983 0 0.017 0 0.983 0 0.017
N=10 T=10 0.021 0.897 0.005 0.077 0.001 0.918 0 0.081
CcvV N=10 T=50 0.021 0.962 0.001 0.016 0 0.983 0 0.017
N=50 T=10 0 0.914 0 0.086 0 0.914 0 0.086
N=50 T=50 0 0.983 0 0.017 0 0.983 0 0.017
N=10 T=10 0.302 0.633 0.021 0.044 0.038 0.896 0.001 0.065
CV* N=10 T=50 0.705 0.294 0.001 0 0.009 0.990 0 0.001
N=50 T=10 0.153 0.788 0.009  0.050 0 0.941 0 0.059
N=50 T=50 0.962 0.038 0 0 0 0.999 0 0.001
N=10 T=10 0.660 0.292 0.032 0.016 0.532 0.412 0.035 0.021
CV** N=10 T=50 0.918 0.081 0.001 0 0.320 0.679 0.001 0
N=50 T=10 0.867 0.088 0.043 0.002 0.648 0.231 0.113 0.008
N=50 T=50 0.998 0.001  0.001 0 0.157 0.842 0 0.001
True model Model 3 Model 4
Selected model M1 M2 M3 M4 M1 M2 M3 M4
N=10 T=10 0.002 0.029 0.013 0.956 0 0.030 0.001 0.969
AIC N=10 T=50 0 0.012 0.013 0.975 0 0.012 0 0.988
N=50 T=10 0 0 0 1 0 0 0 1
N=50 T=50 0 0 0 1 0 0 0 1
N=10 T=10 0.192 0.356 0.075 0.377 0.190 0.381 0.005 0.424
BIC N=10 T=50 0.245 0.755 0 0 0.229 0.771 0 0
N=50 T=10 0.016 0.002 0.419 0.563 0.058 0.005 0.002 0.935
N=50 T=50 0.001  0.001 0.743 0.255 0.001  0.002 0 0.997
N=10 T=10 0 0.013 0.005 0.982 0 0.013 0 0.987
BIC: N=10 T=50 0 0.005 0.010 0.985 0 0.005 0 0.995
N=50 T=10 0 0 0 1 0 0 0 1
N=50 T=50 0 0 0 1 0 0 0 1
N=10 T=10 0.005 0.059 0.025 0.911 0.001  0.060 0.002 0.937
CvV N=10 T=50 0 0.021 0.025 0.954 0 0.021 0 0.979
N=50 T=10 0 0 0 1 0 0 0 1
N=50 T=50 0 0 0 1 0 0 0 1
N=10 T=10 0.005 0.003 0.317 0.675 0.003  0.007 0.05 0.940
CV* N=10 T=50 0 0 0.683 0.317 0 0 0.003 0.997
N=50 T=10 0 0 0.169 0.831 0 0 0 1
N=50 T=50 0 0 0.961 0.039 0 0 0 1
N=10 T=10 0.006 0 0.732 0.262 0.006 0 0.637 0.357
CV*™ N=10 T=50 0 0 0.929 0.071 0 0 0.524 0.476
N=50 T=10 0 0 0.911 0.089 0 0 0.815 0.185
N=50 T=50 0 0 0.999 0.001 0 0 0.509 0.491
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Table 2A: Frequency of the model selected: dynamic panels without exogenous regressors, 5 = 1/4

