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Nonparametric Threshold Regression: Estimation and Inference∗

Daniel J. Henderson, Christopher F. Parmeter, and Liangjun Su

Abstract

The present work describes a simple approach to estimating the location of a threshold/change

point in a nonparametric regression. This model has connections both to the time-series and regression

discontinuity literatures. The estimator leverages a simple decomposition, giving it the form of a

semiparametric smooth coefficient model. Optimal bandwidth selection and a suite of testing facilities

are also presented. Several empirical examples are provided to illustrate the implementation of the

methods discussed here.

Keywords: Change Point, Local Average Treatment Effect, Nonparametric Threshold Regression,

Regression Discontinuity, Smoothed Bootstrap, Structural Change

JEL Codes:

1 Introduction

Regression discontinuity and structural change models have received considerable attention in the statis-

tics and econometrics literature. There is well documented evidence of structural change in many eco-

nomic time series, including GDP (McConnel and Perez-Quiros, 2000) and labor productivity (Hansen,

2001), along with change points in economic growth (Durlauf and Johnson, 1996; Hansen 2000) not to

mention a myriad studies deploying regression discontinuity designs, where the change point is known to

the analyst. A majority of the literature focuses on parametric models, though recently attention has

shifted to detecting the presence of a structural change or the magnitude of a change point deploying

nonparametric methods. While parametric methods possess the advantage of parsimony, the potential

to avoid model misspecification through a nonparametric specification is alluring. However, many of the

existing nonparametric methods for detecting structural breaks involve a diagnostic test or the use of

one-sided kernels to estimate the unknown function on each side of the threshold. Here we describe a

simple method to not only estimate the location of a structural change, but the unknown conditional

mean on each side of the break.

Our method leverages a simple decomposition owing to the discrete nature of the structural change.

This decomposition is identical to that appearing in Das (2005) albeit for a different econometric problem.

∗Christopher F. Parmeter, Corresponding Author, Department of Economics, University of Miami, 305-284-4397, e-mail:

cparmeter@bus.miami.edu.
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However, both models, after the decomposition, take the form of a semiparametric smooth coefficient

model,1 which has been judiciously explored (see Li, Huang, Li and Fu, 2002; Lee and Ullah, 2001;

Cai, Fan and Li, 2000; Cai, Fan and Yao, 2000; Fan and Huang, 2005; Cai, 2007; Cai, Li and Park,

2009; and Li and Racine, 2009, among others). The proposed estimator adds to a growing literature on

threshold/change point estimation in nonparametric settings.

There currently exist several alternative approaches to estimating change points in nonparametric

settings. Müller (1992) suggested estimating the location of a change point in an otherwise smooth

regression surface by taking the maximal difference over all one-sided estimates of the unknown function

on each side of the unknown change point. The estimates were constructed using one-sided kernels, similar

to those deployed in boundary modification for the local constant estimator (Rice, 1984). This estimator

was also used in Delgado and Hidalgo (2000) and Grégoire and Hamrouni (2002). Spokoiny (1998) uses a

similar idea, constructing intervals over the data, estimating via local polynomial the unknown regression

function, and then testing whether the residuals represent pure noise. The estimator is that which stems

from the largest interval where this hypothesis cannot be rejected. An alternative approach to estimating

the change point is to use a two-step approach. This is the route followed in Gijbels, Hall and Kniep

(1999). The first step (the diagnostic step) involves looking for locations in the support of the data with

estimated high derivatives for the local constant kernel regression estimator. The second step (the least

squares step) fits a step function over a range of the data near the estimated discontinuities and uses

least squares to determine the index of the data where the discontinuity is closest.

Gao, Gijbels and Van Bellegem (2008) test for structural breaks in a nonparametric location-scale

model where both the conditional mean and variance functions may possess change points. Gao et al.

(2008) generalize the approach of Hidalgo (1995) and Delgado and Hidalgo (2000) who require that the

conditional mean and variance have the same location of the structural break. Seo and Linton (2006)

generalize Hansen’s (2000) change point regression model by allowing the threshold to be a linear index,

as opposed to a single value.

Porter (2003) provides two estimators of the regression discontinuity (RD) treatment effect. The first

estimator is based on Robinson’s (1988) partially linear estimator (PLE). The second estimator is based

on the local polynomial estimator (LPE) at the boundary which generalizes the local linear estimator of

Hahn et al. (2001). Yu (2010) develops the partially polynomial estimator (PPE) which is a generalization

of the PLE and connects the PLE and LPE of Porter (2003). Porter and Yu (2011) discuss estimation

of the RD model when treatment assignment is unknown. This is an important distinction given that in

RD models a concern is selection on treatment, where individuals react to the known cut-off to obtain

treatment status, thus eliminating random assignment.

An important issue that arises when dealing with nonparametric estimation of a regression curve

with jump discontinuities or kinks is the selection of the smoothing parameters. The performance of the

1Kristensen (2012) proposes a similar model to that found here, however, his model is setup as a semiparametric smooth

coefficient model and the coefficients depend exclusively on time, whereas our nonparametric change point model is fully

nonparametric in all variables, and takes the form of the smooth coefficient model through the discrete nature of the change

point.
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estimator depends crucially on the values of these parameters. However, few of the papers discussing

change point estimation focus on selection of the bandwidth parameters. As Porter (2003) notes, the

current crop of papers “. . . provide no practical guide to bandwidth choice . . . one could imagine using

a leave-one-out cross-validation criterion evaluated at points outside a bandwidth neighborhood of the

discontinuity,” though no formal approach is given. Wu and Chu (1993) and Spokoiny (1998) are early

contributions on the theoretical underpinnings of smoothing parameter selection. Gijbels and Goderniaux

(2004) propose optimal bandwidth selection for the change point estimator of Gijbels et al. (1999),

estimating the necessary bandwidths for the procedure using bootstrap bandwidth selection, while the

number of discontinuities is determined via classic least-squares cross-validation. More recently Porter

and Yu (2011) and Yu (2010) propose cross-validation algorithms for their estimators.

A new strand of analysis has focused on the deployment of wavelets to estimate structural breaks

and change points in nonparametric regression models. Chen (2011) and Chen and Fan (2011) use local

polynomial wavelets to estimate a local average treatment effect (LATE) in a switching regression with

discontinuous incentive assignment. These estimators are constructed under the assumption of a known

change point.

The objectives of this paper are twofold. We develop a competing nonparametric threshold model,

using recently developed discrete smoothing methods. This method is simple to use and readily admits

a simple cross-validation approach for automatic bandwidth selection. Further, we provide theoretical

justification for our estimator, our bandwidth selection mechanism as well as the testing facilities. We

also discuss how our estimator can be used in the RD treatment effect context.

The remainder of our paper is structured as follows. Section 2 presents our estimator, bandwidth

selection algorithm and tests of several important hypotheses. Section 3 provides the theoretical un-

derpinnings for our new estimator. Section 4 presents Monte Carlo evidence on the performance of our

estimator. Several examples appear in Section 5. Section 6 concludes with several avenues for future

research.

To proceed, we adopt the following notation. For a real matrix A, we denote its transpose as Aᵀ, its

Frobenius norm as ‖A‖ (≡ [tr(AAᵀ)]1/2), where tr(·) is the trace operator and ≡ means “is defined as”.

Let 1 {·} denote the usual indicator function that takes value if the condition insider {·} holds and zero

otherwise. We use
D→ and

P→ to denote convergence in distribution and probability, respectively.
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2 Threshold Regression

2.1 Parametric Threshold Regression

Consider the basic threshold regression model:

Yt = βᵀ
1Xt + εt, qt ≤ γ, (2.1)

Yt = βᵀ
2Xt + εt, qt > γ, (2.2)

where Xt is a d×1 vector of regressors, εt is the error term, qt is the threshold variable and is used to split

the sample into two distinct regimes, and γ is referred to as the threshold parameter: the coefficient of

Xt takes value β1 when qt ≤ γ and β2 otherwise. In practice this model can be as simple as the variable

qt representing gender or race and γ is known to be 0 in the cross sectional setting, or it could be that

the variable qt is continuous and the value of γ is unknown, and needs to be estimated.

To think of an estimator for this model, we rewrite equations (2.1) and (2.2) into a single equation.

In order to accomplish this we introduce the binary variable Dt (γ) = 1 {qt > γ}. This yields

Yt = βᵀ
1Xt + δᵀXtDt (γ) + εt, (2.3)

where δ = β2 − β1. This expression is actually a simplification since it is possible to have a model where

a subset of variables have the same response effect across regimes or only belong to a single regime.

However, writing the threshold regression in single equation form helps to see how generic least squares

estimation applies to the estimation of the model. Writing (2.3) in matrix form we obtain

Y = Xβ1 +
(
X � D̄ (γ)

)
δ + ε, (2.4)

where Y is the n× 1 vector of regressands, ε is the n× 1 vector of model errors, X is the n× d matrix of

regressors, D̄ (γ) = D (γ)11×d, D (γ) is the n×1 vector of indicators Dt (γ) regarding regime assignment,

11×d a 1 × d vector of ones, and � denotes the Hadamard product. For a given level of γ, (2.4) can be

solved using ordinary least squares for estimators of β1 and δ. This stems from minimizing the sum of

squared errors:

RSS(β1, δ|γ) =
[
Y −Xβ1 −

(
X � D̄ (γ)

)
δ
]ᵀ [

Y −Xβ1 −
(
X � D̄ (γ)

)
δ
]
. (2.5)

In practice, γ is generally unknown. In this setting Hansen (2000) suggests obtaining estimates of

(β2, δ, γ) by concentration. That is, as shown in (2.5), conditional on γ the estimators for β1 and δ are

linear. Letting X̃ (γ) = [X X � D̄ (γ)], the concentrated OLS estimator of (βᵀ, δᵀ)ᵀ is

(β̂1(γ)ᵀ, δ̂(γ)ᵀ)ᵀ =
[
X̃ (γ)

ᵀ
X̃ (γ)

]−1

X̃ (γ)
ᵀ
Y.

An estimator for γ can be found by defining γ̂ as

γ̂ = arg min
γ∈Γ

RSS(β̂1(γ), δ̂(γ)|γ), (2.6)

where Γ = [γ, γ̄]. Hansen (2000) suggests approximating Γ with a grid and when n is large, one can

use N < n points to aid in computation. Large sample properties as well as inferential procedures are

discussed in Hansen (2000) while the possibility to allow q to be endogenous is discussed in Caner and

Hansen (2002). For the analysis that follows we will assume that q is exogenous.
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2.2 A Nonparametric Threshold Regression

Now we consider the basic threshold regression model but leave the functional form unspecified:

Yt = m1(Xt) + εt, qt ≤ γ, (2.7)

Yt = m2(Xt) + εt, qt > γ, (2.8)

where, t = 1, ..., n, qt is again the threshold variable and is used to split the sample into two distinct

regimes, m1 (·) and m2 (·) are two unknown smooth functions defined in Rd. Now, we rewrite the nonpara-

metric threshold regression estimator in single equation form, using the same binary variable introduced

earlier, Dt (γ). This yields

Yt = m1(Xt) + [m2(Xt)−m1(Xt)]Dt (γ) + εt

= α1(Xt) + α2 (Xt)Dt (γ) + εt (2.9)

where α1(Xt) = m1 (Xt) and α2(Xt) = m2(Xt) − m1(Xt). This model is known as a semiparametric

smooth coefficient model (SPSCM) and it has been extensively discussed in the econometric literature for

the case where qt is not an element of Xt or Dt (γ) is replaced by another variable that is not a function

of Xt. As above, for a fixed γ, the estimators of α1(x) and α2(x) can be obtained by minimizing the

sum of squared residuals. This process can be iterated for a fixed grid Γ to obtain an estimator of the

threshold parameter as well. Below, we will use subscript 0 to denote the true function or parameter

value, e.g., γ0 denotes the true value of γ and α0(x) ≡ (α1,0(x), α2,0(x))ᵀ denotes the true function of

α(x) ≡ (α1(x), α2(x))ᵀ. Therefore the data generating process is given by

Yt = α1,0(Xt) + α2,0 (Xt)Dt (γ0) + εt (2.10)

where α1,0(Xt) = m1,0 (Xt) and α2,0(Xt) = m2,0(Xt) − m1,0(Xt) and m1,0 and m2,0 denote the true

functions of m1 and m2.

Unfortunately, (α1,0, α2,0) is not identified if qt is contained in Xt. Without loss of generality (wlog)

we assume that qt = X1t, the first element of Xt. An alternative representation for the model in (2.9) is

given by

Yt = α(Xt) + β (Xt) · 1 {X1t > γ}+ εt (2.11)

where

α(x) =

{
m1 (x) if x1 ≤ γ
m2(x)− β (x) if x1 ≥ γ

.

Note that α(x) = m1 (x) = m2(x)− β (x) at x1 = γ, ensuring the continuity of the function α at x1 = γ.

We can further require β (x) = β, a constant, and then obtain the following representation:

Yt = α(Xt) + β · 1 {X1t > γ}+ εt (2.12)

where

α(x) =

{
m1 (x) if x1 ≤ γ
m2(x)− β if x1 ≥ γ

.
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In the last case, β can be interpreted as the jump size of the regression function at x1 = γ. Despite the

fact that (α (·) , β (·)) is not identified in (2.11), we can identify ((β, γ) , α (·)) under the condition that

α (·) is continuous everywhere on its support.

It is worth mentioning that the model in (2.9) or (2.12) is a nonparametric extension of the parametric

regression discontinuity design (RDD) where γ is typically assumed to be known in the parametric

framework. Here, we allow that the threshold parameter γ to be unknown.

In the following, we assume that qt = X1t is a continuous random variable that admits a probability

density function (PDF) f1 and strictly increasing cumulative distribution function (CDF) F1. We will

propose estimates for (β, γ) and m (x) and then establish their asymptotic distributions below. As one

can imagine, like the parametric case the threshold parameter γ can be estimated at a rate faster than
√
n. Unlike the parametric case, the estimation of γ generally affects the asymptotic distribution of the

estimator of β and may or may not asymptotic the asymptotic distribution of α (x) , contingent upon

whether d = 1 or d > 1.

When qt /∈ Xt, (2.9) becomes the standard functional functional model in the case where γ is known.

When γ is unknown, similar but much simpler analysis than that in the current paper reveals the following

results: 1) γ can be estimated at a rate fast than
√
n; 2) The estimation of γ does not have any first-order

asymptotic effect on the asymptotic distribution of estimates of m1 (x) and m2 (x) as in the parametric

case.

2.3 Semiparametric M-estimation of the threshold parameter

We we consider the semiparametric estimation of both the infinite dimensional parameter α (·) and the

finite parameter (β, λ) in (2.12). The associated DGP is

Yt = α0(Xt) + β0 · 1 {X1t > γ0}+ εt (2.13)

Like Hansen (2000), we estimate the γ by concentrating both α (·) and β out. Our estimates can be

obtained through a three-stage procedure.

1. In the first stage, for given (β, γ) and x we can estimate α(x) by Nadaraya-Watson (NW hereafter)

method. The NW estimate of α (·) is obtained as

α̂b (x;β, γ) ≡ arg min
α
n−1

n∑
t=1

[Yt − α− β1 {qt > γ}]2Kb (Xt − x) (2.14)

where Kb (Xt − x) = b−dK (Xt − x) and K (·) is a kernel function. It is easy to verify that

α̂b (x;β, γ) = n−1
n∑
t=1

Kb (Xt − x) [Yt − β1 {qt > γ}] /f̂b (x) , (2.15)

where f̂b (x) = n−1
∑n
t=1Kb (Xt − x) .

2. In the second stage, we choose β to minimize the following weighted least squares (WLS) objective

function

n−1
n∑
t=1

[Yt − α̂b (Xt;β, λ)− β1 {qt > γ}]2 f̂2
b (Xt) . (2.16)
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The minimizer is given by

β̂ (γ) =

(
n−1

n∑
t=1

D̃t (γ)
2

)−1

n−1
n∑
t=1

D̃t (γ) Ỹt, (2.17)

where Ỹt = n−1
∑n
s=1Kb (Xs −Xt) (Ys − Yt) and D̃t (γ) = n−1

∑n
s=1Kb (Xs −Xt) [Ds (γ)−Dt (γ)] .

Let α̂b (x; γ) = α̂b(x; β̂ (λ) , γ).

3. In the third stage, we consider the semiparametric M-estimation of the threshold parameter γ. We

estimate γ by γ̂ that approximately solves the sample minimization problem:

min
γ∈Γ

∣∣∣Mn(γ, ĥb)
∣∣∣ (2.18)

where ĥb (·; γ) = (α̂b (·; γ) , β̂ (γ)),

Mn(γ, ĥb) =
1

n

n∑
t=1

[
Yt − α̂b (Xt; γ)− β̂ (γ)Dt (γ)

]
w (Xt) , (2.19)

and w (·) is a nonnegative weight function with compact support X0 that lies in the interior of

the support X of Xt. After one obtains γ̂, one estimates β by β̂ (γ̂) and α (x) by α̂b (x; γ̂) =

α̂b(x; β̂(λ̂), γ̂).

Several remarks are in order.

First, we consider the NW estimation in this paper. Alternatively, one can consider other semipara-

metric estimation methods, e.g., local polynomial estimation and sieve estimation. The general results

will be similar to what we have obtained in this paper.

Second, we consider the density-weighted least squares problem in second stage. The use of the

estimated density as a weight helps to avoid the random denominator problem associated with NW

estimation.

Third, we use the weight function w (·) in the third stage M -estimation and assume that it has

compact support X0. This compact support assumption helps to trim the observations in the tail of X
when α (·) cannot be estimated accurately.

Fourth, note that Mn is not a smooth function of γ and we do not require γ̂ to be the exact minimizer

of the objective function in (2.15). As we shall see, our asymptotic theory requires that the approximate

minimizer γ̂ satisfies the condition∣∣∣Mn(γ̂, ĥb)
∣∣∣ = inf

γ∈Γ

∣∣∣Mn(γ, ĥb)
∣∣∣+ oP

(
(n/b)−1/2

)
, (2.20)

where (n/b)1/2 signifies the rate of convergence of γ̂ to γ0 under suitable conditions. Even though Mn is

not a smooth function, it is a univariate function and one can easily obtain the approximate solution.

3 Asymptotic Properties

In this section we first study the asymptotic properties of the estimator γ̂ and then consider the asymptotic

properties of β̂ (γ̂) and α̂b (x; γ̂) .
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3.1 Assumptions

For any d× 1 vector x = (x1, ..., xd)
ᵀ, we frequently write x = (x1, x

ᵀ
−1)ᵀ where x−1 = (x2, ..., xd)

ᵀ. For

any vector a = (a1, ..., ad) of d integers, define the differential operator Da = ∂D|a|/∂xa11 ...∂xadd , where

|a| =
∑d
i=1 ai. For any h : X0 → R and λ > 0, let λ be the largest integer smaller than λ, and

‖h‖∞,λ = max
|a|≤λ

sup
x∈X0

|Dah (x)|+ max
|a|=λ

sup
x 6=x′

|Dah (x)−Dah (x′)|
‖x− x′‖λ−λ

.

Let Cλc (X0) be the set of all continuous functions h : X0 → R with ‖h‖∞,λ ≤ c for some c <∞.
We make the following assumptions.

Assumption A1. (i) The process {(Xt, εt)} is a strictly stationary and β-mixing with mixing coefficients

βτ satisfying βτ ≤ cβρτ for some cβ > 0 and ρ ∈ (0, 1) .

(ii) E (εt|Xt, Xt−1, ..., εt−1, ...) = 0 almost surely. E |εt|2+ε
<∞ for some ε > 0.

(iii) The probability density function (PDF) f (·) of Xt is continuously differentiable, bounded, and

bounded away from 0 on the compact subset X0 of its support X . For all l ≥ 1, the joint PDF fl (·, ·) of

Xt and Xt+l is uniformly bounded.

(iv) The conditional distribution function (CDF) F1 (·) of qt = Xt1 admits a PDF f1 (·) that is

uniformly bounded on its support.

Assumption A2. (i) Let υ ≥ 2 be an even integer. f (·) is υ-th order continuously differentiable on the

compact set X0.

(ii) There exists λ > d such that α0 (·) ∈ Cλc (X0) for some c > 0. The (υ+λ)th order partial derivatives

of α0 (·) exist and are continuous on X0.

(iii) The nonnegative weight function w (·) is second order continuously differentiable on is compact

support X0. X0 is a product space and can be written as X0,1 × X0,−1, where X0,1 is a compact set on

the real line that includes γ0 as its interior point.

Assumption A3. (i) The kernel function K (·) is a product kernel of k (·) that is a symmetric υ-th

order kernel with compact support [−1, 1] .

(ii) k (·) is λth order continuously differentiable with the λth order derivative k(λ) (·) satisfying the

Lipschitz condition
∣∣k(λ) (u)− k(λ) (v)

∣∣ ≤ ck |u− v| for all u, v ∈ [−1, 1] .

(iii) Let k̄ (v) =
∫ v
−1
k (s) ds and ck̄ = 1−2

∫ 1

0
k̄ (v) dv+

∫ 1

−1
k̄2 (v) dv.Assume that ck̄ 6= |ėw (γ0)| /(4ew (γ0)),

where ew (x1) =
∫
w (x) f (x) dx−1, and ėw (x1) = ∂ew (x1) /∂x1.

Assumption A4. (i) Assume that b ∝ n−η for some η such that

max

(
1

2υ + 1
,

1

d+ 2υ − 1

)
< η < min

(
1

2d− 1
,

1

d+ 2λ

)
(ii) There exists λ0 ∈ (d,min(2d, λ)) such that dη

2d−λ0
< κ < min

(
ηυ, 1

2 (1− dη)
)
.

Assumption A1 imposes standard conditions on the stochastic process. We assume β-mixing instead of

a weaker condition, α-mixing, because we will resort to some stochastic equicontinuity result established

for β-mixing processes established in Doukhan et al. (1995). The geometric decay of βt will facilitate
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the use of a Bernstein-type inequality for strong mixing processes. A2(i)-(ii) impose standard conditions

on the unknown smooth functions, f and α0, to ensure the uniform consistency of NW estimates on a

compact set; see, e.g., Masry (1996) and Hansen (2008). The even integer υ denotes the order of the

kernel function we use. A2(i)-(ii) are needed to ensure that the asymptotic bias of the kernel estimator

of f and that of the kernel estimator of the λth derivative of α0 (·) are both OP (bυ). A2(iii) assumes

conditions on the weight function w (·) .
Assumption A3 imposes conditions on the kernel function. We allow the use of higher order kernel

to eliminate the asymptotic bias of the NW estimates. We assume compact support for the univariate

kernel function k (·), which greatly facilitates the asymptotic analysis of our estimators. A3(ii) ensures

the λth derivative of the estimate of α0 (x) to be well behaved. A3(iii) is needed to identify the threshold

parameter γ. Assumption A4 mainly imposes conditions on the bandwidth sequence. A4(i) implies that

max(nb2υ+1, nbd+2υ−1)→ 0 and min(nb2d−1/(log n)2, nbd+2λ)→∞

and we must apply an undersmoothing bandwidth b in order to eliminate the effect of the asymptotic

bias in the first stage nonparametric estimation on the second stage parameter estimation. It also implies

that we have to resort a kernel function whose order is higher than λ. For example, if λ= 2, we need to

choose υ ≥ 4 so that a higher order kernel has to be used. A4(ii) is used to establish some stochastic

equicontinuity result which is stronger than what is typically needed in order to establish the usual
√
n-

rate convergence for some parameter estimate. The reason is that our threshold parameter estimate γ̂ has

a rate of convergence faster than the usual
√
n-rate. Let κ ∈ ( dη

2d−λ0
,min

(
ηυ, 1

2 (1− dη)
)
). The condition

that κ < min
(
ηυ, 1

2 (1− dη)
)

ensures that bυ+n−1/2b−d/2(log n)1/2 = o (n−κ) and that dη
2d−λ0

< κ ensures

that we can apply some Bernstein inequality to prove some stochastic equicontinuity results.

To appreciate Assumption A4 more, we focus on the case d = 1 and discuss two subcases.

1. d = 1 and λ ∈ (1, 2]. In this case, λ= 1 and it suffices to consider second order kernel (υ = 2). Then

for any η ∈
(

1
4 ,

1
3

)
, all the conditions in A4 will be satisfied by restricting λ0 = min(2− η

1−η − ε, λ)

for any ε > 0 such that 2− η
1−η − ε > 1, which is possible because η

1−η ∈
(

1
3 ,

1
2

)
when η ∈

(
1
4 ,

1
3

)
.

