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Abstract

In this paper we propose a jackknife method to determine individual and time effects

in linear panel data models. We first show that when both the serial and cross-sectional

correlation among the idiosyncratic error terms are weak, our jackknife method can pick up

the correct model with probability approaching one (w.p.a.1). In the presence of moderate or

strong degree of serial correlation, we modify our jackknife criterion function and show that

the modified jackknife method can also select the correct model w.p.a.1. We conduct Monte

Carlo simulations to show that our new methods perform remarkably well in finite samples.

We apply our methods to study (i) the crime rates in North Carolina, (ii) the determinants

of saving rates across countries, and (iii) the relationship between guns and crime rates in the

U.S.
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1 Introduction

Individual effects and time effects are often used in panel data models to model unobserved

individual or time heterogeneity (see, e.g., Arellano (2003), Baltagi (2013), Hsiao (2014), and

Wooldridge (2010) for a review on panel data models). The goal of this paper is to provide

practical methods to determine whether to include individual effects, or time effects, or both in

linear panel data models. Specifically, we consider the following four models:

Model 1: yit = β′xit + uit,

Model 2: yit = β′xit + αi + uit,

Model 3: yit = β′xit + λt + uit,

Model 4: yit = β′xit + αi + λt + uit,

where i = 1, ..., N, t = 1, ..., T , xit is a k×1 vector of regressors that may include lagged dependent

variables, αi is an individual effect, λt is a time effect, and uit is an idiosyncratic error term. We

will treat αi’s and λt’s as fixed parameters to be estimated. For clarity, we assume that xit contains

the constant term in all models and impose restrictions on αi or/and λt in Models 2-4 to achieve

identification for the fixed effects. Specifically, we assume that

N∑
i=1

αi = 0 in Model 2, (1.1)

T∑
t=1

λt = 0 in Model 3, and (1.2)

N∑
i=1

αi = 0 and
T∑
t=1

λt = 0 in Model 4. (1.3)

The above identification restrictions greatly facilitate the asymptotic analysis in this paper and

make it straightforward to extend the methodology developed here to multi-dimensional panel

data models.1

We propose a jackknife or leave-one-out cross-validation (CV) method to select the correct

model.2 There are several advantages of our jackknife method in the context of determining

fixed effects. First, the new method is general and easy to implement. It does not require the

choice of any tuning parameter that is implicitly used in all information-criterion-based methods

(e.g., a Bayesian information criterion (BIC) specifies the penalty term to be proportional to

ln (NT ) /(NT ), which works as a tuning parameter). Second, we assume that the cross-section

1For our method discussed below, different identification restrictions, e.g., assuming αN = 0 in Model 2 and

λT = 0 in Model 3, produce identical results.
2Throughout the paper, we use Jackknife and CV interchangeably. Jackknife is widely used in model selection

and model averaging (see, e.g., Allen (1974), Stone (1974), Geisser (1974), Wahba and Wold (1975), Li (1987),

Andrews (1991), Hansen and Racine (2012), and Lu and Su (2015)).
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dimension (N) and time dimension (T ) pass to infinity simultaneously. But the relative rate

betweenN and T can be arbitrary. For example, T can be much slower thanN such as T � ln (N) .

This implies that our method can be applied to the typical case in micro-econometrics where T

is much smaller than N. Third, our CV method can be applied to both static and dynamic panel

models. We show that when serial correlation and cross-sectional dependence in the error term are

absent or weak, our CV method can choose the correct model with probability approaching one

(w.p.a.1).3 Fourth, we propose a modified CV method that is robust to strong serial correlation

in the static panel models. We show that the modified CV can select the correct model w.p.a.1.

in the presence of strong serial correlation. Fifth, our jackknife method can be easily extended to

nonlinear panels and to multi-level panels where the determination of different fixed effects is also

imperative.

In the literature, there exist several tests for testing for the presence of fixed effects in two

dimensional panel data models. Most of the tests focus on short static panel models. Let σ2α
and σ2λ be the variances of αi and λt, respectively. Under the normality assumption, Breusch

and Pagan (1980, BP hereafter) propose a Lagrange multiplier (LM) test for testing the null

hypothesis: H01 : σ2α = 0 and σ2λ = 0. The BP test can also be applied to test the null hypotheses

that H02 : σ2α = 0 (assuming σ2λ = 0) and that H03 : σ2λ = 0 (assuming σ2α = 0) (see, e.g., Baltagi,

2013 for a discussion). Honda (1985) shows that BP test is actually robust to the non-normality

and also modifies the test to a one-sided test. Baltagi, Chang, and Li (1992, BCL hereafter)

modify the one-side test based on the results of Gourieroux, Holly, and Monfort (1982). BCL

also propose conditional LM tests for testing H04 : σ2α = 0 (allowing σ2λ > 0) and H05 : σ2λ = 0

(allowing σ2α > 0). Moulton and Randolph (1989) consider the ANOVA F-test. All the tests

discussed above assume that the error terms {uit, t = 1, ..., T} are not serially correlated. Bera,
Sosa-Escudero, and Yoon (2001) propose an LM test that allows serial correlation in the error

term. Recently, Wu and Li (2014) propose Hausman-type tests for testing H01, H04 and H05 by

comparing the variances of the error terms at different robust levels. Wu and Zhu (2012) extend

the Hausman-type tests to short dynamic panel models.

Potentially, these tests can be used to determine the correct model. For example, we can test

H01, H04, and H05 sequentially. However, there are several limitations of the approach based on

the hypothesis testing. First, to determine the correct model, three separate tests need to be

implemented sequentially. This involves the multiple testing issue and it is unclear how to choose

an appropriate nominal level.4 In addition, in finite samples, it could occur that H01 is rejected,

while neither H04 nor H05 is rejected, in which case it is diffi cult to decide the correct model.

3We only allow serial correlation in static panel models. For dynamic panel data models (e.g., panel AR(1)

model), the serial correlation in the error terms (e.g., AR(1) errors) will cause the error terms to be correlated with

the lagged dependent variables. We do not address the endogeneity issue in this paper.
4There is a large literature on the multiple testing issue for controlling the family-wise error rate (FWER). See,

e.g., Romano, Shaikh and Wolf (2010) for a review. However, to the best of our knowledge, there is no discussion

on how to address this issue in the context of determining fixed effects.
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Second, the existing tests are designed for short panels (i.e., T is fixed), and it is unclear how the

tests behave when T also goes to infinity. We consider large panels where N and T go to infinity

simultaneously and we allow the relative rates of N and T to be arbitrary. Third, except Wu and

Zhu (2012), most existing tests do not apply to dynamic panel models, i.e., the regressors cannot

contain any lagged dependent variables.

Alternatively, we can consider certain information criteria (IC) such as AIC and BIC. However,

to the best of our knowledge, there is no theoretical analysis of AIC or BIC in the context of

determining fixed effects in panel data. When all four models are allowed, a careful analysis

indicates that AIC is always inconsistent and BIC is consistent in the special case where N and

T pass to infinity at the same rate. In Monte Carlo simulations we compare our jackknife method

with AIC and BIC, and find that our jackknife method generally outperforms this IC-based

approach.

The rest of the paper is structured as follows. In Section 2, we propose the jackknife and the

modified jackknife method and study their asymptotic properties. Section 3 reports Monte Carlo

simulation results and compares our new methods with IC-based methods for both static and

dynamic panel data generating processes. In Section 4, we provide three empirical applications.

In the first application, we study the crime rates in North Carolina and find that Model 4 is the

correct model. The second application is about the determinants of saving rates across countries

and our methods select Model 2. In the third application, we investigate the relationship between

guns and crime rates in the U.S. and we determine that Model 4 is the correct model.

Notation. For an m×n real matrix A, we denote its transpose as A′ and its Frobenius norm as
‖A‖ (≡ [tr(AA′)]1/2) where ≡ means “is defined as”. Let PA ≡ A (A′A)−1A′ and MA ≡ Im − PA,
where Im denotes an m × m identity matrix. When A = {aij} is symmetric, we use λmax (A)

and λmin (A) to denote its maximum and minimum eigenvalues, respectively. The operator P−→
denotes convergence in probability. We use (N,T )→∞ to denote that N and T pass to infinity

simultaneously.

2 Methodology and Asymptotic Theory

In this section, we first introduce the jackknife method to determine individual or time effects in

panel data models and then study the consistency of our jackknife estimator. To allow for strong

degree of serial correlation we also propose a modified jackknife criterion function and justify its

asymptotic validity.
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2.1 Methodology

Let xi = (xi1, ..., xiT )′ and X = (x′1, ..., x
′
N )′ . Define yi, ui, Y, and U analogously. To facilitate

the presentation, we define the following dummy matrices:

Dα =

(
IN−1

−ι′N−1

)
⊗ ιT , Dλ = ιN ⊗

(
IT−1

−ι′T−1

)
, and Dαλ = (Dα, Dλ) ,

where ιa is an a× 1 vector of ones for any integer a ≥ 1. To unify the notation, we write

X(1) = X, X(2) = (X,Dα) , X(3) = (X,Dλ) , and X(4) = (X,Dα, Dλ) .

We use x(m)′it to denote a typical row of X(m) such that X(m) = (x
(m)
11 , ..., x

(m)
1T , ..., x

(m)
N1 , ..., x

(m)
NT )

for m = 1, 2, 3, 4. Similarly, we use d′α,it, d
′
λ,it, and d

′
αλ,it to denote a typical row of Dα, Dλ, and

Dαλ, respectively. Then we can rewrite Models 1-4 as follows:

Model 1: yit = β′xit + uit ≡ β(1)′x(1)it + uit,

Model 2: yit = β′xit + α′dα,it + uit ≡ β(2)′x(2)it + uit,

Model 3: yit = β′xit + λ′dλ,it + uit ≡ β(3)′x(3)it + uit,

Model 4: yit = β′xit + α′dα,it + λ′dλ,it + uit ≡ β(4)′x(4)it + uit,

where α = (α1, ..., αN−1)
′ , λ = (λ1, ..., λT−1)

′, β(1) = β, β(2) =
(
β′, α′

)′
, β(3) =

(
β′, λ′

)′
, and

β(4) = (β′, α′, λ′)′. Note that we have imposed the identification conditions in (1.1)-(1.3) for

Models 2-4 in the above representation. In matrix notation, we can write these models simply as

Model 1: Y = Xβ + U = X(1)β(1) + U,

Model 2: Y = Xβ +Dαα+ U = X(2)β(2) + U,

Model 3: Y = Xβ +Dλλ+ U = X(3)β(3) + U,

Model 4: Y = Xβ +Dαα+Dλλ+ U = X(4)β(4) + U.

Note that Model 1 is nested in Models 2-4, both Models 2 and 3 are nested in Model 4, and

D′αDλ = 0. These observations greatly simplify the asymptotic analysis in this paper.

The OLS estimator of β(m) based on all observations {(yit, x(m)it ) : 1 ≤ i ≤ N, 1 ≤ t ≤ T} is
given by

β̂
(m)

=
(
X(m)′X(m)

)−1
X(m)′Y for m = 1, 2, 3, 4. (2.1)

We also consider the leave-one-out estimator of β(m) with the (i, t)th observation deleted:

β̂
(m)

it =
(
Xm′X(m) − x(m)it x

(m)′
it

)−1 (
X(m)′Y − x(m)it yit

)
for m = 1, 2, 3, 4, (2.2)

where i = 1, ..., N, t = 1, ..., T . Define the out-of-sample predicted value of yit as ŷ
(m)
it = β̂

(m)′
it x

(m)
it .

Our jackknife method is based on the following leave-one-out CV function

CV (m) =
1

NT

T∑
t=1

N∑
i=1

(
yit − ŷ(m)it

)2
for m = 1, 2, 3, 4. (2.3)
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Let

m̂ = argmin
1≤m≤4

CV (m) . (2.4)

Under some regularity conditions, we will show that w.p.a.1, m̂ is given by m when Model m is

the true model.

2.2 Asymptotic theory under weak serial and cross-sectional correlations

Let ūi· = T−1
∑T

t=1 uit, ū·t = N−1
∑N

i=1 uit, and ū·· = (NT )−1
∑N

i=1

∑T
t=1 uit. Let x̄i·, x̄·t, and x̄··

be defined analogously. Define

Q̂ =
1

NT
X ′X and Q̂Dξ =

1

NT
X ′MDξX for Dξ = Dα, Dλ, and Dαλ.

Let C denote a generic large positive constant whose value may vary across lines.

To proceed, we make the following set of assumptions.

Assumption A.1. (i) E (uit) = 0, max1≤i≤N,1≤t≤T E
(
u2it
)
≤ C, and 1

NT

∑N
i=1

∑T
t=1 u

2
it

P→ σ̄2u >

0.

(ii) max1≤i≤N,1≤t≤T ‖xit‖ = oP (CNT ) where CNT = min(N3/4T 1/4, N1/4T 3/4).

(iii) 1
NT

∑N
i=1

∑T
t=1E

(
‖xit‖2 u2it

)
= O (1) .

(iv) ū·· = OP
(
(NT )−1/2

)
, x̄·· = OP (1) , and 1

NTX
′U = OP

(
(NT )−1/2

)
.

(v) There exist positive constants cQ and c̄Q such that

P
(
cQ ≤ λmin

(
Q̂Dξ

)
≤ λmax

(
Q̂
)
≤ c̄Q

)
→ 1

for Dξ = Dα, Dλ, and Dαλ.

(vi) 1
NT

∑N
i=1

∑T
t=1 uitαi = oP (1) and 1

NT

∑N
i=1

∑T
t=1 uitλt = oP (1) when Model 2, 3, or 4 is

true and applicable.

Assumption A.2. (i) T
N

∑N
i=1 (ūi·)

2 P→ σ̄2u1 > 0.

(ii) N
T

∑T
t=1 (ū·t)

2 P→ σ̄2u2 > 0.

(iii) 1
N

∑N
i=1 x̄i·ūi· = OP

(
T−1 + (NT )−1/2

)
.

(iv) 1
T

∑T
t=1 x̄·tū·t = OP

(
N−1 + (NT )−1/2

)
.

Assumption A.3. (i) If Model 2 is the true model, there exist positive constants cα,X and cα,Xλ
such that

1

NT

N∑
i=1

T∑
t=1

[
αi − x′it

(
X ′X

)−1
X ′Dαα

]2 P→ cα,X > 0, and (2.5)

1

NT

N∑
i=1

T∑
t=1

[
αi − x(3)′it

(
X(3)′X(3)

)−1
X(3)′Dαα

]2
P→ cα,Xλ > 0. (2.6)
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(ii) If Model 3 is the true model, there exist positive constants cλ,X and cλ,Xα such that

1

NT

N∑
i=1

T∑
t=1

[
λt − x′it

(
X ′X

)−1
X ′Dλλ

]2 P→ cλ,X > 0, and (2.7)

1

NT

N∑
i=1

T∑
t=1

[
λt − x(2)′it

(
X(2)′X(2)

)−1
X(2)′Dλλ

]2
P→ cλ,Xα > 0. (2.8)

(iii) If Model 4 is the true model, there exist positive constants cαλ,X , cα,Xλ , and cλ,Xα such

that
1

NT

N∑
i=1

T∑
t=1

[
αi + λt − x′it

(
X ′X

)−1
X ′ (Dαα+Dλλ)

]2 P→ cαλ,X > 0 (2.9)

and both (2.6) and (2.8) hold.

Assumptions A.1(i)-(iii) impose weak conditions on {uit} and {xit} , which can be verified
under various primitive conditions (see, e.g., Baltagi (2013), Hsiao (2014), and Wooldridge (2010)).

For example, if E ‖xit‖4 is uniformly bounded, then by the Markov inequality and dominated
convergence theorem (DCT) we can readily show that max1≤i≤N,1≤t≤T ‖xit‖ = oP ((NT )1/4),

which is suffi cient for A.1(ii). Similarly, a suffi cient condition for Assumption A.1(iii) to hold

is that both E ‖xit‖4 and E
(
u4it
)
are uniformly bounded. Assumption A.1(iv) is also weak and

commonly assumed in panel data models in the absence of endogeneity. In particular, we permit xit
to contain lagged dependent variables so that dynamic panel data models are allowed. Assumption

A.1(v) specifies the usual identification conditions for the OLS or fixed effects (FE) estimation of

Models 1-4. For example, the condition that λmin(Q̂Dα) is bounded below from 0 requires that xit
should not contain any time-invariant regressor beyond a constant term; it is allowed to contain a

constant term because we have imposed the identification constraint that
∑N

i=1 αi = 0. Similarly,

the condition that λmin(Q̂Dλ) is bounded below from 0 requires that xit should not contain any

individual-invariant regressor beyond a constant term; it is allowed to contain a constant term

because we have imposed the identification constraint that
∑T

t=1 λt = 0. On the surface, this

condition rules out the inclusion of any time-invariant regressor in Model 2, individual-invariant

regressor in Model 3, and both types of regressors in Model 4. If xit contains such regressors,

they should be removed from Models 2-4 and then we can redefine x(m)it for m = 2, 3, 4 with such

regressors removed. Then the asymptotic analysis below will continue to hold. Assumption A.1(vi)

essentially imposes conditions on the interactions between the idiosyncratic error terms and the

individual and time effects, whenever applicable, in Models 2-4. A suffi cient condition for it to

hold is that both {uitαi} and {uitλt} have zero mean and follow some version of weak law of large
numbers. The zero mean condition is commonly assumed in the panel data literature. Note that

we allow the individual effects αi and time effects λt to be random in the true model (if present)

even if we treat them as fixed parameters in the estimation procedure.

Assumption A.2(i) requires that {uit, t ≥ 1} be weakly serially dependent such that 1
NT

∑N
i=1

∑T
t=1∑T

s=1E (uituis) has a finite limit. For example, the latter condition is satisfied by the Davydov

7



inequality if {uit, t ≥ 1} is strong mixing with finite (2 + δ)−th moment and mixing coeffi cients
αi (·) such that αi (τ) = τ−γi for some γi > (2 + δ) /δ; see, e.g., Bosq (1998, pp.19-20) or the

online supplement of Su, Shi, and Phillips (2016). Similarly, Assumption A.2(ii) requires that

{uit, i ≥ 1} be weakly cross-sectionally dependent such that 1
NT

∑N
i=1

∑N
j=1

∑T
t=1E (uitujt) has a

finite limit. Assumption A.2(iii)-(iv) can be verified under both weak serial and cross-sectional

correlations by the Chebyshev inequality and it is easily met in the absence of both serial and

cross-sectional correlations. If there is no serial correlation among {uit, t ≥ 1} , then σ̄2u1 = σ̄2u; if

there is no cross-sectional correlation among {uit, i ≥ 1} , then σ̄2u2 = σ̄2u. When serial correlation

is present, σ̄2u1 is generally different from σ̄2u; when cross-sectional correlation is present, σ̄2u2 is

generally different from σ̄2u.

Assumption A.3 specifies conditions to ensure that the underfitted models will never be chosen

asymptotically. The interpretations of the conditions in (2.5)-(2.9) are easy. For example, when

Model 2 is the true model, both Models 1 and 3 are underfitted. In this case, (2.5) and (2.6)

require that the individual effects αi, when stacked into an NT × 1 vector, should not lie in the

column space spanned by the regressor matrix X in Model 1 and X(3) in Model 3, respectively.

Similarly, when Model 4 is the true model, Models 1, 2, and 3 are all underfitted. In this case,

(2.9) requires that αi+λt, when stacked into an NT ×1 vector, should not lie in the column space

spanned by the regressor matrix X in Model 1, (2.8) requires that the time effects λt should not

lie in the column space spanned by X(2) in Model 2, and (2.6) requires that the individual effects

αi should not lie in the column space spanned by X(3) in Model 3.

It is worth mentioning that we allow for both cross-sectional and serial dependence of unknown

form in {(xit, uit)} despite the fact that some of the results derived below need further constraints.
We do not need identical distributions or homoskedasticity along either the cross-section dimension

or the time dimension, neither do we need to assume mean or covariance stationarity along either

dimension. In this sense, we say our results below are applicable to a variety of linear panel data

models in practice.

Given Assumptions A.1-A.3, we are ready to state our first main result.

Theorem 2.1 Suppose that Assumptions A.1-A.3 hold. Suppose that max
(
σ̄2u1, σ̄

2
u2

)
< 2σ̄2u,

where σ̄2u1, σ̄
2
u2, and σ̄

2
u are defined in Assumptions 2(i), 2(ii), and 1(i), respectively. Then

P (m̂ = m | Model m is the true model)→ 1 as (N,T )→∞ for m = 1, ..., 4.

Remark 1. The proof of Theorem 2.1 is given in the supplementary appendix. To appreciate

the above result, we outline the main idea that underlines our proof. When Model 1 is true, all

the other models are overfitted, and we can show that P (CV (1) < CV (m)) → 1 for m = 2, 3, 4

8



by showing that

T [CV (2)− CV (1)]
P→ 2σ̄2u − σ̄2u1 > 0,

N [CV (3)− CV (1)]
P→ 2σ̄2u − σ̄2u2 > 0,

(N ∧ T ) [CV (4)− CV (1)]
P→ 2 (1 + c) σ̄2u −

(
σ̄2u1 + cσ̄2u2

)
1 {c1 ≥ 1} −

(
cσ̄2u1 + σ̄2u2

)
1 {c1 < 1} > 0,

where c = lim(N,T )→∞
(
N
T ∧

T
N

)
, and c1 = lim(N,T )→∞

N
T , and a∧ b = min (a, b) .When Model 2 is

true, Models 1 and 3 are underfitted, Model 4 is overfitted, and we can show that P (CV (2) < CV (m))

→ 1 for m = 1, 3, 4 by showing that

CV (1)− CV (2)
P→ cα,X > 0,

CV (3)− CV (2)
P→ cα,Xλ > 0,

N [CV (4)− CV (2)]
P→ 2σ̄2u − σ̄2u2 > 0.

When Model 3 is true, Models 1 and 2 are underfitted, Model 4 is overfitted, and we can show

that P (CV (3) < CV (m))→ 1 for m = 1, 2, 4 by showing that

CV (1)− CV (3)
P→ cλ,X > 0,

CV (2)− CV (3)
P→ cλ,Xα > 0,

T [CV (4)− CV (3)]
P→ 2σ̄2u − σ̄2u1 > 0.

WhenModel 4 is true, all other models are underfitted, and we can show that P (CV (4) < CV (m))→
1 for m = 1, 2, 3 by showing that

CV (1)− CV (4)
P→ cαλ,X > 0,

CV (2)− CV (4)
P→ cλ,Xα > 0,

CV (3)− CV (4)
P→ cα,Xλ > 0.

As a result, CV (m) has the minimal value among {CV (l) , l = 1, ..., 4} asymptotically only when
Model m is the true model.

Remark 2. Theorem 2.1 indicates that we can choose the correct model w.p.a.1 as (N,T )→
∞. In other words, our jackknife method can choose the correct model consistently as long as
the serial or cross-sectional correlation among the error terms is not strong enough to over-

take the average noise level as represented by σ̄2u. As remarked above, the additional condition

max
(
σ̄2u1, σ̄

2
u2

)
< 2σ̄2u would be automatically satisfied in the absence of both serial and cross-

sectional correlation among the idiosyncratic error terms. Note that the above result does not

have any restriction on the degree of serial or cross-sectional correlation among {xit} as long as
Assumptions A.1(ii)-(v) are satisfied. More importantly, we do not need any relative rate con-

dition on how N and T pass to infinity. In fact, our theory allows T = O (lnN) such that our

method may be applied to micro panels when T is typically small in comparison with N .