True model Model 1 Model 2
Selected model M1 M2 M3 M4 M1 M2 M3 M4
N=10 T=10 0.847 0.095 0.041 0.017 0.005 0.909 0 0.086
AIC N=10 T=50 0.954 0.046 0 0 0 1 0 0
N=50 T=10 0.958 0.004 0.038 0 0 0.928 0 0.072
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 1 0 0 0 0.406 0.594 0 0
BIC N=10 T=50 1 0 0 0 0 1 0 0
N=50 T=10 1 0 0 0 1 0 0 0
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.572 0.221 0.116 0.091 0 0.764 0 0.236
BICy; N=10 T=50 0.925 0.074 0.001 0 0 0.997 0 0.003
N=50 T=10 0.917 0.018 0.061 0.004 0 0.894 0 0.106
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.887 0.075 0.032 0.006 0.007 0.954 0 0.039
CV  N=10 T=50 0.955 0.045 0 0 0 1 0 0
N=50 T=10 0.962 0.002 0.036 0 0 0.960 0 0.04
N=50 T=50 1 0 0 0 0 1 0 0
True model Model 3 Model 4
Selected model M1 M2 M3 M4 M1 M2 M3 M4
N=10 T=10 0.005 0.001 0.845 0.149 0 0.005 0.001 0.994
AIC N=10 T=50 0 0 0.924 0.076 0 0 0 1
N=50 T=10 0 0 0.994 0.006 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.114 0 0.886 0 0.072 0.046 0.313 0.569
BIC N=10 T=50 0.083 0 0.917 0 0.001 0.075 0 0.924
N=50 T=10 0.002 0 0.998 0 0.003 0 0.997 0
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.001 0.001 0.654 0.344 0 0.002 0 0.998
BIC; N=10 T=50 0 0 0.885 0.115 0 0 0 1
N=50 T=10 0 0 0.974 0.026 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.01 0.001 0.912 0.077 0 0.011  0.007 0.982
CV  N=10 T=50 0 0 0.955 0.045 0 0 0 1
N=50 T=10 0 0 0.999 0.001 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
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Table 2B: Frequency of the model selected: dynamic panels without exogenous regressors, § = 1/2

True model Model 1 Model 2
Selected model M1 M2 M3 M4 M1 M2 M3 M4
N=10 T=10 0.796 0.143 0.038 0.023 0.008 0.905 0.001 0.086
AIC N=10 T=50 0.948 0.052 0 0 0 1 0 0
N=50 T=10 0.942 0.017 0.038 0.003 0 0.930 0 0.07
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 1 0 0 0 0.759 0.241 0 0
BIC N=10 T=50 1 0 0 0 0 1 0 0
N=50 T=10 1 0 0 0 1 0 0 0
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.508 0.281 0.093 0.118 0 0.759 0.001 0.240
BICy; N=10 T=50 0.920 0.078 0.002 0 0 0.997 0 0.003
N=50 T=10 0.882 0.050 0.060 0.008 0 0.897 0 0.103
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.844 0.123 0.026 0.007 0.012 0.951 0.001 0.036
CV  N=10 T=50 0.953 0.047 0 0 0 1 0 0
N=50 T=10 0.951 0.012 0.037 0 0 0.957 0 0.043
N=50 T=50 1 0 0 0 0 1 0 0
True model Model 3 Model 4
Selected model M1 M2 M3 M4 M1 M2 M3 M4
N=10 T=10 0.006 0.001 0.778 0.215 0 0.005 0.008 0.987
AIC N=10 T=50 0 0 0.915 0.085 0 0 0 1
N=50 T=10 0 0 0.977 0.023 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.119 0 0.880 0.001 0.1 0.023 0.635 0.242
BIC N=10 T=50 0.085 0 0.915 0 0.003 0.071 0 0.926
N=50 T=10 0.002 0 0.998 0 0.003 0 0.997 0
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.001 0.001 0.551 0.447 0 0.002 0.001 0.997
BIC; N=10 T=50 0 0 0.874 0.126 0 0 0 1
N=50 T=10 0 0 0.936 0.064 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.009 0.001 0.878 0.112 0.001 0.01 0.025 0.964
CV  N=10 T=50 0 0 0.952 0.048 0 0 0 1
N=50 T=10 0 0 0.988 0.012 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
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Table 2C: Frequency of the model selected: dynamic panels without exogenous regressors, § = 3/4