That is, in this case, we can use a second order with an undersmoothing bandwidth b ∝ n−η with

η ∈
(

1
4 ,

1
3

)
.

2. d = 1 and λ ∈ (2, 3]. In this case, one can continue to apply the second order kernel with previously

defined rate of bandwidth. Alternatively, we can apply a fourth order kernel (υ = 4). Then for any

η ∈
(

1
8 ,

1
5

)
all the conditions in A4 will be satisfied by restricting λ0 = min(2− η

1−η − ε, λ) for any

ε > 0 such that 2− η
1−η −ε > 1, which is possible because η

1−η ∈
(

1
7 ,

1
4

)
when η ∈

(
1
8 ,

1
5

)
. That is, in

this case, we can use a fourth order with an undersmoothing bandwidth b ∝ n−η with η ∈
(

1
8 ,

1
5

)
.
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3.2 Consistency and asymptotic normality of γ̂

To study the asymptotic properties of γ̂, we first define the population analogue of ĥb(x, γ) = (α̂b(x, γ), β̂p(γ))ᵀ.

Let

ᾱb(x;β, γ) ≡ arg min
α
E
{

[Yt − α− βDt (γ)]
2
Kt,x

}
,

β̄b(γ) ≡ arg min
α
E [Yt − ᾱb (Xt;β, γ)− β1 {qt > γ}]2 f2 (Xt) ,

ᾱb(x, γ) ≡ arg min
α
E
{[
Yt − α− β̄b(γ)Dt (γ)

]2
Kt,x

}
,

where Kt,x = Kb (Xt − x) . Define

db (x, γ) ≡ 1

b
E {Kt,x [Dt (γ)− 1 {x1 > γ}]} , and (3.1)

cdb (γ) ≡
(
E
[
d2
b (Xt, γ)

])−1
E{db (Xt, γ) [db (Xt, γ0)− db (Xt, γ)]}. (3.2)

It is easy to verify that ᾱb(x;β, γ) = α0,b(x;β, γ) + O (bυ) , β̄b(γ) = β0,b(γ) + O (bυ) , and ᾱb(x, γ) =

α0,b(x, γ) +O (bυ) , where

α0,b(x;β, γ) = α0(x) + f (x)
−1
E{Kt,x [β0Dt (γ0)− βDt (γ)] , (3.3)

β0,b(γ) = β0 + β0cdb (γ) , and (3.4)

α0,b(x, γ) = β0f (x)
−1
E{Kt,x [Dt (γ0)−Dt (γ)]} − β0cdb (γ) f (x)

−1
E [Kt,xDt (γ)] . (3.5)

Apparently, β0,b(γ0) = β0 and α0,b(Xt, γ0) = α0(Xt). Noting that db (x, γ) = 1
b

∫
K (u) [1

{
u1 > −x1−γ

b

}
−1
{

0 > −x1−γ
b

}
]f (x+ bu) du, we can write db (x, γ) = d̄b (x1 − γ;x) , where d̄b (t;x) = 1

b d̄
(
t
b ;x
)

and

d̄ (·;x) =
∫
K (u) [1 {· > −u1} − 1 {· > 0}] f (x+ bu) du behaves like a univariate kernel function varying

over x. One can verify that E |db (Xt, γ)| = O (1) , and E[|db (Xt, γ)|2] = O (1/b) .

Let hb (·, γ) ≡ (αb (·, γ) , βb (γ)) and h0,b (·, γ) = (α0,b (·, γ) , β0,b (γ)). For notational convenience,

we usually suppress the arguments of the function hb and write (γ, hb) ≡ (γ, hb (·, γ)) , (γ, h0,b) ≡
(γ, h0,b (·, γ)) , and (γ0, h0,b) ≡ (γ0, h0,b (·, γ0)) = (γ0, (α0 (·) , β0)) . Define the pseudo-norm ‖·‖H for hb to

lie in an infinite dimensional parameter set H to be defined in the appendix:

‖hb‖H = sup
γ∈Γ

sup
x∈X0

|αb (x, γ)|+ sup
γ∈Γ
|βb (γ)| .

The following theorem establishes the consistency of γ̂.

Theorem 3.1 Suppose that Assumptions A1-A3 and A4(i) hold. Then γ̂ − γ0 = oP (1) .

The proof of the above theorem is quite tedious as one cannot directly apply some existing results, e.g.,

Chen Linton, and Van Keilegom (2003, CLV hereafter), in the literature. To appreciate why, condition

(1.2) in CLV requires that for any fixed δ > 0, there exists ε (δ) such that

inf
|γ−γ0|>δ

|M (γ, h0,b)| ≥ ε (δ) > 0,

where M (γ, hb) ≡ E{[Yt − αb(Xt, γ)− βb(γ)Dt (γ)]w (Xt)}. The above condition serves as a strong iden-

tification condition in the framework of CLV. It implies that

Pr (|γ̂ − γ0| > δ) ≤ Pr (|M (γ̂, h0,b)| ≥ ε (δ))
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and thus one can prove the consistency of γ̂ by showing that |M (γ̂, h0,b)| = oP (1) . Unfortunately, such a

strong identification condition does not hold in our framework. In fact, for any fixed δ > 0, there is no way

to ensure that |M (γ, h0,b)| is bounded away from zero uniformly in γ ∈ Γ̄δ ≡ {γ′ ∈ Γ : |γ′ − γ0| > δ} . In

other words, M (γ, h0,b) , as a function of γ, is quite flat in the neighborhood of γ0, giving rise to the issue

of weak identification. In the proof of the above theorem, we show that 1
bM (γ, h0,b) is bounded away

from zero in the neighborhood of γ0. The division of M (γ, h0,b) by b helps to achieve the identification

but it also causes some additional problems to be solved with care. For example, the standard consistency

result in CLV requires that ∥∥∥ĥb − h0,b

∥∥∥
H

= oP (1)

and

sup
γ∈Γ,‖hb−h0,b‖H≤δn

|Mn (γ, hb)−M (γ, hb)| = oP (1)

where δn = o (1) is an arbitrary positive sequence. We need to strengthen oP (1) to oP (b) in order to

establish the claimed result in Theorem 3.1.

To state the next result, we introduce more notations. Define

c0b (x, γ) ≡ E [Kb (Xt − x)Dt (γ)] ,

c1b (x, γ) ≡ E [db (Xt, γ)Kb (Xt − x)] ,

c2b (x, γ) ≡ db (x, γ)E [Kb (Xt − x)] ,

c̄0b (γ) ≡ 1

b

∫
[c0b (x, γ)− 1 {x1 > γ} f (x)]w (x) dx. (3.6)

It is easy to verify that E |csb (Xt, γ)| = O (1) for s = 0, 1, 2, E[|csb (Xt, γ)|2] = O (1/b) for s = 1, 2, and

c̄0b (γ) = O (1) . Let

Vγ,b ≡ c̄20b (γ0)S−2
b (γ0)E

{
σ2 (Xt) b [c1b (Xt, γ0)− c2b (Xt, γ0)]

2
}

(3.7)

where σ2 (x) ≡ E
(
ε2
t |Xt = x

)
, and Sb (γ) = b · E

[
d2
b (Xt, γ)

]
.

Let γ̂+ and γ̂− denote γ̂ when γ̂ > γ0 and γ̂ < γ0, respectively. Let Υ1b,− (γ, h0,b) and Υ1b,+ (γ, h0,b)

denote the ordinary left and right derivatives of M (γ, h0,b) with respect to γ, respectively. We verify

in Appendix B.4 that Υ1b,− (γ, h0,b) and Υ1b,+ (γ, h0,b) exist for all γ in the neighborhood of γ0 and

Υ1b,− (γ0, h0,b) and Υ1b,+ (γ0, h0,b) are both continuous at γ = γ0 and bounded away from zero and

infinity as n→∞. In particular, (B.20) gives the formula for Υ1b,± ≡ Υ1b,± (γ0, h0,b) :

Υ1b,± = −β0ew (γ0)± β0
1

4ck̄
ėw (γ0) +O (b) , (3.8)

where ew (x1) , ėw (x1) , and ck̄ are defined in Assumption A3(iii).

The following theorem reports the asymptotic normality of γ̂.

Theorem 3.2 Suppose that Assumptions A1-A4 hold. Then√
n/b

(
γ̂± − γ0

) D→ N (0,Ωγ,±)

where Ωγ,± ≡ limn→∞Υ−1
1b,±Vγ,bΥ

−1
1b.±, γ̂± denotes either γ̂+ or γ̂−, and similarly Υ1b,±.
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We make several remarks on the above theorem.

First, as in the case of parametric threshold regression, the threshold parameter in our nonparametric

model can be estimated at a rate faster than the usual
√
n-rate. Chan (1993) finds that with the jump size

parameter (β in our model) fixed, n (γ̂ − γ0) converges to an asymptotic distribution that is dependent

upon some nuisance parameters and thus not particularly useful for statistical inference. For this reason,

Hansen (2000) assumes that the jump size parameter is proportional to n−a with 0 < a < 1
2 and finds

that n1−2a (γ̂ − γ0) converges to asymptotic distribution that is associated with a two-sided Brownian

motion. Note that the convergence rate of Hansen’s threshold parameter estimate is faster than
√
n

provided a < 1
4 so that the jump size does not shrink to zero too fast. We achieve the asymptotic normal

distribution and faster convergence rate without assuming the jump size to shrink to zero.

Second, our result is similar to that in Seo and Linton (2007). The latter authors study the smoothed

least squares estimation of a parametric threshold regression model where the indicator function (1 {qt > γ}
in our case) is replaced by a CDF-type smooth function with a bandwidth parameter σ to control the

speed at which the CDF-type smooth function approximates the indicator function. They demonstrate

that the threshold parameter in their model can be estimated at
√
n/σ-rate. Despite the similarity in

terms of convergence rate for the threshold parameters, the asymptotic tools used in our paper is quite

different from those used by Seo and Linton. The objective function in Seo and Linton (2007) is a smooth

function so that they can apply the usual Taylor expansions whereas the objective function in our case

is not smooth and we have to rely on the empirical process theory.

Third, the proof of Theorem 3.2 is quite tedious too as one cannot apply any existing results in

the literature directly. For example, one cannot apply either the asymptotic normality result in CLV

or that in Chen (2007) as they require that the ordinary derivative of M (γ, h0,b) with respect to γ

exists in the neighborhood of γ0. In our model, we can only demonstrate that both the left and right

derivatives of M (γ, h0,b) exists at γ = γ0. It turns that this condition, in conjunction with some other

regularity conditions, is sufficient for the establishment of the asymptotic distribution of γ̂. In addition,

the stochastic equicontinuity (s.e.) condition (e.g., condition (2.5) in CLV and condition (4.1.5) in Chen

(2007)) is not sufficient for our purpose either. We require a stronger s.e. condition than theirs and

verify such a condition by relying upon some standard arguments (e.g., chaining argument) used in the

empirical process theory.

Fourth, in principle, one can rely on the asymptotic results in Theorem 3.2 to make statistical inference

about γ0. To do so, one needs to estimate Υ1b,± and Vγ,b consistently. Letmw (x1) = E [w (Xt) |X1t = x1] .

Noting that ew (x1) = mw (x1) f (x1) , we propose to estimate ew (γ0) by

êw =
1

nb

n∑
t=1

k

(
X1t − γ̂

b

)
w (Xt) if d ≥ 2 and w (γ̂) f̂b (γ̂) if d = 1,

and ėw (γ0) by

̂̇ew =
1

nb2

n∑
t=1

k(1)

(
γ̂ −X1t

b

)
w (Xt) if d ≥ 2 and ẇ (γ̂) f̂b (γ̂) + w (γ̂) f̂

(1)
b (γ̂) if d = 1,

where k(1) (v) = dk (v) /dv, ẇ (γ) = ∂w (γ) /∂γ when d = 1, and f̂
(1)
b (γ̂) = 1

nb2

∑n
t=1 k

(1)
(
γ̂−X1t

b

)
. Then
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by (3.8) we can estimate them respectively by

Υ̂1b,± = −β̂b (γ̂) êw ± β̂b (γ̂)
1

4ck̄
̂̇ew.

Noting that by (B.18) and (B.19),

Vγ,b ≡
(

ėw (γ0)

2e (γ0) ck̄

)2

E
{
σ2 (Xt) b [c1b (Xt, γ0)− c2b (Xt, γ0)]

2
}

+O (b) , (3.9)

we propose to estimate Vγ,b by

V̂γ,b =

( ̂̇ew
2êck̄

)2
1

n

n∑
t=1

ε̂2
t b [ĉ1b (Xt, γ̂)− ĉ2b (Xt, γ̂)]

2

where ĉjb (x, γ̂), j = 1, 2, are sample analogue estimates of cjb (x, γ̂) , and ε̂t = Yt − α̂b (Xt, γ̂) −
β̂b (γ̂)Dt (γ̂) . Then a consistent estimate of Ωγ,± is given by Ω̂γ,± = V̂γ,b/(Υ̂1b,±)2. To test the null

hypothesis H0 : γ = γ0, say, we can construct the t-statistic as usual

tn,± =
√
n/b

(
γ̂± − γ0

)
/

√
Ω̂γ,±

where tn,+ is used if γ̂ > γ0 (in which case we write γ̂ as γ̂+) and tn,− is used if γ̂ < γ0 (in which case we

write γ̂ as γ̂−). Difficulty arises when one tries to construct the confidence interval for γ0 as it is difficult

to determine whether one should use Ω̂γ,+ or Ω̂γ,−. We propose to adopt the IID bootstrap to conduct

the inference based on confidence intervals. Following the arguments used in Seo and Linton (2007), one

can justify the asymptotic validity of this bootstrap method.)

3.3 Asymptotic distributions of β̂b (γ̂) and α̂b (x; γ̂)

Let θψ1
(γ) = b ·E{db (Xt, γ) [db (Xt, γ0)− db (Xt, γ)]}. Let θ̇ψ1,+ (γ0) and θ̇ψ1,− (γ0) denote the right and

left derivatives of θψ1 (γ) evaluated at γ = γ0, respectively. We show in Appendix B that b · θ̇ψ1,+ (γ0) =

− 1
2e (γ0) +O (b) and b · θ̇ψ1,− (γ0) = 1

2e (γ0) +O (b) , where e (x1) =
∫
f (x1, x−1)

3
dx−1. Define

Ωnβ,± = S−2
b (γ0)

[
1− β0bθ̇ψ1,± (γ0) Υ−1

1b,±c̄0b (γ0)
]2
E{b [c1b (Xt, γ0)− c2b (Xt, γ0)]

2
σ2(Xt)}, (3.10)

and

∆nα,± (x; d) = b(d−1)c2α,b,± (x)E{b [c1b (Xt, γ0)− c2b (Xt, γ0)]
2
σ2(Xt)}, (3.11)

where

cα,b,± (x) = f (x)
−1
S−1
b (γ0) {β0bċ0b (x, γ0) c̄0b (γ0)− c0b (x, γ0) [1− β0bθ̇ψ1,± (γ0) Υ−1

1b,±c̄0b (γ0)]}, (3.12)

and ċ0b (x, γ) = ∂c0b (x, γ) /dγ.

The following theorem reports the asymptotic distributions of β̂b (γ̂) and α̂b (x; γ̂) .

Theorem 3.3 Suppose that Assumptions A1-A4 hold. Suppose that σ2 (·) is continuous at x. Then

(i)
√
nb
(
β̂b
(
γ̂±
)
− β0

)
D→ N (0,Ωβ,±) ,

(ii)
√
nbd

[
α̂b
(
x, γ̂±

)
− α0 (x)

] D→ N
(

0, f (x)
−1
σ2 (x)

∫
K (u)

2
du+ ∆α,± (x; d)

)
,

where Ωβ,± = limn→∞Ωnβ,±, and ∆α,± (x; d) = limn→∞∆nα,± (x; d).
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Several remarks are in order.

First, although γ̂ is super-consistent, β̂ converges to β0 at the nonparametric
√
nb-rate. This is due

to the presence of qt = X1t inside the indicator function 1 {qt > γ} but not the weak identification of γ0.

To appreciate this point, letting ξn ≡ 1√
n

∑n
t=1 b

1/2 [c1b (Xt, γ0)− c2b (Xt, γ0)] εt, we show in the proof of

Theorem 3.3(i) that

√
nb
(
β̂b
(
γ̂±
)
− β0

)
= S−1

b (γ0) ξn − β0bθ̇ψ1,± (γ0) (bΓ1b,±)
−1
c̄0b (γ0) S−1

b (γ0) ξn + oP (1)

where the first term on the right hand side (rhs) is present even if the true threshold parameter value γ0

is observed and the second term on the rhs is due to the estimation of γ0 by γ̂. Just like db (x, γ) , both

c1b (x, γ) and c2b (x, γ) also behave like a scaled univariate kernel function such that E |cjb (Xt, γ)|2 =

O (1/b) for j = 1, 2. This implies that even if one observes γ0, one can only estimate the jump size β0 at

the
√
nb-rate.

Second, as shown in the proof of Theorem 3.3(ii),

√
nbd

[
α̂b
(
x, γ̂±

)
− α0 (x)

]
= f (x)

−1

√
bd√
n

n∑
t=1

Kb (Xt − x) εt − b(d−1)/2cα,b (x) ξn + oP (1) ,

where the first term on the rhs is present even if we observe γ0 and β0, and the second term indicates

the effect of the estimation of both γ0 and β0. To see the separate effects of the estimation γ0 and β0, we

can rewrite

cα,b (x) = f (x)
−1
S−1
b (γ0)β0bċ0b (x, γ0) c̄0b (γ0)− f (x)

−1
S−1
b (γ0) c0b (x, γ0)

[
1− β0bθ̇ψ1,± (γ0) Γ−1

1b,±c̄0b (γ0)
]

≡ cα,b,1 (x)− cα,b,2 (x) , say.

Then b(d−1)/2cα,b,1 (x) ξn and −b(d−1)/2cα,b,2 (x) ξn signal the effects of the estimation of γ0 and β0,

respectively. In the special case where d > 1, ∆α,± (x; d) = 0 and the estimation of (β, γ) does not

have any asymptotic effect on the asymptotic distribution of α̂b
(
x, γ̂±

)
. In addition, by Assumption

A3, c0b (x, γ0) = 0 if x1 ≤ γ0 − b, c0b (x, γ0) = f (x) + O (bυ) if x1 ≥ γ0 − b, and ċ0b (x, γ0) = 0 if

x1 /∈ [γ0 − b, γ0 + b]. With these, we further make the following two observations:

(i) If x1 ≤ γ0 − b,
√
nbd

[
α̂b
(
x, γ̂±

)
− α0 (x)

] d→ N
(

0, f (x)
−1
σ2 (x)

∫
K (u)

2
du
)

;

(ii) If x1 > γ0 + b,
√
nbd

[
α̂b
(
x, γ̂±

)
− α0 (x)

] d→ N
(

0, f (x)
−1
σ2 (x)

∫
K (u)

2
du+ ∆̄α,± (x; d)

)
,

where ∆̄α,± (x; d) = limn→∞ ∆̄α,b,± (x; d) ,

∆̄α,b (x; d) = b(d−1)c̄2α,b,± (x)E{b [c1b (Xt, γ0)− c2b (Xt, γ0)]
2
σ2(Xt)}

and c̄α,b,± (x) = −S−1
b (γ0) [1− β0bθ̇ψ1,± (γ0) Γ−1

1b,±c̄0b (γ0)].

Third, β̂b
(
γ̂±
)

is not asymptotically independent of γ̂±, and it is not asymptotically independent of

α̂b
(
x, γ̂±

)
in the case d = 1. Equations (A.38) and (A.43) in Appendix A suggest both

√
nb
(
β̂b
(
γ̂±
)
− β0

)
and

√
n/b

(
γ̂± − γ0

)
are proportional to

ξn =
1√
n

n∑
t=1

b1/2[c1b (Xt, γ0)− c2b (Xt, γ0)]εt,
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which explains dependence between the two. Similarly, when d = 1,
√
nbd

[
α̂b
(
x, γ̂±

)
− α0 (x)

]
contains a

term that is linear in ξn, which is not asymptotically negligible. This explains the dependence between γ̂±

and α̂b
(
x, γ̂±

)
. On the other hand, if d > 1, the linear term associated with ξn in the influence function

of
√
nbd

[
α̂b
(
x, γ̂±

)
− α0 (x)

]
is asymptotically negligible, and then we have asymptotic independence

between γ̂± and α̂b
(
x, γ̂±

)
.

Fourth, following the fourth remark after Theorem 3.2 we can also consider statistical inference for

β0 and α0 (x) . Given the fact that γ0 is generally unobserved and one does not know the sign of γ̂ − γ0,

we recommend the use of IID bootstrap method as in Seo and Linton (2007). We shall evaluate the finite

sample performance of this bootstrap method via simulations.

4 Finite sample performance

Here we consider the finite sample performance of our estimators/tests via Monte Carlo simulations.

Given the general nature of our estimator, we consider several different scenarios: (1) cross-sectional

data where the threshold variable is also a regressor included (2) cross-sectional data where the threshold

variable is excluded (3) time-series data where the threshold variable is included (4) time-series data

where the threshold variable is excluded.

Our performance criteria for evaluating our estimator of α(x) is weighted average squared error

(WASE),

WASE(α̂(x)) = n−1
n∑
t=1

(α̂(xt)− α(xt))
2

1

{∣∣∣xt − x̄
σx

∣∣∣ ≤ 2

}
, (4.1)

where α̂(x) is our Nadaraya-Watson estimator of the unknown function. WASE is evaluated at the

sample points for each simulation. For our threshold effect, β, and our unknown threshold, γ, we report

bias and mean squared error across the simulations. For each DGP we consider the case of both known

and unknown threshold parameter γ. Unless otherwise stated, we use sample sizes of n = 100, 200 and

400 with 1000 replications per experiment. For all simulations, we use a second order Epanechnikov

kernel with rule-of-thumb bandwidth, b = 2.345 · σ̂xn−0.25, where σ̂x is the sample standard deviation of

the covariate. We use an undersmoothed bandwidth given the remarks pertaining to Assumption 4.

Inference about the threshold parameter γ can be examined using the large sample results in Theo-

rem 3.2. Although our semiparametric threshold estimator possesses a limiting normal distribution, its

variance is somewhat complicated. As an alternative to direct estimation of this variance, we can use the

bootstrap. However, as laid out in exceeding detail by Yu (2012), standard bootstrap approaches will not

work. The reason is that the threshold parameter represents a boundary and common bootstrap mecha-

nisms are known to be invalid when a boundary exists. Further, as evidenced in both Yu (2012) and Seo

and Linton (2007), both percentile t and pivotal bootstrap approaches do not produce correct coverage

of the threshold parameter (see also Seijo and Sen; 2011). Footnote 3 in Seo and Linton (2007) indicates

that the bootstrap may be inconsistent in their simulations, but no theoretical analysis is conducted on

this point.

We will demonstrate how well our estimator works using the smooth bootstrap for our threshold
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estimator for all of the DGPs. To detail how the smooth bootstrap works we follow the insight of

Silverman (1986) and sample from f̂(x, q), the kernel density estimator of our covariates. In the case

where x = q, we construct resamples from the univariate kernel density estimator. However, the density

does not actually need to be constructed. Rather, smoothed bootstrap observations can be constructed

as

w∗t = (x∗t , q
∗
t ) = (1 + b2/σ̂2)(w(t) + bεt)

where w(t) is sampled uniformly with replacement from the original data, b is a bandwidth vector, σ̂2 is

the vector of estimated variances for the data and εt is a random draw from a multivariate normal with

mean 0 and variance Σ̂, the sample covariance of wt.

4.1 Cross-section where threshold variable is a regressor

We have a semiparametric threshold model error

g(Xt) = α(xt) + β · 1 {xt > γ} .

Here we investigate seven function specifications for α(x):

CSB DGP 1 α(x) = 0.8 + 0.7x;

CSB DGP 2 α(x) = 2 + 1.8 sin (1.5x);

CSB DGP 3 α(x) = 2.75 e−3x

1+e−3x − 1;

CSB DGP 4 α(x) = 0.7x+ 1.4e−16x2

;

CSB DGP 5 α(x) = 1.05(cos(πx) + sin(πx) + log(7/3 + x/2));

CSB DGP 6 α(x) = 2(x4 − 0.1x3 − 4.64x2 + 1.324x+ 0.408)/17;

CSB DGP 7 α(x) = 0.2 + 0.3x− 0.41x2.