9



Remark 3. To see when the above additional condition can be met in Theorem 2.1, we focus

on the case where {uit, t ≥ 1} follows a covariance-stationary AR(1) process with mean zero and

variance σ2u for each i. Let ρ ∈ (−1, 1) denote the AR(1) coeffi cient. Then by straightforward

calculations,

T

N

N∑
i=1

E (ūi·)
2 =

1

T

T∑
t=1

E
(
u2it
)

+
2

T

T−1∑
t=1

T∑
s=t+1

E (uituis)

= σ2u +
2σ2u
T

T−1∑
t=1

T∑
s=t+1

ρs−t

= σ2u

(
1 +

2σ2u
T

T−1∑
t=1

ρ
(
1− ρT−t+1

)
1− ρ

)

→ σ2u

(
1 +

2ρ

1− ρ

)
= σ̄2u1.

In this case, σ̄2u = σ2u and σ̄
2
u1 < 2σ̄2u provided ρ <

1
3 . Similarly, if {uit, i ≥ 1} has mean zero and

variance σ2u for each i, t such that Corr(uit, ujt) = ρ|i−j| for all i, j, t for some ρ ∈ (−1, 1) , then

N

T

T∑
i=1

E (ū·t)
2 → σ2u

(
1 +

2ρ

1− ρ

)
= σ̄2u2

and σ̄2u2 < 2σ̄2u provided ρ <
1
3 .

The above calculations indicate that the serial or cross-sectional correlation among the error

terms cannot be moderately large in order for our jackknife method to work. In the next subsec-

tion, we consider the relaxation of such conditions. Since there is typically no natural ordering

among the individual units, we focus on the relaxation on the serial dependence along the time

dimension and propose a modified jackknife criterion function to handle strong or moderately

large degree of serial correlation.

2.3 A modified jackknife criterion function

In this subsection, we consider the panel data model with serially correlated errors and propose a

modified version of the jackknife criterion function. We assume that the error process {uit, t ≥ 1}
can be approximated by an AR(p) process:

uit = ρ1ui,t−1 + ρ2ui,t−2 + ...+ ρpui,t−p + vit = ρ′ui,t−1 + vit, (2.10)

where i = 1, ..., N, t = p + 1, ..., T, ρ =
(
ρ1, ..., ρp

)′ is a vector of unknown parameters, ui,t−1 =

(ui,t−1, ..., ui,t−p)
′, and vit is an innovation term.

Let û(m)it = yit − β̂
(m)′

x
(m)
it for m = 1, 2, 3, 4. We propose to estimate the AR(p) coeffi cients

based on the residuals from Model 4 (the largest model), i.e., we run the following regression

û
(4)
it = ρ1û

(4)
i,t−1 + ρ2û

(4)
i,t−2 + ...+ ρpû

(4)
i,t−p + ṽit = ρ′û

(4)
i,t−1 + ṽit, (2.11)

10



where i = 1, ..., N, t = p + 1, ..., T, û
(4)
i,t−1 = (û

(4)
i,t−1, ..., û

(4)
i,t−p)

′, and ṽit = (û
(4)
it − uit) + ρ′(ui,t−1 −

û
(4)
i,t−1) + vit. Let ρ̂ =

(
ρ̂1, ρ̂2, ...ρ̂p

)′ denote the OLS estimator of ρ in the above regression. Let
y
i,t−1 = (yi,t−1, ..., yi,t−p)

′ and ŷ(m)
i,t−1 = (ŷ

(m)
i,t−1, ..., ŷ

(m)
i,t−p)

′. We modify the CV criterion function as

CV ∗ (m) =
1

N (T − p)

T∑
t=p+1

N∑
i=1

[(
yit − ρ̂′yi,t−1

)
−
(
ŷ
(m)
it − ρ̂

′ŷ(m)
i,t−1

)]2
. (2.12)

Let

m̃ = argmin
1≤m≤4

CV ∗ (m) . (2.13)

Ideally, when Model m is correctly specified, (yit − ρ̂′yi,t−1) − (ŷ
(m)
it − ρ̂′ŷ(m)i,t−1) will approximate

the true innovation term vit. As long as there is no serial correlation among {vit} or the serial
correlation is weak, m̃ is given by m w.p.a.1. when Model m is the true model.

Let

Φ (L) = 1− ρ1L− ρ2L2 − · · · − ρpLp,

where L is the lag operator. Similarly, Φ (1) = 1 − ρ1 − ρ2 − · · · ρp. Let x̆
(m)
it = Φ (L)x

(m)
it for

t = p + 1, ..., T and m = 1, 2, 3, 4. Note that x̆(1)it = Φ (L)xit ≡ x̆it. Let v̄i· = T−1p
∑T

t=p+1 vit for

i = 1, ...N, and v̄·t = N−1
∑N

i=1 vit for t = p+ 1, ..., N , where Tp = T − p.
To state the next result, we add the following set of assumptions.

Assumption A.4. (i) All the roots of Φ (z) lie outside the unit circle.

(ii) E (vit) = 0, max1≤i≤N,p+1≤t≤T E
(
v2it
)
≤ C, and 1

NTp

∑N
i=1

∑T
t=p+1 v

2
it

P→ σ̄2v > 0.

(iii) 1
NT

∑N
i=1

∑T
t=p+1E

(
‖xit‖2 v2it

)
= O (1) .

(iv) 1
NTp

∑N
i=1

∑T
t=p+1 ζitvit = OP

(
(NT )−1/2

)
for ζit = 1, xit, xi,t−j , and ui,t−j where j =

1, ..., p.

(v) 1
NTp

∑N
i=1

∑T
t=p+1 vitαi = oP (1) and 1

NTp

∑N
i=1

∑T
t=p+1 vitλt−j = oP (1) for j = 0, 1, ..., p

when Model 2, 3, or 4 is true and applicable.

Assumption A.5. (i) Tp
N

∑N
i=1 (v̄i·)

2 P→ σ̄2v1 > 0.

(ii) N
Tp

∑T
t=p+1 (v̄·t)

2 P→ σ̄2v2 > 0.

(iii) 1
N

∑N
i=1 x̄i·v̄i· = OP

(
T−1 + (NT )−1/2

)
.

(iv) 1
Tp

∑T
t=p+1 x̄·tv̄·t = OP

(
N−1 + (NT )−1/2

)
.

Assumption A.6. (i) If Model 2 is the true model, there exist positive constants c∗α,X and c
∗
α,Xλ

such that

1

NTp

N∑
i=1

T∑
t=p+1

[
Φ (1)αi − x̆′it

(
X ′X

)−1
X ′Dαα

]2 P→ c∗α,X > 0, and (2.14)

1

NTp

N∑
i=1

T∑
t=p+1

[
Φ (1)αi − x̆(3)′it

(
X(3)′X(3)

)−1
X(3)′Dαα

]2
P→ c∗α,Xλ > 0. (2.15)
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(ii) If Model 3 is the true model, there exist positive constants c∗λ,X and c∗λ,Xα such that

1

NTp

N∑
i=1

T∑
t=p+1

[
Φ (L)λt − x̆′it

(
X ′X

)−1
X ′Dλλ

]2 P→ c∗λ,X > 0, and (2.16)

1

NTp

N∑
i=1

T∑
t=p+1

[
Φ (L)λt − x̆(2)′it

(
X(2)′X(2)

)−1
X(2)′Dλλ

]2
P→ c∗λ,Xα > 0. (2.17)

(iii) If Model 4 is the true model, there exist positive constants c∗αλ,X , c
∗
α,Xλ

, and c∗λ,Xα such

that

1

NTp

N∑
i=1

T∑
t=p+1

[
(Φ (1)αi + Φ (L)λt)− x̆′it

(
X ′X

)−1
X ′ (Dαα+Dλλ)

]2 P→ c∗αλ,X > 0 (2.18)

and both (2.15) and (2.17) hold.

Assumption A.4(i) rules out unit root or explosive processes for {uit, t ≥ 1} . Assumption
A.4(ii)-(v) parallels Assumption A.1(i), (iii)-(iv) and (v). Assumption A.5(i)-(iv) parallels As-

sumption A.2(i)-(iv). Assumption A.6(i)-(iii) is analogous to Assumption A.3(i)-(iii).

Theorem 2.2 Suppose that Assumptions A.1-A.2 and A.4-A.6 hold. Suppose that max(σ̄2v1, σ̄
2
v2) <

2σ̄2v. Then

P (m̃ = m | Model m is the true model)→ 1 as (N,T )→∞ for m = 1, ..., 4.

Remark 4. Theorem 2.2 indicates that the modified jackknife criterion function helps us to

select the correct model w.p.a.1 as (N,T ) → ∞ under the weak side condition max(σ̄2v1, σ̄
2
v2) <

2σ̄2v. Where there is no serial correlation among {uit, t ≥ 1} such that Φ (1) = Φ (L) = 1 and

uit = vit, then σ̄2v1 = σ̄2u1 = σ̄2u = σ̄2v and σ̄
2
v2 = σ̄2u2. This implies that the result in Theorem 2.2

coincides with that in Theorem 2.1 in this case. If there is no serial or cross-sectional correlation

among {vit}, then σ̄2v1 = σ̄2v2 = σ̄2v and max(σ̄2v1, σ̄
2
v2) < 2σ̄2v is automatically satisfied.

Remark 5. In the above analysis, we run the pooled AR(p) regression for û(4)it . A close

examination of the proof of Theorem 2.2 indicates that only the consistency of the pooled OLS

estimator ρ̂ is used. Alternatively, one can allow heterogeneity in both the order of autoregression

and its coeffi cients. In this case, we use pi and ρi, i = 1, ..., N, to denote the order and individual

coeffi cients in the autoregressive models and run the AR(pi) regression for {û(4)it , t ≥ 1} to estimate
ρi by ρ̂i for i = 1, ..., N. Then we can modify the jackknife criterion function to be

CV ∗ (m) =
1

N

N∑
i=1

1

T − pi

T∑
t=pi+1

[(
yit − ρ̂′iyi,t−1

)
−
(
ŷ
(m)
(it) − ρ̂

′
iŷ
(m)
i,t−1

)]2
.
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Accordingly, we can modify Assumptions A.4-A.6 and establish a result similar to that in Theorem

2.2.

Remark 6. Alternatively, we can rewrite the original model by including p lagged yit and
p lagged xit (excluding the constant) as additional (pk) regressors via the standard Cochrane—

Orcutt procedure. Take Model 4 as an example. Let x̊it be the xit excluding the constant term,

i.e., xit = (1, x̊′it)
′. Correspondingly, let β = (β1, β̊

′
)′. Then, Model 4

yit = β′xit + αi + λt + uit = (β1, β̊
′
)(1, x̊′it)

′ + αi + λt + uit

can be rewritten as

yit =
(
1− ρ1 − ...− ρp

)
β1 + β̊

′
x̊it + ρ1yi,t−1 + ...+ ρpyi,t−p −

(
ρ1β̊

′
x̊i,t−1 + ...+ ρpβ̊

′
x̊i,t−p

)
+
(
1− ρ1 − ...− ρp

)
αi +

(
λt − ρ1λt−1 − ...− ρpλt−p

)
+ vit

= β̃
′
x̃it + α̃i + λ̃t + vit,

where x̃it =
(

1, x̊′it, yi,t−1, ... , yi,t−p, x̊
′
i,t−1, ..., x̊

′
it−p

)′
, β̃ is the new vector of regression coef-

ficients, α̃i =
(
1− ρ1 − ...− ρp

)
αi and λ̃t =

(
λt − ρ1λt−1 − ...− ρpλt−p

)
. With the new regressor

x̃it replacing xit, we can continue to apply the jackknife criterion function CV (m) as in Section

2.1.

Remark 7. Here we impose an AR(p) structure on the error term. In practice, {uit, t ≥ 1} do
not need to follow the AR(p) process exactly. Note that our original jackknife method in Section

2.1 works in the presence of weak serial correlation. Hence, here it is suffi cient to reduce and

control the serial correlation among {uit, t ≥ 1} .

3 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to examine the finite sample performance

of our jackknife method and compare it with various information criteria (IC). We consider the

following three different cases: (i) static panel models with possibly serially correlated errors,

(ii) dynamic panel models without exogenous regressors and (iii) dynamic panel models with

exogenous regressors.

3.1 Implementation

As a comparison, we consider the commonly used information criterion (IC): AIC and BIC, though

to the best of our knowledge, there is no theoretical analysis of AIC and BIC in the context of

determining fixed effects. Here the number of parameters involved depends on N and T and goes

to infinity, thus the standard theory of AIC and BIC is not directly applicable here.
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For Model m, m = 1, 2, 3, 4, define the in-sample residual as û(m)it = yit− β̂
(m)′

x
(m)
it . Then AIC

and BIC for Model m are defined respectively as

AIC (m) = ln

((
σ̂(m)

)2)
+

2k(m)

NT
,

BIC (m) = ln

((
σ̂(m)

)2)
+

log (NT ) k(m)

NT
,

where
(
σ̂(m)

)2
= 1

NT

∑T
t=1

∑N
i=1

(
û
(m)
it

)2
and k(m) is the dimension of x(m)it in the mth model.

Specifically, k(1) = k, k(2) = k+N −1, k(3) = k+T −1 and k(4) = k+N +T −2.We also consider

the modified BIC as

BIC2 (m) = ln

((
σ̂(m)

)2)
+

log (log (NT )) k(m)

NT
.

We choose the model by minimizing the above three ICs.5

For static panel models, we consider CV (defined in (2.3)) and CV∗ (defined in (2.12)). To take

into account the possible serial correlation, we also apply CV to the augmented regression with

additional p lagged yit and p lagged xit (excluding the constant), as discussed in Remark 6 above.

We denote it as CV∗∗. For dynamic panel models, we only consider CV, as serial correlation can

cause the endogenous problem and in general is not allowed in dynamic panel models. For all the

simulations, we consider different combinations of N and T : (N,T ) = (10, 10) , (10, 50) , (50, 10)

and (50, 50) . The number of replications is 1000.

3.2 Static panel models

We consider the following static data generating processes (DGPs):

DGP 1.1: yit = 1 + xit + uit DGP 1.2: yit = 1 + xit + αi + uit

DGP 1.3: yit = 1 + xit + λt + uit DGP 1.4: yit = 1 + xit + αi + λt + uit
,

where xit = 1+αi+λt+ ξit and αi, λt and ξit are mutually independent N (0, 1) random variables.

The error term uit is generated as

uit = ρui,t−1 + vit,

where vit is a N (0, 1) random variable, and ρ takes different values: 0, 14 ,
1
3 ,

1
2 , and

3
4 . Here the

true models corresponding to DGPs 1.1-1.4 are Models 1-4, respectively.

Tables 1A, 1B, 1C, 1D and 1E present the simulation results for ρ = 0, 1
4 ,

1
3 ,

1
2 , and

3
4 ,

respectively. When ρ = 0, i.e., there is no serial correlation in the error term, our CV performs

5Following the standard analysis on the consistency of IC, we can show the following results: (1) BIC and BIC2
are consistent in selecting the individual or time effects under the restrictive condition that N and T pass to infinity

at the same rate; (2) the AIC is never consistent; and (3) neither BIC nor BIC2 is consistent in general when N

and T pass to infinity at different rates.
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best. For example, even when N = 10 and T = 10, our CV can choose the correct model with a

probability close to 95%. The performance of AIC is also good and comparable to that of CV.

CV∗ and CV∗∗, which are robust to possible serial correlation, perform slightly worse than CV in

the absence of serial correlation. The performance of BIC is poor. For example, when the true

model is Model 4 and (N,T ) = (10, 50), BIC can only choose the correct model with a probability

of 3.5%. BIC2 outperforms BIC, but still underperforms CV and AIC.

When ρ = 1
4 , i.e., there is weak serial correlation in the error term, our CV

∗ and CV∗∗ perform

best overall, as suggested by our theory. Between CV∗ and CV∗∗, it is not apparent which one

dominates. For example, when the true model is Model 1, CV∗∗ outperforms CV∗, but when the

true model is Model 2, CV∗ outperforms CV∗∗. CV also performs reasonably well, as our theory

suggests that CV can consistently select the correct model when the serial correlation is weak

(ρ < 1
3 for this DGP). The performance of AIC is slightly worse than that of CV. Both BIC (e.g.,

when the true model is Model 3 or 4) and BIC2 (e.g., when the true model is Model 3) perform

poorly.

ρ = 1
3 is an interesting case, as ρ = 1

3 is the cut-off point for CV to work. In the dis-

cussion following Theorem 2.1, we show that when ρ = 1
3 , σ̄

2
u1 = 2σ̄2u, thus the key condition

max
(
σ̄2u1, σ̄

2
u2

)
< 2σ̄2u is violated. In our proof, we show that in this case, when the true model is

Model 1, T [CV (2)− CV (1)]
P−→ 0 and when the true model is Model 3, T [CV (4)− CV (3)]

P−→
0. This suggests that CV cannot distinguish Model 1 and Model 2 when the true model is Model 1

and cannot distinguish Model 3 and Model 4 when the true model is Model 3. Our simulations con-

firm the theoretical analysis. For example, when the true model is Model 1 and (N,T ) = (50, 50),

CV selects Model 1 and Model 2 with probabilities of 55.7% and 44.3%, respectively. In this

case, CV, AIC, BIC and BIC2 all break down. However, both CV∗ and CV∗∗, which explicitly

take serial correlation into account, perform well, as suggested by our theory. For example, when

(N,T ) = (50, 50) , both CV∗ and CV∗∗ can select the correct model with a probability close to

100%. For this DGP, CV∗ slightly outperforms CV∗∗ as a whole.

When the series correlation is high, such as ρ = 1
2 and

3
4 , the performances of CV, AIC, BIC

and BIC2 are all poor. In general, CV∗ and CV∗∗ perform well, especially when the sample is

large. For this DGP, CV∗ outperforms CV∗∗ in general. For example, when (N,T ) = (50, 50) and

ρ = 1
2 or

3
4 , CV

∗ can choose the correct model with a probability close to 100%. However, when

the true model is Model 4 and (N,T ) = (50, 50) , ρ = 3
4 , CV

∗∗ can only choose the correct model

with a probability of 49.1% . This seems to suggest that when serial correlation is high, a large

sample is required for CV∗∗ to work well.

To examine the effect of model misspecification, in Table 4A, we compare the mean squared

errors (MSEs) of the estimator of the slope coeffi cient (β = 1) using different models when ρ = 0.6

It is clear that for this DGP, the correct model achieves the smallest MSE. For example, when

the true model is Model 1 and (N,T ) = (10, 10) , the MSE based on Model 4 is about 3.5 times

6The results for ρ = 1
4
, 1
3
, 1
2
, and 3

4
are avaiable upon request.
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as large as that based on Model 1.

In sum, for static panel models, when there is no serial correlation or serial correlation is

low, CV, CV∗, CV∗∗ and AIC all work well. In the absence of serial correlation, CV is the

best performer. When serial correlation is high, only CV∗ and CV∗∗ work and CV∗ generally

outperforms CV∗∗.

3.3 Dynamic panel models without exogenous regressors

We consider the following dynamic panel DGPs:

DGP 2.1: yit = 1 + βyi,t−1 + uit DGP 2.2: yit = 1 + βyi,t−1 + αi + uit

DGP 2.3: yit = 1 + βyi,t−1 + λt + uit DGP 2.4: yit = 1 + βyi,t−1 + αi + λt + uit
,

where αi, λt and uit are mutually independent N (0, 1) random variables and β takes different

values: 14 ,
1
2 and

3
4 .

Tables 2A, 2B, and 2C report the simulations results for β = 1
4 ,

1
2 and

3
4 , respectively. For

most cases, our CV can select the correct method with a high probability and dominates other

methods. Despite its inconsistency, AIC performs slightly worse than CV. For example, when the

true model is Model 1, β = 1
2 , (N,T ) = (10, 10), CV and AIC choose the correct model with

probabilities of 84.4% and 79.6%, respectively. The performance of BIC is poor in many cases.

For example, when the true model is Model 2, β = 1
2 , and (N,T ) = (50, 10) , BIC selects the

correct model with zero probability. The performance of BIC2 is better than that of BIC, but still

worse than those of CV and AIC in general.

Table 4B shows the MSEs of estimator of β based on the four models when β = 3
4 .
7 We consider

both the non-bias corrected estimator and bias corrected estimator. For the bias correction, we

adopt the half panel jackknife method as proposed in Dhaene and Jochmans (2015). For both

types of estimators, the estimator based on the true model has the smallest MSE. For example,

when true model is Model 1 and (N,T ) = (10, 10) , the MSEs of the non-bias corrected estimator

based on Model 4 is about 10 times as large as that based on Model 1, and the MSE of the bias

corrected estimator based on Model 4 is about 5 times as large as that based on Model 1.

7The results for β = 1
4
and 1

2
are avaiable upon request.
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3.4 Dynamic panel models with exogenous regressors

We consider the following dynamic panel DGPs with 5 exogenous regressors:

DGP 3.1: yit = 1 + βyi,t−1 +

5∑
j=1

0.2xit,j + uit,

DGP 3.2: yit = 1 + βyi,t−1 +
5∑
j=1

0.2xit,j + αi + uit,

DGP 3.3: yit = 1 + βyi,t−1 +
5∑
j=1

0.2xit,j + λt + uit,

DGP 3.4: yit = 1 + βyi,t−1 +
5∑
j=1

0.2xit,j + αi + λt + uit,

where xit,1 = 1+αi+λt+ ξit, and xit,2, xit,3, xit,4, xit,5, αi, λt, uit and ξit are mutually independent

N (0, 1) random variables, and β takes different values: 14 ,
1
2 and

3
4 . Here the number of regressors

is k = 7 (including the constant).

Table 3A, 3B and 3C represent the frequency of the model selected for β = 1
4 ,

1
2 and

3
4 ,

respectively. The simulation results are similar to those in the dynamic models without exogenous

regressors. In general, our CV performs best, followed by AIC. Both CV and AIC can select the

correct model with a high probability, especially when the sample size is large. For example, when

(N,T ) = (50, 50) , the correct probabilities are all close to 100%. BIC performs poorly when the

true model is Model 2 or Model 4. BIC2 outperforms BIC, but still underperforms CV and AIC.

4 Empirical Applications

In this section we consider three empirical applications that illustrate the usefulness of our method

in selecting individual or time effects in panel data models.

4.1 Application I: Crime rates in North Carolina

Cornwell and Trumbull (1994) study the crime rates using the panel data on 90 counties in North

Carolina over the period 1981 —1987. The vector of explanatory variables xit includes: (1) the

probability of arrest, measured by the ratio of arrests to offences, (2) the probability of conviction

given arrest, measured by the ratio of convictions to arrests, (3) the probability of a prison sentence

given a conviction, measured by the proportion of total convictions resulting in prison sentences,

(4) the average prison sentence in days, (5) the number of police per capita, (6) the population

density, measured by the county population divided by the county land area, (7) the percentage

of young male, measured by the proportion of the county’s population that is male and between

the ages of 15 and 24, and (8− 16) the average weekly wage in the county in the following nine

industries: (i) construction, (ii) transportation, utilities and communication, (iii) wholesale and
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retail trade, (iv) finance, insurance and real estate, (v) services, (vi) manufacturing, (vii) federal

government, (viii) state government and (ix) local government. All the variables are in logarithm.