True model Model 1 Model 2
Selected model M1 M2 M3 M4 M1 M2 M3 M4
N=10 T=10 0.633 0.303 0.032 0.032 0.048 0.872 0.002 0.078
AIC N=10 T=50 0.924 0.076 0 0 0 1 0 0
N=50 T=10 0.834 0.122 0.029 0.015 0 0.925 0 0.075
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.999 0.001 0 0 0.950 0.050 0 0
BIC N=10 T=50 1 0 0 0 0.080 0.920 0 0
N=50 T=10 1 0 0 0 1 0 0 0
N=50 T=50 1 0 0 0 0.905 0.095 0 0
N=10 T=10 0.334 0.446 0.053 0.167 0.005 0.754 0.002 0.239
BICy; N=10 T=50 0.890 0.108 0.002 0 0 0.998 0 0.002
N=50 T=10 0.663 0.260 0.040 0.037 0 0.898 0 0.102
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.705 0.262 0.023 0.010 0.082 0.880 0.002 0.036
CV  N=10 T=50 0.927 0.073 0 0 0 1 0 0
N=50 T=10 0.891 0.071 0.030 0.008 0.007 0.952 0.001 0.04
N=50 T=50 1 0 0 0 0 1 0 0
True model Model 3 Model 4
Selected model M1 M2 M3 M4 M1 M2 M3 M4
N=10 T=10 0.005 0.001 0.609 0.385 0 0.004 0.050 0.946
AIC N=10 T=50 0 0 0.885 0.115 0 0 0 1
N=50 T=10 0 0 0.845 0.155 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.121 0 0.874 0.005 0.092 0.007 0.847 0.054
BIC N=10 T=50 0.087 0 0.913 0 0.027 0.052 0.077 0.844
N=50 T=10 0.002 0 0.998 0 0.004 0 0.996 0
N=50 T=50 0 0 1 0 0 0 0.896 0.104
N=10 T=10 0.001 0.001 0.350 0.648 0 0.002 0.006 0.992
BICy; N=10 T=50 0 0 0.835 0.165 0 0 0 1
N=50 T=10 0 0 0.675 0.325 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.007 0.002 0.762 0.229 0 0.008 0.139 0.853
CV  N=10 T=50 0 0 0.927 0.073 0 0 0 1
N=50 T=10 0 0 0.923 0.077 0 0 0.010 0.990
N=50 T=50 0 0 1 0 0 0 0 1
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Table 3A: Frequency of the model selected: dynamic panels with exogenous regressors, 5 = 1/4

True model Model 1 Model 2
Selected model M1 M2 M3 M4 M1 M2 M3 M4
N=10 T=10 0.809 0.112 0.046 0.033 0.009 0.877 0.006 0.108
AIC N=10 T=50 0.940 0.060 0 0 0 1 0 0
N=50 T=10 0.954 0.002 0.044 0 0 0.914 0 0.086
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 1 0 0 0 0.676 0.324 0 0
BIC N=10 T=50 1 0 0 0 0 1 0 0
N=50 T=10 1 0 0 0 0.996 0 0.004 0
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.552 0.208 0.115 0.125 0.001 0.714 0.003 0.282
BICy; N=10 T=50 0.919 0.080 0.001 0 0 0.997 0 0.003
N=50 T=10 0.912 0.013 0.074 0.001 0 0.868 0 0.132
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.913 0.057 0.023 0.007 0.030 0.931 0.006 0.033
CV  N=10 T=50 0.951 0.049 0 0 0 1 0 0
N=50 T=10 0.963 0 0.037 0 0 0.957 0 0.043
N=50 T=50 1 0 0 0 0 1 0 0
True model Model 3 Model 4
Selected model M1 M2 M3 M4 M1 M2 M3 M4
N=10 T=10 0.004 0.002 0.799 0.195 0.006 0.010 0.024 0.960
AIC N=10 T=50 0 0 0.911 0.089 0 0 0 1
N=50 T=10 0 0 0.997 0.003 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.225 0.001 0.774 0 0.712 0.011 0.168 0.109
BIC N=10 T=50 0.384 0.283 0.333 0 0.794 0.180 0 0.026
N=50 T=10 0.002 0 0.998 0 0.024 0 0.976 0
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.001 0.001 0.617 0.381 0 0.002 0.003 0.995
BIC; N=10 T=50 0 0 0.870 0.13 0 0 0 1
N=50 T=10 0 0 0.979 0.021 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.012 0.007 0.919 0.062 0.026 0.023 0.093 0.858
CV  N=10 T=50 0 0 0.954 0.046 0 0 0 1
N=50 T=10 0 0 1 0 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
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Table 3B: Frequency of the model selected: dynamic panels with exogenous regressors, § = 1/2