Our parameters come from γ ∈ {−1, 0, 1} and β ∈ {1, 1.5, 2}. We divide the signal component

g(Xt) for each DGP by its standard deviation, σg(Xt) to control the signal-to-noise ratio, generating our

dependent regressor as Yt = g(Xt)/σg(Xt) + εt where x ∼ U [−3, 3]. Lastly, we take εt ∼ N(0, σ2), with

σ ∈ {0.32, 0.58, 0.82} which yields signal-to-noise ratios of 0.9, 0.75 and 0.6, respectively.

For brevity we only report the results for DGP, for γ = −1, 0. These results appear in Tables 1 to 3.

Several key features emerge: as n increases the bias of both β̂ and γ̂ decrease, the WASE for all three

estimators decrease as the sample size increases, with the rate of decrease for γ̂ faster, as expected, than

β̂ and α̂(x). We also notice that as the signal-to-noise ratio increases the performance of our estimator

improves for all sample sizes. This is expected as the threshold location is easier to identify with less

noise.

Results for DGPs 2-7 are similar. We provide simulation results for the remaining DGPS, using a

signal-to-noise ratio of 0.75 in Appendix C.
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Table 1: Simulation Performance of Semiparametric Threshold Estimator, DGP 1, signal to noise ra-

tio=0.9, 1000 Simulations

β γ α(x)

Bias MSE Bias MSE WASE

β = 1, γ = −1

n = 100 −0.093 0.283 0.200 0.636 0.025

n = 200 −0.028 0.109 0.071 0.204 0.014

n = 400 −0.004 0.043 0.002 0.005 0.008

β = 1.5, γ = −1

n = 100 −0.039 0.326 0.052 0.162 0.028

n = 200 −0.024 0.106 0.007 0.024 0.015

n = 400 −0.010 0.042 −0.001 0.000 0.009

β = 2, γ = −1

n = 100 −0.047 0.321 0.016 0.061 0.029

n = 200 −0.008 0.106 −0.004 0.001 0.017

n = 400 −0.012 0.052 0.000 0.000 0.009

β = 1, γ = 0

n = 100 −0.086 0.306 0.036 0.406 0.026

n = 200 −0.035 0.155 0.025 0.138 0.014

n = 400 −0.006 0.036 0.006 0.011 0.008

β = 1.5, γ = 0

n = 100 −0.103 0.378 0.000 0.189 0.028

n = 200 −0.015 0.112 −0.008 0.011 0.015

n = 400 −0.003 0.049 0.000 0.000 0.009

β = 2, γ = 0

n = 100 −0.070 0.351 −0.006 0.067 0.031

n = 200 −0.009 0.125 −0.004 0.005 0.017

n = 400 0.003 0.054 0.000 0.000 0.010

5 Empirical examples

5.1 Threshold: Fiscal cliff

The importance (or lack thereof) of public debt on economic development is a controversial topic within

academic and policy debates. This issue is all the more important given the recent global downturn,

spanning both the developed and developing worlds. Existing studies are compromised by the fact that

their focus is on developed economies, or focus exclusively on a small set of seemingly similar developing
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Table 2: Simulation Performance of Semiparametric Threshold Estimator, DGP 1, signal to noise ra-

tio=0.75, 1000 Simulations

β γ α(x)

Bias MSE Bias MSE WASE

β = 1, γ = −1

n = 100 −0.250 1.273 0.522 1.505 0.070

n = 200 −0.124 0.663 0.327 0.966 0.036

n = 400 −0.065 0.319 0.142 0.405 0.017

β = 1.5, γ = −1

n = 100 −0.236 1.593 0.306 0.924 0.078

n = 200 −0.155 0.807 0.144 0.406 0.035

n = 400 −0.026 0.236 0.026 0.078 0.019

β = 2, γ = −1

n = 100 −0.205 1.763 0.220 0.658 0.076

n = 200 −0.085 0.647 0.075 0.188 0.038

n = 400 −0.018 0.215 0.006 0.019 0.021

β = 1, γ = 0

n = 100 −0.263 1.405 0.035 1.045 0.072

n = 200 −0.225 0.881 −0.026 0.667 0.038

n = 400 −0.127 0.395 0.010 0.330 0.018

β = 1.5, γ = 0

n = 100 −0.284 1.758 −0.056 0.640 0.080

n = 200 −0.154 0.860 0.019 0.311 0.037

n = 400 −0.019 0.279 0.004 0.070 0.020

β = 2, γ = 0

n = 100 −0.314 2.098 0.006 0.504 0.087

n = 200 −0.118 0.913 0.008 0.161 0.044

n = 400 −0.017 0.302 0.003 0.020 0.023

countries. In general, existing estimates suggest an optimal public debt ratio of 30-70% of GDP.

However, these numbers must be viewed with caution when considering policy prescriptions for de-

veloping countries. A positive view of public debt exists that promotes the use of public debt as an

instrument for both financial and monetary systems within low income countries as well as for overall

development of political institutions. This is illustrated with the recent experiences of China, India and

Chile, all of whom have been able to maintain low levels of external indebtedness and avoided major

financial and fiscal crises. This stems from the ability of domestic debt to contribute to macroeconomic

stability through low inflation as well as private savings accumulation and investment.
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Table 3: Simulation Performance of Semiparametric Threshold Estimator, DGP 1, signal to noise ra-

tio=0.6, 1000 Simulations

β γ α(x)

Bias MSE Bias MSE WASE

β = 1, γ = −1

n = 100 −0.408 2.748 0.750 1.990 0.132

n = 200 −0.341 1.664 0.585 1.611 0.071

n = 400 −0.235 0.953 0.342 0.985 0.037

β = 1.5, γ = −1

n = 100 −0.380 3.296 0.563 1.538 0.160

n = 200 −0.375 2.173 0.391 1.063 0.083

n = 400 −0.170 0.952 0.175 0.512 0.037

β = 2, γ = −1

n = 100 −0.509 4.380 0.455 1.230 0.192

n = 200 −0.315 2.289 0.255 0.699 0.084

n = 400 −0.076 0.809 0.065 0.204 0.040

β = 1, γ = 0

n = 100 −0.371 2.847 −0.032 1.225 0.133

n = 200 −0.396 1.811 0.021 1.128 0.077

n = 400 −0.228 0.959 0.021 0.668 0.039

β = 1.5, γ = 0

n = 100 −0.513 3.977 −0.027 1.035 0.179

n = 200 −0.415 2.254 −0.030 0.749 0.089

n = 400 −0.201 1.033 −0.011 0.353 0.039

β = 2, γ = 0

n = 100 −0.685 5.149 0.044 0.874 0.206

n = 200 −0.341 2.588 −0.007 0.500 0.095

n = 400 −0.162 1.061 0.007 0.193 0.045

The objective of this example is twofold. We exploit a recently developed domestic debt database

published by the IMF with excellent time and individual coverage to analyze the role that public debt

has on economic growth. This in and of itself is a contribution. However, we augment these results,

stemming from popular threshold regression models, by employing our semiparametric threshold model.

Finally, not to beat a dead horse, but it may be useful to compare our estimated threshold to that

of Reinhart and Rogoff (2010) who infamously argued that “whereas the link between growth and debt

seems relatively weak at ‘normal’ debt levels, median growth rates for countries with public debt over

roughly 90 percent of GDP are about one percent lower than otherwise; average (mean) growth rates are
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several percent lower.”

5.2 Data

Our data for the standard Solow variables comes directly from Henderson, Papageoriou and Parmeter

(2013). The data for public debt comes directly from Abbas and Christensen (2007). We will explain

each data set briefly.

The data in Henderson, Papageoriou and Parmeter (2013) is partially taken from Durlauf, Kourtellos

and Tan (2008). In the latter paper, the data for per capita real GDP and the average growth rate of the

working age population are taken from the Penn World Tables, Version 6.1. The data for investment is

obtained via the capital per worker variable in Caselli (2005). The data for education, which is measured

as the average percentage of the working age population (population between the age of 15 and 64) in

secondary education is taken from Barro and Lee (2000).

The public debt data, defined as “commercial banks’ gross claims on the central government plus

central bank liquidity paper,” comes directly from Abbas and Christensen (2007) which is primarily based

on Abbas (2007a) who obtains his data from the International Financial Statistics monetary survey. The

debt data is scaled by the corresponding GDP data.

The combination of these two data sets results in an unbalanced panel of 90 countries over the period

1965-1995. This results in a total of 534 observations for our sample. The entire data set used here is

available from the authors upon request.

5.3 Results

We construct a balanced panel of 65 countries over the period 1970-1995, in five year intervals constituting

390 observations. We estimate two distinct models to begin, first a generic human capital augmented

Solow growth model using public debt as a threshold, and second, we include public debt directly into

our growth model and still look for a threshold with respect to public debt.

5.3.1 Parametric

We first use the test of a threshold proposed by Hansen (1996) to determine if a threshold exists in public

debt. Whether public debt is included as a covariate directly or not, we obtain a bootstrap p-value of 0.

If the parametric model is correctly specified, this provides evidence of a threshold in public debt.

Table 4 presents estimates via the estimator in Hansen (2000) for our two models. We list the coef-

ficient and it’s corresponding heteroskedasticity-robust standard error as well as the threshold estimate

from each model with the corresponding upper and lower decile bootstrapped estimates. We see that

public debt has a statistically significant effect. Moreover, the estimation of the threshold is more accu-

rate in the model including public debt as a threshold. In model (1) 371 out of 390 observations (approx

95%) fall within the confidence band for the public debt threshold. This places doubt on the classification

of countries into groups based on the public debt threshold. However, once public debt is included as a
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regressor, only 127 out of 390 observations (≈ 33%) fall within the confidence band, providing a much

stronger ability to segment countries.

Table 4: Hansen (2000) estimates for models both without (1) and with (2) public debt included as

a regressor. The left-hand-side variable is logarithmic growth over the previous five year interval.

Heteroscedasticity-robust standard errors are reported in parentheses beneath each estimate. The thresh-

old parameter is listed along with the 10th and 90th percentiles in brackets.

(1) (2)

Constant -0.1294 -0.1254

(0.0293) (0.0299)

GDP Lag -0.0017 -0.0024

(0.0028) (0.0028)

Investment/GDP 0.0178 0.0176

(0.0041) (0.0041)

Pop Growth -0.0435 -0.0447

(0.0117) (0.0121)

School -0.0013 -0.0011

(0.0008) (0.0008)

Debt/GDP — -0.0000178

(0.0000075)

Threshold Estimate 0.9099 0.5629

[0.0927,2.1801] [0.4853,0.9318]

We also considered separating observations into the corresponding regimes based on the estimated

thresholds in Table 4. We see that the impact of public debt levels on growth is roughly 15 times larger

(in magnitude) in Regime 1 than Regime 2, suggesting that lower levels of public debt help growth more

than high levels of public debt.

5.3.2 Semiparametric

Here we take the two models estimated above and run semiparametric versions of them. In Table 5, we

give the median gradient estimate for each regressor (roughly comparable to the slope coefficient estimates

in Table 4) for each semiparametric model along with the corresponding bootstrapped standard errors.

As before, we report the threshold estimate from each model with the corresponding upper and lower

decile bootstrapped estimates.

We can see that the median estimates are similar to those from the parametric model. This is a

common phenomenon. That being said, there is significant variation in the point estimates from the

nonparametric model and these can often lead to major differences across groups of countries (e.g., see

Henderson, Papageorgiou and Parmeter 2012,2013).
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Table 5: Semiparametric estimates for models both without (1) and with (2) public debt included as a

regressor. The left-hand-side variable is logarithmic growth over the previous five year interval. (Smooth)

bootstrapped standard errors are reported in parentheses beneath each estimate. The threshold parameter

is listed along with the 10th and 90th percentiles in brackets.

(1) (2)

GDP Lag -0.0044 -0.0049

(0.0077) (0.0051)

Investment/GDP 0.0129 0.0124

(0.0129) (0.0090)

Pop Growth -0.0164 -0.0118

(0.0514) (0.0329)

School -0.0006 -0.0006

(0.0026) (0.0017)

Debt/GDP — -0.0017

(0.0062)

Threshold Estimate 0.8321 0.6848

[0.4639,0.8689] [0.5743,0.7216]

The threshold estimates are perhaps equally interesting. The table shows that for the case where debt

is not a regressor that the threshold point estimate is 0.8321 which is comparable to the parametric result

for the same model (0.9099). Similarly, for the case where debt is a regressor we get a smaller threshold

estimate (0.6848), but this is now larger than the corresponding parametric estimate (0.5629). The

confidence bounds for the estimates overlap between estimators, but we can see that the nonparametric

estimates are obtained with less variability.

The placement of the threshold is important, but the impact of being on one side or the other (β) is

also relevant. When debt is not included as a regressor we get an estimate of β equal to −0.0051. This

is the expected sign, and when taken literally, implies that increasing the debt ratio above the threshold

leads to a drop in the growth rate of GDP. On the other hand, when debt is included as a regressor,

β̂ = 0.01142. That being said, each of these estimates are near zero in a statistical sense. Again, note

that the method looks for the most likely break point. It is feasible that there is no (single hard) break

(in terms of debt to DGP ratio) in this series.

5.4 Weak dependence: Asymmetric time series

The second example we consider is a univariate time series. Here we model perhaps the most studied

(univariate) time series in macroeconomics: U.S. GNP. Beginning with Hamilton (1989), there is a long

history modeling U.S. GNP non-linearly (e.g., Beaudry and Koop, 1993; Potter, 1995; Terasvirta and
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Anderson, 1992). The term nonlinear in this literature is often different from what we have discussed

earlier in the paper. In the example to which we compare our paper, nonlinear implies a linear model

with parameters which vary based on the sign of one of the regressors. Our plan is to allow the function

to vary based on a threshold, but will relax the linearity assumption on either side of the threshold by

using semiparametric regression.

5.4.1 Data

Our data come directly from Potter (1995) and we only explain them briefly. Real U.S. GNP, taken from

the Citibase data bank, is seasonally adjusted and measured quarterly from the first quarter of 1947 to

the fourth quarter of 1994. Following Potter (1995), to obtain the growth rates, these values are measured

in logged first differences and multiplied by 100.

5.4.2 Results

We compare our estimator to that given in Table III of Potter (1995). In that table, he presents a fifth

order autoregressive model (lags at 1, 2 and 5 quarters) with a threshold based on the second lag at zero

(Yt−2 ≥ 0) – expansions versus contractions. Our semiparametric threshold alternative model is given as

Yt = α (Yt−1, Yt−2, Yt−5) + β · 1 {Yt−2 ≥ γ}+ εt,

where we do not assume that γ = 0. Here we both wish to compare both the assumption that the break

is at zero and the performance of the kernel versus the parametric estimator.

Figure 1 gives the time series along with the fit from the semiparametric model and the estimated

threshold. The vertical line that represents the estimated threshold is equal to 0.0076.The confidence

intervals include the value zero. It is interesting to note that the estimated threshold is nearly identical

to the mean of the time series (0.0077). Given that this is quarterly data, that represents roughly a 3%

annual growth rate. Taking these results literally implies that the series behaves differently above and

below it’s long run average.

As for the comparison between the parametric and semiparametric models, we find a much smaller

standard error of the regression (0.0044 versus 0.95597). That being said, we should be cautious about

over-fitting with a semiparametric alternative. We found similar improvements over the parametric model

in terms of R2, AIC and SBC (using the definitions in Gao, 2007). We also considered the case where

we restricted our semiparametric threshold value to be at zero (γ = 0) and found similar improvements

in terms of in-sample fit (σ̂ = 0.0714)

5.5 Regression discontinuity: U.S. elections

Although formally elected, the U.S. House of Representatives appears aristocratic. In 2012, 90 percent

of House members who ran for re-election were successful. “Incumbency advantage” is well known and

is defined as the “overall causal impact of being the current incumbent party in a district on the votes

obtained in the district’s election” (Lee, 2008).
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Figure 1: Time series plot of the quarterly growth rate of U.S. GNP along with the fit from the semipara-

metric model and estimated threshold parameter (with corresponding 95 percent confidence bounds)
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In his well cited article, Lee (2008) establishes the conditions under which a regression discontinuity

analysis can be seen as credible as those from a randomized experiment. In his application, he considers

re-election in the U.S. House of Representatives. He argues that the relationships “exhibit important

non-linearities” and that “a linear regression specification would hence lead to misleading inferences.”

Taking his lead, we use the identical data from his paper to re-examine a subset of his results in order to

show how our semiparametric estimators work in an RDD framework.

The discontinuity point here is well known (being elected in the previous term), but we will assume

it to be unknown to show how our estimators can correctly estimate the break point.

5.5.1 Data

Our data come directly from Lee (2008) and we only explain them briefly. The data are based on

both the (ICPSR study 7757) “Candidate and Constituency Statistics of Elections in the United States,

1788-1990)” study (ICPSR, 1995) and United States House of Representatives Office of the Clerk’s Web

Page for the years 1992-1998. Lee (2008) checked for internal consistencies and uses the sample period

1946–1998.2 The sample consists of 9674 Democrat3 observations over the sample period. Although

in nearly all cases the strongest opponent was a Republican, third party candidates do exist and hence

winning an election does not require 50% of the vote. Hence, in order to determine whether or not the

Democratic candidates wins the election, the explanatory variable of interest (Democratic vote share

margin of victory in period t) has a known threshold at zero (positive values lead to winning an election

and negative values to losing an election). We consider two of the left-hand-side variables in Lee (2008):

(1) winning the election in period t+ 1 and (2) candidacy in period t+ 1 (where t+ 1 refers to the next

election cycle – every 2 years). It is argued that winning an election (even by a narrow margin) in period

t leads to much higher values of the left-hand-side variables.

5.5.2 Results

Here we give our take on two results in Lee (2008). The first is analogous to his Figure 2(a). Our Figure

2 (with confidence bounds excluded for clarityj) shows the RD estimate of incumbency advantage. The

horizontal axis gives the difference in the Democratic vote share and that of the strongest opponent in

period t. Values greater than zero represent winning the election and values less than zero represent losing

the election. The vertical axis gives the probability of running and being elected in the next election

cycle (period t+ 1).

The known break point here is zero and our estimator correctly gives this value (γ̂ = 0).4 This gives

us confidence in our estimator in an empirical application. It is obvious that there is a big difference from

narrowly losing to narrowly winning an election in period t on period t + 1’s outcome. The estimated

2Several points had to be imputed and the details can be found in Appendix A of Lee (2008, pp. 693).
3Lee (2008) only considers Democrat candidates as in nearly all elections (in a two-party system) the opponent is a

Republican and hence a winning Democrat produces a losing Republican (and vice versa). Given the relatively small

numbers of third party candidates, he argues that studying Republican candidates will give ‘mirror image’ results.
4Note that we included the value of 0 over our grid of possible break points (as well as many points near 0).
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Figure 2: Probability of Democrat running and winning election in period t+1 versus margin of victory

in period t (values on the horizontal axis greater than zero imply winning an election in period t)
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causal effect (β̂) is 0.4107, which is slightly smaller than the causal effect reported in Lee (2008) of

approximately 0.45 in probability.

It is worth pointing out the nonlinear relationship both before and after the break. Our fit roughly

resembles the fit of the function in Lee (2008). The probability increases at an increasing rate prior to

zero and then increases at a decreasing rate past zero. It would likely be difficult to reject his estimates

in a formal test.
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Figure 3: Probability of candidacy in year t+1 versus margin of victory in period t (values on the

horizontal axis greater than zero imply winning an election in period t)

Our second comparison (Figure 3), analogous to his Figure 3(a), shows the probability that the

Democrat remains the nominee for the party in period t + 1 given the election result in period t. Note

again that we correctly estimate the break point of winning the election (γ̂ = 0). The RD estimate

(β̂ = 0.3941) is nearly as large as that in the previous figure (this result is nearly identical to that in

Lee, 2008). This shows that a narrow margin of victory makes a huge difference on whether or not the

candidate decides to run for re-election in the next cycle.

Even though this, and the previous two examples are relatively simple, they demonstrate that our
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proposed estimator can handle a range of different scenarios and provide meaningful insights. Each of

these, as well as other applications, deserve a more rigorous treatment in future research.

6 Conclusion

We have detailed a super consistent estimator for an unknown threshold in the context of a nonpara-

metric regression model. This estimator used three steps to recover the model primitives. Relying on

semiparametric M-estimation we detailed the large sample properties of our proposed estimators for the

unknown threshold, the size of the jump of the function at the threshold and the unknown conditional

mean.

A series of Monte Carlo simulations and several empirical examples highlighted the practical merits of

the method while our theoretical results extended the seminal contributions of Pakes and Porter (1986)

and Chen, Linton and Van Keilgom (2003) to allow for semiparametric extremum estimation when the

objective function is flat.

Appendix

A Proof of the Results in Section 3

We first prove some lemmas that are used in the proof of the main results in Section 3.

Lemma A.1 Suppose that Assumptions A1, A2(i), A3, and A.4 hold. Then supx∈X0
sup(β,γ)∈B×Γ

|α̂b(x;β, γ) − α0,b (x;β, γ) | = OP (bυ + νn) where α0,b (x;β, γ) = α0(x) + δb (x;β, γ) , δb (x;β, γ) ≡
f (x)

−1
E{Kb (Xt − x) [β0Dt (γ0)− βDt (γ)]}, and νn ≡ (n−1b−d log n)1/2.

Proof. Noting that Yt = α0 (Xt) + β0Dt (γ0) + εt = α0 (x) + [α0 (Xt)− α0 (x)] + β0Dt (γ0) + εt, by

(2.15) we have

α̂b (x;β, γ) = f̂b (x)
−1 1

n

n∑
t=1

Kb (Xt − x) [Yt − βDt (γ)]

= α0 (x) + f̂b (x)
−1 1

n

n∑
t=1

Kb (Xt − x) εt

+f̂b (x)
−1 1

n

n∑
t=1

Kb (Xt − x) [α0 (Xt)− α0 (x)]

+f̂b (x)
−1 1

n

n∑
t=1

Kb (Xt − x) [β0Dt (γ0)− βDt (γ)]

≡ α0 (x) + Vnb (x) +Bnb (x) +Rnb (x;β, γ) , say, (A.1)

where Bnb (x) and Vnb (x) denote the standard asymptotic bias and variance terms of α̂b (x;β, γ), and the

remainder term Rnb (x;β, γ) is new. Following the arguments used in Masry (1996) and Hansen (2008),

we can easily show that

sup
x∈X0

∣∣∣f̂b (x)− f (x)
∣∣∣ = OP (bυ + νn) , sup

x∈X0

|Vnb (x)| = OP (νn) , sup
x∈X0

|Bnb (x)| = OP (bυ) , (A.2)
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and

sup
x∈X0

sup
(β,γ)∈B×Γ

|Rnb (x;β, γ)− δb (x;β, γ)| = OP (bυ + νn) . (A.3)

Combining (A.1)-(A.3) yields the conclusion.

Lemma A.2 Suppose that Assumptions A1, A2(i), A3, and A4 hold. Then

(i) β̂b (γ) −β0,b (γ) = S−1
b (γ) 1

n

∑n
t=1 [c1b (Xt, γ)− c2b (Xt, γ)] εt + β0Sb (γ)

−1 3
n

∑n
t=1{ψ1b (Xt; γ) −

E [ψ1b (Xt; γ)]} +OP (bυ) + oP
(
(nb)−1/2

)
uniformly in γ ∈ Γ,

(ii) supγ∈Γ

∥∥∥β̂b (γ) − β0,b (γ)
∥∥∥ = OP

(
bυ + (nb/ log n)−1/2

)
,

where β0,b (γ) = β0 + β0cdb (γ) with cdb (γ) defined in (3.2), Sb (γ) is defined below (3.7), c1b (x, γ) and

c2b (x, γ) are defined in (3.6), and ψ1b (·; γ) is defined in (A.12).