Hence we have a static panel with N = 90, T = 7 and k = 17 (including the constant). The same

dataset is also used in Baltagi (2006) and Wu and Li (2014).

Table 5 presents the values of AIC, BIC, BIC2, CV, CV∗, and CV∗∗. All these methods

determine that Model 4 (i.e., including both individual and time fixed effects) is the correct

model.

4.2 Application II: Cross-country saving rates

Su, Shi, and Phillips (2016) use a dynamic panel data model to study the determinants of savings

rates. Following Edwards (1996), they let yit be the ratio of savings to GDP for country i in year

t, and let xit include (i) its CPI-based inflation rate, (ii) its real interest rate, (iii) its per capita

GDP growth rate and (iv) its lagged saving rate, i.e., yi,t−1. Their dataset includes 56 countries

over the period of 1995 —2010. Hence, we have a dynamic panel data model with N = 56, T = 15,

and k = 5 (including the constant).

Table 6 shows the values of AIC, BIC, BIC2 and CV. AIC, BIC2 and CV all select Model

2, while BIC selects Model 1. Considering the poor performance of BIC in the simulations, we

conclude that Model 2 (i.e., including individual fixed effects only) is the correct model.

4.3 Application III: Guns and crime in the U.S.

In the paper “Shooting down the ‘More Guns less Crime’hypothesis”, Ayres and Donohue (2003)

consider how the “shall-issue”law affects the crime rates in the U.S., where the “shall-issue”law

refers to whether local authorities can issue a concealed weapon permit if the applicants meet

certain determinate criteria. So, here yit is the crime rates for state i in year t. Specifically, we

consider the logarithms of three measures of crime rates separately, namely, the violent crime

rate, the murder rate and the robbery rate, which are measured by incidents per 100,000 members

of the population. The key regressor in xit is the “shall-issue” variable, which is 1 if the state

has a shall-carry law in effect in that year and 0 otherwise. Other controls in xit include (i) the

incarceration rate in the state in the previous year, which is measured by sentenced prisoners per

100,000 residents, (ii) the population density per square mile of land area, divided by 1000, (iii)

the real per capita personal income in the state, in thousands of dollars, (iv) the state population,

in millions of people, (v) the percentage of state population that is male with an age between

10 and 29, (vi) the percentage of state population that is white with an age between 10 to 64

and (vii) the percentage of state population that is black with an age between 10 and 64. The

dataset contains 50 US states and the District of Columbia (N = 51) over the period of 1977 —

1999 (T = 23). The dataset is also discussed in the textbook by Stock and Watson (2012).

We first consider a static panel model, where the dimension of xit is k = 9 (including constant).
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Table 7 shows the results for three dependent variables separately. All the information criteria

and CV methods select Model 4 (i.e., including both individual and time fixed effects).

We then consider a dynamic panel model by including the lagged yit as an additional regressor,

hence here k = 10 and (N,T ) = (51, 22) . Table 7 presents the values of AIC, BIC, BIC2 and CV

for the three dependent variables. AIC, BIC2 and CV all select Model 4 for the three cases. When

yit is the violent crime rate or the robbery rate, BIC chooses Model 3. When yit is the murder

rate, BIC chooses Model 1. Given the poor performance of BIC in the simulations, we conclude

that for the dynamic panel model, the correct model is also Model 4.

5 Conclusion

In this paper, we propose a jackknife method to determine fixed effects in panel data models

based on the leave-one-out cross validation (CV) criterion function. We show that when the

serial correlation and cross-sectional dependence in the error terms are weak, our new method

can consistently select the correct model. We also modify the CV criterion function to take into

account the strong serial correlation in the error term. Our simulations suggest that our new

method outperforms the methods based on the information criteria such as AIC and BIC. We

provide three empirical applications on (i) the crime rates in North Carolina, (ii) the determinants

of saving rates across countries, and (iii) the relationship between guns and crime rates in the

U.S.

Several extension are possible. First, our method can be extended to multidimensional panel

data models where there are many ways of incorporating fixed effects (see, e.g., Balazsi, Matyas,

and Wansbeek (2016) for a review). Therefore, it is even more imperative to select an appropriate

specification of fixed effects in multidimensional panels. Second, we may extend our method

to allow for strong form of cross-sectional dependence, say, via the multi-factor error structure

(e.g., Bai (2009) and Pesaran (2006)). When the regressors also share the factor structure, we

conjecture that we can augment Models 1-4 by the cross-sectional means of the dependent and

independent variables and then apply our jackknife method. We shall explore these topics in our

future research.
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Appendix

A Proofs of the main results

To prove Theorem 2.1, we first state and prove six lemmas.

Lemma A.1 Let XD = (X,D) andMD = INT−D (D′D)
−1
D′. If both D′D and X ′MDX are nonsingular,

then

(X ′DXD)
−1

=

(
X∗D −X∗DX ′D (D′D)

−1

− (D′D)
−1
D′XX∗D (D′D)

−1
+ (D′D)

−1
D′XX∗DX

′D (D′D)
−1

)
where X∗D = (X ′MDX)

−1
.

Proof. Noting that X ′DXD =

(
X ′X X ′D

D′X D′D

)
, the lemma follows from the standard inversion

formula for a 2× 2 partitioned matrix. See, e.g., Bernstein (2005, p.45).

Lemma A.2 Let XD = (X,D) and D = (D1, D2) where D′1D2 = 0. If D′1D1, D
′
2D2, and X ′MDX are all

nonsingular, then

(X ′DXD)
−1

=

 X∗D −X∗DB1 −X∗DB2
−B′1X∗D (D′1D1)

−1
+B′1X

∗
DB1 B′1X

∗
DB2

−B′2X∗D B′2X
∗
DB1 (D′2D2)

−1
+B′2X

∗
DB2


where X∗D = (X ′MDX)

−1 and Bl = X ′Dl (D
′
lDl)

−1 for l = 1, 2.

Proof. By Lemma A.1,

(X ′DXD)
−1

=

(
X∗D −X∗DX ′D (D′D)

−1

− (D′D)
−1
D′XX∗D (D′D)

−1
+ (D′D)

−1
D′XX∗DX

′D (D′D)
−1

)
.

Noting that D′1D2 = 0, we have

(D′D)
−1

=

(
(D′1D1)

−1

(D′2D2)
−1

)
, and

X ′D (D′D)
−1

= X ′
(
D1 (D′1D1)

−1
, D2 (D′2D2)

−1
)

= (B1, B2) .

Combining the above results yields the desired result.

Lemma A.3 Suppose that Assumption A.1(iv) holds. Then
(i) 1

NT U
′Dα (D′αDα)

−1
D′αU = 1

N

∑N
i=1 ū

2
i· − ū2·· = 1

N

∑N
i=1 ū

2
i· −OP ((NT )−1),

(ii) 1
NT U

′Dλ (D′λDλ)
−1
D′λU = 1

T

∑T
t=1 ū

2
·t − ū2·· = 1

T

∑T
t=1 ū

2
·t −OP ((NT )−1),

(iii) 1
NT U

′Dαλ (D′αλDαλ)
−1
D′αλU = 1

N

∑N
i=1 ū

2
i· + 1

T

∑T
t=1 ū

2
·t − 2ū2·· = 1

N

∑N
i=1 ū

2
i· + 1

T

∑T
t=1 ū

2
·t −

OP ((NT )−1).

Proof. (i) Noting that D′αDα = T
(
IN−1 + ιN−1ι

′
N−1

)
, we have

(D′αDα)
−1

= T−1(IN−1 −
1

N
ιN−1ι

′
N−1), (A.1)
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and

Dα (D′αDα)
−1
D′α = T−1

((
IN−1

−ι′N−1

)
⊗ ιT

)(
IN−1 −

1

N
ιN−1ι

′
N−1

)((
IN−1 −ιN−1

)
⊗ ι′T

)
= T−1

((
IN−1 − 1

N ιN−1ι
′
N−1

− 1
N ι
′
N−1

)
⊗ ιT

)((
IN−1 −ιN−1

)
⊗ ι′T

)
=

(
IN−1 − 1

N ιN−1ι
′
N−1 − 1

N ιN−1

− 1
N ι
′
N−1

N−1
N

)
⊗ (ιT ι

′
T /T ) .

By straightforward but tedious algebra we can show that

1

NT
U ′Dα (D′αDα)

−1
D′αU

=
1

NT 2

{
u′N−1

[(
IN−1 −

1

N
ιN−1ι

′
N−1

)
⊗ (ιT ι

′
T )

]
uN−1 −

2

N
u′N−1 [ιN−1 ⊗ (ιT ι

′
T )]uN +

N − 1

N
u′N ιT ι

′
TuN

}

=

 1

N

N−1∑
i=1

ū2i· −
(

1

N

N−1∑
i=1

ū2i·

)2− 2

N2

N−1∑
i=1

ūi·ūN · +
N − 1

N2
ū2N ·

=
1

N

N∑
i=1

ū2i· − ū2·· =
1

N

N∑
i=1

ū2i· −OP ((NT )−1),

where we use the fact that ū·· = 1
NT

∑N
i=1

∑T
t=1 uit = OP

(
(NT )−1/2

)
by Assumption A.1(iv).

(ii) The proof is analogous to that of (i) and thus omitted. The main difference is that one now applies

Dλ (D′λDλ)
−1
D′λ = (ιN ι

′
N/N)⊗

(
IT−1 − 1

N ιT−1ι
′
T−1 − 1

N ιT−1

− 1
N ι
′
T−1

T−1
T

)
.

(iii) Noting that Dαλ (D′αλDαλ)
−1
D′αλ = Dα (D′αDα)

−1
D′α+Dλ (D′λDλ)

−1
D′λ by the fact D

′
αDλ = 0,

we have

1

NT
U ′Dαλ (D′αλDαλ)

−1
D′αλU =

1

NT
U ′Dα (D′αDα)

−1
D′αU +

1

NT
U ′Dλ (D′λDλ)

−1
D′λU

=

(
1

N

N∑
i=1

ū2i· − ū2··

)
+

(
1

T

T∑
t=1

ū2·t − ū2··

)

=
1

N

N∑
i=1

ū2i· +
1

T

T∑
t=1

ū2·t −OP ((NT )−1).

where the second equality follows from the results in (i)-(ii) and the last equality follows by Assumption

A.1(iv).

Lemma A.4 Suppose that Assumptions A.1(iv) and A.2(iii)-(iv) holds. Then
(i) 1

NTX
′Dα (D′αDα)

−1
D′αU = 1

N

∑N
i=1 x̄i·ūi· − x̄··ū·· = OP (T−1 + (NT )−1/2),

(ii) 1
NTX

′Dλ (D′λDλ)
−1
D′λU = 1

T

∑T
t=1 x̄t·ūt· − x̄··ū·· = OP (N−1 + (NT )−1/2),

(iii) 1
NTX

′Dαλ (D′αλDαλ)
−1
D′αλU = 1

N

∑N
i=1 x̄i·ūi· +

1
T

∑T
t=1 x̄t·ūt· − 2x̄··ū·· = OP (N−1 + T−1).

21



Proof. (i) Following the proof of Lemma A.3(i), we have

1

NT
X ′Dα (D′αDα)

−1
D′αU

=
1

NT

{
x′N−1

[(
IN−1 −

1

N
ιN−1ι

′
N−1

)
⊗ (ιT ι

′
T )

]
uN−1 −

1

N
x′N−1

[
ι′N−1 ⊗ (ιT ι

′
T )
]
uN−1

− 1

N
x′N−1 [ιN−1 ⊗ (ιT ι

′
T )]uN +

N − 1

N
x′N ιT ι

′
TuN

}
=

[
1

N

N−1∑
i=1

x̄i·ūi· −
1

N2

N−1∑
i=1

x̄i·

N−1∑
i=1

ūi·

]
− 1

N2
x̄N ·

N−1∑
i=1

ūi· −
1

N2

N−1∑
i=1

x̄i·ūN · +
N − 1

N2
x̄N ·ūN ·

=
1

N

N∑
i=1

x̄i·ūi· − x̄··ū·· =
1

N

N∑
i=1

x̄i·ūi· −OP ((NT )−1/2) = OP (T−1 + (NT )−1/2),

where we use the fact that 1
N

∑N
i=1 x̄i·ūi· = 1

NT 2

∑N
i=1

∑T
t=1

∑T
s=1 xituis = OP

(
T−1 + (NT )−1/2

)
and

ū·· = OP
(
(NT )−1/2

)
by Assumptions A.2(iii) and A.1(iv).

(ii) The proof is analogous to that of (i) and thus omitted.

(iii) Noting that Dαλ (D′αλDαλ)
−1
D′αλ = Dα (D′αDα)

−1
D′α+Dλ (D′λDλ)

−1
D′λ, the results follow from

(i)-(ii) and the fact that N−1 + T−1 ≥ 2(NT )−1/2.

Lemma A.5 Let η(l)it = x
(l)′
it

(
X(l)′X(l)

)−1
X(l)′U and JlNT = 1

NT

∑N
i=1

∑T
t=1(η

(l)
it )2 = 1

NT U
′X(l)

(
X(l)′X(l)

)−1
×X(l)′U for l = 1, 2, 3, 4. Suppose that Assumptions A.1(iv)-(v) and A.2(iii)-(iv) hold. Then

(i) J1NT = OP ((NT )
−1

),

(ii) J2NT = 1
N

∑N
i=1 ū

2
i· +OP ((NT )−1 + T−2),

(iii) J3NT = 1
T

∑T
t=1 ū

2
·t +OP ((NT )−1 +N−2),

(iv) J4NT = 1
N

∑N
i=1 ū

2
i·+

1
T

∑T
t=1 ū

2
·t+OP

(
T−2 +N−2

)
, J4NT−J2NT = 1

T

∑T
t=1 ū

2
·t+OP

(
N−2 + (NT )−1

)
,

and J4NT − J3NT = 1
N

∑N
i=1 ū

2
i· +OP

(
T−2 + (NT )−1

)
.

Proof. (i) J1NT ≤
∥∥∥( 1

NTX
′X
)−1∥∥∥∥∥ 1

NTX
′U
∥∥2 = OP

(
1
NT

)
by Assumption A.1(iv)-(v).

(ii) By Lemma A.1 with D = Dα, we have

J2NT =
1

NT
U ′X(2)

(
X(2)′X(2)

)−1
X(2)′U

=
1

NT
(U ′X,U ′Dα)

(
X∗Dα −X∗DαBα

−B′αX∗Dα (D′αDα)
−1

+B′αX
∗
DBα

)(
X ′U

D′αU

)

=
1

NT

(
U ′XX∗Dα − U

′DαB
′
αX
∗
Dα ,−U

′XX∗DαBα + U ′Dα (D′αDα)
−1

+ U ′DαB
′
αX
∗
DαBα

)( X ′U

D′αU

)

=
1

NT

(
U ′XX∗DαX

′U − 2U ′DαB
′
αX
∗
DαX

′U + U ′Dα (D′αDα)
−1
D′αU + U ′DαB

′
αX
∗
DαBαD

′
αU
)

≡ J2NT,1 − 2J2NT,2 + J2NT,3 + J2NT,4, say,

where Bα = X ′Dα (D′αDα)
−1
. As in (i), we can show that J2NT,1 = OP ((NT )

−1
) by Assumption A.1(iv)-
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(v). By Lemma A.4(i) and Assumptions A.1(iv)-(v) and A.2(iii) and using X∗Dα = (X ′MDαX)
−1
,

J2NT,1 =
1

NT
U ′DαB

′
αX
∗
DαX

′U

=
1

NT
U ′Dα (D′αDα)

−1
D′αX

(
1

NT
X ′MDαX

)−1
1

NT
X ′U

=

(
1

N

N∑
i=1

x̄i·ūi· − x̄··ū··

)′
OP (1)OP

(
(NT )−1/2

)
= OP

(
T−1 + (NT )−1/2

)
OP

(
(NT )−1/2

)
= OP

(
N−1/2T−3/2 + (NT )−1

)
,

and

J2NT,4 =
1

NT
U ′DαB

′
αX
∗
DαBαD

′
αU

=
1

NT
U ′Dα (D′αDα)

−1
D′αX

(
1

NT
X ′MDαX

)−1
1

NT
X ′Dα (D′αDα)

−1
D′αU

=

(
1

N

N∑
i=1

x̄i·ūi· − x̄··ū··

)′(
1

NT
X ′MDαX

)−1(
1

N

N∑
i=1

x̄i·ūi· − x̄··ū··

)
= OP

(
T−1 + (NT )−1/2

)
OP (1)OP

(
T−1 + (NT )−1/2

)
= OP

(
T−2 + (NT )−1

)
.

By Lemma A.3(i),

J2NT,3 =
1

NT
U ′Dα (D′αDα)

−1
D′αU =

1

N

N∑
i=1

ū2i· − ū2·· =
1

N

N∑
i=1

ū2i· −OP ((NT )−1).

It follows that J2NT = 1
N

∑N
i=1 ū

2
i· +OP ((NT )−1 + T−2) as (NT )−1 + T−2 ≥ 2N−1/2T−3/2.

(iii) The proof is analogous to that of (ii) and thus omitted.

(iv) By Lemma A.2

J4NT =
1

NT
U ′X(4)

(
X(4)′X(4)

)−1
X(4)′U

=
1

NT
(U ′X,U ′Dα, U

′Dλ)

×

 X∗Dαλ −X∗DαλBα −X∗DαλBλ
−B′αX∗Dαλ (D′αDα)

−1
+B′αX

∗
Dαλ

Bα B′αX
∗
Dαλ

Bλ

−B′λX∗Dαλ B′λX
∗
Dαλ

Bα (D′λDλ)
−1

+B′λX
∗
Dαλ

Bλ


 X ′U

D′αU

D′λU


=

1

NT

{
U ′XX∗DαλX

′U + U ′Dα

(
(D′αDα)

−1
+B′αX

∗
Dαλ

Bα

)
D′αU

+U ′Dλ

(
(D′λDλ)

−1
+B′λX

∗
Dαλ

Bλ

)
D′λU − 2U ′DαB

′
αX
∗
Dαλ

X ′U

−2U ′DλB
′
λX
∗
Dαλ

X ′U + 2U ′DλB
′
λX
∗
Dαλ

BαD
′
αU
}

≡ J4NT,1 + J4NT,2 + J4NT,3 − 2J4NT,4 − 2J4NT,5 + 2J4NT,6, say,

where Dαλ = (Dα, Dλ) and B` = X ′D` (D′`D`)
−1 for ` = α, λ. By Assumption A.1(iv)-(v),

J4NT,1 ≤
∥∥∥∥∥
(

1

NT
X ′MDαλX

)−1∥∥∥∥∥
∥∥∥∥ 1

NT
X ′U

∥∥∥∥2 = OP ((NT )−1).
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By Lemmas A.3(i) and A.4(i) and Assumptions A.1(iv) and A.2(iii),

J4NT,2 =
1

NT
U ′Dα (D′αDα)

−1
D′αU +

1

NT
U ′DαB

′
αX
∗
Dαλ

BαD
′
αU

=
1

NT
U ′Dα (D′αDα)

−1
D′αU +

1

NT
U ′DαB

′
α

(
1

NT
X ′MDαλX

)−1
1

NT
BαD

′
αU

=

(
1

N

N∑
i=1

ū2i· − ū2··

)
+OP

(
T−1 + (NT )−1/2

)
OP (1)OP

(
T−1 + (NT )−1/2

)
=

1

N

N∑
i=1

ū2i· +OP
(
T−2 + (NT )−1

)
.

By Lemmas A.3(ii) and A.4(ii) and Assumptions A.1(iv) and A.2(iv),

J4NT,3 =
1

NT
U ′Dλ (D′λDλ)

−1
D′λU +

1

NT
U ′DλB

′
λ

(
1

NT
X ′MDαλX

)−1
1

NT
BλD

′
λU

=

(
1

T

T∑
t=1

ū2·t − ū2··

)
+OP

(
N−1 + (NT )−1/2

)
OP (1)OP

(
N−1 + (NT )−1/2

)
=

1

T

T∑
t=1

ū2·t +OP
(
N−2 + (NT )−1

)
.

In addition, by Lemma A.4(i)-(ii) and Assumption A.1(iv), we have

J4NT,4 =
1

NT
U ′DαB

′
α

(
1

NT
X ′MDαλX

)−1
1

NT
X ′U

= OP (T−1 + (NT )−1/2)OP (1)OP ((NT )−1/2) = OP ((NT )−1 +N−1/2T−3/2),

J4NT,5 =
1

NT
U ′DλB

′
λ

(
1

NT
X ′MDαλX

)−1
1

NT
X ′U

= OP (N−1 + (NT )−1/2)OP (1)OP ((NT )−1/2) = OP ((NT )−1 +N−3/2T−1/2),

J4NT,6 =
1

NT
U ′DλB

′
λ

(
1

NT
X ′MDαλX

)−1
1

NT
BαD

′
αU

= OP (N−1 + (NT )−1/2)OP (1)OP (T−1 + (NT )−1/2) = OP ((NT )−1 +N−3/2T−1/2 +N−1/2T−3/2).

It follows that J4NT = 1
N

∑N
i=1 ū

2
i·+

1
T

∑T
t=1 ū

2
·t+OP

(
T−2 +N−2

)
. In addition, we can show that J4NT −

J2NT = 1
T

∑T
t=1 ū

2
·t +OP (N−2 + (NT )−1) and J4NT − J3NT = 1

N

∑N
i=1 ū

2
i· +OP (T−2 + (NT )−1).

Lemma A.6 Let h(l)it = x
(l)′
it

(
X(l)′X(l)

)−1
x
(l)
it for l = 1, 2, 3, 4 and B` = X ′D` (D′`D`)

−1 for ` = α, λ, and

αλ. Let maxi,t = max1≤i≤N,1≤t≤T . Suppose that Assumption A.1(ii) and (v) hold. Then

(i) maxi,t h
(1)
it = oP ((NT )

−1
C2NT ),

(ii) h(2)it = T−1N−1N +(xit −Bαdα,it)′X∗Dα (xit −Bαdα,it) and maxi,t h
(2)
it = oP ((NT )

−1
C2NT )+OP (T−1),

(iii) h(3)it = N−1 T−1T + (xit −Bλdλ,it)′X∗Dλ (xit −Bλdλ,it) and maxi,t h
(3)
it = oP ((NT )

−1
C2NT ) +

OP (N−1),

(iv) h(4)it = T−1N−1N +N−1 T−1T +(xit −Bαλdαλ,it)′X∗Dαλ (xit −Bαλdαλ,it) and maxi,t h
(4)
it = oP ((NT )

−1
C2NT )

+OP (N−1 + T−1).

24



Proof. (i) maxi,t h
(1)
it = maxi,t x

′
it (X ′X)

−1
xit ≤

[
λmin

(
(NT )

−1
X ′X

)]−1
(NT )

−1
maxi,t ‖xit‖2 =

oP ((NT )
−1
C2NT ) by Assumption A.1(ii) and (v).