True model Model 1 Model 2
Selected model M1 M2 M3 M4 M1 M2 M3 M4
N=10 T=10 0.770 0.143 0.045 0.042 0.035 0.849 0.010 0.106
AIC N=10 T=50 0.940 0.060 0 0 0 1 0 0
N=50 T=10 0.946 0.010 0.042 0.002 0.001 0.903 0 0.096
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 1 0 0 0 0.869 0.131 0 0
BIC N=10 T=50 1 0 0 0 0.005 0.995 0 0
N=50 T=10 1 0 0 0 1 0 0 0
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.503 0.257 0.099 0.141 0.002 0.711 0.007 0.280
BICy; N=10 T=50 0.911 0.088 0.001 0 0 0.998 0 0.002
N=50 T=10 0.886 0.034 0.070 0.01 0 0.858 0 0.142
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.874 0.096 0.021 0.009 0.08 0.882 0.007 0.031
CV  N=10 T=50 0.947 0.053 0 0 0 1 0 0
N=50 T=10 0.961 0.003 0.036 0 0.002 0.954 0 0.044
N=50 T=50 1 0 0 0 0 1 0 0
True model Model 3 Model 4
Selected model M1 M2 M3 M4 M1 M2 M3 M4
N=10 T=10 0.003 0.002 0.759 0.236 0.006 0.007 0.061 0.926
AIC N=10 T=50 0 0 0.904 0.096 0 0 0 1
N=50 T=10 0 0 0.986 0.014 0 0 0.003 0.997
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.237 0.001 0.762 0 0.629 0.009 0.291 0.071
BIC N=10 T=50 0.401 0.270 0.329 0 0.917 0.064 0 0.019
N=50 T=10 0.002 0 0.998 0 0.009 0 0.991 0
N=50 T=50 0 0 1 0 0 0 0.009 0.991
N=10 T=10 0.001 0.001 0.545 0.453 0 0.003 0.011 0.986
BICy; N=10 T=50 0 0 0.865 0.135 0 0 0 1
N=50 T=10 0 0 0.948 0.052 0 0 0.001 0.999
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.014 0.007 0.879 0.100 0.027 0.018 0.180 0.775
CV  N=10 T=50 0 0 0.953 0.047 0 0 0 1
N=50 T=10 0 0 0.998 0.002 0 0 0.011 0.989
N=50 T=50 0 0 1 0 0 0 0 1
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Table 3C: Frequency of the model selected: dynamic panels with exogenous regressors, 5 = 3/4