Proof. (i) Noting that Yt = α0 (Xt) + β0Dt (γ0) + εt, we have

Ỹt = n−1
n∑
s=1

Kb (Xs −Xt) (Ys − Yt) = β0D̃t (γ) + ε̃t + α̃0 (Xt) + β0[D̃t (γ0)− D̃t (γ)],

where D̃t (γ) = n−1
∑n
s=1Kb (Xs −Xt) [Ds (γ)−Dt (γ)] , ε̃t = n−1

∑n
s=1Kb (Xs −Xt) (εs − εt) , and

α̃0 (Xt) = n−1
∑n
s=1Kb (Xs −Xt) [α0 (Xs)− α0 (Xt)] . It follows from (2.17) that

β̂b (γ) = S−1
nb (γ)

1

nb

n∑
t=1

D̃t (γ) Ỹt

= β0 + S−1
nb (γ)

1

nb

n∑
t=1

D̃t (γ) ε̃t + S−1
nb (γ)

1

nb

n∑
t=1

D̃t (γ) α̃0 (Xt)

+β0S
−1
nb (γ)

1

nb

n∑
t=1

D̃t (γ) [D̃t (γ0)− D̃t (γ)]

≡ β0 + vnb (γ) + bnb (γ) + rnb (γ) , say, (A.4)

where Snb (γ) = 1
nb

∑n
t=1 D̃t (γ)

2
.

We first study Snb (γ) . Observe that

Snb (γ) =
1

nb

n∑
t=1

n−1
n∑
s6=t

{Kb (Xs −Xt) [Ds (γ)−Dt (γ)]− b · db (Xt, γ)}+ b · db (Xt, γ)


2

=
b

n

n∑
t=1

db (Xt, γ)
2

+
2

n

n∑
t=1

db (Xt, γ)n−1
n∑
s6=t

{Kb (Xs −Xt) [Ds (γ)−Dt (γ)]− b · db (Xt, γ)}

+
1

nb

n∑
t=1

n−1
n∑
s 6=t

{Kb (Xs −Xt) [Ds (γ)−Dt (γ)]− b · db (Xt, γ)}


2

≡ Snb,1 (γ) + 2Snb,2 (γ) + Snb,3 (γ) , say.

Using arguments as used in Masry (1996) or Hansen (2008), we can readily show that

sup
γ∈Γ
|Snb,1 (γ)− Sb (γ)| = OP (n−1/2b−1/2(log n)1/2).

Let ϕ0 (Xt, Xs; γ) = db (Xt, γ) {Kb (Xs −Xt) [Ds (γ)−Dt (γ)]− b · db (Xt, γ)} and ϕ (Xt, Xs; γ) = [ϕ0(Xt,

Xs; γ) + ϕ0(Xs, Xt; γ)]/2. Then

Snb,2 (γ) =
n− 1

n

2

n (n− 1)

∑
1≤s<t≤n

ϕ (Xt, Xs; γ) .

29



Let ϕ1 (·) = E[ϕ (·, Xt; γ)] and ϕ2 (a1, a2; γ) = ϕ (a1, a2; γ) − ϕ1 (a1; γ) − ϕ1 (a2; γ) . By construction,

E [ϕ1 (Xt)] = 0 and EXsEXt [ϕ2 (Xt, Xs; γ)] = 0, where EXt denotes expectation with respect to Xt. By

Hoeffding decomposition (e.g., Lee, 1990, p.26),

Snb,2 (γ) =
n− 1

n

 1

n

n∑
t=1

ϕ1 (Xt; γ) +
2

n (n− 1)

∑
1≤s<t≤n

ϕ2 (Xt, Xs; γ)

 .

It is standard to show that supγ∈Γ

∣∣ 1
n

∑n
t=1 ϕ1 (Xt; γ)

∣∣ = OP (n−1/2b−1/2(log n)1/2). Noting that the

second term in the above curly bracket is a second order degenerate U -statistic, we can modify the proof

of (A.10) in Gozalo and Linton (2001) and show that

sup
γ∈Γ

∣∣∣∣∣∣ 2

n (n− 1)

∑
1≤s<t≤n

ϕ2 (Xt, Xs; γ)

∣∣∣∣∣∣ = OP

(
n−1b−1/2 log n

)
.

Consequently, supγ∈Γ |Snb,2 (γ)| = OP (n−1/2b−1/2(log n)1/2). Similarly, we can show that supγ∈Γ |Snb,3 (γ)|
= OP (n−1/2b−1/2(log n)1/2). It follows that

sup
γ∈Γ
|Snb,1 (γ)− Sb (γ)| = OP (n−1/2b−1/2(log n)1/2). (A.5)

Next, let ṽnb (γ) ≡ Snb (γ) vnb (γ) . Then

ṽnb (γ) =
1

nb

n∑
t=1

{
n−1

n∑
s=1

Kb (Xs −Xt) [Ds (γ)−Dt (γ)]

}{
n−1

n∑
r=1

Kb (Xr −Xt) (εr − εt)

}

=
1

n3b

∑
1≤t6=s6=r≤n

Kb (Xs −Xt)Kb (Xr −Xt) [Ds (γ)−Dt (γ)] (εr − εt)

+
1

n3b

∑
1≤t 6=s≤n

[Kb (Xs −Xt)]
2

[Ds (γ)−Dt (γ)] (εs − εt)

≡ ṽnb,1 (γ) + ṽnb,2 (γ) , say. (A.6)

For ṽnb,2 (γ) , it suffices to use the rough bound. Noting that |Ds (γ)−Dt (γ)| ≤ 1 {|γ −X1t| ≤ |X1s −X1t|} ,
we can readily show that

E sup
γ∈Γ
|ṽnb,2 (γ)| ≤ 2

n3b

∑
1≤t6=s≤n

E

{
[Kb (Xs −Xt)]

2
sup
γ∈Γ

1 {|γ −X1t| ≤ |X1s −X1t|} |εt|
}

= O
(
n−1b−d

)
.

By Markov inequality and Assumption A4,

sup
γ∈Γ
|ṽnb,2 (γ)| = OP

(
n−1b−d

)
= oP ((nb)

−1/2
). (A.7)

To bound ṽnb,1 (γ), let φ0 (ξt, ξs, ξr; γ) ≡ 1
bKb (Xs −Xt)Kb(Xr −Xt) [Ds (γ)−Dt (γ)] (εr − εt) . Define

its symmetric version: φ (ξt, ξs, ξr; γ) ≡ [φ0 (ξt, ξs, ξr; γ)+φ0 (ξt, ξr, ξs; γ) +φ0 (ξr, ξt, ξs; γ) +φ0 (ξr, ξs, ξt; γ)

+φ0 (ξs, ξt, ξr; γ) + φ0 (ξs, ξr, ξt; γ)]/6. Then

ṽnb,1 (γ) =
1

n3

∑
1≤t6=s6=r≤n

φ0 (ξt, ξs, ξr; γ) =
(n− 1) (n− 2)

n2
v̄nb,1 (γ) , (A.8)

where v̄nb,1 (γ) = 6
n(n−1)(n−2)

∑
1≤t<s<r≤n φ (ξt, ξs, ξr; γ) is a third-order U-statistic. Let {ξ̄t = (X̄ᵀ

t , ε̄t)
ᵀ,

t = 1, ..., n} be an IID sequence that shares the same marginal distribution as ξt. For any t 6= s 6= r,
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E
[
φ
(
ξ̄t, ξ̄s, ξ̄r; γ

)]
= 0. Let φ1 (·) = E[φ

(
·, ξ̄s, ξ̄r; γ

)
] and φ2 (·, ·; γ) = E

[
φ
(
·, ·, ξ̄r; γ

)]
where s 6= r. Let

φ̄2 (a1, a2; γ) = φ2 (a1, a2; γ)−φ1 (a1; γ)−φ1 (a2; γ) and φ̄3 (a1, a2, a3; γ) = φ (a1, a2, a3; γ)−φ̄2 (a1, a2; γ)−
φ̄2 (a1, a3; γ) − φ̄2 (a2, a3; γ) , where a1, a2, and a3 are (d+ 1) × 1 vectors. By Hoeffding decomposition

(e.g., Lee, 1990, p.26), we can v̄nb,1 (γ) as follows:

v̄nb,1 (γ) = 3Hn(1) (γ) + 3Hn(2) (γ) +Hn(3) (γ) ,

whereHn(1) (γ) = 1
n

∑n
t=1 φ1 (ξt; γ) , Hn(2) (γ) = 2

n(n−1)

∑
1≤t<s≤n φ̄2 (ξt, ξs; γ) , andHn(3) (γ) = 6

n(n−1)(n−2)∑
1≤t<s<r≤n φ̄3 (ξt, ξs, ξr) . Noting that φ̄2 (·, ·; γ) and φ̄3 (·, ·, ·; γ) are symmetric in its arguments and

E
[
φ̄2 (a1, ξt; γ)

]
= E[φ̄3(a1, a2, ξt; γ)] = 0, we can readily show that E{[Hn(3) (γ)]2} = O

(
n−3b−(2d+1)

)
,

and E{[Hn(2) (γ)]2} = O
(
n−2b−(d+1)

)
, implying that Hn(3) (γ) = OP

(
n−3/2b−(2d+1)/2

)
and Hn(2) (γ) =

OP
(
n−1b−(d+1)/2

)
. By modifying the proof of (A.10) in Gozalo and Linton (2001), we can obtain the uni-

form bounds: supγ∈Γ

∣∣Hn(3) (γ)
∣∣ = OP

(
n−3/2b−(2d+1)/2 log n

)
= oP ((nb)

−1/2
) and supγ∈Γ

∣∣Hn(2) (γ)
∣∣ =

OP
(
n−1b−(d+1)/2 log n

)
= oP ((nb)

−1/2
). In addition,

φ1 (ξ; γ) = Eξ̄sEξ̄r
[
φ
(
ξ, ξ̄s, ξ̄r; γ

)]
=

1

3b
{E
[
Kb

(
X̄s − X̄r

)
Kb

(
x− X̄r

) [
1
{
X̄s,1 > γ

}
− 1

{
X̄r,1 > γ

}]]
−E

[
Kb

(
X̄s − x

)
Kb

(
X̄r − x

) [
1
{
X̄s,1 > γ

}
− 1 {x1 > γ}

]]
}ε

=
1

3
[c1b (x, γ)− c2b (x, γ)] ε

where Eξ̄s denotes expectation with respect to ξ̄s. It follows that

v̄nb,1 (γ) =
1

n

n∑
t=1

[c1b (Xt, γ)− c2b (Xt, γ)] εt + oP ((nb)
−1/2

) uniformly in γ ∈ Γ. (A.9)

By (A.5)-(A.9) and the fact that S−1
b (γ) = O (1) , we have

vnb (γ) = S−1
b (γ)

1

n

n∑
t=1

[c1b (Xt, γ)− c2b (Xt, γ)] εt + oP ((nb)
−1/2

) uniformly in γ ∈ Γ. (A.10)

Similarly, we can show that uniformly in γ ∈ Γ, b̃nb (γ) ≡ Snb (γ) bnb (γ) = OP (bυ) and

bnb (γ) = OP (bυ) . (A.11)

Now, let r̃nb (γ) ≡ Snb (γ) rnb (γ) . Let ψ0
b (Xt, Xs, Xr; γ) = 1

bKb (Xs −Xt) [Ds (γ)−Dt (γ)]Kb(Xr

−Xt) [Dr (γ0)−Dt (γ0)−Dr (γ) +Dt (γ)] . Let ψb denote the symmetric version of ψ0
b . Then we can

write

r̃nb (γ) = β0
1

n3

n∑
t=1

n∑
s 6=t

n∑
r 6=t

ψ0
b (Xt, Xs, Xr; γ)

= (1 + o (1))
6β0

n (n− 1) (n− 2)

∑
1≤t<s<r≤n

ψb (Xt, Xs, Xr; γ) +OP (n−1b−d)

where the OP (n−1b−d) arises from the s = r terms in the summation. Following the analysis of ṽnb,1 (γ)

and using Hoeffding decomposition, we can show that

6

n (n− 1) (n− 2)

∑
1≤t<s<r≤n

ψb (Xt, Xs, Xr; γ) = θψ1 (γ) +
3

n

n∑
t=1

[ψ1b (Xt; γ)− θψ1 (γ)] + oP (n−1/2b−1/2)
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where

ψ1b (x; γ) = EX1
EX2

[ψb (x,X1, X2; γ)]

=
1

3b
EX1EX2 [ψ0

b (x,X1, X2; γ) + ψ0
b (X1, x,X2; γ) + ψ0

b (X2, X1, x; γ)]

=
b

3
db (x, γ) [db (x, γ0)− db (x, γ)]

+
1

3
E {Kb (Xs − x) [1 {x1 > γ} − 1 {Xs1 > γ}] · [db (Xs, γ0)− db (Xs, γ)]}

+
1

3
E {db (Xr, γ) Kb (Xr − x) [1 {x1 > γ0} − 1 {Xr1 > γ0} − 1 {x1 > γ}+ 1 {Xr1 > γ}]}}

=
b

3
{db (x, γ) [db (x, γ0)− db (x, γ)] + d̄b (x; γ0, γ) + d̄b (x; γ, γ0)− 2d̄b (x; γ, γ)}, (A.12)

θψ1
(γ) = E [ψ1b (Xt; γ)] = bE {db (Xt, γ) [db (Xt, γ0)− db (Xt, γ)]} , (A.13)

and

d̄b (x; γ, γ′) =
1

b
E {db (Xt, γ) Kb (Xt − x) [1{x1 > γ′} − 1{Xt1 > γ′}]} .

It follows that

r̃nb (γ) = β0

{
θψ1

(γ) +
3

n

n∑
t=1

[ψ1b (Xt; γ)− θψ1
(γ)]

}
+ oP (n−1/2b−1/2)

and

rnb (γ) = β0S
−1
b (γ)

{
θψ1

(γ) +
3

n

n∑
t=1

[ψ1b (Xt; γ)− θψ1
(γ)]

}
+ oP (n−1/2b−1/2). (A.14)

Putting (A.4), (A.10), (A.11), and (A.14) together and noticing that cdb (γ) = S−1
b (γ) θψ1

(γ), we have

that

β̂b (γ) = β0 + β0cdb (γ) + S−1
b (γ)

1

n

n∑
t=1

[c1b (Xt, γ)− c2b (Xt, γ)] εt

+β0Sb (γ)
−1 3

n

n∑
t=1

[ψ1b (Xt; γ)− θψ1
(γ)] +OP (bυ) + oP (n−1/2b−1/2)

uniformly in γ ∈ Γ and thus (i) follows.

(ii) This follows from (i) and the fact that 1
n

∑n
t=1 [c1b (Xt, γ)− c2b (Xt, γ)] εt and 1

n

∑n
t=1[ψ1b (Xt; γ)

−θψ1 (γ)] are both OP
(
(nb/ log n)−1/2

)
uniformly in γ ∈ Γ.

Lemma A.3 Suppose that Assumptions A1, A2(i), A3, and A4 hold. Then

(i) supx∈X0
supγ∈Γ ‖α̂b (x, γ)− α0,b (x, γ)‖ = OP (bυ + νn) ,

(ii) α̂b (x, γ0)−α0 (x) = f (x)
−1 1

n

∑n
t=1Kb (Xt − x) εt−f (x)

−1
c0b (x, γ0)S−1

b (γ0) 1
n

∑n
t=1[c1b (Xt, γ0)

−c2b (Xt, γ0)]εt +OP (bυ) + oP
(
(nb)−1/2

)
uniformly in x ∈ X0,

where α0,b (x, γ) = α0 (x) + δα,b (x, γ) , and δα,b (x, γ) = β0f (x)
−1
E{Kb (Xt − x) [Dt (γ0)−Dt (γ)]}−

β0cdb (γ) f (x)
−1
E [Kb (Xt − x)Dt (γ)] .

Proof. (i) Recall that α̂b (x; γ) = α̂b(x; β̂b (γ) , γ). By (A.1), α̂b (x, γ) = α0 (x) + Vnb (x) + Bnb (x) +

Rnb(x; β̂b (γ) , γ), where

Rnb(x; β̂b (γ) , γ) = β0f̂b (x)
−1 1

n

n∑
t=1

Kb (Xt − x) [Dt (γ0)−Dt (γ)]

+
[
β0 − β̂b (γ)

]
f̂b (x)

−1 1

n

n∑
t=1

Kb (Xt − x)Dt (γ) .

32



Standard arguments show that uniformly in x ∈ X0 and γ ∈ Γ,

1

n

n∑
t=1

Kb (Xt − x) [Dt (γ0)−Dt (γ)] = E {Kb (Xt − x) [Dt (γ0)−Dt (γ)]}+OP (νn) ,

1

n

n∑
t=1

Kb (Xt − x)Dt (γ) = E {Kb (Xt − x)Dt (γ)}+OP (νn) ,

which, in conjunction with (A.2) and Lemma A.2, implies that

Rnb(x; β̂b (γ) , γ) = β0f (x)
−1
E {Kb (Xt − x) [Dt (γ0)−Dt (γ)]}

−β0cdb (γ) f (x)
−1
E [Kb (Xt − x)Dt (γ)] +Op (bυ + νn)

= δα,b (x, γ) +Op (bυ + νn) .

Then (i) follows from the standard uniform bounds on Vnb (x) and Bnb (x) in (A.2).

(ii) By (A.1) and the proofs of Lemmas A.1-A.2, α̂b (x; γ0) = α0 (x)+Vnb (x)+Bnb (x) +Rnb(x; β̂b (γ0) , γ0),

where

Rnb

(
x; β̂b (γ0) , γ0

)
= −[β̂b (γ0)− β0]f̂b (x)

−1 1

n

n∑
t=1

Kb (Xt − x)Dt (γ0)

=

{
−S−1

b (γ0)
1

n

n∑
t=1

[c1b (Xt, γ0)− c2b (Xt, γ0)] εt +Op (bυ) + op

(
(nb)−1/2

)}
×
{
f (x)

−1
c0b (x, γ0) +Op (bυ + νn)

}
= −f (x)

−1
c0b (x, γ0)S−1

b (γ0)
1

n

n∑
t=1

[c1b (Xt, γ0)− c2b (Xt, γ0)] εt + op

(
(nb)−1/2

)
.

In addition, by (A.2), the fact that 1
n

∑n
t=1Kb (Xt − x) εt = OP (νn) uniformly in x ∈ X0, and Assump-

tion A4,

Vnb (x) =
[
f (x)

−1
+OP (bυ + νn)

] 1

n

n∑
t=1

Kb (Xt − x) εt = f (x)
−1 1

n

n∑
t=1

Kb (Xt − x) εt + oP

(
(nb)−1/2

)
.

Then (ii) follows from the fact that Bnb (x) = OP (bυ).

To prove the next lemma, we introduce more notations. Let wt = w (Xt) . Recall that Mn (γ, hb) ≡
1
n

∑n
t=1 [Yt − αb(Xt, γ)− βb (γ)Dt (γ)]wt and M (γ, hb) ≡ E {[Yt − αb(Xt, γ)− βb (γ)Dt (γ)]wt} . Ap-

parently, M (γ0, h0,b) = E (εtwt) = 0 by the law of iterated expectations. Define

F1b = {αb : αb (·, γ) ∈ Cλc (X0) ∀ γ ∈ Γ, E sup
γ′:|γ′−γ|

|αb (Xt, γ
′)− αb (Xt, γ)|wt ≤ c̄α |γ′ − γ|},

F2b = {βb : |βb (γ′)− βb (γ)| ≤ c̄β |γ′ − γ|},

where c̄α and c̄β are positive constants. Let

H = Hb = {(αb, βb) : αb ∈ F1b, βb ∈ F2b}, (A.15)

where we suppress the dependence of Hb on b.

Lemma A.4 Suppose that Assumptions A1-A4 hold. Let δn = o (1) be an arbitrary positive sequence.

Then supγ∈Γ,‖hb−h0,b‖H≤δn
|Mn (γ, hb)−M (γ, hb)| = oP (b).

33



Proof. Let m (Xt; γ, hb) ≡ [αb(Xt, γ) + βb (γ)Dt (γ)]wt. Then

Mn (γ, hb)−M (γ, hb) =
1

n

n∑
t=1

[Ytwt − E (Ytwt)]−
1

n

n∑
t=1

{m (Xt; γ, hb)− E [m (Xt; γ, hb)]}

By Davydov’s and Chebyshev’s inequalities, we can readily show that 1
n

∑n
t=1 [Ytwt − E (Ytwt)] = OP

(
n−1/2

)
under Assumptions A1-A2. It suffices to prove (i) by showing that

sup
γ∈Γ,‖hb−h0,b‖H≤δn

∣∣∣∣∣ 1n
n∑
t=1

{m (Xt; γ, hb)− E [m (Xt; γ, hb)]}

∣∣∣∣∣ = oP (b). (A.16)

The uniform result in (A.16) holds if we can prove the pointwise convergence and then verify the stochastic

equicontinuity (s.e.) conditions. The pointwise convergence follows from the direct application of Davydov

inequality for strong mixing processes. For the s.e. conditions, we verify the conditions in Lemma 4.2 of

Chen (2007). By the Cr-inequality,

|m (Xt; γ, hb)−m (Xt; γ
′, h′b)|

2

= |α′b(Xt, γ
′)− αb(Xt, γ) + β′b(γ

′)Dt (γ′)− βb(γ)Dt (γ)|2 w2
t

≤ 16{|α′b(Xt, γ
′)− αb(Xt, γ

′)|2 + |αb(Xt, γ
′)− αb(Xt, γ)|2 + |[β′b(γ′)− βb(γ′)]Dt (γ′)|2

+ |[βb(γ′)− βb(γ)]Dt (γ′)|2 + |βb(γ) [Dt (γ′)−Dt (γ)]|2}w2
t .

Apparently, uniformly in (γ′, h′b) such that |γ′ − γ| ≤ δ and ‖h′b − hb‖H ≤ δ, the first and third terms are

bounded by 16c2wδ
2 where cw = supx∈X0

w (x) . For the fifth term, using the fact that |Dt (γ′)−Dt (γ)| =
|1 {qt ≤ γ′} − 1 {qt ≤ γ}| ≤ 1 {|qt − γ| ≤ |γ′ − γ|} , we have

E sup
(γ′,h′b):|γ′−γ|≤δ,‖h′b−hb‖H≤δ

|βb(γ) [Dt (γ′)−Dt (γ)]|2 w2
t

≤ c2wc
2
βE sup

γ′: |γ′−γ|≤δ
1 {|qt − γ| ≤ |γ′ − γ|}

≤ c2wc
2
βE [1 {|qt − γ| ≤ δ}] = |βb(γ)|2 [F1 (γ + δ)− F1 (γ − δ)] ≤ 2c2wc

2
βcf1δ,

where cβ ≡ supγ∈Γ |βb (γ)| . In addition, for any αb ∈ F1b and βb ∈ F2b, we have

E sup
γ′:|γ′−γ|≤δ

|αb(Xt, γ
′)− αb(Xt, γ)|2 w2

t

≤ 2cwcαE sup
γ′:|γ′−γ|≤δ

|αb(Xt, γ
′)− αb(Xt, γ)|w (Xt) ≤ 2cwcαc̄αδ

and

E sup
γ′:|γ′−γ|≤δ

|[βb(γ′)− βb(γ)]Dt (γ′)|2 w2
t ≤ 2c2w c̄

2
βδ

2

where cα ≡ supx∈X0
supγ∈Γ |αb (x, γ)| . It follows that for sufficiently small δ > 0E

 sup
(γ′,θ′):|γ′−γ|≤δ,‖h′b−hb‖H≤δ

|m (ξt; γ, hb)−m (ξt; γ
′, h′b)|

2


1/2

≤ cmδ1/2

where cm is a finite constant that does not depend on δ. This verifies condition (4.2.1) in Chen (2007).

Note that Γ is compact and for each γ ∈ Γ, αb(·, γ) ∈ Cλc (X ) for λ > d. The latter implies that condition

(4.2.2) in Chen (2007, Lemma 4.2) is also satisfied; see, e.g., Remark 3(ii) in Chen et al. (2003) for the

explanation. Condition (4.2.3) in Chen (2007, Lemma 4.2) is ensured by Assumption A1. Consequently,

we have (A.16) and the result in (i) holds.