(ii) Let d′α,it denote a typical row of Dα such that Dα = (dα,11, ..., dα,1T , ..., dα,N1, ..., dα,NT )′. Then

h
(2)
it = x

(2)′
it

(
X(2)′X(2)

)−1
x
(2)
it

=
(
x′it, d

′
α,it

)( X ′X X ′Dα

D′αX D′αDα

)−1(
xit

dα,it

)

=
(
x′it, d

′
α,it

)( X∗Dα −X∗DαBα
−B′αX∗Dα (D′αDα)

−1
+B′αX

∗
Dα
Bα

)(
xit

dα,it

)
= d′α,it (D′αDα)

−1
dα,it + x′itX

∗
Dαxit − d

′
α,itB

′
αX
∗
Dαxit − x

′
itX
∗
DαBαdα,it + d′α,itB

′
αX
∗
DαBαdα,it

= d′α,it (D′αDα)
−1
dα,it + (xit −Bαdα,it)′X∗Dα (xit −Bαdα,it) . (A.2)

For i ≤ N−1, dα,it contains 1 in one place and zeros elsewhere, implying that d′α,it
(
IN−1 − 1

N ιN−1ι
′
N−1

)
dα,it

= 1− 1
N = N−1

N for any i ≤ N − 1 and t = 1, ..., T . When i = N, we have

d′α,Nt

(
IN−1 −

1

N
ιN−1ι

′
N−1

)
dα,Nt = ι′N−1

(
IN−1 −

1

N
ιN−1ι

′
N−1

)
ιN−1 =

N − 1

N
for t = 1, ..., T.

These observations, in conjunction with (A.1), imply that

d′α,it (D′αDα)
−1
dα,it = T−1d′α,it

(
IN−1 −

1

N
ιN−1ι

′
N−1

)
dα,it = T−1

N − 1

N
for all i, t. (A.3)

Next, notice that

max
i,t

(xit −Bαdα,it)′X∗Dα (xit −Bαdα,it) ≤ εNT max
i,t

1

NT
(xit −Bαdα,it)′ (xit −Bαdα,it)

≤ εNT max
i,t

1

NT
‖xit‖2 = oP ((NT )

−1
C2NT ),

where εNT =
[
λmin

(
1
NTX

′MDαX
)]−1

= OP (1) by Assumption A.1(v) and we use the fact that xit −
Bαdα,it denotes the residual from the OLS regression of xit on dα,it. It follows that h

(2)
it = T−1N−1N +

(xit −Bαdα,it)′X∗Dα (xit −Bαdα,it) and maxi,t h
(2)
it = oP ((NT )

−1
C2NT ) +OP (T−1).

(iii) Let d′λ,it denote a typical row of Dλ such that Dλ = (dλ,11, ..., dλ,1T , ..., dλ,N1, ..., dλ,NT )′. Following

the analysis in (ii), we can show that

h
(3)
it = d′λ,it (D′λDλ)

−1
dλ,it + (xit −Bλdλ,it)′X∗Dλ (xit −Bλdλ,it) (A.4)

and

d′α,it

(
IT−1 −

1

T
ιT−1ι

′
T−1

)
dα,it =

T − 1

T
for all i, t. (A.5)

Noting that

D′λDλ = N
(
IT−1 + ιT−1ι

′
T−1

)
and (D′λDλ)

−1
= N−1

(
IT−1 −

1

T
ιT−1ι

′
T−1

)
, (A.6)

we have d′λ,it (D′λDλ)
−1
dλ,it = N−1 T−1T . In addition,

max
i,t

(xit −Bλdλ,it)′X∗Dα (xit −Bλdλ,it) ≤ εNT max
i,t

1

NT
‖xit‖2 = oP ((NT )

−1
C2NT ).
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It follows that h(3)it = N−1 T−1T + (xit −Bλdλ,it)′X∗Dλ (xit −Bλdλ,it) and maxi,t h
(3)
it = oP ((NT )

−1
C2NT ) +

OP (N−1).

(iv) Let d′αλ,it denote a typical row of Dαλ such that Dαλ = (dαλ,11, ..., dαλ,1T , ..., dαλ,N1, ..., dαλ,NT )′.

Following the analysis in (ii), we can show that

h
(4)
it = d′αλ,it (D′αλDαλ)

−1
dαλ,it + (xit −Bαλdαλ,it)′X∗Dαλ (xit −Bαλdαλ,it) . (A.7)

Noting that Dαλ = (Dα, Dλ) and D′αDλ = 0, we have

(D′αλDαλ)
−1

=

(
(D′αDα)

−1

(D′λDλ)
−1

)
.

Then

d′αλ,it (D′αλDαλ)
−1
dαλ,it = d′α,it (D′αDα)

−1
dα,Nt + d′λ,it (D′λDλ)

−1
dλ,it

= T−1
N − 1

N
+N−1

T − 1

T
for all i, t. (A.8)

In addition, maxi,t (xit −Bαλdαλ,it)′X∗Dαλ (xit −Bαλdαλ,it) ≤
[
λmin

(
1
NTX

′MDαλX
)]−1

maxi,t
1
NT ‖xit‖

2

= oP ((NT )
−1
C2NT ) by Assumptions A.1(ii) and (v). It follows that h(4)it = T−1N−1N + N−1 T−1T +

(xit −Bαλdαλ,it)′X∗Dαλ (xit −Bαλdαλ,it) and maxi,t h
(4)
it = oP ((NT )

−1
C2NT ) +OP (N−1 + T−1).

Proof of Theorem 2.1. Recall that β̂
(l)

=
(
X(l)′X(l)

)−1
X(l)′Y and β̂

(l)

it = (X(l)′X(l)−x(l)it x
(l)′
it )−1(X(l)′Y

−x(l)it yit). By the updated formula for OLS estimation (e.g., Greene (2008, p.964)), we have for l = 1, 2, 3, 4,

β̂
(l)

it − β̂
(l)

= (X(l)′X(l) − x(l)it x
(l)′
it )−1(X(l)Y − x(l)it yit)− β̂

(l)

=

[(
X(l)′X(l)

)−1
+

1

1− h(l)it

(
X(l)′X(l)

)−1
x
(l)
it x

(l)′
it

(
X(l)′X(l)

)−1]
(X(l)Y − x(l)it yit)− β̂

(l)

=
−1

1− h(l)it

(
X(l)′X(l)

)−1
x
(l)
it yit +

1

1− h(l)it

(
X(l)′X(l)

)−1
x
(l)
it x

(l)′
it

(
X(l)′X(l)

)−1
X(l)Y, (A.9)

where h(l)it = x
(l)′
it

(
X(l)′X(l)

)−1
x
(l)
it . Below, we will use CVl,m to denote the CV (m) when the true model

is given by Model l where l,m = 1, 2, 3, 4. Let cit,l = (1− h(l)it )−1and cit,lm = cit,lcit,m. By Lemma A.6, for

l,m = 1, 2, 3, 4 we have

max
i,t

h
(l)
it = oP (δNT ) , max

i,t
|cit,l − 1| = oP (δNT ) and max

i,t
|cit,lm − 1| = oP (δNT ) , (A.10)

where δNT = (NT )−1C2NT and a ∧ b = min (a, b) .

Case 1: Model 1 is the true model. In this case, Models 2-4 are all overfitted and we will show that
P (CV1,1 < CV1,m)→ 1 for m = 2, 3, 4. When Model 1 is true, we have

yit = β′xit + uit = β(l)′x
(l)
it + uit and β̂

(l)
− β(l) =

(
X(l)′X(l)

)−1
X(l)′U,

where the true values correspond to the coeffi cients of the dummies dα,it and dλ,it for αi and λt in β
(l),
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l = 2, 3, 4, are all zero. This, in conjunction with (A.9), implies that for l = 1, 2, 3, 4,

x
(l)′
it (β̂

(l)

it − β(l))

= x
(l)′
it

[
(β̂
(l)
− β(l))− 1

1− h(l)it

(
X(l)′X(l)

)−1
x
(l)
it uit +

1

1− h(l)it

(
X(l)′X(l)

)−1
x
(l)
it x

(l)′
it

(
X(l)′X(l)

)−1
X(l)′U

]

= x
(l)′
it

(
X(l)′X(l)

)−1
X(l)′U − h

(l)
it

1− h(l)it
uit +

h
(l)
it

1− h(l)it
x
(l)′
it

(
X(l)′X(l)

)−1
X(l)′U

= − h
(l)
it

1− h(l)it
uit +

1

1− h(l)it
x
(l)′
it

(
X(l)′X(l)

)−1
X(l)′U,

and

yit − ŷ(l)it = uit − x(l)′it

(
β̂
(l)

it − β(l)
)

= cit,l

(
uit − x(l)′it

(
X(l)′X(l)

)−1
X(l)′U

)
. (A.11)

It follows that

CV1,l =
1

NT

N∑
i=1

T∑
t=1

(
yit − ŷ(l)it

)2
=

1

NT

N∑
i=1

T∑
t=1

c2it,l

(
uit − x(l)′it

(
X(l)′X(l)

)−1
X(l)′U

)2
.

We first study CV1,2 − CV1,1. We make the following decomposition:

CV1,2 − CV1,1

=
1

NT

N∑
i=1

T∑
t=1

[
c2it,2

(
uit − x(2)′it

(
X(2)′X(2)

)−1
X(2)U

)2
− c2it,1

(
uit − x(1)′it

(
X(1)′X(1)

)−1
X(1)′U

)2]

=
1

NT

N∑
i=1

T∑
t=1

(
c2it,2 − c2it,1

)
u2it

+
1

NT

N∑
i=1

T∑
t=1

[
c2it,2

(
x
(2)′
it

(
X(2)′X(2)

)−1
X(2)U

)2
− c2it,1

(
x
(1)′
it

(
X(1)′X(1)

)−1
X(1)′U

)2]

− 2

NT

N∑
i=1

T∑
t=1

[
c2it,2uitx

(2)′
it

(
X(2)′X(2)

)−1
X(2)U − c2it,1uitx

(1)′
it

(
X(1)′X(1)

)−1
X(1)′U

]
≡ A1 +A2 − 2A3, say.

For A1, we have

A1 =
1

NT

N∑
i=1

T∑
t=1

(
c2it,2 − c2it,1

)
u2it

=
1

NT

N∑
i=1

T∑
t=1

c2it,12

(
2− h(1)it − h

(2)
it

)(
h
(2)
it − h

(1)
it

)
u2it

=
1

NT

N∑
i=1

T∑
t=1

c2it,12

(
2− h(1)it − h

(2)
it

)
h
(2)
it u

2
it −

1

NT

N∑
i=1

T∑
t=1

c2it,12

(
2− h(1)it − h

(2)
it

)
h
(1)
it u

2
it

≡ A1,1 −A1,2, say.
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For A1,1, we make the following decomposition:

A1,1 =
1

NT

N∑
i=1

T∑
t=1

c2it,12

(
2− h(1)it − h

(2)
it

)
h
(2)
it u

2
it

=
2

NT

N∑
i=1

T∑
t=1

h
(2)
it u

2
it +

2

NT

N∑
i=1

T∑
t=1

(
c2it,12 − 1

)
h
(2)
it u

2
it −

1

NT

N∑
i=1

T∑
t=1

c2it,12

(
h
(1)
it + h

(2)
it

)
h
(2)
it u

2
it

≡ A1,11 +A1,12 −A1,3.

By Lemma A.6(ii), we can readily show that

A1,11 =
2

NT

N∑
i=1

T∑
t=1

[
d′α,it (D′αDα)

−1
dα,it + (xit −Bαdα,it)′X∗Dα (xit −Bαdα,it)

]
u2it

= T−1
N − 1

N

2

NT

N∑
i=1

T∑
t=1

u2it +OP

(
(NT )

−1
) 2

NT

N∑
i=1

T∑
t=1

‖xit‖2 u2it

= 2T−1
1

NT

N∑
i=1

T∑
t=1

u2it +OP

(
(NT )

−1
)
.

This result, in conjunction with (A.10) and the dominated convergence theorem (DCT), implies that

A1,12 = oP
(
T−1

)
and A1,13 = oP

(
T−1

)
. For A1,2, we have by (A.10)

A1,2 ≤ max
i,t

c2it,12(2− h
(1)
it − h

(2)
it )

1

NT

N∑
i=1

T∑
t=1

x′it (X ′X)
−1
xitu

2
it

≤ 1

NT
max
i,t

c2it,12(2− h
(1)
it − h

(2)
it )

[
λmin

(
1

NT
X ′X

)]−1
1

NT

N∑
i=1

T∑
t=1

‖xit‖2 u2it = OP
(
(NT )−1

)
.

It follows that A1 = 2T−1 1
NT

∑N
i=1

∑T
t=1 u

2
it + oP

(
T−1

)
. For A2, we write

A2 =
1

NT

N∑
i=1

T∑
t=1

(
x
(2)′
it

(
X(2)′X(2)

)−1
X(2)′U

)2
+

1

NT

N∑
i=1

T∑
t=1

(
c2it,2 − 1

)(
x
(2)′
it

(
X(2)′X(2)

)−1
X(2)′U

)2

− 1

NT

N∑
i=1

T∑
t=1

c2it,1

(
x
(1)′
it

(
X(1)′X(1)

)−1
X(1)′U

)2
≡ A2,1 +A2,2 −A23, say.

By Lemma A.5(ii), A2,1 = 1
N

∑N
i=1 ū

2
i·+OP ((NT )−1+T−2+N−1/2T−3/2), where the first term is OP (T−1).

This result, in conjunction with (A.10) and the DCT, implies that A2,2 = oP (T−1). By Lemmas A.5(i) and

A.6(i), A2,3 = OP
(
(NT )−1

)
. It follows that A2 = 1

N

∑N
i=1 ū

2
i· + oP (T−1). For A3, we have

A3 =
1

NT

N∑
i=1

T∑
t=1

uitx
(2)′
it

(
X(2)′X(2)

)−1
X(2)U +

1

NT

N∑
i=1

T∑
t=1

(
c2it,2 − 1

)
uitx

(2)′
it

(
X(2)′X(2)

)−1
X(2)U

− 1

NT

N∑
i=1

T∑
t=1

uitx
(1)′
it

(
X(1)′X(1)

)−1
X(1)U +

1

NT

N∑
i=1

T∑
t=1

(
1− c2it,1

)
uitx

(1)′
it

(
X(1)′X(1)

)−1
X(1)U

≡ A3,1 +A3,2 −A33 +A34, say.
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By Lemma A.5(i) and (ii), A3,1 = 1
N

∑N
i=1 ū

2
i·+OP ((NT )−1+T−2+N−1/2T−3/2) and A3,3 = OP ((NT )−1).

In addition,

|A3,2| ≤ max
i,t

∣∣c2it,2 − 1
∣∣ ∥∥∥∥∥
(

1

NT
X(2)′X(2)

)−1∥∥∥∥∥
∥∥∥∥ 1

NT
X(2)U

∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

∥∥∥x(2)it uit∥∥∥
= oP (δNT )OP (1)OP ((NT )−1/2)OP (1) = oP (T−1), and

|A3,4| ≤ max
i,t

∣∣c2it,1 − 1
∣∣ ∥∥∥∥∥
(

1

NT
X(1)′X(1)

)−1∥∥∥∥∥
∥∥∥∥ 1

NT
X(1)U

∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

∥∥∥x(1)it uit∥∥∥
= oP (δNT )OP (1)OP ((NT )−1/2)OP (1) = oP (T−1).

So A3 = 1
N

∑N
i=1 ū

2
i· + oP (T−1). Combining the above results, we have

T [CV1,2 − CV1,1] =
2

NT

N∑
i=1

T∑
t=1

u2it −
T

N

N∑
i=1

ū2i· + oP (1)
P→ 2σ̄2u − σ̄2u1, (A.12)

where the convergence holds by Assumptions A.1(i) and A.2(i). Similarly, by using Lemma A.5(iii) and

Lemma A.6(i) and (iii), we can show that

N [CV1,3 − CV1,1] = 2
1

NT

N∑
i=1

T∑
t=1

u2it −
N

T

T∑
t=1

ū2·t + oP (1)
P→ 2σ̄2u − σ̄2u2, (A.13)

where the convergence holds by Assumptions A.1(i) and A.2(ii).

By using Lemma A.5(iv) and Lemma A.6(i) and (iv), we can show that

CV1,4 − CV1,1

=
1

NT

N∑
i=1

T∑
t=1

[
c2it,4

(
uit − x(4)′it

(
X(4)′X(4)

)−1
X(4)′U

)2
− c2it,1

(
uit − x(1)′it

(
X(1)′X(1)

)−1
X(1)′U

)2]

=
1

NT

N∑
i=1

T∑
t=1

(
c2it,4 − c2it,1

)
u2it

+
1

NT

N∑
i=1

T∑
t=1

[
c2it,4

(
x
(4)′
it

(
X(4)′X(4)

)−1
X(4)′U

)2
− c2it,1

(
x
(1)′
it

(
X(1)′X(1)

)−1
X(1)′U

)2]

− 2

NT

N∑
i=1

T∑
t=1

[
c2it,4uitx

(4)′
it

(
X(4)′X(4)

)−1
X(4)′U − c2it,1uitx

(1)′
it

(
X(1)′X(1)

)−1
X(1)′U

]
≡ A4 +A5 − 2A6, say.

As in the analysis of A1, we can apply Lemma A.5(iv) and Lemma A.6(i) and (iv) to show that

A4 =
2

NT

N∑
i=1

T∑
t=1

(h
(4)
it − h

(1)
it )u2it + oP

(
N−1 + T−1

)
=

2

NT

N∑
i=1

T∑
t=1

[
N − 1

NT
+
T − 1

NT
+ (xit −Bαλdαλ,it)′X∗Dαλ (xit −Bαλdαλ,it)

]
u2it + oP

(
N−1 + T−1

)
=

(
T−1 +N−1

) 2

NT

N∑
i=1

T∑
t=1

u2it +OP

(
(NT )

−1
) 2

NT

N∑
i=1

T∑
t=1

‖xit‖2 u2it + oP
(
N−1 + T−1

)
=

(
T−1 +N−1

) 2

NT

N∑
i=1

T∑
t=1

u2it + oP
(
N−1 + T−1

)
,
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A5 =
1

NT

N∑
i=1

T∑
t=1

(
x
(4)′
it

(
X(4)′X(4)

)−1
X(4)U

)2
+ oP

(
N−1 + T−1

)
=

1

N

N∑
i=1

ū2i· +
1

T

T∑
t=1

ū2·t + oP
(
N−1 + T−1

)
, and

A6 =
1

NT

N∑
i=1

T∑
t=1

uitx
(2)′
it

(
X(2)′X(2)

)−1
X(2)U + oP

(
N−1 + T−1

)
=

1

N

N∑
i=1

ū2i· +
1

T

T∑
t=1

ū2·t + oP
(
N−1 + T−1

)
.

It follows that

(N ∧ T ) [CV1,4 − CV1,1] = (N ∧ T )

[(
T−1 +N−1

) 2

NT

N∑
i=1

T∑
t=1

u2it −
1

N

N∑
i=1

ū2i· −
1

T

T∑
t=1

ū2·t

]
+ oP (1)

P→ 2 (1 + c) σ̄2u −
(
σ̄2u1 + cσ̄2u2

)
1 {c1 ≥ 1} −

(
cσ̄2u1 + σ̄2u2

)
1 {c1 < 1} , (A.14)

where c = lim(N,T )→∞
(
N
T ∧

T
N

)
, c1 = lim(N,T )→∞

N
T , and the convergence holds by Assumptions A.1(i) and

A.2(i)-(ii). Combining (A.12)-(A.14) yields P (CV1,1 < CV1,m)→ 1 for m = 2, 3, 4 provided max
(
σ̄2u1, σ̄

2
u2

)
< 2σ̄2u.

Case 2: Model 2 is the true model. In this case, Models 1 and 2 are underfitted and Model 4

is overfitted and we will show that P (CV2,2 < CV2,m) → 1 for m = 1, 3, 4. Let uα,it = αi + uit and

Uα = (uα,11, ..., uα,1T , ..., uα,N1, ..., uα,NT )′. Note that Uα = Dαα+U where α = (α1, ..., αN−1)
′. Following

the steps to obtain (A.11), we can show that

yit − ŷ(1)it = uα,it − x′it
(
β̂
(1)

it − β(1)
)

= cit,1

(
uα,it − x′it (X ′X)

−1
X ′Uα

)
. (A.15)

Then

CV2,1 =
1

NT

N∑
i=1

T∑
t=1

(
uα,it − x′it (X ′X)

−1
X ′Uα

)2
+

1

NT

N∑
i=1

T∑
t=1

(
c2it,1 − 1

) (
uα,it − x′it (X ′X)

−1
X ′Uα

)2
≡ A7 +A8, say.

It is easy to show that by Assumptions A.1(i) and (iv)-(vi) and A.3(i)

A7 =
1

NT

N∑
i=1

T∑
t=1

(
αi − x′it (X ′X)

−1
X ′Dαα+ uit − x′it (X ′X)

−1
X ′U

)2
=

1

NT

N∑
i=1

T∑
t=1

(
αi − x′it (X ′X)

−1
X ′Dαα

)2
+

1

NT

N∑
i=1

T∑
t=1

u2it + oP (1)
P→ cα,X + σ̄2u.

This result, in conjunction with (A.10) and the DCT, implies that A8 = oP (1) . In addition, we can follow

the analysis in Case 1 and readily show that CV2,2 = 1
NT

∑N
i=1

∑T
t=1 u

2
it + oP (1)

P→ σ̄2u. It follows that

CV2,1 − CV2,2
P→ cα,X > 0. (A.16)
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To study CV2,3, we observe that

yit − ŷ(3)it = uα,it − x(3)′it

(
β̂
(3)

it − β(3)
)

= cit,3

(
uα,it − x(3)′it

(
X(3)′X(3)

)−1
X(3)′Uα

)
, (A.17)

and

CV2,3 =
1

NT

N∑
i=1

T∑
t=1

(
uα,it − x(3)′it

(
X(3)′X(3)

)−1
X(3)′Uα

)2

+
1

NT

N∑
i=1

T∑
t=1

(
c2it,3 − 1

)(
uα,it − x(3)′it

(
X(3)′X(3)

)−1
X(3)′Uα

)2
≡ A9 +A10, say.

By Assumptions A.1(i), A.1(iv) and A.3(i), Lemmas A.4-A.5, and (A.10), we can readily show that

A9 =
1

NT

N∑
i=1

T∑
t=1

(
αi − x(3)′it

(
X(3)′X(3)

)−1
X(3)′Dαα+ uit − x(3)′it

(
X(3)′X(3)

)−1
X(3)′U

)2

=
1

NT

N∑
i=1

T∑
t=1

(
αi − x(3)′it

(
X(3)′X(3)

)−1
X(3)′Dαα

)2
+

1

NT

N∑
i=1

T∑
t=1

u2it + oP (1)
P→ cα,Xλ + σ̄2u,

and A10 = oP (1) . It follows that

CV2,3 − CV2,2
P→ cα,Xλ > 0. (A.18)

To study CV2,4, noting that

yit − ŷ(4)it = uit − x(4)′it

(
β̂
(4)

it − β(4)
)

= cit,4

(
uit − x(4)′it

(
X(4)′X(4)

)−1
X(4)′U

)
, (A.19)

we have

CV2,4 − CV2,2

=
1

NT

N∑
i=1

T∑
t=1

[
c2it,4

(
uit − x(4)′it

(
X(4)′X(4)

)−1
X(4)′U

)2
− c2it,2

(
uit − x(2)′it

(
X(2)′X(2)

)−1
X(2)′U

)2]

=
1

NT

N∑
i=1

T∑
t=1

(
c2it,4 − c2it,2

)
u2it

+
1

NT

N∑
i=1

T∑
t=1

[
c2it,4

(
x
(4)′
it

(
X(4)′X(4)

)−1
X(4)′U

)2
− c2it,2

(
x
(2)′
it

(
X(2)′X(2)

)−1
X(2)′U

)2]

− 2

NT

N∑
i=1

T∑
t=1

[
c2it,4uitx

(4)′
it

(
X(4)′X(4)

)−1
X(4)′U − c2it,2uitx

(2)′
it

(
X(2)′X(2)

)−1
X(2)′U

]
≡ A11 +A12 − 2A13, say.