True model Model 1 Model 2
Selected model M1 M2 M3 M4 M1 M2 M3 M4
N=10 T=10 0.644 0.265 0.034 0.057 0.129 0.756 0.012 0.103
AIC N=10 T=50 0.925 0.075 0 0 0 1 0 0
N=50 T=10 0.884 0.070 0.031 0.015 0.040 0.848 0.002 0.110
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 1 0 0 0 0.964 0.036 0 0
BIC N=10 T=50 1 0 0 0 0.38 0.620 0 0
N=50 T=10 1 0 0 0 1 0 0 0
N=50 T=50 1 0 0 0 1 0 0 0
N=10 T=10 0.361 0.389 0.068 0.182 0.022 0.694 0.016 0.268
BICy; N=10 T=50 0.885 0.113 0.002 0 0 0.998 0 0.002
N=50 T=10 0.748 0.156 0.054 0.042 0.012 0.831 0.001 0.156
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.778 0.187 0.023 0.012 0.243 0.714 0.013 0.030
CV  N=10 T=50 0.929 0.071 0 0 0 1 0 0
N=50 T=10 0.931 0.034 0.031 0.004 0.079 0.854 0.012 0.055
N=50 T=50 1 0 0 0 0 1 0 0
True model Model 3 Model 4
Selected model M1 M2 M3 M4 M1 M2 M3 M4
N=10 T=10 0.002 0.004 0.611 0.383 0.006 0.007 0.143 0.844
AIC N=10 T=50 0 0 0.882 0.118 0 0 0 1
N=50 T=10 0 0 0.894 0.106 0 0 0.048 0.952
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.260 0.003 0.736 0.001 0.478 0.008 0.485 0.029
BIC N=10 T=50 0.442 0.241 0.317 0 0.982 0.007 0 0.011
N=50 T=10 0.002 0 0.998 0 0.006 0 0.994 0
N=50 T=50 0 0 1 0 0 0 1 0
N=10 T=10 0.001 0.003 0.370 0.626 0 0.004 0.037 0.959
BICy; N=10 T=50 0 0 0.835 0.165 0 0 0 1
N=50 T=10 0 0 0.776 0.224 0 0 0.012 0.988
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.011 0.011 0.808 0.170 0.027 0.014 0.366 0.593
CV  N=10 T=50 0 0 0.928 0.072 0 0 0 1
N=50 T=10 0 0 0.961 0.039 0 0 0.133 0.867
N=50 T=50 0 0 1 0 0 0 0 1
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Table 4A: Comparisons of MSEs:

static panels, p =0

Adopted Model M1 M2 M3 M4
True Model

N=10 T=10 3.79 6.32 5.83 13.16

M1 N=10 T=50 0.68 1.03 0.99 2.16
N=50 T=10 0.71 1.23 1.02 2.31

N=50 T=50 0.14 0.21 0.21 0.41

N=10 T=10 145.62 6.32 295.26 13.16

M2 N=10 T=50 128.66 1.03  287.75 2.16
N=50 T=10 130.75 1.23 259.24 2.31

N=50 T=50 117.76  0.21  258.94 0.41

N=10 T=10 102.06 245.89 5.83 13.16

M3 N=10 T=50 109.93 249.80 0.99 2.16
N=50 T=10 94.97 235.31 1.02 2.31

N=50 T=50 107.42 246.93 0.21 0.41
N=10 T=10 440.18 245.89 295.26 13.16

M4 N=10 T=50 448.25 249.80 287.75 2.16
N=50 T=10 422.87 235.31 259.24 2.31

N=50 T=50 441.74 246.93 258.94 0.41

Note: Numbers in the main entries are 1000x MSEs of the estimates of (.

Table 4B: Comparisons of MSEs: dynamic panels without exogenous regressors, § = 3/4