The following theorem will be used in the proof Theorem 3.1.
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Theorem A.5 Let ĥb (·, γ) = (α̂b (·, γ) , β̂b (γ)) and ĥb = (α̂b (·, γ̂b) , β̂b (γ̂b)). Suppose that γ0 ∈ Γ satis-

fies M (γ0, h0,b) = 0, and that

(A.1)
∣∣∣Mn(γ̂b, ĥb)

∣∣∣ = infγ∈Γ

∣∣∣Mn(γ, ĥb (·, γ))
∣∣∣+ oP (b) ;

(A.2) for all δ > 0, there exists ε (δ) > 0 such that inf |γ−γ0|>δ
1
b |M (γ, h0,b)| ≥ ε (δ) ;

(A.3) supγ∈Γ |M (γ, hb)−M (γ, h0,b)| ≤ cM ‖hb − h0,b‖H for some fixed finite constant cM ;

(A.4)
∥∥∥ĥb − h0,b

∥∥∥
H

= oP (b) ; and

(A.5) supγ∈Γ,‖hb−h0,b‖H≤δn
‖Mn (γ, hb)−M (γ, hb)‖ = oP (b) for any positive sequence δn = o (1) .

Then γ̂ − γ0 = oP (1) .

The above theorem is similar to Theorem 1 in Chen, Linton, and Van Keilegom (2003, CLV here-

after). But the differences are apparent. First, we allow the population objects hb and h0,b to depend

on the bandwidth parameter b. Second, the identification condition in (A.2) reflects the fact that the

function M (γ, h0,b) is flat in the neighborhood of γ0 so that γ is “weakly identified”. In fact, for

any fixed δ > 0, there is no way to ensure that |M (γ, h0,b)| is bounded away from zero uniformly in

γ ∈ Γ̄δ ≡ {γ′ ∈ Γ : |γ′ − γ0| > δ} , and the division of M (γ, h0,b) by b helps to achieve identification.

Third, condition (A.4) and (A.5) strengthen conditions (1.4) and (1.5′) in CLV and we now have the

requirement on the convergence rate of ĥb.

Proof of Theorem A.5. We prove the theorem by modifying the proof of Theorem 1 in CLV, which is

similar to that of Corollary (3.2) in Pakes and Pollard (1989). By condition (A.2), for all δ > 0, we have

Pr (|γ̂ − γ0| ≥ δ) ≤ Pr

(
1

b
M (γ̂, h0,b) ≥ ε (δ)

)
, (A.17)

implying that we can prove the theorem by showing that M (γ̂, h0,b) = oP (b) . By the triangle inequality,

|M (γ̂, h0,b)| ≤
∣∣∣M (γ̂, h0,b)−M(γ̂, ĥb)

∣∣∣+
∣∣∣M(γ̂, ĥb)−Mn(γ̂, ĥb)

∣∣∣+
∣∣∣Mn(γ̂, ĥb)

∣∣∣ . (A.18)

By conditions (A.3) and (A.4), |M (γ̂, h0,b)−M(γ̂, ĥb)| = oP (b) . By conditions (A.4) and (A.5), |M(γ̂, ĥb)

−Mn(γ̂, ĥb)| = oP (b) . We are left to show that |Mn(γ̂, ĥb)| = oP (b) . By condition (A.1),∣∣∣Mn(γ̂, ĥb)
∣∣∣ ≤ inf

γ∈Γ

∣∣∣Mn(γ, ĥb)
∣∣∣+ oP (b) . (A.19)

By the triangle inequality, the fact that M (γ0, h0,b) = 0, and using conditions (A.3)-(A.5) again, we have

uniformly in γ ∈ Γ∣∣∣Mn(γ, ĥb)
∣∣∣ ≤ ∣∣∣Mn(γ, ĥb)−M(γ, ĥb)

∣∣∣+
∣∣∣M(γ, ĥb)−M(γ, h0,b)

∣∣∣+ |M(γ, h0,b)−M(γ0, h0,b)|

= oP (b) + oP (b) + |M(γ, h0,b)−M(γ0, h0,b)| .

It follows that

inf
γ∈Γ

∣∣∣Mn(γ, ĥb)
∣∣∣ ≤ oP (b) + inf

γ∈Γ
|M(γ, h0,b)−M(γ0, h0,b)| = oP (b)

and |M (γ̂, h0,b)| = oP (b) . This completes the proof of Theorem A.5. �

Proof of Theorem 3.1. We prove the theorem by verifying the conditions in Theorem A.5. (i) is

satisfied by (2.20). Noting that Yt = α0 (Xt) + β0Dt (γ0) + εt, α0,b(Xt, γ) = α0(Xt) + δα,b (Xt, γ) , and

β0,b(γ) = β0 + β0cdb (γ) , we have

−M (γ, h0,b) = −E {[Yt − α0,b(Xt, γ)− β0,b (γ)Dt (γ)]wt}
= E [{δα,b (Xt, γ) + [β0,b (γ)Dt (γ)− β0Dt (γ0)]}wt] .
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Noting that E [δα,b (Xt, γ)wt] = β0

∫
E {Kb (Xt − x) [Dt (γ0)−Dt (γ)]}w (x) dx − β0cdb (γ)

∫
E[Kb(Xt

−x)Dt (γ)]w (x) dx and E {[β0,b (γ)Dt (γ)− β0Dt (γ0)]wt} = β0E {[Dt (γ)−Dt (γ0)]wt}+β0cdb (γ) E[Dt (γ)wt],

we have

−M (γ, h0,b) = β0

∫
{E {Kb (Xt − x) [Dt (γ0)−Dt (γ)]} − [1 {x1 > γ0} − 1 {x1 > γ}] f (x)}w (x) dx

−β0cdb (γ)

{∫
E [Kb (Xt − x)Dt (γ)]− 1 {x1 > γ} f (x)

}
w (x) dx.

The first term is

β0

∫ {∫
K (u) [1 {x1 + bu1 > γ0} − 1 {x1 + bu1 > γ}] f (x+ bu) du− [1 {x1 > γ0} − 1 {x1 > γ}] f (x)

}
×w (x) dx

= β0

∫ ∫
K (u) [1 {x1 + bu1 > γ0} − 1 {x1 + bu1 > γ} − 1 {x1 > γ0}+ 1 {x1 > γ}] f (x+ bu) du w (x) dx

+β0

∫ {∫
K (u) [f (x+ bu)− f (x)] du [1 {x1 > γ0} − 1 {x1 > γ}]

}
w (x) dx

= β0b

∫
[db (x, γ0)− db (x, γ)]w (x) dx+O (bυ) ,

and the second term is

β0cdb (γ)

{∫
E [Kb (Xt − x)Dt (γ)]− 1 {x1 > γ} f (x)

}
w (x) dx

= β0cdb (γ)

∫ [∫
K (u) 1 {x1 + bu1 > γ} f (x+ bu) du− 1 {x1 > γ} f (x)

]
w (x) dx

= β0cdb (γ)

∫ [∫
K (u) [1 {x1 + bu1 > γ} − 1 {x1 > γ}] f (x+ bu) du

]
w (x) dx

+β0cdb (γ)

∫ [∫
K (u) [f (x+ bu)− f (x)] du1 {x1 > γ}

]
w (x) dx

= β0cdb (γ) b

∫
db (x, γ)w (x) dx+O (bυ) .

It follows that

−1

b
M (γ, h0,b) = β0

∫
[db (x, γ0)− db (x, γ)]w (x) dx− β0cdb (γ)

∫
db (x, γ)w (x) dx+O

(
bυ−1

)
= β0

∫
{[db (x, γ0)− db (x, γ)]− cdb (γ) db (x, γ)}w (x) dx+O

(
bυ−1

)
= β0 [gw (γ0)− gw (γ)]− cdb (γ) gw (γ) +O

(
bυ−1

)
,

where gw (γ) ≡
∫
db (x, γ)w (x) dx, and cdb (γ) ≡

(
E
[
d2
b (Xt, γ)

])−1
E {db (Xt, γ) [db (Xt, γ0)− db (Xt, γ)]} is

the solution to the following minimization problem

min
c
E {[db (Xt, γ0)− db (Xt, γ)]− cdb (Xt, γ)}2 .
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To conclude that for any δ > 0, there exists ε (δ) such that
∣∣ 1
bM (γ, h0,b)

∣∣ ≥ ε (δ) for any γ such that

|γ − γ0| ≥ δ and γ ∈ X0,1, we do some tedious calculations. Observe that

gw (γ) =
1

b

∫
E {Kb (Xt − x) [Dt (γ)− 1 {x1 > γ}]}w (x) dx

=
1

b

∫ ∫
K (u) [1 {x1 + bu1 > γ} − 1 {x1 > γ}] f (x+ bu) duw (x) dx

=
1

b

∫ ∫
k (u1)

[
1 {x1 ≤ γ} − 1

{
u1 ≤

γ − x1

b

}]
du1f (x)w (x) dx

+
1

b

∫ ∫
K (u)

[
1 {x1 ≤ γ} − 1

{
u1 ≤

γ − x1

b

}]
[f (x+ bu)− f (x)] duw (x) dx

≡ gw,1 (γ) + gw,2 (γ) , say.

For gw,1 (γ) , we have

gw,1 (γ) =
1

b

∫
X0,1

[
1 {x1 − γ ≤ 0} − k̄

(
γ − x1

b

)]
ew (x1) dx1

=

∫ [
1 {u1 ≤ 0} − k̄ (−u1)

]
ew (γ + bu1) du1,

where k̄ (t) =
∫ t
−1
k (s) ds, and ew (x1) =

∫
f (x)w (x) dx−1 has compact support X0,1 that includes γ as

an interior point. Noting that k̄ (s) = 0 for s ≤ −1 and = 1 for s ≥ 1, we have

1 {u1 ≤ 0} − k̄ (−u1) = 1 {−1 ≤ u1 ≤ 0} − k̄ (−u1) 1 {−1 ≤ u1 ≤ 1} .

It follows that cg ≡
∫ [

1 {u1 ≤ 0} − k̄ (−u1)
]
du1 = 1 −

∫ 1

−1
k̄ (u1) du1 = 0, where we have used the fact

that k (·) is an even function that is integrated to 1 on its compact support [−1, 1] . Consequently,

gw,1 (γ) =

∫ [
1 {−1 ≤ u1 ≤ 0} − k̄ (−u1) 1 {−1 ≤ u1 ≤ 1}

]ew (γ) +

υ∑
j=1

e(j)
w (γ)uj1

bj

j!

 du1 + o (bυ)

=

υ∑
j=1

bj

j!
e(j)
w (γ) ck̄,j + o (bυ) = O (b) ,

where e
(j)
w (γ) = ∂jew (γ) /∂γj , and ck̄,j =

∫ 0

−1
uj1du1 −

∫ 1

−1
k̄ (−u1)uj1du1. Under Assumption A3, ck̄,1 =

− 1
2 +

∫ 1

−1
k̄ (u1)u1du1 6= 0. Analogously, we can show that gw,2 (γ) = O

(
b2
)
. It follows that

1

b
gw (γ) = ck̄,1e

(1)
w (γ) +O (b) and gw (γ0)− gw (γ) = O (b) uniformly in γ.

By the calculations in Appendix B and the fact that cdb (γ0) = 0 and that cdb (γ) is continuously

differentiable at γ 6= γ0, there exists γ∗δ ∈ (γ, γ0) or (γ0, γ) with |γ − γ0| ≥ δ such that

|cdb (γ)| = |cdb (γ)− cdb (γ0)| = |ċdb (γ∗δ ) (γ − γ0)| ≥ |ċdb (γ∗δ )| δ

and b · |ċdb (γ∗δ )| is bounded away from zero. Consequently,

1

b
|M (γ, h0,b)| = |cdb (γ) gw (γ)|+O (b) ≥ δ |b · ċdb (γ∗δ )| 1

b
|gw (γ)|+O (b)

≥ δ |b · ċdb (γ∗δ )|
∣∣∣ck̄,1e(1)

w (γ)
∣∣∣ /2,

as b→ 0 and e
(1)
w (γ) is bounded away from zero on Γ̄δ. Then condition A2 follows.
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Condition A3 is satisfied with cM = c̄w ≡ supx∈X0
w (x) because

|M (γ, hb)−M (γ, h0,b)|
= |E {{[αb(Xt, γ)− α0,b(Xt, γ)] + [βb(γ)− β0,b(γ)]Dt (γ)}wt}

≤ c̄w

{
sup
x∈X0

‖αb (x, γ)− α0,b (x, γ)‖+ |βb(γ)− β0,b(γ)|
}
≤ c̄w ‖hb − h0,b‖H .

Condition A4 is satisfied by Lemma A.1 and the fact that νn = o (b) under Assumption A4. Condition

A5 holds by Lemma A.3(i). This completes the proof of the theorem. �

To prove Theorem 3.2, we define some notation. Let Γδ1n ≡ {γ ∈ Γ : |γ − γ0| ≤ δ1n} and Hδ2n ≡{
h ∈ H : ‖h− h0,b‖H ≤ δ2n

}
. For example, given the results in Theorem 3.1 and Assumption A4 that

ensures νn + bυ = o(n−κ), we can take δ1n = n−κ and δ2n = n−κ with κ = 0. For any (γ, h) ∈
Γδ1n ×Hδ2n , we define the ordinary left and right derivatives of M (γ, h) with respect to γ as Υ1b,− (γ, h)

and Υ1b,+ (γ, h) , respectively. For any γ ∈ Γδ1n , we say that M (γ, h) is pathwise differentiable at

h ∈ Hδ2n in the direction [h̄− h] if {h+ τ(h̄− h) : τ ∈ (0, 1)} ⊂ H and

lim
τ→0

[
M
(
γ, h (·, γ) + τ(h̄ (·, γ)− h (·, γ))

)
−M (γ, h (·, γ))

]
/τ

exists; and we denote the above limit by Υ2b (γ, h) [h̄− h]. Define

H∗δ2n =

{
h = (α, β) ∈ Hδ2n : sup

x∈X0

1

b
|α (x, γ)− α0,b (x, γ)− α (x, γ0) + α0,b (x, γ0)| = o (|γ − γ0|)

and
1

b
|β (γ)− β0,b (γ)− β (γ0) + β0,b (γ0)| = o (|γ − γ0|) ∀ γ ∈ Γ

}
.

Below, we further restrict our attention to a subclass of Hδ2n : H̄δ2n = Hδ2n ∩H∗δ2n .

Lemma A.6 Suppose that Assumptions A1-A4 hold. Let κ ∈ [0, 1
2 ∧ (κ(1− λ

2d ) + η)). Then

sup|γ−γ0|≤n−κ suphb∈H̄δ2n ,‖hb−h0,b‖∞≤n−κ
|Mn (γ, hb)−M (γ, hb)−Mn (γ0, h0,b)| = oP

(
n−1/2ϑn log n

)
,

where ϑn = n−κb−1 ∧ 1, and a ∧ b = min (a, b) .

Proof. Recall that m (Xt; γ, hb) = [αb(Xt, γ) + βb (γ)Dt (γ)]wt. Noting that M (γ0, h0,b) = 0 and

m (Xt, γ0, h0,b) = [α0,b(Xt, γ) + β0,b (γ)Dt (γ)]wt, we have

− [Mn (γ, hb)−M (γ, hb)−Mn (γ0, h0,b)]

=
1

n

n∑
t=1

{m (Xt; γ, hb)−m (Xt; γ0, h0,b)− E [m (Xt; γ, hb)−m (Xt; γ0, h0,b)]}

=
1

n

n∑
t=1

{∆t (α, γ)− E [∆t (α, γ)]}+
1

n

n∑
t=1

{Λt (β, γ)− E [Λt (β, γ)]}

where ∆t (α, γ) = [αb(Xt, γ)− α0,b(Xt, γ0)]wt, and Λt (β, γ) = [βb (γ)Dt (γ)− β0,b (γ0)Dt (γ0)]wt. It

suffices to show that

sup
|γ−γ0|≤n−κ ,‖α−α0,b‖∞≤n−κ

∣∣∣∣∣ 1n
n∑
t=1

{∆t (α, γ)− E [∆t (α, γ)]}

∣∣∣∣∣ = oP

(
n−1/2ϑn log n

)
, (A.20)

and

sup
|γ−γ0|≤n−κ , |β−β0,b|∞≤n−κ

∣∣∣∣∣ 1n
n∑
t=1

{Λt (β, γ)− E [Λt (β, γ)]}

∣∣∣∣∣ = oP

(
n−1/2ϑn log n

)
. (A.21)
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We only prove (A.20) as the proof of (A.21) is simpler.

Let Γn = {γ : |γ − γ0| ≤ n−κ} and An = {α : α (·, γ) ∈ Cλc (X0) ∀γ ∈ Γn, ‖α− α0,b‖∞ ≤ n−κ}. We

first create a grid using regions of the form Γj,n = {γ : |γ − γj | ≤ n−1/2bϑn}. By selecting γj to lay

on the grid, Γn can be covered with N1 = bn1/2−κb−1ϑ−1
n c + 1 = O(n

1
2 +(η−κ)+) such regions Γj,n for

j = 1, ..., N1, where a+ = max (a, 0) .

Let ∆̄t (α, γ) = ∆t (α, γ)− E [∆t (α, γ)] . Using |αb(x, γ)− αb(x, γj)| ≤ c |γ − γj | /b, we have

sup
γ∈Γj

∣∣∣∣∣ 1n
n∑
t=1

{∆t (α, γ)− E [∆t (α, γ)]}

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
t=1

{
∆̄t (α, γj)

}∣∣∣∣∣+ sup
γ∈Γj

∣∣∣∣∣ 1n
n∑
t=1

{
∆̄t (α, γ)− ∆̄t (α, γj)

}∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
t=1

∆̄t (α, γj)

∣∣∣∣∣+OP

(
n−1/2ϑn

)
uniformly in j and α. Then we can prove (A.20) by showing that

sup
‖α−α0,b‖∞≤n−κ

max
1≤j≤N1

∣∣∣∣∣ 1n
n∑
t=1

∆̄t (α, γj)

∣∣∣∣∣ = oP (n−1/2ϑn log n). (A.22)

To show (A.22), we follow the proof of Lemma 1 in Mammen et al. (2012) and apply a chaining

argument. For s ≥ 0, let A∗s,n be a set of functions chosen such that for each α ∈ An, there exists

αs ∈ A∗s,n such that ‖α− αs‖∞ ≤ 2−sn−κ. That is, the functions in A∗s,n are the midpoints of a (2−sn−κ)-

covering of An. Under our conditions, the set A∗s,n can be chosen such that its cardinality #A∗s,n is at

most bC exp((2−sn−κ)
−ς1 nς2)c for some C > 0, where ς1 = d/λ and ς2 > 0 is an arbitrarily small number

(see the discussion after Assumption 3 in Mammen et al. (2012)). For any α ∈ An, we now choose

αs ∈ A∗s,n such that ‖αs − α‖∞ ≤ 2−sn−κ for s = 0, 1, ..., N2 = O (log n) . We consider the chain

∆̄t (α, γj) = ∆̄t (α0, γj)−
N2∑
s=1

[
∆̄t (αs−1, γj)− ∆̄t (αs, γj)

]
− ∆̄t (αN2

, γj) .

It suffices to prove (A.22) by showing that

P

(
max

1≤j≤N1

∣∣∣∣∣ 1n
n∑
t=1

∆̄t (α0, γj)

∣∣∣∣∣ ≥ n−1/2ϑn log n

)
= o (1) , (A.23)

P

(
sup

‖α−α0,b‖∞≤n−κ
max

1≤j≤N1

∣∣∣∣∣ 1n
n∑
t=1

N2∑
s=1

[
∆̄t (αs−1, γj)− ∆̄t (αs, γj)

]∣∣∣∣∣ ≥ n−1/2ϑn log n

)
= o (1) , (A.24)

and

P

(
max

1≤j≤N1

∣∣∣∣∣ 1n
n∑
t=1

∆̄t (αN2 , γj)

∣∣∣∣∣ ≥ n−1/2ϑn log n

)
= o (1) . (A.25)

For (A.23), noting that
∣∣∆̄t (α0, γj)

∣∣ ≤ c∆ϑn for some finite c∆ > 0 for each (α0, γj) such that

|γj − γ0| ≤ n−κ and ‖α0 − α0,b‖∞ ≤ n−κ, we can apply Billingsley’s inequality (e.g., Bosq (1998, p.20)

to show that

Var

(
1√
n

n∑
t=1

∆̄t (α0, γj)

)
=

1

n

n∑
t=1

Var
(
∆̄t (α0, γj)

)
+

2

n

n−1∑
t=1

n∑
s=t+1

Cov
(
∆̄t (α0, γj) , ∆̄s (α0, γj)

)
≤ c2∆ϑ

2
n

{
1 +

8

n

n−1∑
t=1

n∑
s=t+1

βs−t

}
≤ c∆̄ϑ2

n,
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where c∆̄ = c2∆(1+8
∑∞
s=1 βs) <∞. By Bernstein’s inequality for strong mixing processes with geometric

decay rate (e.g., Merlevede et al. (2009, Theorem 2)),

P

(
max

1≤j≤N1

∣∣∣∣∣ 1n
n∑
t=1

∆̄t (α0, γj)

∣∣∣∣∣ ≥ n−1/2ϑn log n

)

≤
N1∑
j=1

P

(∣∣∣∣∣
n∑
t=1

∆̄t (α0, γj)

∣∣∣∣∣ ≥ n1/2ϑn log n

)

≤ N1 exp

(
− Cnϑ2

n (log n)
2

nc∆̄ϑ
2
n + c2∆ϑ

2
n +

(
n1/2ϑn log n

)
c∆ϑn (log n)

2

)
→ 0 as n→∞.

Analogously, we can prove (A.25).

To prove (A.24), observe that

Pr

(
sup

‖α−α0,b‖∞≤n−κ
max

1≤j≤N1

∣∣∣∣∣ 1n
n∑
t=1

N2∑
s=1

[
∆̄t (αs−1, γj)− ∆̄t (αs, γj)

]∣∣∣∣∣ ≥ n−1/2ϑn log n

)

≤
N2∑
s=1

N1∑
j=1

Pr

(
sup
α∈An

∣∣∣∣∣ 1n
n∑
t=1

[
∆̄t (αs1−1, γj)− ∆̄t (αs1 , γj)

]∣∣∣∣∣ ≥ ca2−asn−1/2ϑn log n

)

≤
N2∑
s=1

N1∑
j=1

#A∗s−1,n#A∗s,n Pr

(
1

n

n∑
t=1

[
∆̄t

(
α∗s−1, γj

)
− ∆̄t (α∗∗s , γj)

]
≥ ca2−asn−1/2ϑn log n

)

+

N2∑
s=1

N1∑
j=1

#A∗s−1,n#A∗s,n Pr

(
1

n

n∑
t=1

[
∆̄t (α̃∗s, γj)− ∆̄t (α̃∗∗s , γj)

]
< ca2−asn−1/2ϑn log n

)
≡ T1 + T2, say,

where ca =
∑N2

s=1 2−as, a > 0, and α∗s−1, α̃
∗
s−1 ∈ A∗s−1,n and α∗∗s , α̃

∗∗
s ∈ A∗s,n are chosen such that

Pr

(
1

n

n∑
t=1

[
∆̄t

(
α∗s−1, γj

)
− ∆̄t (α∗∗s , γj)

]
≥ ca2−asn−1/2ϑn log n

)

= max
αs−1,αs

Pr

(
1

n

n∑
t=1

[
∆̄t (αs−1, γj)− ∆̄t (αs, γj)

]
≥ ca2−asn−1/2ϑn log n

)
and

Pr

(
1

n

n∑
t=1

[
∆̄t (α̃∗s, γj)− ∆̄t (α̃∗∗s , γj)

]
< ca2−asn−1/2ϑn log n

)

= max
αs−1,αs

Pr

(
1

n

n∑
t=1

[
∆̄t (αs−1, γj)− ∆̄t (αs, γj)

]
≥ ca2−asn−1/2ϑn log n

)
.

We now show that T1 = o(1).

T1 =

N2∑
s=1

N1∑
j=1

#A∗s−1,n#A∗s,n Pr

(
1

n

n∑
t=1

[
∆̄t

(
α∗s−1, γj

)
− ∆̄t (α∗∗s , γj)

]
≥ ca2−asn−1/2ϑn log n

)

≤ C

N2∑
s=1

N1∑
j=1

exp
{(

1 + 2−ς1
) (

2−sn−κ
)−ς1

nς2
}

×Pr

(∣∣∣∣∣
n∑
t=1

[
∆̄t

(
α∗s−1, γj

)
− ∆̄t (α∗∗s , γj)

]∣∣∣∣∣ ≥ ca2−asn1/2ϑn log n

)
.
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Noting that
∣∣∆̄t

(
α∗s−1, γj

)
− ∆̄t (α∗∗s , γj)

∣∣ ≤ c∆2−sn−κ, we have by Bernstein’s inequality,

Pr

(∣∣∣∣∣
n∑
t=1

[
∆̄t

(
α∗s−1, γj

)
− ∆̄t (α∗∗s , γj)

]∣∣∣∣∣ ≥ ca2−asn1/2ϑn log n

)

≤ exp

(
− Cc2a2−2asnϑ2

n (log n)
2

nc∆̄2−2sn−2κ + c2∆2−2sn−2κ + ca2−asn1/2ϑn log n (c∆2−sn−κ) (log n)
2

)
≤ exp

(
−Cc2ac−1

∆̄
22s(1−a)n2κϑ2

n (log n)
2
/2
)

for sufficiently large n.