Following the analysis of CV1,4−CV1,1 in Case 1 and applying Lemmas A.5(ii) and (iv) and A.6 and (A.10),
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we can readily show that

A11 =
2

NT

N∑
i=1

T∑
t=1

(
h
(4)
it − h

(2)
it

)
u2it + oP

(
N−1

)
=

2

NT

N∑
i=1

T∑
t=1

[
T − 1

NT
+ (xit −Bαλdαλ,it)′X∗Dαλ (xit −Bαλdαλ,it)− (xit −Bαdα,it)′X∗Dα (xit −Bαdα,it)

]
u2it

+oP
(
N−1

)
= N−1

2

NT

N∑
i=1

T∑
t=1

u2it + oP
(
N−1

)
,

A12 =
1

NT

N∑
i=1

T∑
t=1

[(
x
(4)′
it

(
X(4)′X(4)

)−1
X(4)U

)2
−
(
x
(2)′
it

(
X(2)′X(2)

)−1
X(2)′U

)2]
+ oP

(
N−1

)
=

1

T

T∑
t=1

ū2·t + oP
(
N−1

)
, and

A13 =
1

NT

N∑
i=1

T∑
t=1

[
uitx

(4)′
it

(
X(4)′X(4)

)−1
X(4)U − uitx(2)′it

(
X(2)′X(2)

)−1
X(2)U

]
+ oP

(
N−1 + T−1

)
=

1

T

T∑
t=1

ū2·t + oP
(
N−1

)
.

It follows that

N [CV2,4 − CV2,2] =
2

NT

N∑
i=1

T∑
t=1

u2it −
N

T

T∑
t=1

ū2·t + oP (1)
P→ 2σ̄2u − σ̄2u2, (A.20)

where the convergence holds by Assumptions A.1(i) and A.2(ii).

By (A.16), (A.18), and (A.20), we have P (CV2,2 < CV2,m)→ 1 as (N,T )→∞ for m = 1, 3, 4 provided

σ̄2u2 < 2σ̄2u.

Case 3: Model 3 is the true model. This case parallels Case 2 and we can analogously show that

CV3,1 − CV3,3
P→ cλ,X > 0,

CV3,2 − CV3,3
P→ cλ,Xα > 0,

T [CV3,4 − CV3,3]
P→ 2σ̄2u − σ̄2u1 > 0,

provided σ̄2u1 < 2σ̄2u. Then P (CV3,3 < CV3,m)→ 1 for m = 1, 2, 4.

Case 4: Model 4 is the true model. In this case, Models 1-3 are underfitted and we will show that
P (CV4,4 < CV4,m)→ 1 form = 1, 2, 3. Let uλ,it = λt+uit, uαλ,it = αi+λt+uit, Uλ = (uλ,11, ..., uλ,1T , ..., uλ,N1,

..., uλ,NT )′, and Uαλ = (uαλ,11, ..., uαλ,1T , ..., uαλ,N1, ..., uαλ,NT )′. Note that Uαλ = Dαα+Dλλ+U, where

λ = (λ1, ..., λT−1)
′. Following the steps to obtain (A.11), now we can show that

yit − ŷ(1)it = uαλ,it − x′it(β̂
(1)

it − β(1)) = cit,1

(
uαλ,it − x′it (X ′X)

−1
X ′Uαλ

)
. (A.21)
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As in Case 2, we can show that by Assumptions A.1(i) and (iv)-(vi) and A.3(iii),

CV4,1 =
1

NT

N∑
i=1

T∑
t=1

c2it,1

[
uαλ,it − x′it (X ′X)

−1
X ′Uαλ

]2
=

1

NT

N∑
i=1

T∑
t=1

[
αi + λt − x′it (X ′X)

−1
X ′ (Dαα+Dλλ)

]2
+

1

NT

N∑
i=1

T∑
t=1

u2it + oP (1)

P→ cαλ,X + σ̄2u.

Similarly, we have by Assumptions A.1(i), A.1(v)-(vi), and A.3(iii)

CV4,2 =
1

NT

N∑
i=1

T∑
t=1

c2it,2

[
uλ,it − x(2)′it

(
X(2)′X(2)

)−1
X(2)′Uλ

]2

=
1

NT

N∑
i=1

T∑
t=1

[
λt − x(2)′it

(
X(2)′X(2)

)−1
X(2)′Dλλ

]2
+

1

NT

N∑
i=1

T∑
t=1

u2it + oP (1)
P→ cλ,Xα + σ̄2u,

CV4,3 =
1

NT

N∑
i=1

T∑
t=1

c2it,3

[
uα,it − x(3)′it

(
X(3)′X(3)

)−1
X(3)′Uα

]2

=
1

NT

N∑
i=1

T∑
t=1

[
αi − x(3)′it

(
X(3)′X(3)

)−1
X(3)′Dαα

]2
+

1

NT

N∑
i=1

T∑
t=1

u2it + oP (1)
P→ cα,Xλ + σ̄2u,

and

CV4,4 =
1

NT

N∑
i=1

T∑
t=1

cit,4

[
uit − x(4)′it

(
X(4)′X(4)

)−1
X(4)′U

]2
+

1

NT

N∑
i=1

T∑
t=1

u2it + oP (1)
P→ σ̄2u.

Then P (CV4,4 < CV4,m)→ 1 as (N,T )→∞ for m = 1, 2, 3. �

To prove Theorem 2.2, we introduce some notation and prove three lemmas. Let ûi = (ûi,p+1, ..., ûi,T,)
′,

Û = (û1, ..., ûN )
′
, ẑi = (ûi,p, ..., ûi,T−1,)

′, and Ẑ = (ẑ′1, ..., ẑ
′
N )
′ where ûi,t = û

(4)
i,t = (û

(4)
it , ..., û

(4)
i,t−p+1)

′ for

t = p, ..., T − 1. Let ui = (ui,p+1, ..., ui,T,)
′, U = (u1, ...,uN )

′
, zi = (üi,p, ..., üi,T−1,)

′, and Z = (z′1, ..., z
′
N )
′
,

where üi,t = (üit, ..., üi,t−p+1)
′ and üit = uit− ūi·− ū·t + ū·· for t = p, ..., T − 1. Let ÿit = yit− ȳi·− ȳ·t + ȳ··,

where ȳi·, ȳ·t, and ȳ·· are defined analogously to ūi·, ū·t, and ū··.

Lemma A.7 Suppose Assumptions A.1, A.2 and A.4 hold. Then
(i) 1

NTp

(
Ẑ′Ẑ− Z′Z

)
= OP (ηNT ),

(ii) 1
NTp

(
Ẑ′Û− Z′U

)
= OP (ηNT ),

(iii) (Z′Z)
−1
Z′U− ρ = OP (ηNT ),

where ηNT = (NT )
−1/2

+ T−1 +N−1.

Proof. (i) First, we reparametrize Model 4 as

yit = x∗′itβ
∗ + α∗i + λt + uit,

where x∗it and β
∗ correspond to xit and β after one removes the constant term, and α∗i incorporates the

intercept term now. Let ẍ∗it = x∗it − x̄∗i· − x̄∗·t + x̄∗··, where x̄
∗
i·, x̄

∗
·t, and x̄

∗
·· are defined analogously to ūi·, ū·t,
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and ū··. Let ÿi = (ÿi1, ..., ÿiT )′ and Ÿ = (ÿ1, ..., ÿN )
′
. Define ẍi, Ẍ, üi and Ü analogously. After eliminating

the individual and time effects α∗i and λt from the above regression through the within and time demeaned

transformation, we can obtain the two-way within estimator of β∗ given by β̂
∗

=
(
Ẍ ′Ẍ

)−1
Ẍ ′Ÿ . Then û(4)it

can be equivalently represented as ̂̈uit = ÿit − ẍ∗′it β̂
∗
.

Under Assumptions A.1(iv)-(v) and A.2(iii)-(iv), we can readily show that β̂
∗
− β∗ = OP (ηNT ). Let ϑjl

denotes the (j, l)-th element of 1
NTp

(Ẑ′Ẑ− Z′Z) where j, l = 1, ..., p. Then

ϑjl =
1

NTp

N∑
i=1

T∑
t=p+1

(̂̈ui,t−j ̂̈ui,t−l − üi,t−j üi,t−l)

=
1

NTp

N∑
i=1

T∑
t=p+1

(̂̈ui,t−j − üi,t−j)(̂̈ui,t−l − üi,t−l)+
1

NTp

N∑
i=1

T∑
t=p+1

(̂̈ui,t−j − üi,t−j) üi,t−l
+

1

NTp

N∑
i=1

T∑
t=p+1

üi,t−j

(̂̈ui,t−l − üi,t−l)
≡ ϑjl,1 + ϑjl,2 + ϑjl,3.

Noting that ̂̈uit = ÿit − β̂
∗′
ẍ∗it = üit − (β̂

∗
− β∗)′ẍ∗it, (A.22)

it is easy to show that ϑjl,1 = OP (η2NT ). Noting that
∑N
i=1 üit = 0 for each t, we can apply Assumptions

A.1(iii)-(iv) and A.2(iii)-(iv) and show that

1

NTp

N∑
i=1

T∑
t=p+1

ẍ∗i,t−j üi,t−l =
1

NTp

N∑
i=1

T∑
t=p+1

(
x∗i,t−j − x̄∗i·

)
(ui,t−l − ūi· − ū·t−l + ū··)

=
1

NTp

N∑
i=1

T∑
t=p+1

(
x∗i,t−j − x̄∗i·

)
ui,t−l +OP (ηNT )

=
1

NTp

N∑
i=1

T∑
t=p+1

x∗i,t−jui,t−l +OP (ηNT ) = OP (1) .

It follows that

ϑjl,2 = −
(
β̂
∗
− β∗

)′ 1

NTp

N∑
i=1

T∑
t=p+1

ẍ∗i,t−j üi,t−l = OP (ηNT )OP (1) = OP (ηNT ).

Similarly, ϑjl,3 = OP (ηNT ). Then (i) follows. When p = 1, j and l can only take value 1. In this case,
1

NTp

∑N
i=1

∑T
t=p+1 ẍ

∗
i,t−j üi,t−l = 1

NT1

∑N
i=1

∑T
t=2 x

∗
i,t−1ui,t−1 + OP (ηNT ) = OP (ηNT ) , ϑjl,2 = OP (η2NT ),

ϑjl,3 = OP (η2NT ), and 1
NT1

(Ẑ′Ẑ− Z′Z) = OP (η2NT ).

(ii) The analysis is similar to that in (i) and thus omitted.

(iii) For notational simplicity, we assume that p = 1 hereafter. Then we can simply write ρ̂, ρ, û(l)it and

üi,t, as ρ̂, ρ, û
(l)
it and üit, respectively. Let v̄·t = ū·t − ρū·,t−1. Noting that üit = uit − ūi· − ū·t + ū·· and

üi,t−1 = ui,t−1 − ūi· − ū·,t−1 + ū··, we have

üit − ρüi,t−1 = (uit − ρui,t−1)− (1− ρ) ūi· − (ū·t − ρū·,t−1) + (1− ρ) ū··

= vit − (1− ρ) ūi· − v̄·t + (1− ρ) ū··.
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Then

(Z′Z)
−1
Z′U−ρ =

(
N∑
i=1

T∑
t=2

ü2i,t−1

)−1 N∑
i=1

T∑
t=2

üi,t−1üit − ρ

=

(
N∑
i=1

T∑
t=2

ü2i,t−1

)−1 N∑
i=1

T∑
t=2

üi,t−1 [vit − (1− ρ) ūi· − v̄·t + (1− ρ) ū··]

=

(
N∑
i=1

T∑
t=2

ü2i,t−1

)−1 N∑
i=1

T∑
t=2

üi,t−1vit − (1− ρ)

(
N∑
i=1

T∑
t=2

ü2i,t−1

)−1 N∑
i=1

T∑
t=2

üi,t−1ūi·

where the third equality follows from the fact that
∑N
i=1 üit = 0 for each t. Noting that

∑T
t=1 üit = 0 for

each i, we have by Assumptions A.1(i), (iv) and A.2(iii)-(iv)

1

NT

N∑
i=1

T∑
t=2

üi,t−1ūi· =
1

NT

N∑
i=1

(
T∑
t=1

üit − üiT

)
ūi· = − 1

NT

N∑
i=1

üiT ūi·

= − 1

NT

N∑
i=1

(uiT − ūi· − ū·T + ū··) ūi·

= OP
(
T−1

)
+OP

(
T−2

)
+OP

(
N−1T−1

)
+OP

(
N−1T−2

)
= OP

(
T−1

)
.

Similarly,

1

NT

N∑
i=1

T∑
t=2

üi,t−1vit =
1

NT

N∑
i=1

T∑
t=2

ui,t−1vit −
1

NT

N∑
i=1

T∑
t=2

ūi·vit −
1

NT

N∑
i=1

T∑
t=2

ū·,t−1vit +
1

NT

N∑
i=1

T∑
t=2

ū··vit

= OP

(
(NT )

−1/2
)

+OP
(
T−1

)
+OP

(
N−1

)
+OP

(
N−1T−1

)
= OP

(
(NT )

−1/2
+N−1 + T−1

)
.

In sum, we have (Z′Z)
−1
Z′U−ρ = OP (ηNT ).

To simply the proof, we assume that p = 1 hereafter.

Lemma A.8 Let x̆(l)it = x
(l)
it − ρx

(l)
i,t−1 and KlNT = 1

NT1

∑N
i=1

∑T
t=2 vitx̆

(l)′
it

(
X(l)′X(l)

)−1
X(l)′U for l =

1, 2, 3, 4. Suppose that Assumptions A.1(iv)-(v), A.2(iii)-(iv), A.4(iv), and A.5(iii)-(iv) hold. Then

(i) K1NT = OP
(
(NT )−1

)
,

(ii) K2NT = 1−ρ
NT1

∑N
i=1

∑T
t=2 vitūi· +OP ((NT )

−1
+ T−2),

(iii) K3NT = 1
NT1

∑N
i=1

∑T
t=2 vit[(1− ρL) ū·t] +OP ((NT )

−1
+N−2),

(iv) K4NT = 1−ρ
NT1

∑N
i=1

∑T
t=2 vitūi· + 1

NT1

∑N
i=1

∑T
t=2 vit[(1− ρL) ū·t] + OP (N−2 + T−2), K4NT −

K2NT = 1−ρ
NT1

∑N
i=1

∑T
t=2 vit[(1− ρL) ū·t]+OP ((NT )

−1
+N−2), and K4NT−K3NT = 1−ρ

NT1

∑N
i=1

∑T
t=2 vitūi·+

OP ((NT )
−1

+ T−2).

Proof. (i) Noting that x̆(1)it = xit − ρxi,t−1 ≡ x̆it, we can readily apply Assumptions A.1(iv)-(v) and

A.4(v) to show that

K1NT =
1

NT1

N∑
i=1

T∑
t=2

vitx̆
′
it (X ′X)

−1
X ′U

=
1

NT1

N∑
i=1

T∑
t=2

vit (xit − ρxi,t−1)′
(

1

NT
X ′X

)−1
1

NT
X ′U

= OP

(
(NT )−1/2

)
OP (1)OP

(
(NT )−1/2

)
= OP

(
(NT )−1

)
.
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(ii) Note that x̆(2)it = x
(2)
it − ρx

(2)
i,t−1 =

(
(xit − ρxi,t−1)′ , (dα,it − ρdα,it−1)′

)′ ≡ (x̆′it, d̆′α,it)′ . By Lemma
A.1 with D = Dα, we have

K2NT =
1

NT1

N∑
i=1

T∑
t=2

vitx̆
(2)′
it

(
X(2)′X(2)

)−1
X(2)′U

=
1

NT1

N∑
i=1

T∑
t=2

vit

(
x̆′it, d̆

′
α,it

)( X∗Dα −X∗DαBα
−B′αX∗Dα (D′αDα)

−1
+B′αX

∗
DBα

)(
X ′U

D′αU

)

=
1

NT1

N∑
i=1

T∑
t=2

vit

{
x̆′itX

∗
DαX

′U − d̆′α,itB′αX∗DαX
′U − x̆′itX∗DαBαD

′
αU + d̆′α,it (D′αDα)

−1
D′αU

+d̆′α,itB
′
αX
∗
DαBαD

′
αU
}

≡ K2NT,1 −K2NT,2 −K2NT,3 +K2NT,4 +K2NT,5, say.

As in (i), we can show that K2NT,1 = OP ((NT )
−1

) by Assumption A.1(iv)-(v). Noting that d′α,itιN−1 = 1

for i ≤ N − 1 and dα,Nt = −ιN−1, we have by (A.1)

1

NT1

N∑
i=1

T∑
t=2

vitd
′
α,it (D′αDα)

−1
D′αX

=
1

NTT1

N∑
i=1

vitd
′
α,it

[(
IN−1 −

1

N
ιN−1ι

′
N−1,−

1

N
ιN−1

)
⊗ ι′T

]
X

=
1

NTT1

N−1∑
i=1

T∑
t=2

vit

[(
d′α,it −

1

N
ι′N−1,−

1

N

)
⊗ ι′T

]
X +

1

NTT1

T∑
t=2

vNt

((
− 1

N
ι′N−1,

N − 1

N

)
⊗ ι′T

)
X

=
1

NT1

N−1∑
i=1

T∑
t=2

vit (x̄i· − x̄··)′ +
1

NT1

T∑
t=2

vN1 (x̄N · − x̄··)′

=
1

NT1

N∑
i=1

T∑
t=2

vit (x̄i· − x̄··)′

and similarly

1

NT1

N∑
i=1

T∑
t=2

vitd
′
α,it−1 (D′αDα)

−1
D′αX

=
1

NTT1

N∑
i=1

vitd
′
α,it−1

[(
IN−1 −

1

N
ιN−1ι

′
N−1,−

1

N
ιN−1

)
⊗ ι′T

]
X

=
1

NTT1

N−1∑
i=1

T∑
t=2

vit

[(
d′α,it−1 −

1

N
ι′N−1,−

1

N

)
⊗ ι′T

]
X +

1

NTT1

T∑
t=2

vNt

((
− 1

N
ι′N−1,

N − 1

N

)
⊗ ι′T

)
X

=
1

NT1

N−1∑
i=1

T∑
t=2

vit (x̄i· − x̄··)′ +
1

NT1

T∑
t=2

vN1 (x̄N · − x̄··)′

=
1

NT1

N∑
i=1

T∑
t=2

vit (x̄i· − x̄··)′ .

Then 1
NT1

∑N
i=1

∑T
t=2 vitd̆

′
α,itB

′
α = 1−ρ

NT1

∑N
i=1

∑T
t=2 vit (x̄i· − x̄··)′ = OP (T−1 + (NT )

−1/2
) by Assumptions
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A.4(iv) and A.5(iii) and

K2NT,2 ≤
∥∥∥∥∥ 1

NT1

N∑
i=1

T∑
t=2

vitd̆
′
α,itB

′
α

∥∥∥∥∥
∥∥∥∥∥
(

1

NT
X ′MDαX

)−1∥∥∥∥∥
∥∥∥∥ 1

NT
X ′U

∥∥∥∥
= OP (T−1 + (NT )

−1/2
)OP (1)OP ((NT )

−1/2
) = OP

(
N−1/2T−3/2 + (NT )

−1
)
.

Similarly, we can show that

K2NT,3 ≤
∥∥∥∥∥ 1

NT1

N∑
i=1

T∑
t=2

vitx̆
′
it

∥∥∥∥∥
∥∥∥∥∥
(

1

NT
X ′MDαX

)−1∥∥∥∥∥
∥∥∥∥ 1

NT
BαD

′
αU

∥∥∥∥
= OP

(
(NT )

−1/2
)
OP (1)OP (T−1 + (NT )

−1/2
) = OP (N−1/2T−3/2 + (NT )

−1
),

K2NT,5 ≤
∥∥∥∥∥ 1

NT1

N∑
i=1

T∑
t=2

vitd̆
′
α,itB

′
α

∥∥∥∥∥
∥∥∥∥∥
(

1

NT
X ′MDαX

)−1∥∥∥∥∥
∥∥∥∥ 1

NT
BαD

′
αU

∥∥∥∥
= OP

(
T−1 + (NT )

−1/2
)
OP (1)OP (T−1 + (NT )

−1/2
) = OP (T−2 +N−1T−1).

and

K2NT,4 =
1

NT1

N∑
i=1

T∑
t=2

vitd̆
′
α,it (D′αDα)

−1
D′αU =

1− ρ
NT1

N∑
i=1

T∑
t=2

vit (ūi· − ū··)

=
1− ρ
NT1

N∑
i=1

T∑
t=2

vitūi· +OP ((NT )
−1

).

It follows that K2NT = 1−ρ
NT1

∑N
i=1

∑T
t=2 vitūi· +OP ((NT )

−1
+ T−2) as (NT )

−1
+ T−2 ≥ 2N−1/2T−3/2 by

the Cauchy-Schwarz inequality.

(iii) The proof is analogous to that of (ii). The major difference is that we need to use the fact that

d′λ,itιT−1 = 1 for t ≤ T − 1 and dα,iT = −ιT−1, and that by (A.6)

1

NT1

N∑
i=1

T∑
t=2

vitd
′
λ,it (D′λDλ)

−1
D′λX

=
1

N2T1

N∑
i=1

T∑
t=2

vitd
′
λ,it

[
ι′N ⊗

(
IT−1 −

1

T
ιT−1ι

′
T−1,−

1

T
ιT−1

)]
X

=
1

N2T1

N∑
i=1

T−1∑
t=2

vit

[
ι′N ⊗

(
d′λ,it −

1

T
ι′T−1,−

1

T

)]
X +

1

N2T1

N∑
i=1

viT

[
ι′N ⊗

(
− 1

T
ι′T−1,

T − 1

T

)]
X

=
1

NT1

N∑
i=1

T−1∑
t=2

vit (x̄·t − x̄··)′ +
1

NT1

N∑
i=1

viT (x̄·T − x̄··)′ =
1

NT1

N∑
i=1

T∑
t=2

vit (x̄·t − x̄··)′ ,

and

1

NT1

N∑
i=1

T∑
t=2

vitd
′
λ,it−1 (D′λDλ)

−1
D′λX =

1

N2T1

N∑
i=1

T∑
t=2

vitd
′
λ,it−1

[
ι′N ⊗

(
IT−1 −

1

T
ιT−1ι

′
T−1,−

1

T
ιT−1

)]
X

=
1

N2T1

N∑
i=1

T∑
t=2

vit

[
ι′N ⊗

(
d′λ,it−1 −

1

T
ι′T−1,−

1

T

)]
X

=
1

NT1

N∑
i=1

T∑
t=2

vit (x̄·t−1 − x̄··)′ .
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The dominant term then becomes

1

NT1

N∑
i=1

T∑
t=2

vitd̆
′
λ,it (D′λDλ)

−1
D′λU =

1

NT1

N∑
i=1

T∑
t=2

vit [(ū·t − ū··)− ρ (ū·t−1 − ū··)]

=
1

NT1

N∑
i=1

T∑
t=2

vit (1− ρL) ū·t +OP ((NT )
−1

).