Non-bias correction

Bias correction

Adopted Model M1 M2 M3 M4 M1 M2 M3 M4
True Model

N=10 T=10 5.55 57.34 540 58.74 5.41 2520 5.52 28.49

M1 N=10 T=50 0.84 2.48 0.92 2.64 0.85 1.51 0.94 1.69
N=50 T=10 0.95 4578 0.94 4591 0.94 4.69 0.95 4.80

N=50 T=50 0.17 1.61 0.17 1.62 0.17 0.32 0.17 0.32

N=10 T=10 46.82 57.34 48.10 58.74 46.54 25.20 47.92 28.49

M2 N=10 T=50 46.77 2.48 48.04 2.64 46.86 1.51 48.11 1.69
N=50 T=10 47.76  45.78 48.00 45.91 47.71  4.69 4798 4.80

N=50 T=50 4774 1.61 4798 1.62 47.75 0.32 4799 0.32

N=10 T=10 20.31 79.86 5.40 58.74 24.37 56.13 5.52 28.49

M3 N=10 T=50 3.16 5.09 0.92 2.64 3.85 4.59 0.94 1.69
N=50 T=10 13.41 72.01 0.94 4591 17.73 39.64 0.95 4.80

N=50 T=50 2.41 4.35 0.17 1.62 3.02 3.56 0.17 0.32
N=10 T=10 36.30 79.86 48.10 58.74 36.09 56.13 47.92 28.49

M4 N=10 T=50 36.75 5.09 48.04 2.64 37.13 459 4811 1.69
N=50 T=10 37.51 72.01 48.00 45.91 37.25 39.64 4798 4.80

N=50 T=50 37.62 435 4798 1.62 37.87 3.56 4799 0.32

Note: Numbers in the main entries are 1000x MSEs of the estimates of (.
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Table 5: Application I: Crime rates in North Carolina (N=90, T=7, k=17)
AIC BIC BIC, CvV cv:  Cv*

Model 1 -2.121  -2.001 -2.125 0.124 0.094 0.028
Model 2 -3.773  -3.025 -3.796 0.025 0.023  0.026
Model 3 -2.124  -1.962 -2.129 0.124 0.094 0.027
Model 4 -3.823  -3.032 -3.847 0.024 0.022 0.025
Selected model M4 M4 M4 M4 M4 M4

Table 6: Application II: Cross-country saving rates (N=56, T=15, k=5)

AIC BIC BIC, (04
Model 1 2.547 2.576 2.547 12.844
Model 2 2.505 2.843 2.498 12.459
Model 3 2.555 2.663 2.553 12.953
Model 4 2.512 2.929 2.504 12.584
Selected model M2 M1 M2 M2

Table 7: Application III: Guns and crime in the U.S.

Static models (N=51, T=23, k=9) Dynamic models (N=51, T=22, k=10)

Model AIC BIC BIC, % cvr cvr* AIC BIC BIC, CvV

log (violent crime rate)

M1 -1.6911 -1.6522 -1.6914 0.1860 0.0165 0.0073 -4.8520 -4.8072 -4.8524 0.0078
M2 -3.6072  -3.3523 -3.6094 0.0274 0.0080 0.0072 -4.8719 -4.6033 -4.8746 0.0077
M3 -1.7198 -1.5859 -1.7210 0.1816 0.0140 0.0061 -5.0845 -4.9457 -5.0859 0.0062
M4 -3.8653 -3.51564 -3.8684 0.0211 0.0063 0.0059 -5.1235 -4.7609 -5.1271 0.0060

Selected M4 M4 M4 M4 M4 M4 M4 M3 M4 M4

log (murder rate)

M1 -1.6202 -1.5813 -1.6205 0.1991 0.1234 0.0560 -2.8836 -2.8388 -2.8841 0.0561
M2 -2.9845 -2.7296 -2.9867 0.0510 0.0457 0.0452 -3.1044 -2.8358 -3.1071 0.0453
M3 -1.7012 -1.5673 -1.7024 0.1844 0.1144 0.0550 -2.9087 -2.7699 -2.9101 0.0548
M4 -3.1243  -2.7744 -3.1274 0.0443 0.0413 0.0421 -3.1913  -2.8287 -3.1950 0.0415

Selected M4 M4 M4 M4 M4 M4 M4 M1 M4 M4

log (robbery rate)

M1 -0.9853 -0.9464 -0.9856 0.3748 0.0375 0.0164 -4.0919 -4.0472 -4.0924 0.0168
M2 -3.0239 -2.7690 -3.0261 0.0490 0.0167 0.0156 -4.1352 -3.8666 -4.1379 0.0161
M3 -1.1079 -0.9740 -1.1091 0.3338 0.0305 0.0137 -4.2892  -4.1505 -4.2906 0.0138
M4 -3.2181 -2.8682 -3.2212 0.0403 0.0135 0.0130 -4.3454  -3.9828 -4.3491 0.0131

Selected M4 M4 M4 M4 M4 M4 M4 M3 M4 M4
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