It follows that

T1 ≤ CN1

N2∑
s=1

exp
(

21+sς1nκς1+ς2 − Cc2ac−1
∆̄

22s(1−a)n2κϑ2
n (log n)

2
/2
)

≤ C

N2∑
s=1

exp

(
21+sς1nκς1+ς2 − 2c∗22s(1−a)n2κϑ2

n (log n)
2

+

(
1

2
+ (η − κ)+

)
log n

)

≤ C

N2∑
s=1

exp
(
−c∗22s(1−a)n2κϑ2

n (log n)
2
)
→ 0 as n→∞,

where c∗ = Cc2ac
−1
∆̄
/4 and the third inequality follows from the fact that 2sς1 ≤ 22s(1−a) when a > 0

is small enough, n2κϑ2
n ∝ n2κ+2(η−χ)− with a− = min (a, 0) , and κς1 < 2κ + 2(η − χ)− under our

assumption. Consequently, T1 = o(1). Similarly, T2 = o(1). We have proved (A.24).

To prove Theorem 3.2 on the basis of Theorem 3.1, we first apply Lemma A.6 with κ = 0 to prove

an intermediate result for γ̂ : γ̂ − γ0 = oP
(
n−1/2 log n

)
. Given this new result, we can apply Lemma A.6

with κ ∈
(

3
2η,

1
2 ∧ (κ(1− λ

2d ) + η
)

to obtain the desired rate of consistency: γ̂ − γ0 = OP
(
(n/b)−1/2

)
.

The following theorem will be used in the proof Theorem 3.2.

Theorem A.7 Let δ1n = n−κ and δ2n = o(n−κ). Suppose that γ0 ∈ Γδ1n satisfies M (γ0, h0,b) = 0 and

that γ̂ − γ0 = oP (n−κ) . Suppose that

(B.1)
∣∣∣Mn(γ̂, ĥ)

∣∣∣ = infγ∈Γδ1n

∣∣∣Mn(γ, ĥ)
∣∣∣+ oP

(
(n/b)−1/2

)
.

(B.2) (i) Let Υ1b,− (γ, h0,b) and Υ1b,+ (γ, h0,b) denote the ordinary left and right derivatives of M (γ, h0,b)

with respect to γ, respectively. Υ1b,− (γ, h0,b) and Υ1b,+ (γ, h0,b) exist for all γ ∈ Γδ1n . (ii) Γ1b,− (γ0, h0,b)

and Γ1b,+ (γ0, h0,b) are continuous at γ = γ0 and bounded away from zero and infinity as n→∞.
(B.3) For all γ ∈ Γδ1n , the pathwise derivative Υ2b (γ, h0,b) [h − h0,b] of M (γ, h0,b) exists in all

directions [h − h0,b]∈ H; and for all (γ, h) ∈ Γδ̃1n × H̄δ̃2n with positive sequences δ̃1n = o (1) and δ̃2n =

o (b) : (i) |M (γ, h)−M (γ, h0,b)−Υ2b (γ, h0,b) [h− h0,b]| ≤ c2Mb ‖h− h0,b‖2H for some constant cMb that

may depend on b; (ii) ‖Υ2b (γ, h0,b) [h− h0,b]−Υ2b (γ0, h0,b) [h− h0,b]‖ ≤ o (1) δ̃1n.

(B.4) ĥ ∈ Hδ2n w.p.a.1, and cMb

∥∥∥ĥ− h0,b

∥∥∥
H

= oP
(
(n/b)−1/4

)
.

(B.5) sup|γ−γ0|≤n−κ ,‖h−h0,b‖H≤n−κ
|Mn (γ, h)−M (γ, h)−Mn (γ0, h0,b)| = oP

(
n−1/2ϑn log n

)
.

(B.6)
√
n/b

{
Mn (γ0, h0,b) + Υ2b (γ0, h0,b) [ĥb − h0,b]

}
d→ N (0, Vγ) for some Vγ > 0.

Then (i) γ̂ − γ0 = OP
(
n−1/2 log n

)
if κ = 0 in (B.5); (ii)

√
n/b (γ̂ − γ0)

d→ N (0,Ωγ) where Ωγ ≡
limn→∞Υ−1

1b VγΥ−1
1b if κ > 3

2η in (B.5).

The above theorem is similar to Theorem 2 in CLV. The major differences lie in three aspects.

(i) The population objects such as Υ1b (·, ·) and Υ2b (γ, h) [h̄ − h], are now allowed to depend on the

bandwidth parameter b. (ii) The order of the remainder term in the linear expansion of M (γ, h) with

respect to its second argument may depend on ‖h− h0,b‖2H and b as well, and as a result, we require
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c2Mb ‖h− h0,b‖2H = oP
(
(n/b)−1/2

)
in condition (B.4). (ii) The stochastic equicontinuity result in condition

(B.5) is required to be satisfied only for γ and h that are sufficiently close to the population truth. (iii)

Despite the fact that condition (B.6) implies that Mn (γ0, h0,b)+Υ2b (γ0, h0,b) [ĥb−h0,b] = OP ((n/b)−1/2),

it does not imply each term in the last summation is OP ((n/b)−1/2), and in fact it is easy to check that

Mn (γ0, h0,b) = OP (n−1/2b−1/2) in our case.

Proof of Theorem A.7. We prove the theorem by following the proof of Theorem 2 in CLV closely.

By assumption

Pr
(
|γ̂ − γ0| ≥ δ1n,

∥∥∥ĥb − h0,b

∥∥∥
H
≥ δ2n

)
→ 0. (A.26)

So we only focus on (γ, h) ∈ Γδ1n ×H̄δ2n . By condition (B.2) and the fact that M (γ0, h0,b) = 0 , we have

γ̂ − γ0 =
{[

Γ1b,+

(
γ∗+, h0,b

)]−1
1 {γ̂ > γ0}+

[
Γ1b,−

(
γ∗−, h0,b

)]−1
1 {γ̂ < γ0}

}
M (γ̂, h0,b) (A.27)

where γ∗+ and γ∗− lie between γ̂ and γ0 and
∣∣∣Γ1b,±

(
γ∗±, h0,b

)−1
∣∣∣ p→ limn→∞

∣∣∣Γ1b,± (γ0, h0,b)
−1
∣∣∣ > 0. For

notational convenience, we frequently write γ̂ as γ̂+ if it is larger than γ0 and γ̂− otherwise; we use γ̂±
(c.f., γ∗±) to denote either γ̂+ or γ̂− (c.f., γ∗+ or γ∗−), which will be clear from the context. Then (A.27)

can be rewritten as γ̂±− γ0 =
[
Γ1b,±

(
γ∗±, h0,b

)]−1
M
(
γ̂±, h0,b

)
. The probability order of γ̂±− γ0 is then

determined by that of
∣∣M (

γ̂±, h0,b

)∣∣ .
By the triangle inequality,∣∣M (

γ̂±, h0,b

)∣∣ ≤ ∣∣∣M(γ̂±, h0,b)−M(γ̂±, ĥb) + Υ2b (γ0, h0,b) [ĥb − h0,b]
∣∣∣

+
∣∣∣M(γ̂±, ĥb)−Mn(γ̂±, ĥb) +Mn(γ0, h0,b)

∣∣∣
+
∣∣∣Mn(γ̂±, ĥb)

∣∣∣+
∣∣∣Mn(γ0, h0,b) + Υ2b (γ0, h0,b) [ĥb − h0,b]

∣∣∣ . (A.28)

The first term on the rhs of (A.28) is bounded from above by∣∣∣Υ2b

(
γ̂±, h0,b

)
[ĥb − h0,b]−Υ2b (γ0, h0,b) [ĥb − h0,b]

∣∣∣
+
∣∣∣M(γ̂±, ĥb)−M(γ̂, h0,b)−Υ2b

(
γ̂±, h0,b

)
[ĥb − h0,b]

∣∣∣
=

(
γ̂± − γ0

)
oP (1) +OP

(
c2M

∥∥∥ĥb − h0,b

∥∥∥2

H

)
= [Γ1b,± (γ0, h0,b)]

−1
M
(
γ̂±, h0,b

)
oP (1) +OP

(
(n/b)−1/2

)
(A.29)

by conditions (B.3), (B.4), and (B.6), and (A.27). By conditions (B.5) and (B.6) and Theorem 3.1,∣∣∣M(γ̂±, ĥb)−Mn(γ̂±, ĥb) +Mn(γ0, h0,b)
∣∣∣ = oP

(
n−1/2ϑn log n

)
(A.30)

and

Mn(γ0, h0,b) + Υ2b (γ0, h0,b) [ĥb − h0,b] = OP

(
(n/b)−1/2

)
. (A.31)

Then conditions (B.1)-(B.2) and (A.28)-(A.31) imply that∣∣M (
γ̂±, h0,b

)∣∣× {1− oP (1)} ≤
∣∣∣Mn(γ̂±, ĥb)

∣∣∣+OP

(
(n/b)−1/2

)
+ oP

(
n−1/2ϑn log n

)
≤ inf

γ∈Γδ1n

∣∣∣Mn(γ, ĥb)
∣∣∣ {1 + oP (1)}+OP ((n/b)−1/2)

+oP

(
n−1/2ϑn log n

)
. (A.32)

42



Again, under conditions (B.3)-(B.6), we have that uniformly in γ∣∣∣Mn(γ, ĥb)
∣∣∣ ≤ ∣∣∣Mn(γ, ĥb)−M(γ, ĥb)−Mn(γ0, h0,b)

∣∣∣+
∣∣∣M(γ, ĥb)−M(γ, h0,b)−Υ2b (γ, h0,b) [ĥb − h0,b]

∣∣∣
+ |M(γ, h0,b)|+

∣∣∣Υ2b (γ, h0,b) [ĥb − h0,b]−Υ2b (γ0, h0,b) [ĥb − h0,b]
∣∣∣

+
∣∣∣Mn(γ0, h0,b) + Υ2b (γ0, h0,b) [ĥb − h0,b]

∣∣∣
= oP

(
n−1/2ϑn log n

)
+ oP

(
(n/b)−1/2

)
+ |M(γ, h0,b)|+ |γ − γ0| oP (1) +OP

(
(n/b)−1/2

)
.

This, in conjunction with (A.32), the fact that M(γ0, h0,b) = 0, and that γ0 ∈ Γδ1n , implies that

inf
γ∈Γδ1n

∣∣∣Mn(γ, ĥb)
∣∣∣ ≤ inf

γ∈Γδ1n

{|M(γ, h0,b)−M(γ0, h0,b)|+ |γ − γ0| oP (1)}+OP

(
(n/b)−1/2

)
= OP

(
(n/b)−1/2

)
. (A.33)

Then by (A.32) and (A.26),
∣∣M (

γ̂±, h0,b

)∣∣ = OP
(
(n/b)−1/2

)
+ oP

(
n−1/2ϑn log n

)
and γ̂± − γ0 =

O
(∣∣M (

γ̂±, h0,b

)∣∣) = OP
(
(n/b)−1/2

)
+ oP

(
n−1/2ϑn log n

)
. The first part of the theorem follows by

noticing that OP
(
(n/b)−1/2

)
+ oP

(
n−1/2ϑn log n

)
= oP

(
n−1/2 log n

)
in the case where κ = 0.

In view of the condition that b ∝ n−η, we have n−1/2ϑn log n = o
(
(n/b)−1/2

)
and γ̂± − γ0 =

OP
(
(n/b)−1/2

)
in the case where κ > 3η/2. To establish the asymptotic normality, we define the lin-

earization

Lnb (γ±) = Mn (γ0, h0,b) + Υ1b,± (γ± − γ0) + Υ2b (γ0, h0,b) [ĥb − h0,b]. (A.34)

It is easy to see that the minimizer γ̄± of |Lnb (γ±)|2 satisfies√
n/b

(
γ̄± − γ0

)
= −Υ−1

1b,±

√
n/b

{
Mn (γ0, h0,b) + Υ2b (γ0, h0,b) [ĥb − h0,b]

}
. (A.35)

By conditions (B.2)-(B.5) and the
√
n/b-consistency of γ̂,∣∣∣Mn(γ̂±, ĥb)− Lnb

(
γ̂±
)∣∣∣

=
∣∣∣Mn(γ0, h0,b) +M(γ̂±, ĥb) +Mn(γ̂±, ĥb)−M(γ̂±, ĥb)−Mn(γ0, h0,b)− Lnb

(
γ̂±
)∣∣∣

=
∣∣∣Mn(γ̂±, ĥb)−Mn(γ0, h0,b)−Υ1b,± (γ̂ − γ0)−Υ2b (γ0, h0,b) [ĥb − h0,b]

∣∣∣
≤

∣∣∣Mn(γ̂±, ĥb)−M(γ̂±, ĥb)−Mn(γ0, h0,b)
∣∣∣

+
∣∣M(γ̂±, h0,b)−Υ1b,±

(
γ̂± − γ0

)∣∣
+
∣∣∣M(γ̂±, ĥb)−M(γ̂±, h0,b)−Υ2b (γ0, h0,b) [ĥb − h0,b]

∣∣∣
= oP

(
(n/b)−1/2

)
+ oP

(
(n/b)−1/2

)
+ oP

(
(n/b)−1/2

)
= oP

(
(n/b)−1/2

)
.

By the same token and condition (B.6),
∣∣∣Mn(γ̄±, ĥb)− Lnb

(
γ̄±
)∣∣∣ = oP

(
(n/b)−1/2

)
. Following the proof

of Theorem 3.3 in Pakes and Pollard (1989), one can show that
√
n/b

(
γ̂± − γ̄±

)
= oP (1) . It follows that√

n/b
(
γ̂± − γ0

)
=

√
n/b

(
γ̄± − γ0

)
+ oP (1)

= −Υ−1
1b,±

√
n/b

{
Mn (γ0, h0,b) + Υ2b (γ0, h0,b) [ĥb − h0,b]

}
+ oP (1)

d→ N (0,Ωγ)

where Ωγ = limn→∞Υ−1
1b,±VγΥ−1

1b,±. �
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Proof of Theorem 3.2. We prove the theorem by verifying conditions (B.1)-(B.6) in Theorem A.7. (B.1)

is satisfied by (2.20). Recall that M (γ, h) = E {[Yt − α(Xt, γ)− β (γ)Dt (γ)]wt} , h0,b = (α0,b, β0,b),

α0,b (x, γ) = α0 (x) + δα,b (x, γ) , and β0,b (γ) = β0 + β0cdb (γ) . d
dγ+

and d
dγ−

denote the right and left

derivative operators with respect to γ, respectively. Then

Υ1b,± (γ, h0,b) =
d

dγ±
M (γ, h0,b) = − d

dγ
E {δα,b (Xt, γ)w (Xt) + β0cdb (γ)Dt (γ)w (Xt)}

= − d

dγ±

{∫
β0E {Kb (Xt − x)} [Dt (γ0)−Dt (γ)]w (x) dx

−β0cdb (γ)

∫
E {Kb (Xt − x)}Dt (γ)]w (x) dx + β0cdb (γ)E [Dt (γ)w (Xt)]

}
= β0

d

dγ±

{∫
c0b (x, γ)w (x) dx+ bcdb (γ) c̄0b (γ)

}
, (A.36)

where c̄0b (γ) ≡ 1
b [
∫
c0b (x, γ)w (x) dx−cw (γ)], cw (γ) ≡ E [Dt (γ)w(Xt)] and c0b (x, γ) ≡ E [Kb (Xt − x)Dt (γ)] .

In Appendix B, we derive the derivatives of
∫
c0b (x, γ)w (x) dx, cw (γ) and cdb (γ) . In particular, we show

that first two terms have continuous derivatives with respect to γ that are O (1) , the last term has contin-

uous derivative at γ 6= γ0 and both right and left continuous derivatives at γ = γ0, and b · d
dγ±

cdb (γ) has

a finite limit. In addition, 1
b [
∫
c0b (x, γ)w (x) dx− cw (γ)] = O (1) . These facts imply that Υ1b,± (γ, h0,b)

is well behaved for each γ ∈ Γδ and Υ1b,± (γ, h0,b) is continuous at γ = γ0. (3.8) or (B.20) in Appendix

B gives the the formula for Υ1b,± ≡ Υ1b,± (γ0, h0,b) . Assumption A3(iii) ensures Υ1b,± is bounded away

from zero as n→∞. This verifies condition (B.2).

To verify condition (B.3), by direct calculation we have

Υ2b (γ, h) [h′ − h] = −
∫

[α′ (x, γ)− α (x, γ)]w (x) dF (x)− [β′ (γ)− β (γ)]

∫
1 {x1 > γ}w (x) dF (x) .

(A.37)

Noting that M (γ, h) is linear in h = (α, β), condition (B.3(i)) is automatically satisfied for cMb = 0 :

M(γ, h)−M (γ, h0,b)−Υ2b (γ, h0,b) [h− h0,b] = 0. To check condition (B.3(ii)), observe that

Υ2b (γ, h0,b) [h− h0,b]−Υ2b (γ0, h0,b) [h− h0,b]

= −
{∫

[α (x, γ)− α0,b (x, γ)]w (x) dF (x) + [β (γ)− β0,b (γ)]

∫
1 {x1 > γ}w (x) dF (x)

}
+

{∫
[α (x, γ0)− α0,b (x, γ0)]w (x) dF (x) + [β (γ0)− β0,b (γ0)]

∫
1 {x1 > γ0}w (x) dF (x)

}
= −

∫
[α (x, γ)− α0,b (x, γ)− α (x, γ0) + α0,b (x, γ0)]w (x) dF (x)

−[β (γ)− β0,b (γ)− β (γ0) + β0,b (γ0)]

∫
1 {x1 > γ0}w (x) dF (x)

−[β (γ)− β0,b (γ)]

∫
1 {x1 > γ} − 1 {x1 > γ0}w (x) dF (x) .

For all h = (α, β) ∈ Hδ̃2n with δ̃2n = o (b) , we have supx∈X0
|α (x, γ)− α0,b (x, γ)− α (x, γ0) + α0,b (x, γ0)|

= o (|γ − γ0|) and |β (γ)− β0,b (γ)− β (γ0) + β0,b (γ0)| = o (|γ − γ0|) . This implies that the first two terms

on the rhs of the last equation is o (|γ − γ0|) . The last term is also o (|γ − γ0|) because 1
b [β (γ)−β0,b (γ)] =

o (1) and
∫

[1 {x1 > γ} − 1 {x1 > γ0}]w (x) dF (x) = O (|γ − γ0|) . Hence Υ2b (γ, h0,b) [h− h0,b] − Υ2b(γ0,

h0,b) [h− h0,b] = o (|γ − γ0|) .
To verify the first part of condition (B.4), we need to verify that supx∈X0

|α̂b (x, γ) − α0,b (x, γ)

−α̂b (x, γ0) + α0,b (x, γ0) | = oP (|γ − γ0|) and
∣∣∣β̂b (γ)− β0,b (γ)− β̂b (γ0) + β0,b (γ0)

∣∣∣ = oP (|γ − γ0|) . We
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only outline the proof of the second part as the proof of the first part is analogous. By (A.4) and the

fact that β0,b (γ)− β0,b (γ0) = δβ,b (γ), we have

β̂b (γ)− β0,b (γ)− β̂b (γ0) + β0,b (γ0)

=
1

nb

n∑
t=1

[
S−1
nb (γ) D̃t (γ)− S−1

nb (γ0) D̃t (γ0)
]
ε̃t

+
1

nb

n∑
t=1

[
S−1
nb (γ) D̃t (γ)− S−1

nb (γ0) D̃t (γ0)
]
α̃0 (Xt)

+

{
β0S

−1
nb (γ)

1

nb

n∑
t=1

D̃t (γ)
[
D̃t (γ0)− D̃t (γ)

]
− δβ,b (γ)

}
≡ vnb (γ, γ0) + bnb (γ, γ0) + rnb (γ, γ0) , say,

where ε̃t = n−1
∑n
s=1Kb (Xs −Xt) (εs − εt) and α̃0 (Xt) = n−1

∑n
s=1Kb (Xs −Xt) [α0 (Xs)− α0 (Xt)] .

We want to show that vnb (γ, γ0) = oP (|γ − γ0|) , bnb (γ, γ0) = oP (|γ − γ0|) , and rnb (γ, γ0) = oP (|γ − γ0|) .
We further decompose vnb (γ, γ0) as follows:

vnb (γ, γ0) =
[
S−1
nb (γ)− S−1

nb (γ0)
] 1

nb

n∑
t=1

D̃t (γ) ε̃t +
1

nb
S−1
nb (γ0)

n∑
t=1

[
D̃t (γ)− D̃t (γ0)

]
ε̃t

≡ vnb,1 (γ, γ0) + vnb,2 (γ, γ0) , say.

Following the analysis of ṽnb (γ) in the proof of Lemma A.2, we can readily show 1
nb

∑n
t=1 D̃t (γ) ε̃t =

OP
(
n−1/2b−1/2

)
and |Snb (γ)− Snb (γ0)| = OP (|γ − γ0| /b) . These, in conjunction with the fact that

Snb (γ0) converges in probability to a positive number, imply that vnb,1 (γ, γ0) = OP
(
|γ − γ0|n−1/2b−3/2

)
=

oP (|γ − γ0|) . Now

Snb (γ0) vnb,2 (γ, γ0) =
1

n2b

n∑
t=1

n∑
s=1

Kb (Xs −Xt) [Ds (γ)−Ds (γ0)] ε̃t

− 1

n2b

n∑
t=1

n∑
s=1

Kb (Xs −Xt) [Dt (γ)−Dt (γ0)] ε̃t.

By straightforward moment calculations, we can bound each term on the right hand side (rhs) of the last

expression by oP (|γ − γ0|) . It follows that vnb,2 (γ, γ0) = oP (|γ − γ0|) and vnb (γ, γ0) = oP (|γ − γ0|) .
Analogously, we can show that bnb (γ, γ0) = oP (|γ − γ0|) . For rnb (γ, γ0) , we further make the following

decomposition:

rnb (γ, γ0) = β0S
−1
nb (γ)

1

nb

n∑
t=1

D̃t (γ)
[
D̃t (γ0)− D̃t (γ)

]
− δβ,b (γ)

= β0

(
S−1
nb (γ)− {E [Snb (γ)]}−1

) 1

nb

n∑
t=1

D̃t (γ)
[
D̃t (γ0)− D̃t (γ)

]
+β0

(
(E [Snb (γ)])

−1 −
{
bE
[
d2
b (Xt, γ)

]}−1
) 1

n

n∑
t=1

D̃t (γ)
[
D̃t (γ0)− D̃t (γ)

]
+β0

{
bE
[
d2
b (Xt, γ)

]}−1

×

{
1

n

n∑
t=1

D̃t (γ)
[
D̃t (γ0)− D̃t (γ)

]
− bE {db (Xt, γ) [db (Xt, γ)− db (Xt, γ0)]}

}
≡ rnb,1 (γ, γ0) + rnb,2 (γ, γ0) + rnb,3 (γ, γ0) , say.
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By moment calculations and Chebyshev and Markov inequalities, we can show that Snb (γ)−E [Snb (γ)] =

OP
(
n−1/2b−1/2

)
= oP (b) and 1

nb

∑n
t=1 D̃t (γ)

[
D̃t (γ0)− D̃t (γ)

]
= OP (|γ − γ0| /b) . It follows that

rnb,1 (γ, γ0) = oP (|γ − γ0|) . By the same token, rnb,2 (γ, γ0) = oP (|γ − γ0|) . In addition, we can show

that

1

n

n∑
t=1

D̃t (γ)
[
D̃t (γ0)− D̃t (γ)

]
− bE {db (Xt, γ) [db (Xt, γ0)− db (Xt, γ)]}

=
1

n

n∑
t=1

[
D̃t (γ)

[
D̃t (γ0)− D̃t (γ)

]
− E

{
D̃t (γ)

[
D̃t (γ0)− D̃t (γ)

]}]
+

1

n

n∑
t=1

[
E
{
D̃t (γ)

[
D̃t (γ0)− D̃t (γ)

]}
− bE {db (Xt, γ) [db (Xt, γ0)− db (Xt, γ)]}

]
= oP (|γ − γ0|) + o (|γ − γ0|) = oP (|γ − γ0|) .