(iv) The proof is a combination of (ii)-(iii) as in that of Lemma A.5.

Lemma A.9 Let x̆(l)it = x
(l)
it − ρx

(l)
i,t−1 and LlNT = 1

NT1

∑N
i=1

∑T
t=2

(
x̆
(l)′
it

(
X(l)′X(l)

)−1
X(l)′U

)2
for l =

1, 2, 3, 4. Suppose that Assumptions A.1(iv)-(v), A.2(iii)-(iv), A.4(iv), and A.5(iii)-(iv) hold. Then

(i) L1NT = OP
(
(NT )−1

)
,

(ii) L2NT = (1− ρ)
2 1
N

∑N
i=1 ū

2
i· +OP

(
(NT )−1 + T−2

)
,

(iii) L3NT = 1
T

∑T
t=1[(1− ρL) ū·t]

2 +OP ((NT )−1 +N−2),

(iv) L4NT = (1− ρ)
2 1
N

∑N
i=1 ū

2
i·+

1
T

∑T
t=1[(1− ρL) ū·t]

2 +OP
(
T−2 +N−2

)
, L4NT −L2NT = 1

T

∑T
t=1

[(1− ρL) ū·t]
2 +OP

(
(NT )−1 +N−2

)
, and L4NT − L3NT = (1− ρ)

2 1
N

∑N
i=1 ū

2
i· +OP

(
(NT )−1 + T−2

)
,

Proof. (i) Noting that x̆(1)it = xit−ρxi,t−1 ≡ x̆it, we can readily apply Assumption A.1(iv)-(v) to show
that

L1NT = U ′X (X ′X)
−1 1

NT

N∑
i=1

T∑
t=2

x̆itx̆
′
it (X ′X)

−1
X ′U

≤
∥∥∥∥∥
(

1

NT
X ′X

)−1∥∥∥∥∥
2 ∥∥∥∥ 1

NT
X ′U

∥∥∥∥2
∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=2

x̆itx̆
′
it

∥∥∥∥∥ = OP
(
(NT )−1

)
.

(ii) By Lemma A.1 with D = Dα and using x̆
(2)
it x̆

(2)′
it =

(
x̆itx̆

′
it x̆itd̆

′
α,it

d̆α,itx̆
′
it d̆α,itd̆

′
α,it

)
, we have

L2NT = U ′X(2)
(
X(2)′X(2)

)−1 1

NT1

N∑
i=1

T∑
t=2

x̆
(2)
it x̆

(2)′
it

(
X(2)′X(2)

)−1
X(2)′U

= (U ′X,U ′Dα)

(
X∗Dα −X∗DαBα

−B′αX∗Dα (D′αDα)
−1

+B′αX
∗
DBα

)
1

NT1

N∑
i=1

T∑
t=2

x̆
(2)
it x̆

(2)′
it

×
(

X∗Dα −X∗DαBα
−B′αX∗Dα (D′αDα)

−1
+B′αX

∗
DBα

)(
X ′U

D′αU

)

=
(
ζ ′1, ζ

′
2

) 1

NT1

N∑
i=1

T∑
t=2

x̆
(2)
it x̆

(2)′
it

(
ζ1
ζ2

)

= ζ ′1
1

NT1

N∑
i=1

T∑
t=2

x̆itx̆
′
itζ1 + ζ ′2

1

NT1

N∑
i=1

T∑
t=2

d̆α,itd̆
′
α,itζ2 + 2ζ ′1

1

NT

N∑
i=1

T∑
t=2

x̆itd̆
′
α,itζ2

≡ L2NT,1 + L2NT,2 + 2L2NT,3, say,

where ζ1 = X∗′DαX
′U−X∗′DαBαD

′
αU and ζ2 = −B′αX∗′DαX

′U+(D′αDα)
−1
D′αU+B′αX

∗′
Dα
BαD

′
αU. It is easy
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to show that L2NT,1 = OP ((NT )
−1

+ T−2) by Assumptions A.1(iv)-(v) and Lemma A.4(i). For L2NT,2,

L2NT,2 = U ′XX∗DαBα
1

NT1

N∑
i=1

T∑
t=2

d̆α,itd̆
′
α,itB

′
αX
∗′
DαX

′U

+U ′Dα (D′αDα)
−1 1

NT1

N∑
i=1

T∑
t=2

d̆α,itd̆
′
α,it (D′αDα)

−1
D′αU

+U ′DαB
′
αX
∗
DαBα

1

NT1

N∑
i=1

T∑
t=2

d̆α,itd̆
′
α,itB

′
αX
∗′
DαBαD

′
αU

−2U ′XX∗DαBα
1

NT1

N∑
i=1

T∑
t=2

d̆α,itd̆
′
α,it (D′αDα)

−1
D′αU

−2U ′XX∗DαBα
1

NT1

N∑
i=1

T∑
t=2

d̆α,itd̆
′
α,itB

′
αX
∗′
DαBαD

′
αU

+2U ′Dα (D′αDα)
−1 1

NT1

N∑
i=1

T∑
t=2

d̆α,itd̆
′
α,itB

′
αX
∗′
DαBαD

′
αU

≡ L2NT,21 + L2NT,22 + L2NT,23 − 2L2NT,24 − 2L2NT,25 + 2L2NT,26, say.

Noting that d̆′α,itB
′
α = d̆′α,it (D′αDα)

−1
D′αX = (1− ρ) (x̄i· − x̄··)′ , we have

Bα
1

NT1

N∑
i=1

T∑
t=2

d̆α,itd̆
′
α,itB

′
α = (1− ρ)

2 1

N

N∑
i=1

(x̄i· − x̄··) (x̄i· − x̄··)′ = OP (1) .

This, in conjunction with Assumption A.1(iv)-(v) and Lemma A.5(i), implies that

L2NT,21 ≤
∥∥∥∥∥Bα 1

NT1

N∑
i=1

T∑
t=2

d̆α,itd̆
′
α,itB

′
α

∥∥∥∥∥
∥∥∥∥∥
(

1

NT
X ′MDαX

)−1∥∥∥∥∥
2 ∥∥∥∥ 1

NT
X ′U

∥∥∥∥2 = OP ((NT )−1),

L2NT,23 ≤
∥∥∥∥∥Bα 1

NT1

N∑
i=1

T∑
t=2

d̆α,itd̆
′
α,itB

′
α

∥∥∥∥∥
∥∥∥∥∥
(

1

NT
X ′MDαX

)−1∥∥∥∥∥
2 ∥∥∥∥ 1

NT
BαD

′
αU

∥∥∥∥2 = OP (T−2 + (NT )
−1

).

Noting that d̆′α,it (D′αDα)
−1
D′αU = (1− ρ) (ūi· − ū··) , we have

L2NT,22 = U ′Dα (D′αDα)
−1 1

N

N∑
i=1

T∑
t=2

d̆α,itd̆
′
α,it (D′αDα)

−1
D′αU = (1− ρ)

2 1

N

N∑
i=1

(ūi· − ū··)2

= (1− ρ)
2 1

N

N∑
i=1

ū2i· +OP ((NT )
−1

).

Analogously, we can show that L2NT,2j = OP (T−2 + (NT )
−1

) for j = 4, 5, 6 and L2NT,3 = OP (T−2 +

(NT )
−1

). It follows that L2NT = (1− ρ)
2 1
N

∑N
i=1 ū

2
i· +OP

(
(NT )−1 + T−2

)
.

(iii) The proof is analogous to that of (ii) with the major difference as outlined in the proof of Lemma

A.8(iii).

(iv) The proof is a combination of (ii) and (iii) as in that of Lemma A.5(iv) and thus omitted.

Proof of Theorem 2.2. Again, we assume that p = 1. Noting that

ρ̂− ρ =
(
Ẑ′Ẑ

)−1
Ẑ′Û− ρ

=

[(
Ẑ′Ẑ

)−1
− (Z′Z)

−1
]
Ẑ′Û+ (Z′Z)

−1
(
Ẑ′Û− Z′U

)
+
[
(Z′Z)

−1
Z′U− ρ

]
,
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we have ρ̂− ρ = OP (ηNT ) by Lemma A.7 and the triangle inequality. Noting that (yit− ρ̂yi,t−1)− (ŷ
(m)
it −

ρ̂′ŷ
(m)
i,t−1) = (yit − ρyi,t−1)− (ŷ

(m)
it − ρŷ

(m)
i,t−1) +(ρ̂− ρ)(ŷ

(m)
i,t−1 − yi,t−1), we have

CV ∗ (m) =
1

NT1

N∑
i=1

T∑
t=2

[
(yit − ρ̂yi,t−1)− (ŷ

(m)
it − ρ̂

′ŷ
(m)
i,t−1)

]2
=

1

NT1

N∑
i=1

T∑
t=2

[
(yit − ρyi,t−1)− (ŷ

(m)
it − ρŷ

(m)
i,t−1)

]2
+

(ρ̂− ρ)
2

NTp

N∑
i=1

T∑
t=2

(ŷ
(m)
i,t−1 − yi,t−1)2

+
2(ρ̂− ρ)

NT1

N∑
i=1

T∑
t=2

(ŷ
(m)
i,t−1 − yi,t−1)

[
(yit − ρyi,t−1)− (ŷ

(m)
it − ρŷ

(m)
i,t−1)

]
= CV ∗1 (m) + CV ∗2 (m) + CV ∗3 (m) .

As in the proof of Theorem 2.1, we will use CV ∗l,m and CV ∗l,m (j) to denote CV ∗ (m) and CV ∗j (m) when

the true model is Model l. Note that CV ∗l,m =
∑3
j=1 CV

∗
l,m (j) .

Case 1: Model 1 is the true model. In this case, Models 2-4 are all overfitted models and we will show
that P

(
CV ∗1,1 < CV ∗1,m

)
→ 1 for m = 2, 3, 4. When Model 1 is the true model, we have by (A.11)

(yit − ŷ(l)it )− ρ(yi,t−1 − ŷ(l)i,t−1)

=
1

1− h(l)it

[
uit − x(l)′it

(
X(l)′X(l)

)−1
X(l)′U

]
− ρ

1− h(l)i,t−1

[
ui,t−1 − x(l)′i,t−1

(
X(l)′X(l)

)−1
X(l)′U

]
= cit,l

[
vit − x̆(l)′it

(
X(l)′X(l)

)−1
X(l)′U

]
+ ρκit,l

[
ui,t−1 − x(l)′i,t−1

(
X(l)′X(l)

)−1
X(l)′U

]
. (A.23)

where x̆(l)it = x
(l)
it − ρx

(l)
i,t−1, cit,l = (1−h(l)it )−1, and κit,l = cit,l− cit−1,l for l = 1, 2, 3, 4. By Lemma A.6, we

have

max
i,t

κit,l = oP (δNT ) for l = 1, 2, 3, 4. (A.24)

Note that

CV ∗1,l (1) =
1

NT1

N∑
i=1

T∑
t=2

c2it,l

[
vit − x̆(l)′it (X(l)′X(l))−1X(l)′U

]2
+

ρ2

NT1

N∑
i=1

T∑
t=2

κ2it,l
[
ui,t−1 − x(l)′i,t−1(X

(l)′X(l))−1X(l)′U
]2

+
2ρ

NT1

N∑
i=1

T∑
t=2

cit,lκit,l
[
vit − x̆(l)′it (X(l)′X(l))−1X(l)′U

] [
ui,t−1 − x(l)′i,t−1(X

(l)′X(l))−1X(l)′U
]

≡ CV ∗1,l (1, 1) + ρ2CV ∗1,l (1, 2)− 2ρCV ∗1,l (1, 3) , say.

We first study CV ∗1,2 (1)−CV ∗1,1 (1) . Following the study of CV1,2 −CV1,1 in the proof of Theorem 2.1, we
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can readily apply Lemmas A.8(i)-(ii) and A.9(i)-(ii), Assumptions A.4(ii) and A.5(i) to show that

T1
[
CV ∗1,2 (1, 1)− CV ∗1,1 (1, 1)

]
=

2

NT1

N∑
i=1

T∑
t=2

v2it +
T1(1− ρ)2

N

N∑
i=1

ū2i· −
2 (1− ρ)

N

N∑
i=1

T∑
t=2

vitūi· + oP (1)

=
2

NT1

N∑
i=1

T∑
t=2

v2it +
T1(1− ρ)2

N

N∑
i=1

ū2i· −
2T1 (1− ρ)

N

N∑
i=1

v̄i·ūi· + oP (1)

=

(
2

NT1

N∑
i=1

T∑
t=2

v2it −
T1
N

N∑
i=1

v̄2i·

)
+
T1
N

N∑
i=1

[v̄i· − (1− ρ) ūi·]
2

+ oP (1)

P→ 2σ̄2v − σ̄2v1,

where we use the fact that v̄i· = 1
T1

∑T
t=2 vit = 1

T1

∑T
t=2 (uit − ρui,t−1) = (1− ρ) ūi· + OP

(
T−1

)
. Simi-

larly, using (A.24) and following the analysis of CV1,2 − CV1,1, we can readily show that T1[CV ∗1,2 (1, 2)−
CV ∗1,1 (1, 2)] = oP (1) and T1

[
CV ∗1,2 (1, 3)− CV ∗1,1 (1, 3)

]
= oP (1) . It follows that T1

[
CV ∗1,2 (1)− CV ∗1,1 (1)

] P→
2σ̄2v − σ̄2v1.

By (A.11) and (A.23),

CV ∗1,l (2) = (ρ̂− ρ)2
1

NT1

N∑
i=1

T∑
t=2

(
ŷ
(l)
i,t−1 − yi,t−1

)2
= (ρ̂− ρ)2

1

NT1

N∑
i=1

T∑
t=2

c2it,l

[
uit − x(l)′it

(
X(l)′X(l)

)−1
X(l)′U

]2
≡ (ρ̂− ρ)2D1,l (1) , and

CV ∗1,l (3) =
1

NT1
(ρ̂− ρ)

N∑
i=1

T∑
t=2

(
ŷ
(l)
i,t−1 − yi,t−1

) [
yit − ŷ(l)it − ρ(yi,t−1 − ŷ(l)i,t−1)

]
= (ρ̂− ρ)

{
1

NT1

N∑
i=1

T∑
t=2

c2it,l

[
uit − x(l)′it

(
X(l)′X(l)

)−1
X(l)′U

] [
vit − x̆(l)′it

(
X(l)′X(l)

)−1
X(l)′U

]

+
ρ

NT1

N∑
i=1

T∑
t=2

cit,lκit,l
[
uit − x(l)′it

(
X(l)′X(l)

)−1
X(l)′U

] [
ui,t−1 − x(l)′i,t−1

(
X(l)′X(l)

)−1
X(l)′U

]}
≡ (ρ̂− ρ) {D1,l (2) +D1,l (3)} , say.

As in the analysis of CV1,2 − CV1,1, we cam readily show that D1,2 (1)−D1,1 (1) = OP
(
T−1

)
, D1,l (`) =

OP
(
(NT )−1

)
and D2,l (`) = OP

(
T−1

)
for ` = 2, 3. Then

T1
[
CV ∗1,2 (3)− CV ∗1,1 (3)

]
= (ρ̂− ρ)

2
OP (1) = oP (1) and T1

[
CV ∗1,2 (3)− CV ∗1,1 (3)

]
= (ρ̂− ρ)OP (1) = oP (1) .

In sum, we have

T1
[
CV ∗1,2 − CV ∗1,1

]
=

(
2

NT1

N∑
i=1

T∑
t=2

v2it −
T1
N

N∑
i=1

v̄2i·

)
+
T1
N

N∑
i=1

[v̄i· − (1− ρ) ūi·]
2

+ oP (1)

P→ 2σ̄2v − σ̄2v1. (A.25)

Similarly, by using Lemma A.8(i) and (iii), Lemma A.9(i) and (iii), Assumptions A.4(ii) and A.5(ii) we can

show that

T1
[
CV ∗1,3 − CV ∗1,1

]
=

(
2

NT1

N∑
i=1

T∑
t=2

v2it −
N

T1

T∑
t=2

v̄2·t

)
+
N

T1

T∑
t=2

[v̄·t − (1− ρL) ū·t]
2

+ oP (1)

P→ 2σ̄2v − σ̄2v2, (A.26)
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where we use the fact that v̄·t = 1
N

∑N
i=1 vit = 1

N

∑N
i=1 Φ (L)uit = Φ (L) ū·t. By using Lemma A.8(iv) and

Lemma A.9(i) and (iv),

(N ∧ T1) [CV1,4 − CV1,1] = (N ∧ T1)
{(
T−11 +N−1

) 2

NT

N∑
i=1

T∑
t=2

v2it −
1

N

N∑
i=1

v̄2i· −
1

T1

T∑
t=2

v̄2·t

}
+ oP (1)

P→ 2 (1 + c) σ̄2v −
(
σ̄2v1 + cσ̄2v2

)
1 {c1 ≥ 1} −

(
cσ̄2v1 + σ̄2v2

)
1 {c1 < 1} , (A.27)

where c = lim(N,T )→∞
(
N
T ∧

T
N

)
and c1 = lim(N,T )→∞

N
T . Combining (A.25)-(A.27) yields P

(
CV ∗1,1 < CV ∗1,m

)
→ 1 for m = 2, 3, 4 provided max

(
σ̄2v1, σ̄

2
u2

)
< 2σ̄2v.

Case 2: Model 2 is the true model. In this case, Models 1 and 2 are underfitted and Model 4 is
overfitted and we will show that P

(
CV ∗2,2 < CV ∗2,m

)
→ 1 for m = 1, 3, 4. Let uα,it and Uα be as defined in

the proof of Theorem 2.1. Following the steps to obtain (A.15), we can show that

(yit − ŷ(1)it )− ρ(yi,t−1 − ŷ(1)i,t−1)

=
1

1− h(1)it

[
uα,it − x′it (X ′X)

−1
X ′Uα

]
− ρ

1− h(1)i,t−1

[
uα,it−1 − x′i,t−1 (X ′X)

−1
X ′Uα

]
= cit,1

[
(1− ρ)αi + vit − x̆′it (X ′X)

−1
X ′Uα

]
+ ρκit,1

[
uα,it−1 − x′i,t−1 (X ′X)

−1
X ′Uα

]
. (A.28)

Then

CV ∗2,1 =
1

NT1

N∑
i=1

T∑
t=2

c2it,1

[
(1− ρ)αi + vit − x̆′it (X ′X)

−1
X ′Uα

]2
+

ρ2

NT1

N∑
i=1

T∑
t=2

κ2it,1
[
uα,it−1 − x′i,t−1 (X ′X)

−1
X ′Uα

]2
+

2ρ

NT1

N∑
i=1

T∑
t=2

cit,1κit,1
[
(1− ρ)αi + vit − x̆′it (X ′X)

−1
X ′Uα

] [
uα,it−1 − x′i,t−1 (X ′X)

−1
X ′Uα

]
≡ D2,1 (1) + ρ2D2,1 (2) + 2ρD2,1 (3) , say.

It is easy to show that by Assumptions A.1(i) and (iv)-(vi), A.4(ii), and A.6(i)

D2,1 (1) =
1

NT1

N∑
i=1

T∑
t=2

[
(1− ρ)αi − x̆′it (X ′X)

−1
X ′Dαα

]2
+

1

NT1

N∑
i=1

T∑
t=2

v2it + oP (1)
P→ c∗α,X + σ̄2v.

In addition, D2,` (2) = oP (1) for ` = 2, 3. Thus CV ∗2,1 = c∗α,X + σ̄2v. Following the analysis in Case 1 and

noting that

(yit − ŷ(2)it )− ρ(yi,t−1 − ŷ(2)i,t−1)

=
1

1− h(2)it

[
uit − x(2)′it

(
X(2)′X(2)

)−1
X(2)′U

]
− ρ

1− h(2)i,t−1

[
uit−1 − x(2)′i,t−1

(
X(2)′X(2)

)−1
X(2)′U

]
= cit,2

[
vit − x̆(2)′it

(
X(2)′X(2)

)−1
X(2)′U

]
+ ρκit,2

[
uit−1 − x(2)′i,t−1

(
X(2)′X(2)

)−1
X(2)′U

]
,

we can readily show that CV ∗2,2 = 1
NT1

∑N
i=1

∑T
t=2 v

2
it + oP (1)

P→ σ̄2v. It follows that

CV ∗2,1 − CV ∗2,2
P→ c∗α,X > 0. (A.29)
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To study CV ∗2,3, noting that

(yit − ŷ(3)it )− ρ(yi,t−1 − ŷ(3)i,t−1)

=
1

1− h(3)it
[uα,it − x(3)′it (X(3)′X(3))−1X(3)′Uα]− ρ

1− h(3)i,t−1
[uα,it−1 − x(3)′i,t−1(X

(3)′X(3))−1X(3)′Uα]

= cit,3[(1− ρ)αi + vit − x̆(3)′it (X(3)′X(3))−1X(3)′Uα] + ρκit,3[uα,it−1 − x(3)′i,t−1(X
(3)′X(3))−1X(3)′Uα],(A.30)

we can follow the analysis of CV ∗2,1 and show that by Assumptions A.4(ii) and A.6(i)

CV ∗2,3 =
1

NT1

N∑
i=1

T∑
t=2

[
(yit − ŷ(3)it )− ρ(yi,t−1 − ŷ(3)i,t−1)

]2
=

1

NT1

N∑
i=1

T∑
t=2

[
(1− ρ)αi + vit − x̆(3)′it

(
X(3)′X(3)

)−1
X(3)′Uα)

]2
+ oP (1)

=
1

NT1

N∑
i=1

T∑
t=2

[
(1− ρ)αi − x̆(3)′it

(
X(3)′X(3)

)−1
X(3)′Dαα

]2
+

1

NT

N∑
i=1

T∑
t=2

v2it + oP (1)

P→ c∗α,Xλ + σ̄2v,

It follows that

CV ∗2,3 − CV ∗2,2
P→ c∗α,Xλ > 0. (A.31)

To study CV ∗2,4, noting that

(yit − ŷ(4)it )− ρ(yi,t−1 − ŷ(4)i,t−1)

=
1

1− h(4)it

[
uit − x(4)′it

(
X(4)′X(4)

)−1
X(4)′U

]
− ρ

1− h(4)i,t−1

[
uit−1 − x(4)′i,t−1

(
X(4)′X(4)

)−1
X(4)′U

]
= cit,4

[
vit − x̆(4)′it

(
X(4)′X(4)

)−1
X(4)′U

]
+ ρκit,4

[
ui,t−1 − x(4)′i,t−1

(
X(4)′X(4)

)−1
X(4)′U

]
, (A.32)

we have

CV ∗2,4 − CV ∗2,2

=
1

NT

N∑
i=1

T∑
t=1

[
c2it,4

(
vit − x̆(4)′it (X(4)′X(4))−1X(4)′U

)2
− c2it,2

(
vit − x̆(2)′it (X(2)′X(2))−1X(2)′U

)2]

+
ρ2

NT

N∑
i=1

T∑
t=1

[
κ2it,4

(
ui,t−1 − x(4)′i,t−1(X

(4)′X(4))−1X(4)′U
)2
− κ2it,2

(
ui,t−1 − x(2)′i,t−1(X

(2)′X(2))−1X(2)′U
)2]

+
2ρ

NT

N∑
i=1

T∑
t=1

[
cit,4κit,4

(
vit − x̆(4)′it (X(4)′X(4))−1X(4)′U

)(
ui,t−1 − x(4)′i,t−1(X

(4)′X(4))−1X(4)′U
)

−cit,2κit,2
(
vit − x̆(2)′it (X(2)′X(2))−1X(2)′U

)(
ui,t−1 − x(2)′i,t−1(X

(2)′X(2))−1X(2)′U
)]

≡ D2,4 (1) + ρ2D2,4 (2)− 2ρD2,4 (3) , say.