It follows that rnb (γ, γ0) = oP (|γ − γ0|) and we have verified that |β̂b (γ)− β0,b (γ)− β̂b (γ0) +β0,b (γ0) |
= oP (|γ − γ0|) .

To verify condition (B.6), observe that by (A.37),√
n/b

{
Mn (γ0, h0,b) + Υ2b (γ0, h0,b) [ĥb − h0,b]

}
=

1√
nb

n∑
t=1

εtw (Xt)−
√
n

b

{∫
[α̂b (x, γ0)− α0 (x)]w (x) dF (x) + [β̂b (γ0)− β0]

∫
1 {x1 > γ0}w (x) dF (x)

}
.

By Lemma A.2(i) and the fact that ψ1b (·, γ0) = 0, β0,b (γ0) = β0, and that bυ = o
(
(n/b)−1/2

)
under

Assumption A4,

β̂b (γ0)− β0 = S−1
b (γ0)

1

n

n∑
t=1

[c1b (Xt, γ0)− c2b (Xt, γ0)] εt + oP

(
(n/b)−1/2

)
,

By Lemma A.3(ii) and the fact that bυ = o
(
(n/b)−1/2

)
under Assumption A4,

α̂b (x, γ0)− α0 (x) = f (x)
−1 1

n

n∑
t=1

Kb (Xt − x) εt

−f (x)
−1
c0b (x, γ)S−1

b (γ0)
1

n

n∑
t=1

[c1b (Xt, γ0)− c2b (Xt, γ0)] εt + oP

(
(n/b)−1/2

)
uniformly in x ∈ X0. It follows that√

n/b
{
Mn (γ0, h0,b) + Υ2b (γ0, h0,b) [ĥb − h0,b]

}
=

1√
nb

n∑
t=1

[
w (Xt)−

∫
Kb (Xt − x)w (x) dx

]
εt + c̄0b (γ0)S−1

b (γ0) ξn + oP (1)

≡ An,1 +An,2 + oP (1) , say,

where ξn = 1√
n

∑n
t=1 b

1/2[c1b (Xt, γ0)−c2b (Xt, γ0)]εt, and c̄0b (γ0) = 1
b

∫
[c0b(x, γ0)−1 {x1 > γ0} f (x)]w (x) dx.

By straightforward calculations, we can verify that E
(
A2
n,1

)
= O

(
b3
)

and

E
(
A2
n,2

)
= c̄20b (γ0)S−1

b (γ0) bE
{
σ2 (Xt) [c1b (Xt, γ0)− c2b (Xt, γ0)]

2
}
→ Vγ > 0,
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where Vγ = limn→∞ Vγ,b and Vγ,b is defined in (3.7). In addition, it is straightforward to verify that∑n
t=1E

∣∣n−1/2b1/2[c1b (Xt, γ0)− c2b (Xt, γ0)]εt
∣∣4 = O

(
n−1b−2

)
= o (1) . It follows from the martingale

central limit theorem that√
n/b

{
Mn (γ0, h0,b) + Υ2b (γ0, h0,b) [ĥb − h0,b]

}
D→ N (0, Vγ) .

By Theorem 3.1 and Lemma A.6, condition (B.5) is satisfied for κ = 0. Then by the first part of

Theorem A.7, γ̂ − γ0 = OP
(
n−1/2 log n

)
= oP (n−κ0) for any κ0 < 1/2. With this result, we apply

Lemma A.6 once more to conclude that condition (B.5) is satisfied for κ ∈
(

3
2η,

1
2 ∧ (κ(1− λ

2d ) + η
)
.

Consequently, the second part of Theorem A.7 follows and we have√
n/b

(
γ̂± − γ0

)
= −Υ−1

1b,±

√
n/b

{
Mn (γ0, h0,b) + Υ2b (γ0, h0,b) [ĥb − h0,b]

}
+ oP (1)

= −c̄0b (γ0)S−1
b (γ0) Υ−1

1b,±ξn + oP (1)
d→ N (0,Ωγ,±) (A.38)

where Ωγ,± = limn→∞Υ−1
1b,±Vγ,bΥ

−1
1b,±. This completes the proof of the theorem. �

Proof of Theorem 3.3. (i) Using the notations defined in the proof of Lemma A.2(i), we have

β̂b (γ̂) = β0 + vnb (γ0) + bnb (γ̂) + rnb (γ̂) + [vnb (γ̂)− vnb (γ0)] . (A.39)

By (A.10), vnb (γ) = S−1
b (γ) v0

nb (γ)+oP ((nb)
−1/2

) uniformly in γ ∈ Γ, where v0
nb (γ) = 1

n

∑n
t=1[c1b (Xt, γ)

−c2b (Xt, γ)]εt. Using the arguments as used in the proof of Lemma A.4(i), we can readily show that

sup|γ−γ0|≤C(n/b)−1/2

∣∣v0
nb (γ)− v0

nb (γ0)
∣∣ = oP

(
(nb)−1/2

)
, which, in conjunction with |Sb (γ)− Sb (γ0)| ≤

O(|γ − γ0|) and Theorem 3.2, implies that

vnb (γ̂)− vnb (γ0) = oP

(
(nb)−1/2

)
. (A.40)

By the proof of Lemma A.1,

|bnb (γ̂)| ≤ sup
γ∈Γ
|bnb (γ)| = OP (bυ) = oP

(
(nb)−1/2

)
. (A.41)

By Lemma A.3 and Theorem 3.2,

rnb (γ̂) = β0Sb (γ̂)
−1

{
θψ1

(γ̂) +
3

n

n∑
t=1

[ψ1b (Xt; γ̂)− θψ1
(γ̂)]

}
+ oP ((nb)−1/2)

= β0Sb (γ0)
−1
θψ1 (γ̂) + β0Sb (γ0)

−1 3

n

n∑
t=1

[ψ1b (Xt; γ̂)− θψ1 (γ̂)] + oP ((nb)−1/2).

Using the fact that ψ1b (·; γ0) = θψ1
(γ0) = 0 and the stochastic equicontinuity argument, we can show

that

1

n

n∑
t=1

[ψ1b (Xt; γ̂)− θψ1
(γ̂)] =

3

n

n∑
t=1

[ψ1b (Xt; γ̂)− θψ1
(γ̂)− ψ1b (Xt; γ0) + θψ1

(γ0)] = oP ((nb)−1/2).

Recall that γ̂ is also denoted as γ̂+ if it is larger than γ0 and γ̂− otherwise. As demonstrated in Appendix

B, the left and right derivatives, θ̇ψ1,+ (γ0) and θ̇ψ1,− (γ0), of θψ1
(γ) exists and are continuous at γ = γ0.

It follows that

rnb
(
γ̂±
)

= β0Sb (γ0)
−1 [

θψ1

(
γ̂±
)
− θψ1

(γ0)
]

+ oP ((nb)−1/2)

= β0Sb (γ0)
−1
θ̇ψ1± (γ0) (γ̂± − γ0) + oP ((nb)−1/2). (A.42)
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Combining (A.39)-(A.42) and applying (A.10) and (A.38), we have

√
nb
(
β̂b
(
γ̂±
)
− β0

)
=
√
nbvnb (γ0) + β0Sb (γ0)

−1
[
bθ̇ψ1,± (γ0)

]√
n/b(γ̂± − γ0) + oP (1)

= S−1
b (γ0)

[
1− β0bθ̇ψ1,± (γ0) Υ−1

1b,±c̄0b (γ0)
]
ξn + oP (1)

D→ N (0,Ωβ,±) ,(A.43)

where Ωβ,± = limn→∞Ωnβ,± and Ωnβ,± is defined in (3.10).

(ii) By Lemmas A.1 and A.2 and their proofs, we can write α̂b (x, γ̂) = α0 (x) + Vnb (x) + Bnb (x) +

Rnb(x; β̂b (γ̂) , γ̂), where

Rnb(x; β̂b (γ̂) , γ̂) = β0f̂b (x)
−1 1

n

n∑
t=1

Kb (Xt − x) [Dt (γ0)−Dt (γ̂)]

−[β̂b (γ̂)− β0]f̂b (x)
−1 1

n

n∑
t=1

Kb (Xt − x)Dt (γ̂)

= β0f (x)
−1

E {Kb (Xt − x) [Dt (γ0)−Dt (γ)]}|γ=γ̂

−[β̂b (γ̂)− β0]f (x)
−1
E [Kb (Xt − x)Dt (γ0)] + oP

(
n−1/2b−d/2

)
.

Let ċ0b (x, γ0) = ∂c0b (x, γ0) /∂γ. Noting that E {Kb (Xt − x) [Dt (γ0)−Dt (γ)]}|γ=γ̂ = −[c0b (x, γ̂)−
c0b (x, γ0)] = −ċ0b (x, γ0) (γ̂ − γ0) +oP (|γ̂ − γ0|) = OP ((nb)−1/2) and β̂b (γ̂) − β0 = OP ((nb)−1/2),

Rnb(x; β̂b (γ̂) , γ̂) is asymptotically negligible in the case where d = 1 and is not otherwise. By stan-

dard arguments,

Vnb (x) = f (x)
−1

n∑
t=1

Kb (Xt − x) εt + oP

(
n−1/2b−d/2

)
and Bnb (x) = OP (bυ) = oP

(
n−1/2b−d/2

)
,

Then by (A.38) and (A.43),

√
nbd

[
α̂b
(
x, γ̂±

)
− α0 (x)

]
= f (x)

−1

√
bd√
n

n∑
t=1

Kb (Xt − x) εt − β0f (x)
−1
ċ0b (x, γ0)

√
nbd

(
γ̂± − γ0

)
−f (x)

−1
c0b (x, γ0)

√
nbd

[
β̂b (γ̂)− β0

]
+ oP (1)

= f (x)
−1

√
bd√
n

n∑
t=1

Kb (Xt − x) εt − b(d−1)/2f (x)
−1
β0 [bċ0b (x, γ0)] c̄0b (γ0)S−1

b (γ0) ξn

−b(d−1)/2f (x)
−1
c0b (x, γ0)S−1

b (γ0)
{

1− β0bθ̇ψ1,± (γ0) Υ−1
1b,±c̄0b (γ0)

}
ξn + oP (1)

= f (x)
−1

√
bd√
n

n∑
t=1

Kb (Xt − x) εt − b(d−1)/2cα,b,± (x) ξn + oP (1)

d→ N

(
0, f (x)

−1
σ2 (x)

∫
K (u)

2
du+ ∆α,± (x; d)

)
,

where ∆α,± (x; d) = limn→∞∆α,b,± (x; d) , and ∆α,b,± (x; d) and cα,b,± (x) are defined in (3.11) and (3.12),

respectively. This completes the proof of the theorem. �
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THIS APPENDIX PROVIDES PROOFS FOR SOME TECHNICAL LEMMAS IN THE ABOVE PAPER.

B Calculation of Derivatives

B.1 Derivatives of θψ1 (γ)

Recall that θψ1
(γ) = bE {db (Xt, γ) [db (Xt, γ0)− db (Xt, γ)]} = A (γ, γ0) − A (γ, γ) , where A (γ, γ′) =

bE[db (Xt, γ) db (Xt, γ
′)]. We calculate the derivatives of A (γ, γ0) and A (γ, γ) with respect to γ, respec-

tively, by restricting our attention to the case γ − γ0 = o (b) and then evaluate the derivative at γ0.

Without loss of generality, we assume that |γ − γ0| < b.

Let k̄ (t) =
∫ t
−1
k (t) dt. We first decompose db (x, γ) as follows:

db (x, γ) =
1

b

∫
K (u) [1 {x1 + bu1 > γ} − 1 {x1 > γ}] f (x+ bu) du

=
1

b

∫
K (u) [1 {x1 ≤ γ} − 1 {x1 + bu1 ≤ γ}] f (x) du

+
1

b

∫
K (u) [1 {x1 ≤ γ} − 1 {x1 + bu1 ≤ γ}] [f (x+ bu)− f (x)] du

=
f (x)

b

[
1 {x1 ≤ γ} − k̄

(
γ − x1

b

)]
+

1

b

∫
K (u) [1 {x1 ≤ γ} − 1 {x1 + bu1 ≤ γ}] [f (x+ bu)− f (x)] du

≡ d1b (x, γ) + d2b (x, γ) , say.

With this decomposition, we can write

A (γ, γ′) = bE {d1b (Xt, γ) d1b (Xt, γ
′)}+ bE {d1b (Xt, γ) d2b (Xt, γ

′)}
+bE {d2b (Xt, γ) d1b (Xt, γ

′)}+ bE {d2b (Xt, γ) d2b (Xt, γ
′)}

≡ A1 (γ, γ′) +A2 (γ, γ′) +A3 (γ, γ′) +A4 (γ, γ′) , say.

We focus on the study of A1 (γ, γ0) and A1 (γ, γ) and comment on the other terms. Using the fact that

k (·) has compact support [−1, 1] and thus k̄ (s) = 0 for any s ≤ −1 and = 1 for any s ≥ 1, we can write

1 {x1 ≤ γ} − k̄
(
γ − x1

b

)
= 1 {−b ≤ x1 − γ ≤ 0} − k̄

(
γ − x1

b

)
1 {−b ≤ x1 − γ ≤ b} . (B.1)
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Then

A1 (γ, γ0) =
1

b

∫
e (x1) 1 {−b ≤ x1 − γ ≤ 0} 1 {−b ≤ x1 − γ0 ≤ 0} dx1

−1

b

∫
e (x1) 1 {−b ≤ x1 − γ ≤ 0} k̄

(
γ0 − x1

b

)
1 {−b ≤ x1 − γ0 ≤ b} dx1

−1

b

∫
e (x1) k̄

(
γ − x1

b

)
1 {−b ≤ x1 − γ ≤ b} 1 {−b ≤ x1 − γ0 ≤ 0} dx1

+
1

b

∫
e (x1) k̄

(
γ − x1

b

)
1 {−b ≤ x1 − γ ≤ b} k̄

(
γ0 − x1

b

)
1 {−b ≤ x1 − γ0 ≤ b} dx1

≡ A11 (γ, γ0)−A12 (γ, γ0)−A13 (γ, γ0) +A14 (γ, γ0) ,

where e (x1) =
∫
f (x)

3
dx−1. Let ẽ (x1 − γ0) = e (x1) . Then tedious calculations yield

A11 (γ, γ0) =
1

b

∫
ẽ (x1 − γ0) 1 {−b+ γ − γ0 ≤ x1 − γ0 ≤ γ − γ0} 1 {−b ≤ x1 − γ0 ≤ 0} dx1

=

∫
ẽ (vb) 1

{
−1 +

γ − γ0

b
≤ v ≤ γ − γ0

b

}
1 {−1 ≤ v ≤ 0} dv

=

∫ 0

−1+
γ−γ0
b

ẽ (vb) dv1 {γ > γ0}+

∫ γ−γ0
b

−1

ẽ (vb) dv1 {γ ≤ γ0} ,

A12 (γ, γ0) =
1

b

∫
ẽ (x1 − γ0) k̄

(
γ0 − x1

b

)
1 {−b+ γ − γ0 ≤ x1 − γ0 ≤ γ − γ0} 1 {−b ≤ x1 − γ0 ≤ b} dx1

=

∫
ẽ (bv) k̄ (−v) 1

{
−1 +

γ − γ0

b
≤ v ≤ γ − γ0

b

}
1 {−1 ≤ v ≤ 1} dv

=

∫ γ−γ0
b

−1+
γ−γ0
b

ẽ (vb) k̄ (−v) dv1 {γ > γ0}+

∫ γ−γ0
b

−1

ẽ (vb) k̄ (−v) dv1 {γ ≤ γ0} ,

A13 (γ, γ0) =
1

b

∫
ẽ (x1 − γ0) k̄

(
γ0 − x1

b
+
γ − γ0

b

)
1 {−b+ γ ≤ x1 ≤ b+ γ} 1 {−b ≤ x1 − γ0 ≤ 0} dx1

=

∫
ẽ (bv) k̄

(
−v +

γ − γ0

b

)
1

{
−1 +

γ − γ0

b
≤ v ≤ 1 +

γ − γ0

b

}
1 {−1 ≤ v ≤ 0} dv

=

∫ 0

−1+
γ−γ0
b

ẽ (vb) k̄

(
−v +

γ − γ0

b

)
dv1 {γ > γ0}+

∫ 0

−1

ẽ (vb) k̄

(
−v +

γ − γ0

b

)
dv1 {γ ≤ γ0} ,

and

A14 (γ, γ0) =
1

b

∫
ẽ (x1 − γ0) k̄

(
γ0 − x1

b
+
γ − γ0

b

)
k̄

(
γ0 − x1

b

)
1 {−b+ γ − γ0 ≤ x1 − γ0 ≤ b+ γ − γ0}

×1 {−b ≤ x1 − γ0 ≤ b} dx1

=

∫
ẽ (bv) k̄

(
−v +

γ − γ0

b

)
k̄ (−v) 1

{
−1 +

γ − γ0

b
≤ v ≤ 1 +

γ − γ0

b

}
1 {−1 ≤ v ≤ 1} dv

=

∫ 1

−1+
γ−γ0
b

ẽ (vb) k̄

(
−v +

γ − γ0

b

)
k̄ (−v) dv1 {γ > γ0}

+

∫ 1+
γ−γ0
b

−1

ẽ (vb) k̄

(
−v +

γ − γ0

b

)
k̄ (−v) dv1 {γ ≤ γ0} .
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It follows that

A1 (γ, γ0) =

{∫ 0

−1+
γ−γ0
b

ẽ (vb) dv −
∫ γ−γ0

b

−1+
γ−γ0
b

ẽ (vb) k̄ (−v) dv −
∫ 0

−1+
γ−γ0
b

ẽ (vb) k̄

(
−v +

γ − γ0

b

)
dv

+

∫ 1

−1+
γ−γ0
b

ẽ (vb) k̄

(
−v +

γ − γ0

b

)
k̄ (−v) dv

}
× 1 {γ > γ0}

+

{∫ γ−γ0
b

−1

ẽ (vb) dv −
∫ γ−γ0

b

−1

ẽ (vb) k̄ (−v) dv −
∫ 0

−1

ẽ (vb) k̄

(
−v +

γ − γ0

b

)
dv

+

∫ 1+
γ−γ0
b

−1

ẽ (vb) k̄

(
−v +

γ − γ0

b

)
k̄ (−v) dv

}
× 1 {γ ≤ γ0} . (B.2)

When γ > γ0, we apply Leibniz’s formula and the fact that k̄ (1) = 1 to obtain

∂A1 (γ, γ0)

∂γ
= −1

b
ẽ (−b+ γ − γ0)− 1

b
ẽ (γ − γ0) k̄

(
−γ − γ0

b

)
+

1

b
ẽ (−b+ γ − γ0) k̄

(
1− γ − γ0

b

)
+

1

b
ẽ (−b+ γ − γ0) k̄ (1)− 1

b
ẽ (−b+ γ − γ0) k̄ (1) k̄

(
1− γ − γ0

b

)
−1

b

∫ 0

−1+
γ−γ0
b

ẽ (vb) k

(
−v +

γ − γ0

b

)
dv +

1

b

∫ 1

−1+
γ−γ0
b

ẽ (vb) k

(
−v +

γ − γ0

b

)
k̄ (−v) dv

= −1

b
ẽ (γ − γ0) k̄

(
−γ − γ0

b

)
− 1

b

∫ 0

−1+
γ−γ0
b

ẽ (vb) k

(
−v +

γ − γ0

b

)
dv

+
1

b

∫ 1

−1+
γ−γ0
b

ẽ (vb) k

(
−v +

γ − γ0

b

)
k̄ (−v) dv which is O (1/b) .

It follows that the right derivative of A1 (γ, γ0) with respect to γ at γ0 is given by

∂A1 (γ, γ0)

∂γ

∣∣∣∣
γ→γ0+

= − 1

2b
ẽ (0)− 1

b

∫ 0

−1

ẽ (vb) k (−v) dv +
1

b

∫ 1

−1

ẽ (vb) k̄ (−v) k (v) dv

= − 1

2b
ẽ (0)− 1

b

∫ 0

−1

[ẽ (0) + ẽ′ (0) bv] k (−v) dv +
1

b

∫ 1

−1

[ẽ (0) + ẽ′ (0) bv] k̄ (−v) k (−v) dv

+o (1)

= − 1

2b
e (γ0) + e′ (γ0)

(∫ 1

−1

vk̄ (−v) k (−v) dv −
∫ 0

−1

vk (−v) dv

)
+ o (1) (B.3)

where we use the fact that
∫ 0

−1
k (−v) dv = 1

2 and
∫ 1

−1
k̄ (−v) k (−v) dv = 1

2 k̄ (v)
2
∣∣∣1
v=−1

= 1
2 .

When γ < γ0, we apply Leibniz’s formula and the fact that k̄ (−1) = 0 to obtain

∂A1 (γ, γ0)

∂γ
=

1

b
ẽ (γ − γ0)− 1

b
ẽ (γ − γ0) k̄

(
−γ − γ0

b

)
−1

b

∫ 0

−1

ẽ (vb) k

(
−v +

γ − γ0

b

)
dv +

1

b

∫ 1+
γ−γ0
b

−1

ẽ (vb) k

(
−v +

γ − γ0

b

)
k̄ (−v) dv

3



It follows that the left derivative of A1 (γ, γ0) with respect to γ at γ0 is given by

∂A1 (γ, γ0)

∂γ

∣∣∣∣
γ→γ0−

=
1

2b
ẽ (0)− 1

b

∫ 0

−1

ẽ (vb) k (−v) dv +
1

b

∫ 1

−1

ẽ (vb) k (−v) k̄ (−v) dv

=
1

2b
ẽ (0)− 1

b

∫ 0

−1

[ẽ (0) + ẽ′ (0) bv] k (−v) dv +
1

b

∫ 1

−1

[ẽ (0) + ẽ′ (0) bv] k (−v) k̄ (−v) dv

+o (1)

=
1

2b
e (γ0) + e′ (γ0)

(∫ 1

−1

vk̄ (−v) k (−v) dv −
∫ 0

−1

vk (−v) dv

)
+ o (1) . (B.4)

Similarly,

A11 (γ, γ) =
1

b

∫
ẽ (x1 − γ0) 1 {−b+ γ − γ0 ≤ x1 − γ0 ≤ γ − γ0} dx1 =

∫ γ−γ0
b

−1+
γ−γ0
b

ẽ (vb) dv,

A12 (γ, γ) =
1

b

∫
ẽ (x1 − γ0) k̄

(
γ0 − x1

b
+
γ − γ0

b

)
1 {−b+ γ − γ0 ≤ x1 − γ0 ≤ γ − γ0} dx1

=

∫ γ−γ0
b

−1+
γ−γ0
b

ẽ (bv) k̄

(
−v +

γ − γ0

b

)
dv = A13 (γ, γ) , and

A14 (γ, γ) =
1

b

∫
ẽ (x1 − γ0) k̄2

(
γ0 − x1

b
+
γ − γ0

b

)
1 {−b+ γ − γ0 ≤ x1 − γ0 ≤ b+ γ − γ0} dx1

=

∫ 1+
γ−γ0
b

−1+
γ−γ0
b

ẽ (vb) k̄2

(
−v +

γ − γ0

b

)
dv.