43



For D2,4 (1) , we further make the following decomposition:

D2,4 (1) =
1

NT

N∑
i=1

T∑
t=1

(
c2it,4 − c2it,2

)
v2it

+
1

NT

N∑
i=1

T∑
t=1

[
c2it,4

(
x̆
(4)′
it

(
X(4)′X(4)

)−1
X(4)′U

)2
− c2it,2

(
x̆
(2)′
it

(
X(2)′X(2)

)−1
X(2)′U

)2]

− 2

NT

N∑
i=1

T∑
t=1

vit

[
c2it,4x̆

(4)′
it

(
X(4)′X(4)

)−1
X(4)′U − c2it,2x̆

(2)′
it

(
X(2)′X(2)

)−1
X(2)′U

]
≡ D2,4 (1, 1) +D2,4 (1, 2)− 2D2,4 (1, 3) , say.

Following the analysis of CV ∗1,4 − CV ∗1,1 in Case 1 and that of CV2,4 − CV2,1 in the proof of Theorem 2.1,

and applying Lemmas A.8(ii) and (iv) and A.9, (A.10) and (A.24), we can readily show that

D2,4 (1, 1) = N−1
2

NT1

N∑
i=1

T∑
t=2

v2it + oP
(
N−1

)
,

D2,4 (1, 2) =
1

NT

N∑
i=1

T∑
t=2

[(
x̆
(4)′
it

(
X(4)′X(4)

)−1
X(4)U

)2
−
(
x̆
(2)′
it

(
X(2)′X(2)

)−1
X(2)′U

)2]
+ oP

(
N−1

)
=

1

T1

T∑
t=2

[(1− ρL) ū·t]
2

+ oP
(
N−1

)
, and

D2,4 (1, 3) =
1

NT

N∑
i=1

T∑
t=1

vit

[
x̆
(4)′
it

(
X(4)′X(4)

)−1
X(4)U − x̆(2)′it

(
X(2)′X(2)

)−1
X(2)U

]
+ oP

(
N−1

)
=

1

NT1

N∑
i=1

T∑
t=2

vit [(1− ρL) ū·t] + oP
(
N−1

)
.

It follows that N · D2,4 (1) = 2
NT1

∑N
i=1

∑T
t=2 v

2
it − N

T1

∑T
t=2 v

2
·t + N

T1

∑T
t=2 [v·t − (1− ρL) ū·t]

2
+ oP (1) .

Similarly, we can show that D2,4 (`) = oP
(
N−1

)
for ` = 2, 3. Consequently, we have by Assumptions

A.4(ii) and A.5(ii)

N
[
CV ∗2,4 − CV ∗2,2

]
=

2

NT1

N∑
i=1

T∑
t=2

v2it −
N

T1

T∑
t=2

v2·t + oP (1)
P→ 2σ̄2v − σ̄2v2. (A.33)

By (A.29), (A.31), and (A.33), we have P
(
CV ∗2,2 < CV ∗2,m

)
→ 1 as (N,T ) → ∞ for m = 1, 3, 4 provided

σ̄2v2 < 2σ̄2v.

Case 3: Model 3 is the true model. This case parallels Case 2 and we can follow the analysis in Case
2 and show that P

(
CV ∗3,3 < CV ∗3,m

)
→ 1 for m = 1, 2, 4. The details are omitted for brevity.

Case 4: Model 4 is the true model. In this case, Models 1-3 are underfitted and we will show that
P
(
CV ∗4,4 < CV ∗4,m

)
→ 1 for m = 1, 2, 3. Let uλ,it, uαλ,it, Uλ, and Uαλ be as defined in the proof of Theorem

2.1. Following the steps to obtain (A.23), now we can show that

(yit − ŷ(1)it )− ρ(yi,t−1 − ŷ(1)i,t−1)

=
1

1− h(1)it
[uαλ,it − x′it(X ′X)−1X ′Uαλ]− ρ

1− h(1)i,t−1
[uαλ,it−1 − x′i,t−1(X ′X)−1X ′Uαλ]

= cit,1[(1− ρ)αi + (1− ρL)λt + vit − x̆′it(X ′X)−1X ′Uαλ] + ρκit,1[uαλ,it−1 − x′i,t−1(X ′X)−1X ′Uαλ],(A.34)
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where L denotes the lag operator. As in Case 2, we can show that by Assumptions A.4(iv)-(v) and A.6(iii),

CV ∗4,1 =
1

NT1

N∑
i=1

T∑
t=2

[
(1− ρ)αi + (1− ρL)λt − x̆′it (X ′X)

−1
X ′ (Dαα+Dλλ)

]2
+

1

NT1

N∑
i=1

T∑
t=2

v2it + oP (1)

P→ c∗αλ,X + σ̄2v.

Similarly, we have

CV ∗4,2 =
1

NT1

N∑
i=1

T∑
t=2

[
(1− ρL)λt − x̆(2)′it

(
X(2)′X(2)

)−1
X(2)′Dλλ

]2
+

1

NT1

N∑
i=1

T∑
t=2

v2it + oP (1)

P→ c∗λ,Xα + σ̄2v,

CV ∗4,3 =
1

NT

N∑
i=1

T∑
t=1

[
(1− ρ)αi − x̆(3)′it

(
X(3)′X(3)

)−1
X(3)′Dαα

]2
+

1

NT1

N∑
i=1

T∑
t=2

v2it + oP (1)

P→ c∗α,Xλ + σ̄2v,

and CV ∗4,4 = 1
NT1

∑N
i=1

∑T
t=2 v

2
it + oP (1)

P→ σ̄2v. Then P
(
CV ∗4,4 < CV ∗4,m

)
→ 1 as (N,T ) → ∞ for m =

1, 2, 3. �
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Table 1A: Frequency of the model selected: static panels, ρ = 0

True model Model 1 Model 2
Selected model M1 M2 M3 M4 M1 M2 M3 M4

N=10 T=10 0.897 0.059 0.038 0.006 0.006 0.913 0 0.081
AIC N=10 T=50 0.971 0.028 0.001 0 0 0.999 0 0.001

N=50 T=10 0.962 0 0.038 0 0 0.932 0 0.068
N=50 T=50 1 0 0 0 0 0.999 0 0.001
N=10 T=10 1 0 0 0 0.136 0.864 0 0

BIC N=10 T=50 1 0 0 0 0 1 0 0
N=50 T=10 1 0 0 0 0.411 0.392 0.197 0
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.649 0.134 0.157 0.060 0 0.739 0.001 0.260

BIC2 N=10 T=50 0.939 0.060 0.001 0 0 0.999 0 0.001
N=50 T=10 0.934 0.001 0.065 0 0 0.895 0 0.105
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.931 0.039 0.030 0 0.007 0.961 0 0.032

CV N=10 T=50 0.974 0.026 0 0 0 1 0 0
N=50 T=10 0.963 0 0.037 0 0 0.965 0 0.035
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.808 0.143 0.041 0.008 0.005 0.944 0.001 0.050

CV∗ N=10 T=50 0.959 0.040 0.001 0 0 0.999 0 0.001
N=50 T=10 0.938 0.013 0.049 0 0 0.944 0 0.056
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.877 0.076 0.042 0.005 0.044 0.903 0.014 0.039

CV∗∗ N=10 T=50 0.965 0.034 0.001 0 0 0.999 0 0.001
N=50 T=10 0.953 0 0.047 0 0 0.945 0.001 0.054
N=50 T=50 1 0 0.001 0 0 0.999 0 0.001

True model Model 3 Model 4
Selected model M1 M2 M3 M4 M1 M2 M3 M4

N=10 T=10 0.008 0.001 0.898 0.093 0.003 0.009 0.006 0.982
AIC N=10 T=50 0 0 0.946 0.054 0 0 0 1

N=50 T=10 0 0 0.999 0.001 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.200 0 0.800 0 0.740 0.029 0.011 0.220

BIC N=10 T=50 0.349 0.278 0.373 0 0.404 0.561 0 0.035
N=50 T=10 0 0 1 0 0.542 0 0.413 0.045
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.002 0 0.758 0.240 0 0.002 0.001 0.997

BIC2 N=10 T=50 0 0 0.902 0.098 0 0 0 1
N=50 T=10 0 0 0.999 0.001 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.010 0.001 0.950 0.039 0.007 0.019 0.010 0.964

CV N=10 T=50 0 0 0.976 0.024 0 0 0 1
N=50 T=10 0 0 1 0 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.008 0.005 0.856 0.131 0.014 0.023 0.006 0.957

CV∗ N=10 T=50 0 0 0.959 0.041 0 0 0 1
N=50 T=10 0 0 0.989 0.011 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.020 0.003 0.904 0.073 0.021 0.026 0.122 0.831

CV∗∗ N=10 T=50 0 0 0.965 0.035 0 0 0 1
N=50 T=10 0 0 1 0 0 0 0.005 0.995
N=50 T=50 0 0 1 0 0 0 0 1
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Table 1B: Frequency of the model selected: static panels, ρ = 1/4

True model Model 1 Model 2
Selected model M1 M2 M3 M4 M1 M2 M3 M4

N=10 T=10 0.607 0.318 0.034 0.041 0.006 0.893 0 0.101
AIC N=10 T=50 0.718 0.282 0 0 0 1 0 0

N=50 T=10 0.760 0.194 0.028 0.018 0 0.915 0 0.085
N=50 T=50 0.855 0.145 0 0 0 1 0 0
N=10 T=10 0.997 0.003 0 0 0.106 0.894 0 0

BIC N=10 T=50 1 0 0 0 0 1 0 0
N=50 T=10 1 0 0 0 0.313 0.590 0.097 0
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.337 0.428 0.077 0.158 0 0.742 0.001 0.257

BIC2 N=10 T=50 0.646 0.35 0.004 0 0 0.995 0 0.005
N=50 T=10 0.585 0.334 0.039 0.042 0 0.889 0 0.111
N=50 T=50 0.883 0.117 0 0 0 1 0 0
N=10 T=10 0.694 0.268 0.027 0.011 0.007 0.949 0 0.044

CV N=10 T=50 0.731 0.269 0 0 0 1 0 0
N=50 T=10 0.840 0.125 0.028 0.007 0 0.954 0 0.046
N=50 T=50 0.870 0.130 0 0 0 1 0 0
N=10 T=10 0.738 0.210 0.036 0.016 0.013 0.935 0.002 0.050

CV∗ N=10 T=50 0.950 0.049 0.001 0 0 0.999 0 0.001
N=50 T=10 0.898 0.052 0.047 0.003 0 0.946 0 0.054
N=50 T=50 0.999 0.001 0 0 0 0.999 0 0.001
N=10 T=10 0.858 0.093 0.042 0.007 0.184 0.743 0.039 0.034

CV∗∗ N=10 T=50 0.960 0.039 0.001 0 0 0.999 0 0.001
N=50 T=10 0.952 0.001 0.047 0 0.027 0.867 0.061 0.045
N=50 T=50 0.999 0 0.001 0 0 0.999 0 0.001

True model Model 3 Model 4
Selected model M1 M2 M3 M4 M1 M2 M3 M4

N=10 T=10 0.006 0.001 0.575 0.418 0.002 0.011 0.005 0.982
AIC N=10 T=50 0 0 0.633 0.367 0 0 0 1

N=50 T=10 0 0 0.765 0.235 0 0 0 1
N=50 T=50 0 0 0.830 0.170 0 0 0 1
N=10 T=10 0.238 0.003 0.752 0.007 0.648 0.051 0.011 0.290

BIC N=10 T=50 0.367 0.39 0.243 0 0.379 0.599 0 0.022
N=50 T=10 0.002 0 0.998 0 0.505 0 0.333 0.162
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.001 0.001 0.372 0.626 0 0.002 0.001 0.997

BIC2 N=10 T=50 0 0 0.542 0.458 0 0 0 1
N=50 T=10 0 0 0.593 0.407 0 0 0 1
N=50 T=50 0 0 0.870 0.130 0 0 0 1
N=10 T=10 0.012 0.005 0.714 0.269 0.003 0.021 0.008 0.968

CV N=10 T=50 0 0 0.724 0.276 0 0 0 1
N=50 T=10 0 0 0.871 0.129 0 0 0 1
N=50 T=50 0 0 0.872 0.128 0 0 0 1
N=10 T=10 0.011 0.005 0.773 0.211 0.01 0.018 0.02 0.952

CV∗ N=10 T=50 0 0 0.951 0.049 0 0 0 1
N=50 T=10 0 0 0.950 0.050 0 0 0 1
N=50 T=50 0 0 0.999 0.001 0 0 0 1
N=10 T=10 0.016 0.006 0.888 0.090 0.023 0.016 0.348 0.613

CV∗∗ N=10 T=50 0 0 0.964 0.036 0 0 0 1
N=50 T=10 0 0 1 0 0 0 0.184 0.816
N=50 T=50 0 0 1 0 0 0 0 1
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Table 1C: Frequency of the model selected: static panels, ρ = 1/3

True model Model 1 Model 2
Selected model M1 M2 M3 M4 M1 M2 M3 M4

N=10 T=10 0.472 0.438 0.031 0.059 0.006 0.887 0 0.107
AIC N=10 T=50 0.566 0.433 0.001 0 0 0.999 0 0.001

N=50 T=10 0.446 0.491 0.019 0.044 0 0.914 0 0.086
N=50 T=50 0.534 0.466 0 0 0 1 0 0
N=10 T=10 0.987 0.013 0 0 0.104 0.896 0 0

BIC N=10 T=50 0.998 0.002 0 0 0 1 0 0
N=50 T=10 1 0 0 0 0.283 0.646 0.071 0
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.239 0.516 0.048 0.197 0.001 0.743 0.002 0.254

BIC2 N=10 T=50 0.474 0.519 0.005 0.002 0 0.993 0 0.007
N=50 T=10 0.277 0.619 0.019 0.085 0 0.885 0 0.115
N=50 T=50 0.601 0.399 0 0 0 1 0 0
N=10 T=10 0.541 0.415 0.022 0.022 0.007 0.940 0 0.053

CV N=10 T=50 0.578 0.422 0 0 0 1 0 0
N=50 T=10 0.548 0.412 0.021 0.019 0 0.951 0 0.049
N=50 T=50 0.557 0.443 0 0 0 1 0 0
N=10 T=10 0.694 0.251 0.037 0.018 0.02 0.925 0.003 0.052

CV∗ N=10 T=50 0.945 0.054 0.001 0 0 0.999 0 0.001
N=50 T=10 0.867 0.083 0.043 0.007 0 0.946 0 0.054
N=50 T=50 0.999 0.001 0 0 0 0.999 0 0.001
N=10 T=10 0.842 0.105 0.044 0.009 0.254 0.668 0.052 0.026

CV∗∗ N=10 T=50 0.960 0.039 0.001 0 0 0.999 0 0.001
N=50 T=10 0.951 0.002 0.047 0 0.091 0.751 0.125 0.033
N=50 T=50 0.999 0 0.001 0 0 0.999 0 0.001

True model Model 3 Model 4
Selected model M1 M2 M3 M4 M1 M2 M3 M4

N=10 T=10 0.009 0.003 0.441 0.547 0.002 0.011 0.005 0.982
AIC N=10 T=50 0 0 0.484 0.516 0 0 0 1

N=50 T=10 0 0 0.441 0.559 0 0 0 1
N=50 T=50 0 0 0.494 0.506 0 0 0 1
N=10 T=10 0.273 0.011 0.703 0.013 0.611 0.064 0.008 0.317

BIC N=10 T=50 0.382 0.450 0.168 0 0.373 0.611 0 0.016
N=50 T=10 0.002 0 0.998 0 0.49 0 0.287 0.223
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.001 0.001 0.245 0.753 0 0.002 0.002 0.996

BIC2 N=10 T=50 0 0 0.409 0.591 0 0 0 1
N=50 T=10 0 0 0.276 0.724 0 0 0 1
N=50 T=50 0 0 0.560 0.440 0 0 0 1
N=10 T=10 0.011 0.009 0.568 0.412 0.003 0.022 0.009 0.966

CV N=10 T=50 0 0 0.575 0.425 0 0 0 1
N=50 T=10 0 0 0.580 0.420 0 0 0 1
N=50 T=50 0 0 0.563 0.437 0 0 0 1
N=10 T=10 0.01 0.004 0.730 0.256 0.009 0.015 0.022 0.954

CV∗ N=10 T=50 0 0 0.942 0.058 0 0 0 1
N=50 T=10 0 0 0.913 0.087 0 0 0 1
N=50 T=50 0 0 0.999 0.001 0 0 0 1
N=10 T=10 0.014 0.005 0.880 0.101 0.016 0.014 0.449 0.521

CV∗∗ N=10 T=50 0 0 0.963 0.037 0 0 0 1
N=50 T=10 0 0 0.998 0.002 0 0 0.344 0.656
N=50 T=50 0 0 1 0 0 0 0 1
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Table 1D: Frequency of the model selected: static panels, ρ = 1/2

True model Model 1 Model 2
Selected model M1 M2 M3 M4 M1 M2 M3 M4

N=10 T=10 0.209 0.680 0.014 0.097 0.005 0.871 0 0.124
AIC N=10 T=50 0.273 0.723 0 0.004 0 0.996 0 0.004

N=50 T=10 0.037 0.873 0 0.090 0 0.909 0 0.091
N=50 T=50 0.039 0.960 0 0.001 0 0.999 0 0.001
N=10 T=10 0.888 0.112 0 0 0.093 0.905 0 0.002

BIC N=10 T=50 0.981 0.019 0 0 0.001 0.999 0 0
N=50 T=10 1 0 0 0 0.204 0.780 0.016 0
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.083 0.668 0.023 0.226 0.001 0.744 0.001 0.254

BIC2 N=10 T=50 0.217 0.771 0.002 0.010 0 0.988 0 0.012
N=50 T=10 0.008 0.867 0.001 0.124 0 0.875 0 0.125
N=50 T=50 0.055 0.944 0 0.001 0 0.999 0 0.001
N=10 T=10 0.248 0.692 0.012 0.048 0.006 0.932 0 0.062

CV N=10 T=50 0.282 0.715 0.001 0.002 0 0.997 0 0.003
N=50 T=10 0.057 0.883 0 0.06 0 0.938 0 0.062
N=50 T=50 0.044 0.955 0 0.001 0 0.999 0 0.001
N=10 T=10 0.579 0.362 0.032 0.027 0.028 0.914 0.003 0.055

CV∗ N=10 T=50 0.908 0.091 0.001 0 0 0.999 0 0.001
N=50 T=10 0.692 0.261 0.034 0.013 0 0.946 0 0.054
N=50 T=50 0.998 0.002 0 0 0 0.999 0 0.001
N=10 T=10 0.809 0.141 0.039 0.011 0.42 0.505 0.054 0.021

CV∗∗ N=10 T=50 0.950 0.049 0.001 0 0.002 0.997 0 0.001
N=50 T=10 0.945 0.009 0.046 0 0.312 0.444 0.229 0.015
N=50 T=50 0.998 0.001 0.001 0 0 0.999 0 0.001

True model Model 3 Model 4
Selected model M1 M2 M3 M4 M1 M2 M3 M4

N=10 T=10 0.003 0.013 0.176 0.808 0.001 0.015 0.004 0.980
AIC N=10 T=50 0 0 0.220 0.780 0 0 0 1

N=50 T=10 0 0 0.030 0.970 0 0 0 1
N=50 T=50 0 0 0.034 0.966 0 0 0 1
N=10 T=10 0.362 0.043 0.493 0.102 0.510 0.122 0.007 0.361

BIC N=10 T=50 0.390 0.578 0.031 0.001 0.371 0.624 0 0.005
N=50 T=10 0.005 0 0.995 0 0.425 0 0.159 0.416
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0 0.006 0.091 0.903 0 0.006 0.001 0.993

BIC2 N=10 T=50 0 0 0.178 0.822 0 0 0 1
N=50 T=10 0 0 0.009 0.991 0 0 0 1
N=50 T=50 0 0 0.044 0.956 0 0 0 1
N=10 T=10 0.005 0.021 0.280 0.694 0.002 0.026 0.007 0.965

CV N=10 T=50 0 0.001 0.286 0.713 0 0.001 0 0.999
N=50 T=10 0 0 0.058 0.942 0 0 0 1
N=50 T=50 0 0 0.046 0.954 0 0 0 1
N=10 T=10 0.01 0.005 0.612 0.373 0.007 0.014 0.034 0.945

CV∗ N=10 T=50 0 0 0.904 0.096 0 0 0 1
N=50 T=10 0 0 0.735 0.265 0 0 0 1
N=50 T=50 0 0 0.998 0.002 0 0 0 1
N=10 T=10 0.011 0.005 0.842 0.142 0.014 0.008 0.583 0.395

CV∗∗ N=10 T=50 0 0 0.957 0.043 0 0 0.024 0.976
N=50 T=10 0 0 0.993 0.007 0 0 0.694 0.306
N=50 T=50 0 0 0.999 0.001 0 0 0 1
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Table 1E: Frequency of the model selected: static panels, ρ = 3/4

True model Model 1 Model 2
Selected model M1 M2 M3 M4 M1 M2 M3 M4

N=10 T=10 0.014 0.842 0.003 0.141 0.001 0.853 0 0.146
AIC N=10 T=50 0.019 0.953 0 0.028 0 0.972 0 0.028

N=50 T=10 0 0.873 0 0.127 0 0.873 0 0.127
N=50 T=50 0 0.982 0 0.018 0 0.982 0 0.018
N=10 T=10 0.242 0.752 0 0.006 0.04 0.954 0 0.006

BIC N=10 T=50 0.466 0.534 0 0 0.002 0.998 0 0
N=50 T=10 0.467 0.533 0 0 0.007 0.993 0 0
N=50 T=50 0.770 0.230 0 0 0 1 0 0
N=10 T=10 0.003 0.739 0.002 0.256 0 0.742 0 0.258

BIC2 N=10 T=50 0.012 0.942 0 0.046 0 0.954 0 0.046
N=50 T=10 0 0.841 0 0.159 0 0.841 0 0.159
N=50 T=50 0 0.983 0 0.017 0 0.983 0 0.017
N=10 T=10 0.021 0.897 0.005 0.077 0.001 0.918 0 0.081