It follows that

A1 (γ, γ) =

∫ γ−γ0
b

−1+
γ−γ0
b

ẽ (vb) dv−2

∫ γ−γ0
b

−1+
γ−γ0
b

ẽ (bv) k̄

(
−v +

γ − γ0

b

)
dv+

∫ 1+
γ−γ0
b

−1+
γ−γ0
b

ẽ (vb) k̄2

(
−v +

γ − γ0

b

)
dv

(B.5)

and

dA1 (γ, γ)

dγ

=
1

b
ẽ (γ − γ0)− 1

b
ẽ (−b+ γ − γ0)− 2

b
ẽ (γ − γ0) k̄ (0) +

2

b
ẽ (−b+ γ − γ0) k̄ (1)

+
1

b
ẽ (b+ γ − γ0) k̄2 (−1)− 1

b
ẽ (−b+ γ − γ0) k̄2 (1)

−2

b

∫ γ−γ0
b

−1+
γ−γ0
b

ẽ (bv) k

(
−v +

γ − γ0

b

)
dv +

2

b

∫ 1+
γ−γ0
b

−1+
γ−γ0
b

ẽ (vb) k̄

(
−v +

γ − γ0

b

)
k

(
−v +

γ − γ0

b

)
dv

= −2

b

∫ γ−γ0
b

−1+
γ−γ0
b

ẽ (bv) k

(
−v +

γ − γ0

b

)
dv +

2

b

∫ 1+
γ−γ0
b

−1+
γ−γ0
b

ẽ (vb) k̄

(
−v +

γ − γ0

b

)
k

(
−v +

γ − γ0

b

)
dv.

Then the total derivative of A1 (γ, γ) with respect to γ evaluated at γ0 is given by

dA1 (γ, γ)

dγ

∣∣∣∣
γ=γ0

= −2

b

∫ 0

−1

ẽ (bv) k (−v) dv +
2

b

∫ 1

−1

ẽ (vb) k̄ (−v) k (−v) dv

= −2

b

∫ 0

−1

[ẽ (0) + ẽ′ (0) bv] k (−v) dv +
2

b

∫ 1

−1

[ẽ (0) + ẽ′ (0) bv] k̄ (−v) k (−v) dv + o (1)

= 2e′ (γ0)

[∫ 1

−1

vk̄ (−v) k (−v) dv −
∫ 0

−1

vk (−v) dv

]
+ o (1) . (B.6)
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Combining (B.3)-(B.6), we obtain the right derivative of A1 (γ, γ0) − A1 (γ, γ) with respect to γ

evaluated at γ0 as

d [A1 (γ, γ0)−A1 (γ, γ)]

dγ

∣∣∣∣
γ=γ0+

= − 1

2b
e (γ0)− e′ (γ0)

(∫ 1

−1

vk̄ (−v) k (−v) dv −
∫ 0

−1

vk (−v) dv

)
+ o (1)

and the left derivative of A1 (γ, γ0)−A1 (γ, γ) with respect to γ evaluated at γ0 as

d [A1 (γ, γ0)−A1 (γ, γ)]

dγ

∣∣∣∣
γ=γ0−

=
1

2b
e (γ0)− e′ (γ0)

(∫ 1

−1

vk̄ (−v) k (−v) dv −
∫ 0

−1

vk (−v) dv

)
+ o (1) .

Now, note that

d2b (x, γ) =
1

b

∫
K (u) [1 {x1 ≤ γ} − 1 {x1 + bu1 ≤ γ}] [f (x+ bu)− f (x)] du

=

υ∑
j=1

bj−1

j!

∂jf (x)

∂xj1

∫
k (u1)uj1 [1 {x1 ≤ γ} − 1 {x1 + bu1 ≤ γ}] du1 + o

(
bυ−1

)
=

υ∑
j=1

bj−1

j!

∂jf (x)

∂xj1

[
k̄j (1) 1 {x1 ≤ γ} − k̄j

(
γ − x1

b

)]
+ o

(
bυ−1

)
where k̄j (v) =

∫ v
−1
k (u1)uj1du1. Following the analysis of A1 (γ, γ0) − A1 (γ, γ) above, we can readily

show that the derivatives of Aj (γ, γ0)−Aj (γ, γ) , j = 2, 3, 4, both exist and are O (1) for all γ ∈ Γδ with

γ 6= γ0. It follows that when γ > γ0,

θ̇ψ1
(γ) = −1

b
ẽ (γ − γ0) k̄

(
−γ − γ0

b

)
− 1

b

∫ 0

−1+
γ−γ0
b

ẽ (vb) k

(
−v +

γ − γ0

b

)
dv

+
1

b

∫ 1

−1+
γ−γ0
b

ẽ (vb) k

(
−v +

γ − γ0

b

)
k̄ (−v) dv +

2

b

∫ γ−γ0
b

−1+
γ−γ0
b

ẽ (bv) k

(
−v +

γ − γ0

b

)
dv

−2

b

∫ 1+
γ−γ0
b

−1+
γ−γ0
b

ẽ (vb) k̄

(
−v +

γ − γ0

b

)
k

(
−v +

γ − γ0

b

)
dv +O (1) (B.7)

and when γ < γ0,

θ̇ψ1
(γ) =

1

b
ẽ (γ − γ0)− 1

b
ẽ (γ − γ0) k̄

(
−γ − γ0

b

)
− 1

b

∫ 0

−1

ẽ (vb) k

(
−v +

γ − γ0

b

)
dv

+
1

b

∫ 1+
γ−γ0
b

−1

ẽ (vb) k

(
−v +

γ − γ0

b

)
k̄ (−v) dv +

2

b

∫ γ−γ0
b

−1+
γ−γ0
b

ẽ (bv) k

(
−v +

γ − γ0

b

)
dv

−2

b

∫ 1+
γ−γ0
b

−1+
γ−γ0
b

ẽ (vb) k̄

(
−v +

γ − γ0

b

)
k

(
−v +

γ − γ0

b

)
dv +O (1) . (B.8)

At γ = γ0, both the left and right derivatives exist and are continuous. Consequently, θψ1 (γ) has

continuous derivatives at all γ ∈ Γδ1n with γ 6= γ0; the right derivative θ̇ψ1,+ (γ) of θψ1
(γ) at γ0 satisfies

b · θ̇ψ1,+ (γ0) = −1

2
e (γ0) +O (b) , (B.9)

and the left derivative θ̇ψ1,+ (γ) of θψ1 (γ) at γ0 satisfies

b · θ̇ψ1,− (γ0) =
1

2
e (γ0) +O (b) . (B.10)
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B.2 Derivatives of cdb (γ)

Recall that cdb (γ) =
(
E
[
d2
b (Xt, γ)

])−1
E{db (Xt, γ) [db (Xt, γ0)− db (Xt, γ)]} = S−1

b (γ) θψ1 (γ) , where

Sb (γ) = b · E
[
d2
b (Xt, γ)

]
=
∑4
j=1Aj (γ, γ) , and Aj (γ, γ′)’s are defined above. For any γ ∈ Γδ, we have

shown that the derivatives of Sb (γ) exists, and so does θψ1
(γ) for γ 6= γ0. As a result,

ċdb,± (γ) ≡ dcdb (γ)

dγ±
=
Sb (γ) θ̇ψ1,± (γ)− θψ1

(γ) Ṡb (γ)

S2
b (γ)

(B.11)

where

Ṡb (γ) ≡ dSb (γ)

dγ
= −2

b

∫ γ−γ0
b

−1+
γ−γ0
b

ẽ (bv) k

(
−v +

γ − γ0

b

)
dv

+
2

b

∫ 1+
γ−γ0
b

−1+
γ−γ0
b

ẽ (vb) k̄

(
−v +

γ − γ0

b

)
k

(
−v +

γ − γ0

b

)
dv +O (1) ,

and θ̇ψ1,± (γ) are defined in (B.7)-(B.10). Note that when γ 6= γ0, θ̇ψ1,+ (γ) or θ̇ψ1,− (γ) becomes the

ordinary derivative θ̇ψ1 (γ) . Observing that Sb (γ) = O (1) , θψ1 (γ) = O (1) , θ̇ψ1,± (γ) = O (1/b) , and

Ṡb (γ) = O (1/b) , we have ċdb,± (γ) = O (1/b) .

At γ = γ0, both the left and right derivatives of θψ1
(γ) exist and are continuous, and the derivative

of Sb (γ) exists and is continuous. By (B.9)-(B.10) and the fact that θψ1
(γ0) = 0, the right derivative

ċdb,+ (γ) of cdb (γ) at γ0 satisfies

b · ċdb,+ (γ0) =
Sb (γ0)

[
b · θ̇ψ1,+ (γ0)

]
− b · θψ1 (γ0) Ṡb (γ0)

S2
b (γ0)

= − e (γ0)

2Sb (γ0)
+O (b) , (B.12)

and the left derivative ċdb,− (γ) of cdb (γ) at γ0 satisfies

b · ċdb,− (γ0) =
Sb (γ0)

[
b · θ̇ψ1,− (γ0)

]
− b · θψ1

(γ0) Ṡb (γ0)

Sb (γ0)
2 =

e (γ0)

2Sb (γ0)
+O (b) . (B.13)

B.3 Derivatives of c0b (x, γ) ,
∫
c0b (x, γ)w (x) dx, and cw (γ) with respect to γ

Recall that c0b (x, γ) = E [Kb (Xt − x)Dt (γ)] =
∫
K (u) 1

{
u1 >

γ−x1

b

}
f (x+ bu) du and the univariate

kernel function k (·) has compact support [−1, 1] . We first make two observations: 1) If x1 ≤ γ − b,

then γ−x1

b ≥ 1 and c0b (x, γ) =
∫
K (u) · 0 · f (x+ bu) du = 0; 2) If x1 ≥ γ + b, then γ−x1

b ≤ −1 and

c0b (x, γ) =
∫
K (u) f (x+ bu) du = f (x) +O (bυ) . In either case, we have ċ0b (x, γ) ≡ ∂c0b (x, γ) /∂γ = 0.

Below we focus on the calculation of the partial derivative for the case where γ − b < x1 < γ + b.

Assuming that x1 ∈ (γ − b, γ + b) , we have

c0b (x, γ) =

∫
k (u1) 1 {x1 + bu1 > γ} f (x) du1 +

∫
K (u) 1 {x1 + bu1 > γ} [f (x+ bu)− f (x)] du

= f (x)

∫
k (u1) 1

{
u1 >

γ − x1

b

}
du1 +

υ∑
j=1

bj

j!

∂jf (x)

∂xj1

∫
k (u1)uj11

{
u1 >

γ − x1

b

}
du1 + o (bυ)

= f (x)

[
1− k̄

(
γ − x1

b

)]
+

υ∑
j=1

bj

j!

∂jf (x)

∂xj1

∫ 1

γ−x1
b

k (u1)uj1du1 + o (bυ) .

With this, one can readily show that when x1 ∈ (γ − b, γ + b) ,

ċ0b (x, γ) = −1

b
f (x) k

(
γ − x1

b

)
−

υ∑
j=1

bj−1

j!

∂jf (x)

∂xj1
k

(
γ − x1

b

)(
γ − x1

b

)j
+ o (bυ) ,

6



and the partial derivative of
∫
c0b (x, γ)w (x) dx with respect to γ is given by∫

ċ0b (x, γ)w (x) dx = −1

b

∫ ∫ γ+b

γ−b
f (x) k

(
γ − x1

b

)
w (x) dx1dx−1 +O (b)

= −
∫
f (γ, x−1)w (γ, x−1) dx−1 +O (b) = −ew (γ) +O (b) . (B.14)

where ew (x1) =
∫
w (x) f (x) dx−1.

Now, recall that cw (γ) = E [Dt (γ)w (Xt)] . Noting that cw (γ) =
∫

1 {x1 > γ}w (x) f (x) dx =∫∞
γ
ew (x1) dx1, we have

ċw (γ) =
∂cw (γ)

∂γ
= −ew (γ) . (B.15)

B.4 Derivatives of M (γ, h0b) with respect to γ

By (A.36) and the chain rule, we have

Υ1b,± (γ, h0,b) = β0

∫
ċ0b (x, γ)w (x) dx+ β0cdb (γ)

[∫
ċ0b (x, γ)w (x) dx− ċw (γ)

]
+β0 [b · ċdb,± (γ)] c̄0b (γ) , (B.16)

where ċdb,± (γ) ,
∫
ċ0b (x, γ)w (x) dx, and ċw (γ) are given in (B.11), (B.14), and (B.15), respectively.

When γ = γ0, we have

Υ1b,± (γ0, h0,b) = −β0ew (γ0)∓ β0
e (γ0)

2Sb (γ0)
c̄0b (γ0) +O (b) , (B.17)

where recall that ew (x1) =
∫
w (x) f (x) dx−1, e (x1) =

∫
f (x)

3
dx−1, c0b (x, γ) = E [Kb (Xt − x)Dt (γ)] ,

and cw (γ) = E [Dt (γ)w (Xt)] , and we have used the fact that cdb (γ0) = 0. Noting that cw (γ0) =∫
1 {x1 > γ0} ew (x1) dx1 and that

1

b

∫
c0b (x, γ0)w (x) dx =

1

b

{∫ ∫
k (u1) 1

{
u1 >

γ0 − x1

b

}
du1f (x)w (x) dx

}
+O (b)

=
1

b

{∫ [
1− k̄

(
γ0 − x1

b

)]
ew (x1) dx1

}
+O (b) ,

and using (B.1) and change of variables, we have

c̄0b (γ0) =
1

b

[∫
c0b (x, γ0)w (x) dx− cw (γ0)

]
=

1

b

∫
ew (x1)

[
1 {x1 ≤ γ0} − k̄

(
γ0 − x1

b

)]
dx1 +O (b)

=
1

b

∫ γ0

γ0−b
ew (x1) dx1 −

1

b

∫ γ0+b

γ0−b
ew (x1) k̄

(
γ0 − x1

b

)
dx1 +O (b)

=
1

b

∫ γ0

γ0−b
ew (x1) dx1 −

∫ 1

−1

ew (γ0 + bv) k̄ (−v) dv +O (b) =
1

b

∫ γ0

γ0−b
[ew (x1)− ew (γ0)] dx1 +O (b)

=
1

b

∫ γ0

γ0−b
ėw (γ0) (x1 − γ0) dx1 +O (b) = −1

2
ėw (γ0) +O (b) , (B.18)
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where ėw (x1) = ∂ew (x1) /∂x1, and we have used the fact that
∫ 1

−1
k̄ (−v) dv =

∫ 1

−1
k̄ (v) dv = 1 by

integration by parts and Assumption A3. By (B.5) and the fact that
∑4
j=2A (γ, γ) = O (b) , we have

Sb (γ0) = A1 (γ0, γ0) +O (b)

=

∫ 0

−1

ẽ (vb) dv − 2

∫ 0

−1

ẽ (bv) k̄ (−v) dv +

∫ 1

−1

ẽ (vb) k̄2 (−v) dv +O (b)

= ẽ (0)

[
1− 2

∫ 1

0

k̄ (v) dv +

∫ 1

−1

k̄2 (v) dv

]
+O (b) = e (γ0) ck̄ +O (b) (B.19)

where ck̄ = 1− 2
∫ 1

0
k̄ (v) dv +

∫ 1

−1
k̄2 (v) dv > 0. Consequently,

Υ1b,± (γ0, h0,b) = −β0ew (γ0)± β0
e (γ0)

4Sb (γ0)
ėw (γ0) +O (b)

= −β0ew (γ0)± β0
1

4ck̄
ėw (γ0) +O (b) . (B.20)
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C Additional Simulation Results

Here we provide additional results on the performance of our semiparametric threshold estimator. Tables

8 to 11 provide bias and WASE results for DGPs 2-7, all using a signal to noise ratio of 0.75. Several key

features emerge regardless of DGP, as n increases the bias of both β̂ and γ̂ decreases, the WASE for all

three estimators decrease as the sample size increases, with the rate of decrease for γ̂ faster, as expected,

than β̂ and α̂(x).

Table 6: Simulation Performance of Semiparametric Threshold Estimator, DGP 2, signal to noise ra-

tio=0.75, 1000 Simulations

β γ α(x)

Bias MSE Bias MSE WASE

β = 1, γ = −1

n = 100 −1.600 4.551 0.585 3.053 0.259

n = 200 −0.977 2.467 0.442 2.386 0.158

n = 400 −0.311 0.815 0.181 0.974 0.086

β = 1.5, γ = −1

n = 100 −1.475 5.517 0.245 1.935 0.284

n = 200 −0.610 2.171 0.152 1.102 0.164

n = 400 −0.038 0.296 0.005 0.109 0.084

β = 2, γ = −1

n = 100 −1.148 5.338 0.146 1.279 0.300

n = 200 −0.258 1.299 0.014 0.315 0.163

n = 400 0.014 0.150 0.005 0.023 0.086

β = 1, γ = 0

n = 100 −0.184 3.381 0.020 1.376 0.276

n = 200 0.124 1.422 0.006 0.808 0.157

n = 400 0.178 0.520 −0.012 0.362 0.085

β = 1.5, γ = 0

n = 100 0.339 2.910 −0.012 0.622 0.281

n = 200 0.369 1.065 −0.001 0.287 0.154

n = 400 0.337 0.315 0.009 0.044 0.085

β = 2, γ = 0

n = 100 0.413 2.951 0.013 0.457 0.286

n = 200 0.444 1.023 0.006 0.143 0.158

n = 400 0.334 0.305 −0.001 0.013 0.086
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Table 7: Simulation Performance of Semiparametric Threshold Estimator, DGP 3, signal to noise ra-

tio=0.75, 1000 Simulations

β γ α(x)

Bias MSE Bias MSE WASE

β = 1, γ = −1

n = 100 −0.209 0.996 0.211 0.272 0.032

n = 200 0.093 0.264 0.042 0.050 0.017

n = 400 0.110 0.075 0.007 0.008 0.009

β = 1.5, γ = −1

n = 100 0.120 0.366 0.021 0.037 0.026

n = 200 0.151 0.106 0.003 0.005 0.014

n = 400 0.117 0.040 0.000 0.000 0.008

β = 2, γ = −1

n = 100 0.218 0.145 −0.006 0.002 0.024

n = 200 0.151 0.070 −0.002 0.000 0.014

n = 400 0.115 0.037 0.000 0.000 0.008

β = 1, γ = 0

n = 100 −0.889 1.212 0.000 0.884 0.022

n = 200 −0.536 0.512 −0.002 0.313 0.013

n = 400 −0.314 0.157 0.001 0.037 0.007

β = 1.5, γ = 0

n = 100 −0.560 0.429 −0.008 0.024 0.015

n = 200 −0.395 0.184 −0.002 0.000 0.009

n = 400 −0.283 0.096 0.000 0.000 0.006

β = 2, γ = 0

n = 100 −0.532 0.314 −0.008 0.001 0.012

n = 200 −0.400 0.177 −0.002 0.000 0.008

n = 400 −0.283 0.090 0.000 0.000 0.005
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Table 8: Simulation Performance of Semiparametric Threshold Estimator, DGP 4, signal to noise ra-

tio=0.75, 1000 Simulations

β γ α(x)

Bias MSE Bias MSE WASE

β = 1, γ = −1

n = 100 −0.764 2.935 0.795 1.499 0.118

n = 200 −0.921 2.626 0.757 1.144 0.078

n = 400 −1.016 2.484 0.781 1.015 0.055

β = 1.5, γ = −1

n = 100 −0.807 3.664 0.557 1.059 0.138

n = 200 −0.954 3.107 0.499 0.794 0.093

n = 400 −0.854 2.405 0.439 0.594 0.065

β = 2, γ = −1

n = 100 −0.744 4.048 0.394 0.795 0.144

n = 200 −0.710 2.599 0.296 0.514 0.097

n = 400 −0.591 1.806 0.181 0.237 0.067

β = 1, γ = 0

n = 100 −0.088 2.028 −0.058 0.679 0.110

n = 200 −0.074 1.402 −0.072 0.321 0.076

n = 400 −0.093 1.080 −0.089 0.132 0.054

β = 1.5, γ = 0

n = 100 −0.106 2.183 −0.084 0.461 0.124

n = 200 −0.073 1.306 −0.078 0.178 0.088

n = 400 0.013 0.645 −0.057 0.042 0.065

β = 2, γ = 0

n = 100 −0.319 2.869 −0.023 0.414 0.145

n = 200 −0.045 1.132 −0.049 0.107 0.099

n = 400 −0.006 0.556 −0.034 0.031 0.070
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Table 9: Simulation Performance of Semiparametric Threshold Estimator, DGP 5, signal to noise ra-

tio=0.75, 1000 Simulations

β γ α(x)

Bias MSE Bias MSE WASE

β = 1, γ = −1

n = 100 −1.078 9.865 1.058 2.903 0.678

n = 200 −0.924 6.452 1.038 3.000 0.511

n = 400 −0.784 3.871 0.981 3.005 0.357

β = 1.5, γ = −1

n = 100 −1.568 11.333 1.200 3.130 0.674

n = 200 −1.445 7.670 0.990 2.980 0.512

n = 400 −1.381 5.253 1.015 3.066 0.361

β = 2, γ = −1

n = 100 −2.021 13.251 1.264 3.353 0.683

n = 200 −2.029 9.981 1.082 3.189 0.524

n = 400 −2.059 7.818 0.884 2.906 0.374

β = 1, γ = 0

n = 100 0.150 10.700 −0.124 0.988 0.806

n = 200 0.022 6.893 −0.102 0.900 0.606

n = 400 0.310 3.448 −0.045 0.577 0.413

β = 1.5, γ = 0

n = 100 0.524 10.894 −0.108 0.620 0.839

n = 200 0.641 6.019 −0.066 0.501 0.620

n = 400 0.895 2.520 −0.042 0.212 0.410

β = 2, γ = 0

n = 100 0.659 10.603 −0.067 0.500 0.854

n = 200 1.000 5.332 −0.016 0.211 0.623

n = 400 0.982 2.374 0.009 0.065 0.411
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Table 10: Simulation Performance of Semiparametric Threshold Estimator, DGP 6, signal to noise ra-

tio=0.75, 1000 Simulations

β γ α(x)

Bias MSE Bias MSE WASE

β = 1, γ = −1

n = 100 −0.281 2.653 0.363 2.530 0.487

n = 200 −0.064 1.188 0.216 1.510 0.393

n = 400 0.091 0.348 0.077 0.518 0.286

β = 1.5, γ = −1

n = 100 −0.091 2.676 0.206 1.590 0.519

n = 200 0.032 1.123 0.082 0.766 0.397

n = 400 0.167 0.178 0.005 0.062 0.282

β = 2, γ = −1

n = 100 0.167 2.157 0.079 0.739 0.534

n = 200 0.177 0.726 0.053 0.379 0.402

n = 400 0.175 0.161 −0.005 0.005 0.289

β = 1, γ = 0

n = 100 −0.765 3.091 −0.053 2.988 0.488

n = 200 −0.566 1.696 0.016 2.224 0.393

n = 400 −0.235 0.583 −0.020 0.911 0.291

β = 1.5, γ = 0

n = 100 −0.763 3.353 −0.039 2.123 0.519

n = 200 −0.373 1.431 −0.015 1.212 0.397

n = 400 −0.034 0.254 0.002 0.181 0.289

β = 2, γ = 0

n = 100 −0.761 3.756 −0.016 1.534 0.537

n = 200 −0.232 1.198 −0.028 0.570 0.408

n = 400 −0.004 0.183 0.001 0.051 0.290
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Table 11: Simulation Performance of Semiparametric Threshold Estimator, DGP 7, signal to noise ra-

tio=0.75, 1000 Simulations

β γ α(x)

Bias MSE Bias MSE WASE

β = 1, γ = −1

n = 100 −0.337 1.400 0.397 1.907 0.144

n = 200 −0.179 0.735 0.258 1.228 0.089

n = 400 −0.095 0.353 0.146 0.567 0.052

β = 1.5, γ = −1

n = 100 −0.297 1.670 0.296 1.202 0.161

n = 200 −0.185 0.835 0.152 0.634 0.090

n = 400 −0.037 0.249 0.034 0.119 0.052

β = 2, γ = −1

n = 100 −0.288 1.948 0.202 0.798 0.160

n = 200 −0.101 0.651 0.061 0.219 0.094

n = 400 −0.023 0.210 0.008 0.033 0.055

β = 1, γ = 0

n = 100 −0.367 1.425 −0.083 1.849 0.136

n = 200 −0.210 0.718 −0.130 1.073 0.085

n = 400 −0.105 0.301 −0.030 0.426 0.051

β = 1.5, γ = 0

n = 100 −0.282 1.487 −0.142 1.073 0.152

n = 200 −0.115 0.598 −0.038 0.372 0.088

n = 400 −0.001 0.170 −0.012 0.068 0.051

β = 2, γ = 0

n = 100 −0.296 1.683 −0.038 0.661 0.156

n = 200 −0.044 0.474 −0.016 0.141 0.089

n = 400 −0.012 0.217 −0.003 0.014 0.053
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