CV N=10 T=50 0.021 0.962 0.001 0.016 0 0.983 0 0.017
N=50 T=10 0 0.914 0 0.086 0 0.914 0 0.086
N=50 T=50 0 0.983 0 0.017 0 0.983 0 0.017
N=10 T=10 0.302 0.633 0.021 0.044 0.038 0.896 0.001 0.065

CV∗ N=10 T=50 0.705 0.294 0.001 0 0.009 0.990 0 0.001
N=50 T=10 0.153 0.788 0.009 0.050 0 0.941 0 0.059
N=50 T=50 0.962 0.038 0 0 0 0.999 0 0.001
N=10 T=10 0.660 0.292 0.032 0.016 0.532 0.412 0.035 0.021

CV∗∗ N=10 T=50 0.918 0.081 0.001 0 0.320 0.679 0.001 0
N=50 T=10 0.867 0.088 0.043 0.002 0.648 0.231 0.113 0.008
N=50 T=50 0.998 0.001 0.001 0 0.157 0.842 0 0.001

True model Model 3 Model 4
Selected model M1 M2 M3 M4 M1 M2 M3 M4

N=10 T=10 0.002 0.029 0.013 0.956 0 0.030 0.001 0.969
AIC N=10 T=50 0 0.012 0.013 0.975 0 0.012 0 0.988

N=50 T=10 0 0 0 1 0 0 0 1
N=50 T=50 0 0 0 1 0 0 0 1
N=10 T=10 0.192 0.356 0.075 0.377 0.190 0.381 0.005 0.424

BIC N=10 T=50 0.245 0.755 0 0 0.229 0.771 0 0
N=50 T=10 0.016 0.002 0.419 0.563 0.058 0.005 0.002 0.935
N=50 T=50 0.001 0.001 0.743 0.255 0.001 0.002 0 0.997
N=10 T=10 0 0.013 0.005 0.982 0 0.013 0 0.987

BIC2 N=10 T=50 0 0.005 0.010 0.985 0 0.005 0 0.995
N=50 T=10 0 0 0 1 0 0 0 1
N=50 T=50 0 0 0 1 0 0 0 1
N=10 T=10 0.005 0.059 0.025 0.911 0.001 0.060 0.002 0.937

CV N=10 T=50 0 0.021 0.025 0.954 0 0.021 0 0.979
N=50 T=10 0 0 0 1 0 0 0 1
N=50 T=50 0 0 0 1 0 0 0 1
N=10 T=10 0.005 0.003 0.317 0.675 0.003 0.007 0.05 0.940

CV∗ N=10 T=50 0 0 0.683 0.317 0 0 0.003 0.997
N=50 T=10 0 0 0.169 0.831 0 0 0 1
N=50 T=50 0 0 0.961 0.039 0 0 0 1
N=10 T=10 0.006 0 0.732 0.262 0.006 0 0.637 0.357

CV∗∗ N=10 T=50 0 0 0.929 0.071 0 0 0.524 0.476
N=50 T=10 0 0 0.911 0.089 0 0 0.815 0.185
N=50 T=50 0 0 0.999 0.001 0 0 0.509 0.491
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Table 2A: Frequency of the model selected: dynamic panels without exogenous regressors, β = 1/4

True model Model 1 Model 2
Selected model M1 M2 M3 M4 M1 M2 M3 M4

N=10 T=10 0.847 0.095 0.041 0.017 0.005 0.909 0 0.086
AIC N=10 T=50 0.954 0.046 0 0 0 1 0 0

N=50 T=10 0.958 0.004 0.038 0 0 0.928 0 0.072
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 1 0 0 0 0.406 0.594 0 0

BIC N=10 T=50 1 0 0 0 0 1 0 0
N=50 T=10 1 0 0 0 1 0 0 0
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.572 0.221 0.116 0.091 0 0.764 0 0.236

BIC2 N=10 T=50 0.925 0.074 0.001 0 0 0.997 0 0.003
N=50 T=10 0.917 0.018 0.061 0.004 0 0.894 0 0.106
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.887 0.075 0.032 0.006 0.007 0.954 0 0.039

CV N=10 T=50 0.955 0.045 0 0 0 1 0 0
N=50 T=10 0.962 0.002 0.036 0 0 0.960 0 0.04
N=50 T=50 1 0 0 0 0 1 0 0

True model Model 3 Model 4
Selected model M1 M2 M3 M4 M1 M2 M3 M4

N=10 T=10 0.005 0.001 0.845 0.149 0 0.005 0.001 0.994
AIC N=10 T=50 0 0 0.924 0.076 0 0 0 1

N=50 T=10 0 0 0.994 0.006 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.114 0 0.886 0 0.072 0.046 0.313 0.569

BIC N=10 T=50 0.083 0 0.917 0 0.001 0.075 0 0.924
N=50 T=10 0.002 0 0.998 0 0.003 0 0.997 0
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.001 0.001 0.654 0.344 0 0.002 0 0.998

BIC2 N=10 T=50 0 0 0.885 0.115 0 0 0 1
N=50 T=10 0 0 0.974 0.026 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.01 0.001 0.912 0.077 0 0.011 0.007 0.982

CV N=10 T=50 0 0 0.955 0.045 0 0 0 1
N=50 T=10 0 0 0.999 0.001 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
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Table 2B: Frequency of the model selected: dynamic panels without exogenous regressors, β = 1/2

True model Model 1 Model 2
Selected model M1 M2 M3 M4 M1 M2 M3 M4

N=10 T=10 0.796 0.143 0.038 0.023 0.008 0.905 0.001 0.086
AIC N=10 T=50 0.948 0.052 0 0 0 1 0 0

N=50 T=10 0.942 0.017 0.038 0.003 0 0.930 0 0.07
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 1 0 0 0 0.759 0.241 0 0

BIC N=10 T=50 1 0 0 0 0 1 0 0
N=50 T=10 1 0 0 0 1 0 0 0
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.508 0.281 0.093 0.118 0 0.759 0.001 0.240

BIC2 N=10 T=50 0.920 0.078 0.002 0 0 0.997 0 0.003
N=50 T=10 0.882 0.050 0.060 0.008 0 0.897 0 0.103
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.844 0.123 0.026 0.007 0.012 0.951 0.001 0.036

CV N=10 T=50 0.953 0.047 0 0 0 1 0 0
N=50 T=10 0.951 0.012 0.037 0 0 0.957 0 0.043
N=50 T=50 1 0 0 0 0 1 0 0

True model Model 3 Model 4
Selected model M1 M2 M3 M4 M1 M2 M3 M4

N=10 T=10 0.006 0.001 0.778 0.215 0 0.005 0.008 0.987
AIC N=10 T=50 0 0 0.915 0.085 0 0 0 1

N=50 T=10 0 0 0.977 0.023 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.119 0 0.880 0.001 0.1 0.023 0.635 0.242

BIC N=10 T=50 0.085 0 0.915 0 0.003 0.071 0 0.926
N=50 T=10 0.002 0 0.998 0 0.003 0 0.997 0
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.001 0.001 0.551 0.447 0 0.002 0.001 0.997

BIC2 N=10 T=50 0 0 0.874 0.126 0 0 0 1
N=50 T=10 0 0 0.936 0.064 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.009 0.001 0.878 0.112 0.001 0.01 0.025 0.964

CV N=10 T=50 0 0 0.952 0.048 0 0 0 1
N=50 T=10 0 0 0.988 0.012 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
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Table 2C: Frequency of the model selected: dynamic panels without exogenous regressors, β = 3/4

True model Model 1 Model 2
Selected model M1 M2 M3 M4 M1 M2 M3 M4

N=10 T=10 0.633 0.303 0.032 0.032 0.048 0.872 0.002 0.078
AIC N=10 T=50 0.924 0.076 0 0 0 1 0 0

N=50 T=10 0.834 0.122 0.029 0.015 0 0.925 0 0.075
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.999 0.001 0 0 0.950 0.050 0 0

BIC N=10 T=50 1 0 0 0 0.080 0.920 0 0
N=50 T=10 1 0 0 0 1 0 0 0
N=50 T=50 1 0 0 0 0.905 0.095 0 0
N=10 T=10 0.334 0.446 0.053 0.167 0.005 0.754 0.002 0.239

BIC2 N=10 T=50 0.890 0.108 0.002 0 0 0.998 0 0.002
N=50 T=10 0.663 0.260 0.040 0.037 0 0.898 0 0.102
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.705 0.262 0.023 0.010 0.082 0.880 0.002 0.036

CV N=10 T=50 0.927 0.073 0 0 0 1 0 0
N=50 T=10 0.891 0.071 0.030 0.008 0.007 0.952 0.001 0.04
N=50 T=50 1 0 0 0 0 1 0 0

True model Model 3 Model 4
Selected model M1 M2 M3 M4 M1 M2 M3 M4

N=10 T=10 0.005 0.001 0.609 0.385 0 0.004 0.050 0.946
AIC N=10 T=50 0 0 0.885 0.115 0 0 0 1

N=50 T=10 0 0 0.845 0.155 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.121 0 0.874 0.005 0.092 0.007 0.847 0.054

BIC N=10 T=50 0.087 0 0.913 0 0.027 0.052 0.077 0.844
N=50 T=10 0.002 0 0.998 0 0.004 0 0.996 0
N=50 T=50 0 0 1 0 0 0 0.896 0.104
N=10 T=10 0.001 0.001 0.350 0.648 0 0.002 0.006 0.992

BIC2 N=10 T=50 0 0 0.835 0.165 0 0 0 1
N=50 T=10 0 0 0.675 0.325 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.007 0.002 0.762 0.229 0 0.008 0.139 0.853

CV N=10 T=50 0 0 0.927 0.073 0 0 0 1
N=50 T=10 0 0 0.923 0.077 0 0 0.010 0.990
N=50 T=50 0 0 1 0 0 0 0 1
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Table 3A: Frequency of the model selected: dynamic panels with exogenous regressors, β = 1/4

True model Model 1 Model 2
Selected model M1 M2 M3 M4 M1 M2 M3 M4

N=10 T=10 0.809 0.112 0.046 0.033 0.009 0.877 0.006 0.108
AIC N=10 T=50 0.940 0.060 0 0 0 1 0 0

N=50 T=10 0.954 0.002 0.044 0 0 0.914 0 0.086
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 1 0 0 0 0.676 0.324 0 0

BIC N=10 T=50 1 0 0 0 0 1 0 0
N=50 T=10 1 0 0 0 0.996 0 0.004 0
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.552 0.208 0.115 0.125 0.001 0.714 0.003 0.282

BIC2 N=10 T=50 0.919 0.080 0.001 0 0 0.997 0 0.003
N=50 T=10 0.912 0.013 0.074 0.001 0 0.868 0 0.132
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.913 0.057 0.023 0.007 0.030 0.931 0.006 0.033

CV N=10 T=50 0.951 0.049 0 0 0 1 0 0
N=50 T=10 0.963 0 0.037 0 0 0.957 0 0.043
N=50 T=50 1 0 0 0 0 1 0 0

True model Model 3 Model 4
Selected model M1 M2 M3 M4 M1 M2 M3 M4

N=10 T=10 0.004 0.002 0.799 0.195 0.006 0.010 0.024 0.960
AIC N=10 T=50 0 0 0.911 0.089 0 0 0 1

N=50 T=10 0 0 0.997 0.003 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.225 0.001 0.774 0 0.712 0.011 0.168 0.109

BIC N=10 T=50 0.384 0.283 0.333 0 0.794 0.180 0 0.026
N=50 T=10 0.002 0 0.998 0 0.024 0 0.976 0
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.001 0.001 0.617 0.381 0 0.002 0.003 0.995

BIC2 N=10 T=50 0 0 0.870 0.13 0 0 0 1
N=50 T=10 0 0 0.979 0.021 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.012 0.007 0.919 0.062 0.026 0.023 0.093 0.858

CV N=10 T=50 0 0 0.954 0.046 0 0 0 1
N=50 T=10 0 0 1 0 0 0 0 1
N=50 T=50 0 0 1 0 0 0 0 1
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Table 3B: Frequency of the model selected: dynamic panels with exogenous regressors, β = 1/2

True model Model 1 Model 2
Selected model M1 M2 M3 M4 M1 M2 M3 M4

N=10 T=10 0.770 0.143 0.045 0.042 0.035 0.849 0.010 0.106
AIC N=10 T=50 0.940 0.060 0 0 0 1 0 0

N=50 T=10 0.946 0.010 0.042 0.002 0.001 0.903 0 0.096
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 1 0 0 0 0.869 0.131 0 0

BIC N=10 T=50 1 0 0 0 0.005 0.995 0 0
N=50 T=10 1 0 0 0 1 0 0 0
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.503 0.257 0.099 0.141 0.002 0.711 0.007 0.280

BIC2 N=10 T=50 0.911 0.088 0.001 0 0 0.998 0 0.002
N=50 T=10 0.886 0.034 0.070 0.01 0 0.858 0 0.142
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.874 0.096 0.021 0.009 0.08 0.882 0.007 0.031

CV N=10 T=50 0.947 0.053 0 0 0 1 0 0
N=50 T=10 0.961 0.003 0.036 0 0.002 0.954 0 0.044
N=50 T=50 1 0 0 0 0 1 0 0

True model Model 3 Model 4
Selected model M1 M2 M3 M4 M1 M2 M3 M4

N=10 T=10 0.003 0.002 0.759 0.236 0.006 0.007 0.061 0.926
AIC N=10 T=50 0 0 0.904 0.096 0 0 0 1

N=50 T=10 0 0 0.986 0.014 0 0 0.003 0.997
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.237 0.001 0.762 0 0.629 0.009 0.291 0.071

BIC N=10 T=50 0.401 0.270 0.329 0 0.917 0.064 0 0.019
N=50 T=10 0.002 0 0.998 0 0.009 0 0.991 0
N=50 T=50 0 0 1 0 0 0 0.009 0.991
N=10 T=10 0.001 0.001 0.545 0.453 0 0.003 0.011 0.986

BIC2 N=10 T=50 0 0 0.865 0.135 0 0 0 1
N=50 T=10 0 0 0.948 0.052 0 0 0.001 0.999
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.014 0.007 0.879 0.100 0.027 0.018 0.180 0.775

CV N=10 T=50 0 0 0.953 0.047 0 0 0 1
N=50 T=10 0 0 0.998 0.002 0 0 0.011 0.989
N=50 T=50 0 0 1 0 0 0 0 1
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Table 3C: Frequency of the model selected: dynamic panels with exogenous regressors, β = 3/4

True model Model 1 Model 2
Selected model M1 M2 M3 M4 M1 M2 M3 M4

N=10 T=10 0.644 0.265 0.034 0.057 0.129 0.756 0.012 0.103
AIC N=10 T=50 0.925 0.075 0 0 0 1 0 0

N=50 T=10 0.884 0.070 0.031 0.015 0.040 0.848 0.002 0.110
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 1 0 0 0 0.964 0.036 0 0

BIC N=10 T=50 1 0 0 0 0.38 0.620 0 0
N=50 T=10 1 0 0 0 1 0 0 0
N=50 T=50 1 0 0 0 1 0 0 0
N=10 T=10 0.361 0.389 0.068 0.182 0.022 0.694 0.016 0.268

BIC2 N=10 T=50 0.885 0.113 0.002 0 0 0.998 0 0.002
N=50 T=10 0.748 0.156 0.054 0.042 0.012 0.831 0.001 0.156
N=50 T=50 1 0 0 0 0 1 0 0
N=10 T=10 0.778 0.187 0.023 0.012 0.243 0.714 0.013 0.030

CV N=10 T=50 0.929 0.071 0 0 0 1 0 0
N=50 T=10 0.931 0.034 0.031 0.004 0.079 0.854 0.012 0.055
N=50 T=50 1 0 0 0 0 1 0 0

True model Model 3 Model 4
Selected model M1 M2 M3 M4 M1 M2 M3 M4

N=10 T=10 0.002 0.004 0.611 0.383 0.006 0.007 0.143 0.844
AIC N=10 T=50 0 0 0.882 0.118 0 0 0 1

N=50 T=10 0 0 0.894 0.106 0 0 0.048 0.952
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.260 0.003 0.736 0.001 0.478 0.008 0.485 0.029

BIC N=10 T=50 0.442 0.241 0.317 0 0.982 0.007 0 0.011
N=50 T=10 0.002 0 0.998 0 0.006 0 0.994 0
N=50 T=50 0 0 1 0 0 0 1 0
N=10 T=10 0.001 0.003 0.370 0.626 0 0.004 0.037 0.959

BIC2 N=10 T=50 0 0 0.835 0.165 0 0 0 1
N=50 T=10 0 0 0.776 0.224 0 0 0.012 0.988
N=50 T=50 0 0 1 0 0 0 0 1
N=10 T=10 0.011 0.011 0.808 0.170 0.027 0.014 0.366 0.593

CV N=10 T=50 0 0 0.928 0.072 0 0 0 1
N=50 T=10 0 0 0.961 0.039 0 0 0.133 0.867
N=50 T=50 0 0 1 0 0 0 0 1
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Table 4A: Comparisons of MSEs: static panels, ρ = 0

Adopted Model M1 M2 M3 M4
True Model

N=10 T=10 3.79 6.32 5.83 13.16
M1 N=10 T=50 0.68 1.03 0.99 2.16

N=50 T=10 0.71 1.23 1.02 2.31
N=50 T=50 0.14 0.21 0.21 0.41
N=10 T=10 145.62 6.32 295.26 13.16

M2 N=10 T=50 128.66 1.03 287.75 2.16
N=50 T=10 130.75 1.23 259.24 2.31
N=50 T=50 117.76 0.21 258.94 0.41
N=10 T=10 102.06 245.89 5.83 13.16

M3 N=10 T=50 109.93 249.80 0.99 2.16
N=50 T=10 94.97 235.31 1.02 2.31
N=50 T=50 107.42 246.93 0.21 0.41
N=10 T=10 440.18 245.89 295.26 13.16

M4 N=10 T=50 448.25 249.80 287.75 2.16
N=50 T=10 422.87 235.31 259.24 2.31
N=50 T=50 441.74 246.93 258.94 0.41

Note: Numbers in the main entries are 1000×MSEs of the estimates of β.

Table 4B: Comparisons of MSEs: dynamic panels without exogenous regressors, β = 3/4

Non-bias correction Bias correction
Adopted Model M1 M2 M3 M4 M1 M2 M3 M4

True Model
N=10 T=10 5.55 57.34 5.40 58.74 5.41 25.20 5.52 28.49

M1 N=10 T=50 0.84 2.48 0.92 2.64 0.85 1.51 0.94 1.69
N=50 T=10 0.95 45.78 0.94 45.91 0.94 4.69 0.95 4.80
N=50 T=50 0.17 1.61 0.17 1.62 0.17 0.32 0.17 0.32
N=10 T=10 46.82 57.34 48.10 58.74 46.54 25.20 47.92 28.49

M2 N=10 T=50 46.77 2.48 48.04 2.64 46.86 1.51 48.11 1.69
N=50 T=10 47.76 45.78 48.00 45.91 47.71 4.69 47.98 4.80
N=50 T=50 47.74 1.61 47.98 1.62 47.75 0.32 47.99 0.32
N=10 T=10 20.31 79.86 5.40 58.74 24.37 56.13 5.52 28.49

M3 N=10 T=50 3.16 5.09 0.92 2.64 3.85 4.59 0.94 1.69
N=50 T=10 13.41 72.01 0.94 45.91 17.73 39.64 0.95 4.80
N=50 T=50 2.41 4.35 0.17 1.62 3.02 3.56 0.17 0.32
N=10 T=10 36.30 79.86 48.10 58.74 36.09 56.13 47.92 28.49

M4 N=10 T=50 36.75 5.09 48.04 2.64 37.13 4.59 48.11 1.69
N=50 T=10 37.51 72.01 48.00 45.91 37.25 39.64 47.98 4.80
N=50 T=50 37.62 4.35 47.98 1.62 37.87 3.56 47.99 0.32

Note: Numbers in the main entries are 1000×MSEs of the estimates of β.
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Table 5: Application I: Crime rates in North Carolina (N=90, T=7, k=17)

AIC BIC BIC2 CV CV∗ CV∗∗

Model 1 -2.121 -2.001 -2.125 0.124 0.094 0.028
Model 2 -3.773 -3.025 -3.796 0.025 0.023 0.026
Model 3 -2.124 -1.962 -2.129 0.124 0.094 0.027
Model 4 -3.823 -3.032 -3.847 0.024 0.022 0.025

Selected model M4 M4 M4 M4 M4 M4

Table 6: Application II: Cross-country saving rates (N=56, T=15, k=5)

AIC BIC BIC2 CV
Model 1 2.547 2.576 2.547 12.844
Model 2 2.505 2.843 2.498 12.459
Model 3 2.555 2.663 2.553 12.953
Model 4 2.512 2.929 2.504 12.584

Selected model M2 M1 M2 M2

Table 7: Application III: Guns and crime in the U.S.

Static models (N=51, T=23, k=9) Dynamic models (N=51, T=22, k=10)
Model AIC BIC BIC2 CV CV∗ CV∗∗ AIC BIC BIC2 CV

log (violent crime rate)
M1 -1.6911 -1.6522 -1.6914 0.1860 0.0165 0.0073 -4.8520 -4.8072 -4.8524 0.0078
M2 -3.6072 -3.3523 -3.6094 0.0274 0.0080 0.0072 -4.8719 -4.6033 -4.8746 0.0077
M3 -1.7198 -1.5859 -1.7210 0.1816 0.0140 0.0061 -5.0845 -4.9457 -5.0859 0.0062
M4 -3.8653 -3.5154 -3.8684 0.0211 0.0063 0.0059 -5.1235 -4.7609 -5.1271 0.0060

Selected M4 M4 M4 M4 M4 M4 M4 M3 M4 M4

log (murder rate)
M1 -1.6202 -1.5813 -1.6205 0.1991 0.1234 0.0560 -2.8836 -2.8388 -2.8841 0.0561
M2 -2.9845 -2.7296 -2.9867 0.0510 0.0457 0.0452 -3.1044 -2.8358 -3.1071 0.0453
M3 -1.7012 -1.5673 -1.7024 0.1844 0.1144 0.0550 -2.9087 -2.7699 -2.9101 0.0548
M4 -3.1243 -2.7744 -3.1274 0.0443 0.0413 0.0421 -3.1913 -2.8287 -3.1950 0.0415

Selected M4 M4 M4 M4 M4 M4 M4 M1 M4 M4

log (robbery rate)
M1 -0.9853 -0.9464 -0.9856 0.3748 0.0375 0.0164 -4.0919 -4.0472 -4.0924 0.0168
M2 -3.0239 -2.7690 -3.0261 0.0490 0.0167 0.0156 -4.1352 -3.8666 -4.1379 0.0161
M3 -1.1079 -0.9740 -1.1091 0.3338 0.0305 0.0137 -4.2892 -4.1505 -4.2906 0.0138
M4 -3.2181 -2.8682 -3.2212 0.0403 0.0135 0.0130 -4.3454 -3.9828 -4.3491 0.0131

Selected M4 M4 M4 M4 M4 M4 M4 M3 M4 M4
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